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Abstract
Purpose Incidence and mortality of intrahepatic cholangiocarcinoma (ICC) have been increasing over the past few decades, 
and Ki67 is an adverse prognostic predictor and an attractive therapeutic target for ICC patients. Thus, we aim to develop 
and validate a combined Ki67 prediction model for ICC patients.
Materials and methods Preoperative contrast-enhanced MR images were collected from 178 patients with postoperative 
pathologically confirmed ICC, and randomly divided into training and validation cohorts in a ratio of 7:3 (124:54). A time-
independent test cohort of 49 ICC patients was used for validation. Independent clinicoradiological features of Ki67 status 
were determined by multivariate analysis. Optimal radiomics features were selected by least absolute shrinkage and selection 
operator logistic regression and linear discriminant analysis was used to construct combined models. The prediction efficacy 
of combined model was assessed by receiver operating characteristics curve, and verified by its calibration, decision and 
clinical impact curves.
Results HBV (p = 0.022), arterial rim enhancement (p = 0.006) and enhancement pattern (p = 0.012) are independent clini-
coradiological features. The radiomics model achieves good prediction efficacy in the training cohort (AUC = 0.860) and 
validation cohort (AUC = 0.843). The combined Ki67 prediction model incorporates clinicoradiological and radiomics fea-
tures, and it yields desirable predictive efficiency in test cohort (AUC = 0.815). Decision curves and clinical impact curves 
further validate that the combined Ki67 prediction model can achieve net benefits in clinical work.
Conclusion The combined Ki67 model incorporating HBV, arterial rim enhancement, enhancement pattern and radiomics 
features is a potential biomarker in Ki67 prediction and stratification.
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Introduction

Primary liver cancer (PLC) includes hepatocellular carci-
noma (HCC), intrahepatic cholangiocarcinoma (ICC) and 
other rare type, and ICC accounts for 10–15% of PLC [1]. 
ICC originates from the intrahepatic secondary bile duct 
and has three gross pathological patterns: mass-forming 
(78%), periductal infiltrating (16%) and intraductal papil-
lary (6%) subtypes, and the overall survival of patients 
with mass-forming ICC is shorter [2, 3]. The incidence and 
mortality of ICC have been increasing over the past few 
decades [4, 5]. Partial hepatectomy is an effective treat-
ment [6], however, many patients with advanced ICC are 
inoperable due to delayed diagnosis [7]. Recently, molecu-
lar profiling has revealed subtypes of ICC [8], therefore, 
molecular targeted therapies are expected to improve the 
prognosis of ICC patients [9].

Ki67 protein is a nuclear antigen related to cell prolifer-
ation and positively correlated with cancer aggressiveness 
[10]. Some studies suggest that Ki67 is a poor prognostic 
predictor in patients with ICC [11, 12]. Besides, Ki67 is 
an attractive therapeutic target for malignant cancers [13]. 
For instance, Dinaciclib could suppress ICC growth by 
suppressing Ki67 protein [14]. Zhang et al. [15] also found 
that knockout of lncRNA CASC15 could suppress ICC 
progression by inhibiting Ki67 protein expression. There-
fore, accurate prediction of Ki67 status in ICC patients is 
a predictor for treatment efficacy evaluation and outcome 
prediction. However, it is difficult to determine Ki67 status 
of ICC lesions by routine imaging and laboratory tests.

Currently, radiomics is defined as a high-throughput 
extraction of numerous image features from medical 
images, and independent features are applied to the con-
struction of diagnostic, predictive and prognostic models 
[16]. Several studies have achieved good predictive effi-
ciency in the Ki67 prediction of several malignant cancers, 
including HCC [17], breast cancer [18] and lung cancer 
[19]. However, the development and validation of Ki67 
status prediction model for ICC lesions based on radiomics 
features has not yet been studied.

Serum carbohydrate antigen 19-9 (CA199) levels are 
often elevated in ICC patients, rather than elevated serum 
alpha-fetoprotein (AFP) levels like those in HCC patients. 
And typical mass-forming ICC lesions exhibit several 
imaging features like intrahepatic duct dilatation, hepatic 
capsular retraction and gradual and filling enhancement 
pattern. Therefore, preoperative diagnosis of ICC is not 
difficult, whereas, to date, there is no model to predict the 
Ki67 status of ICC lesions preoperatively. In our study, we 
aimed to develop and validate a combined Ki67 predic-
tion model for mass-forming ICCs incorporating clinico-
radiological features and MRI radiomics. Importantly, the 

combined Ki67 prediction model will be further validated 
by a time-independent test cohort.

Materials and methods

Patients

This retrospective-prospective study was approved by the 
Zhongshan Hospital, Fudan University (Ethics approval No. 
B2021-325R) ethics committees, and patient informed con-
sent was waived. From June 2015 to July 2019, 178 patients 
with postoperative pathologically confirmed ICC from the 
Zhongshan Hospital were randomly divided into the train-
ing (n = 124, 79 high Ki67 status group and 45 low Ki67 
status group) and validation cohorts (n = 54, 33 high Ki67 
status group and 21 low Ki67 status group) in a ratio of 7:3. 
From August 2019 to April 2022, a test cohort of postop-
erative pathologically confirmed ICC patients (n = 49, 28 
high Ki67 status group and 21 low Ki67 status group) from 
the Zhongshan Hospital was prospective grouped with the 
same inclusion criteria, and baseline clinicoradiological fea-
tures of ICC patients in test cohort are shown in Table S1. 
The main inclusion criteria (Fig. 1): (a) single lesion with 
longest diameter ≥ 1.0 cm; (b) without previous treatment 
history of PLC; (c) complete histopathological description 
of ICC lesion; (d) all patients underwent MRI examination 
within 1 month before hepatectomy; (e) adequate MR image 
quality.

Clinical features retrieval

The demographic data, preoperative serum AFP, carcinoem-
bryonic antigen (CEA), CA199, history of hepatitis B virus 
(HBV) serum markers and HBV-DNA loads were retrospec-
tively retrieved (Table 1). All PLC samples were sampled 
using 7-point baseline sampling protocol [20]. Histopatho-
logical features including lesion number, Edmondson-
Steiner grade and Ki67 status were evaluated by two expe-
rienced abdominal pathologists. Anti-human Ki67 rabbit 
monoclonal antibodies (Maixin Biotech Co., Ltd, Fuzhou, 
China) were used with a dilution of 1:50 in immunohisto-
chemistry, and the Ki67 labeling index (LI) was recorded. 
We classified ICC lesions into low Ki67 status group (Ki67 
LI < 25%) and high Ki67 status group (Ki67 LI ≥ 25%) as 
previous studies [11, 21].

Gd‑DTPA MR acquisition protocol

Contrast-enhanced MRI was performed by intravenous 
injection of 0.1 mmol/kg Gd-DTPA, followed immediately 
by a 20 ml saline flush at 2 ml/s. Taking 3.0 T uMR 770 
scanner (United Imaging Healthcare, Shanghai, China) as 
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an example, MR sequences involved in this study include 
axial T2-weighted imaging with fat suppression (T2WI-
FS), diffusion-weighted imaging (DWI, with b values of 0, 
50, 500 s/mm2), axial pre-contrast quick three-dimensional 
T1-weighted imaging (quick3d T1WI) with fat suppression 
and post-contrast dynamic-enhanced quick 3d T1WI at arte-
rial phase (AP, 20–30 s), portal venous phase (PVP, 60–70 s) 
and delayed phase (DP, 180 s) (Table S2).

Imaging features analysis

Imaging features were assessed independently by 2 blinded 
and experienced abdominal radiologists (C.W.Z. and X.L. 
with 10 and 15 years of experience, respectively). In case of 
any discrepancy, a consensus was generated after discussion. 
Imaging features including: (a) tumor size; (b) tumor mor-
phology; (c) signal intensity (SI) on T1WI, T2WI-FS and 
DWI images; (d) target sign (peripheral hyperintense with 
central isointense/hypointense) [22]; (e) rim enhancement on 
AP (complete and incomplete rim); (f) enhancement pattern; 
(g) the liver imaging reporting and data system (LI-RADS) 

(Version 2018) [23]; (h) intrahepatic duct dilatation; (i) 
hepatic capsular retraction (retraction of hepatic capsular 
adjacent to the lesion); (j) visible vessel penetration [24]; (k) 
peripherally hepatic enhancement (peritumoral enhancement 
on any phase).

Radiomics analysis

Tumor segmentation

The tumor segmentation was performed in the ITK-SNAP 
software. Volumes of interests (VOIs) were manually deline-
ated based on 6 MR sequences (DWI with b value of 500 s/
mm2, T2WI-FS, pre-T1WI, AP, PVP and DP, respectively) 
by an abdominal radiologist with 5 years of experience 
(X.L.Q.) and checked by a senior abdominal radiologist 
(X.L.). Besides, 30 MR images of ICC lesions were ran-
domly selected and delineated again by X.L.Q. to assess the 
test–retest reliability. Blinded to segmentations delineated 
by X.L.Q., these 30 MR images of ICC lesions were deline-
ated again by C.W.Z. to assess the inter-observer variability.

Fig. 1  Study flowchart of the 
enrolled patients 318 pathologically confirmed ICC patients after hepatectomy from June 2015 to July 2019

Previous treatment history: hepatectomy 
(n=33), TACE (n=12), RFA (n=2), and 

comprehensive treatment (n=6)

Two or more ICCs (n=51)

The interval between MRI and surgery 
more than 1 month (n=1)

Periductal infiltrating type (n=7), 
intraductal papillary type (n=11)

178 patients were finally enrolled

training cohort 
(n=124)

exclusion

exclusion

exclusion

exclusion

exclusion

validation cohort 
(n=54)

The maximum lesion diameter 1.0 cm 
(n=6), poor MR image quality (n=11)

Ki67≥25%
(n=79)

Ki67<25%
(n=45)

Ki67≥25%
(n=33)

Ki67<25%
(n=21)
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Table 1  Baseline clinicoradiological features of ICC patients in training and validation cohorts

Features Training cohort (n = 124) Validation cohort (n = 54) p-Inter

Ki67 < 25% (n = 45) Ki67 ≥ 25% (n = 79) p-Intra Ki67 < 25% (n = 21) Ki67 ≥ 25% (n = 33) p-Intra

Clinical features
Age (years)a 62.244 (9.759) 59.443 (11.690) 0.176 63.238 (10.616) 59.212 (11.567) 0.204 0.861
Gender 0.089 0.076 0.362
Male 29 (64.4) 62 (78.5) 11 (52.4) 25 (75.8)
Female 16 (35.6) 17 (21.5) 10 (47.6) 8 (24.2)
HBV 0.008 0.752 0.299
Negative 30 (66.7) 33 (41.8) 13 (61.9) 19 (57.6)
Positive 15 (33.3) 46 (58.2) 8 (38.1) 14 (42.4)
AFP 0.458 1.000 0.076
< 20 ng/ml 42 (93.3) 69 (87.3) 17 (81.0) 26 (78.8)
≥ 20 ng/ml 3 (6.7) 10 (12.7) 4 (19.0) 7 (21.2)
CEA 0.092 1.000 0.798
< 5 ng/ml 34 (75.6) 69 (87.3) 17 (81.0) 27 (81.8)
≥ 5 ng/ml 11 (24.4) 10 (12.7) 4 (19.0) 6 (18.2)
CA199 0.745 0.851 0.608
< 34 U/ml 26 (57.8) 48 (60.8) 12 (57.1) 18 (54.5)
≥ 34 U/ml 19 (42.2) 31 (39.2) 9 (42.9) 15 (45.5)
Edmondson-Steiner grade 0.006 0.177 0.134
I–II 25 (55.6) 24 (30.4) 8 (38.1) 7 (21.2)
II–IV 20 (44.4) 55 (69.6) 13 (61.9) 26 (78.8)
MR imaging features
Tumor size(mm)b 34.9 (27.35–46.70) 44.5 (24.50–59.40) 0.307 49.5 (30.45–67.25) 45.8 (30.85–59.60) 0.613 0.183
Tumor morphology 0.611 0.065 0.525
(Hemi-)spherical and oval 14 (31.1) 31 (39.2) 10 (47.6) 14 (42.4)
Lobulated 22 (48.9) 32 (40.5) 4 (19.0) 15 (45.5)
Irregular 9 (20.0) 16 (20.3) 7 (33.3) 4 (12.1)
SI on T1WI 0.159 – 0.231
Low 45 (100.0) 75 (94.9) 21 (100.0) 33 (100.0)
Moderate 0 (0.0) 3 (3.8) 0 (0.0) 0 (0.0)
High 0 (0.0) 1 (1.3) 0 (0.0) 0 (0.0)
SI on T2WI-FS 0.560 1.000 0.602
Low 0 (0.0) 1 (1.3) 0 (0.0) 0 (0.0)
Moderate 1 (2.2) 3 (3.8) 0 (0.0) 1 (3.0)
High 44 (97.8) 75 (94.9) 21 (100.0) 32 (97.0)
Target sign on T2WI-FS 0.243 0.686 0.286
Negative 24 (54.5) 49 (65.3) 14 (66.7) 23 (71.9)
Positive 20 (45.5) 26 (34.7) 7 (33.3) 9 (28.1)
Target sign on DWI 0.465 0.801 0.457
Negative 22 (48.9) 44 (55.7) 12 (57.1) 20 (60.6)
Positive 23 (51.1) 35 (44.3) 9 (42.9) 13 (39.4)
Intrahepatic duct dilatation 0.877 0.594 0.315
Negative 29 (64.4) 52 (65.8) 13 (61.9) 18 (54.5)
Positive 16 (35.6) 27 (34.2) 8 (38.1) 15 (45.5)
Hepatic capsular retraction 0.904 0.554 0.141
Negative 25 (55.6) 43 (54.4) 13 (61.9) 23 (69.7)
Positive 20 (44.4) 36 (45.6) 8 (38.1) 10 (30.3)
Visible vessel penetration 0.765 0.480 0.755
Negative 17 (37.8) 32 (40.5) 9 (42.9) 11 (33.3)
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Feature extraction

To reduce heterogeneity among MR images, all images were 
resampled to an isotropic voxel size (1 × 1 × 1  mm3) using 
bilinear interpolation, and intensities were normalized with 
a fixed bin width. Images were then normalized by z-score 
to obtain a standard normal distribution of image intensity. 
The extraction of radiomics features was performed by the 
uAI Research Portal (Version: 20210730), in which PyRa-
diomics (https:// pyrad iomics. readt hedocs. io/ en/ v3.0. 1/) was 
embedded. 2600 radiomics features were extracted from 
each sequence, and these features were classified into first-
order statistics, shape-based features, texture features, and 
high-order features.

Feature selection

Firstly, extracted radiomics features were applied with a 
z-score 

(

yi =
xi−x

�(x)

)

 normalization to eliminate index dimen-
sion difference. Secondly, features with intraclass correlation 

coefficients ≥ 0.75 in both test–retest and inter-observer set-
tings were considered as reproducible radiomics features and 
were chosen for further analysis. Finally, the correlation 
analysis, multicollinearity analysis and least absolute shrink-
age and selection operator (LASSO) methods were per-
formed to select optimal prediction features (Table S3, Fig-
ure S1).

Model construction

Clinical model and imaging model were constructed by cor-
responding independent clinicoradiological predictors. For 
models based on single or multiple MR sequences and fusion 
models, linear discriminant analysis (LDA) was used to find 
the best linear combination of the above optimal prediction 
features to maximize the discrimination between patients 
with high and low Ki67 status. On the basis that LDA has a 
certain classification ability, taking the LDA results as the 
input feature of logistic regression (LR) and random forest 
(RF) to further accurately identify patients with high or low 
Ki67 status, and the classification threshold is 0.5.

Unless otherwise stated, data are shown as number of patients with percentage in parentheses
a Data are means with standard deviation in parentheses
b Data are medians with interquartile ranges in parentheses

Table 1  (continued)

Features Training cohort (n = 124) Validation cohort (n = 54) p-Inter

Ki67 < 25% (n = 45) Ki67 ≥ 25% (n = 79) p-Intra Ki67 < 25% (n = 21) Ki67 ≥ 25% (n = 33) p-Intra

Positive 28 (62.2) 47 (59.5) 12 (57.1) 22 (66.7)
Peripheral hepatic enhance-

ment
0.933 0.898 0.162

Negative 22 (48.9) 38 (48.1) 8 (38.1) 12 (36.4)
Positive 23 (51.1) 41 (51.9) 13 (61.9) 21 (63.6)
Arterial rim enhancement 

on AP
0.057 0.878 0.834

Negative 14 (31.1) 13 (16.5) 5 (23.8) 6 (18.2)
Positive 31 (68.9) 66 (83.5) 16 (76.2) 27 (81.8)
Complete rim on AP 0.322 0.280 0.597
Negative 16 (51.6) 27 (40.9) 8 (50.0) 9 (33.3)
Positive 15 (48.4) 39 (59.1) 8 (50.0) 18 (66.7)
Enhancement pattern 0.143 0.568 0.856
Gradual and filling 37 (82.2) 57 (72.2) 15 (71.4) 27 (81.8)
Arterial and persistent 6 (13.3) 9 (11.4) 3 (14.3) 2 (6.1)
Wash-in and wash-out 2 (4.4) 13 (16.5) 3 (14.3) 4 (12.1)
LI-RADS 0.452 0.381 0.716
LR-3 1 (2.2) 0 (0.0) 0 (0.0) 0 (0.0)
LR-4 1 (2.2) 3 (3.8) 0 (0.0) 1 (3.0)
LR-5 2 (4.4) 6 (7.6) 3 (14.3) 2 (6.1)
LR-M 41 (91.1) 69 (87.3) 18 (85.7) 30 (90.9)
LR-TIV 0 (0.0) 1 (1.3) 0 (0.0) 0 (0.0)

https://pyradiomics.readthedocs.io/en/v3.0.1/
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Model evaluation and verification

Receiver operating characteristics curves (ROC) were 
plotted and the area under curve (AUC), sensitivity, speci-
ficity, accuracy, precision and F1-score were calculated to 
evaluate the performance of models. Delong test was used 
to compare the predictive efficiency between models, and 
we applied the Benjamini–Hochberg method to correct 
the false discovery rate (FDR) [25]. Hosmer–Lemeshow 
test was performed to evaluate the consistency between 
actual Ki67 status and predicted Ki67 status, and calibra-
tion curve was plotted. Decision curve and clinical impact 
curve were plotted to verify the clinical practicability of 
models by quantifying the net benefits at different risk 
thresholds. The confusion matrixes of the fusion models 
in three models were plotted. The workflow of the above 
radiomics analysis is shown in Fig. 2.

Correlation analysis

Radiomics features extracted from pre-T1WI, PVP and DP 
sequences were correlated with HBV, arterial rim enhance-
ment on AP, enhancement pattern and Ki67, respectively, 
and heatmaps were performed. Because the different 
ranges of features, correlation coefficients were calcu-
lated for continuous versus binary variables, continuous 
variables, and non-continuous variables by using Biserial, 
Pearson, and Spearman correlation analyses, respectively.

Statistical analysis

Student’s t test was used when variables were normal distribu-
tion, and Mann–Whitney U test was used when variables were 
non-normal distribution for continuous variables and chi-square 
test was used for qualitative variables to analyze whether there 
were statistically significant differences. Univariate and mul-
tivariate analysis were used for the selection of independent 
predictor. Statistical analysis was performed with R software 
(version 4.1.1). All statistical tests were two-sided, and p value 
lower than 0.05 were considered statistically significant.

Results

Performance of clinicoradiological features

124 and 54 patients were divided into training and valida-
tion cohorts, and baseline clinicoradiological features are 
shown in Table 1. At the univariate analysis, gender, HBV, 
CEA, arterial rim enhancement on AP and enhancement pat-
tern are significantly related to Ki67 status. The multivariate 
analysis shows HBV, arterial rim enhancement on AP and 
enhancement pattern are independent predictors of Ki67 
status in ICC patients (Table 2). In the training cohort and 
validation cohort, the clinical model constructed with HBV 
and imaging model constructed with arterial rim enhance-
ment on AP and enhancement pattern both exhibit poor pre-
dictive efficiency. The clinical + imaging model also shows 

Tumor segmentation Model evaluation and verification

ROC curve
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Clinical impact curve
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Fig. 2  Study flowcharts of radiomics analysis
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an unsatisfactory predictive efficiency (AUC training = 0.714, 
AUC validation = 0.535) (Table 3, Fig. 3A, B). Example of 
representative clinicoradiological features of ICC with high 
Ki67 status are shown in Figure S2.

Performance of radiomics features using single MR 
sequence

Totally, 76 robust radiomics features were selected from 6 
single MR sequences (Figure S1, Table S3 and S4), and the 
AUCs of 6 single MR sequence models constructed with 
robust radiomics features are displayed (Table 3, Fig. 3A, B). 
Although all single MR sequence models show poor speci-
ficity, which prompts single MR sequence model predic-
tive efficiency is unreliable, T1, T1V and T1D models yield 
stable AUCs between training and validation cohorts, and 
T1V model shows the most stable predictive efficiency with 
ΔAUC  = 0.009. Therefore, multiple-sequence models were 
constructed based on above three single-sequence models.

Performance of radiomics features using multiple 
MR sequence

Two-sequence models have good predictive efficiency in 
training and validation cohorts. Among them, T1V + T1 

and T1V + T1D models show stable predictive efficacy 
and higher AUCs in validation than training cohort. 
Thereby, the final three-sequence radiomics model 
incorporates T1, T1V and T1D models, and it shows a 
satisfying predictive performance (AUC training = 0.860, 
AUC validation = 0.843) (Table 3, Fig. 3D, E). And the final 
radiomics model performs better than T1V + T1D (FDR 
p = 0.018) model in the training cohort (Table 4). How-
ever, all of these three models show unsatisfying pre-
dictive performance in test cohort (AUC = 0.716–0.814) 
(Table 3 and Fig. 3C).

Performance of fusion models using 
clinicoradiological and radiomics features

Clinical + radiomics model and imaging + radiomics 
model achieve similar predictive efficiency in training, 
validation and test cohorts, but they are better than clini-
cal + imaging model (FDR p < 0.05). The combined Ki67 
prediction model incorporating clinical, imaging and radi-
omics model achieves excellent predictive efficiency in 
training (AUC = 0.904, 95% CI 0.849–0.960), validation 
(AUC = 0.870, 95% CI 0.775–0.965) and test (AUC = 0.815, 
95% CI 0.688–0.941) cohorts. The combined Ki67 

Table 2  Univariate and multivariate analyses of clinicoradiological features related with Ki67 status in ICC

Bold values are features with p < 0.05 in univariate and multivariate analyses

Features Univariate Multivariate

b-value p-value OR (95% CI) b-value p-value OR (95% CI)

Age − 0.024 0.177 0.977 (0.943–1.010)
Gender − 0.699 0.092 0.497 (0.219–1.123) − 0.335 0.493 0.716 (0.275–1.890)
HBV 1.025 0.009 2.788 (1.315–6.104) 1.019 0.022 2.770 (1.176–6.798)
AFP 0.708 0.303 2.029 (0.582–9.430)
CEA − 0.803 0.097 0.448 (0.170–1.162) − 0.781 0.167 0.458 (0.149–1.398)
CA199 − 0.124 0.745 0.884 (0.420–1.871)
Edmondson− Steiner grade 1.052 0.007 2.865 (1.351–6.194)
Tumor size 0.006 0.398 1.006 (0.992–1.022)
Tumor morphology − 0.146 0.566 0.864 (0.523–1.425)
SI on T1WI 15.325 0.987 4,524,206.867 (0-NA)
SI on T2WI-FS − 0.848 0.403 0.428 (0.024–2.171)
Target sign on T2WI-FS − 0.451 0.245 0.637 (0.296–1.364)
Target sign on DWI − 0.273 0.466 0.761 (0.364–1.586)
Intrahepatic duct dilatation − 0.061 0.877 0.941 (0.439–2.049)
Hepatic capsular retraction 0.045 0.904 1.047 (0.502–2.197)
Visible vessel penetration − 0.115 0.765 0.892 (0.416–1.883)
Peripheral hepatic enhancement 0.032 0.933 1.032 (0.495–2.151)
Arterial rim enhancement on AP 0.830 0.061 2.293 (0.962–5.521) 1.946 0.006 6.998 (1.935–33.724)
Complete rim on AP 0.432 0.324 1.541 (0.653–3.667)
Enhancement pattern 0.526 0.093 1.691 (0.951–3.315) 1.140 0.012 3.127 (1.394–8.558)
LI-RADS 0.064 0.862 1.066 (0.490–2.183)
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Table 3  The performance of clinicoradiological features, radiomics features and the combined predictive models for predicting Ki67 status in 
ICC patients

Models Classifiers Features AUC (95% CI) Sensitivity Specificity Accuracy Precision F1-score

Clinical model LR (TD/VD) 1 0.624 (0.536–0.713)
0.522 (0.385–0.658)

1.000/1.000 0.000/0.000 0.363/0.611 0.363/0.611 0.533/0.759

RF (TD/VD) 0.624 (0.536–0.713)
0.522 (0.385–0.658)

1.000/1.000 0.000/0.000 0.363/0.611 0.363/0.611 0.533/0.759

Imaging model LR (TD/VD) 2 0.653 (0.571–0.735)/ 
0.519 (0.389–0.650)

0.975/0.909 0.178/0.048 0.685/0.574 0.675/0.600 0.798/0.723

RF (TD/VD) 0.653 (0.571–0.735)
0.456 (0.326–0.586)

0.937/0.879 0.267/0.095 0.694/0.574 0.692/0.604 0.796/0.716

Clinical + imaging 
model

LR (TD/VD) 3 0.714 (0.626–0.803)
0.535 (0.376–0.694)

0.975/0.909 0.200/0.095 0.694/0.593 0.681/0.612 0.802/0.732

RF (TD/VD) 0.717 (0.629–0.805)
0.530 (0.416–0.625)

0.975/0.909 0.200/0.095 0.694/0.593 0.681/0.612 0.802/0.732

DWI model LR (TD/VD) 12 0.970 (0.938–1.000)/ 
0.625 (0.464–0.786)

0.949/0.697 0.911/0.524 0.935/0.630 0.949/0.697 0.949/0.697

RF (TD/VD) 0.979 (0.958–1.000)
0.615 (0.456–0.775)

0.975/0.636 0.889/0.667 0.944/0.648 0.939/0.750 0.957/0.689

T1 model LR (TD/VD) 11 0.718 (0.623–0.812)
0.639 (0.485–0.794)

0.899/0.848 0.333/0.286 0.694/0.630 0.703/0.651 0.789/0.737

RF (TD/VD) 0.756 (0.666–0.846)
0.650 (0.495–0.805)

1.000/0.939 0.289/0.238 0.742/0.667 0.712/0.660 0.832/0.775

T1A model LR (TD/VD) 13 0.787 (0.707–0.868)
0.571 (0.416–0.727)

0.873/0.758 0.422/0.286 0.710/0.574 0.726/0.625 0.793/0.685

RF (TD/VD) 0.846 (0.780–0.913)
0.608 (0.450–0.766)

0.911/0.788 0.422/0.238 0.734/0.574 0.735/0.619 0.814/0.693

T1V model LR (TD/VD) 12 0.784 (0.700–0.869)
0.775 (0.640–0.909)

0.949/0.848 0.444/0.571 0.766/0.741 0.750/0.757 0.838/0.800

RF (TD/VD) 0.816 (0.738–0.893)
0.773 (0.640–0.906)

0.949/0.939 0.444/0.524 0.766/0.778 0.750/0.756 0.838/0.838

T1D model LR (TD/VD) 11 0.732 (0.640–0.823)
0.609 (0.449–0.769)

0.962/0.879 0.267/0.286 0.710/0.648 0.697/0.659 0.808/0.753

RF (TD/VD) 0.769 (0.687–0.852)
0.589 (0.428–0.749)

0.962/0.818 0.267/0.286 0.710/0.611 0.697/0.643 0.808/0.720

T2 model LR (TD/VD) 17 0.785 (0.703–0.867)
0.693 (0.547–0.838)

0.873/0.879 0.444/0.333 0.718/0.667 0.734/0.674 0.798/0.763

RF (TD/VD) 0.821 (0.749–0.893)
0.686 (0.540–0.832)

0.823/0.848 0.578/0.381 0.734/0.667 0.774/0.683 0.798/0.757

T1V + DWI model LR (TD/VD) 24 0.786 (0.703–0.868)
0.739 (0.590–0.888)

0.899/0.818 0.422/0.571 0.726/0.722 0.732/0.750 0.807/0.783

RF (TD/VD) 0.845 (0.776–0.915)
0.735 (0.592–0.879)

0.949/0.818 0.422/0.524 0.758/0.704 0.743/0.730 0.833/0.771

T1V + T1 model LR (TD/VD) 23 0.855 (0.776–0.934)
0.779 (0.640–0.918)

0.949/0.848 0.667/0.571 0.847/0.741 0.833/0.757 0.888/0.800

RF (TD/VD) 0.897 (0.840–0.955)
0.815 (0.699–0.930)

0.949/0.879 0.667/0.571 0.847/0.759 0.833/0.763 0.888/0.817

T1V + T1A model LR (TD/VD) 22 0.888 (0.826–0.950)
0.724 (0.583–0.866)

0.911/0.788 0.667/0.476 0.823/0.667 0.828/0.703 0.868/0.743

RF (TD/VD) 0.904 (0.851–0.957)
0.716 (0.574–0.857)

0.911/0.788 0.711/0.476 0.839/0.667 0.847/0.703 0.878/0.743

T1V + T1D model LR (TD/VD) 19 0.784 (0.700–0.869)
0.817 (0.694–0.939)

0.949/0.909 0.444/0.571 0.766/0.778 0.750/0.769 0.838/0.833

RF (TD/VD) 0.814 (0.735–0.892)
0.808 (0.684–0.932)

0.949/0.727 0.444/0.857 0.766/0.778 0.750/0.889 0.838/0.800
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prediction model exhibits better than clinical + imaging 
model (FDR p < 0.001), clinical + radiomics model (FDR 
p = 0.010) and imaging + radiomics model (FDR p = 0.018) 
(Tables 3, 4, Fig. 3C–E).

Evaluation and verification of the combined Ki67 
prediction model

The flowchart of the combined Ki67 prediction model is 
shown in Fig. 4. Calibration curves show the goodness of 

fit between the predicted Ki67 status by using the combined 
Ki67 prediction model and actual Ki67 status in the train-
ing (p = 0.787) and validation (p = 0.742) cohorts (Fig. 5A, 
B). Decision curves show that radiomics model, clini-
cal + radiomics, imaging + radiomics model and the com-
bined Ki67 prediction model could obtain net benefit by 
predicting Ki67 status of all range risk threshold, and the 
combined Ki67 prediction model exhibits the highest net 
benefit (Fig. 5C). To further assess the clinical utility of 
models, clinical impact curves show that the combined Ki67 

Table 3  (continued)

Models Classifiers Features AUC (95% CI) Sensitivity Specificity Accuracy Precision F1-score

T1V + T2 model LR (TD/VD) 25 0.853 (0.781–0.926)
0.782 (0.642–0.922)

0.911/0.939 0.622/0.476 0.806/0.759 0.809/0.738 0.857/0.827

RF (TD/VD) 0.874 (0.812–0.937)
0.766 (0.618–0.914)

0.899/0.939 0.689/0.476 0.823/0.759 0.835/0.738 0.866/0.827

Radiomics model LR (TD/VD) 26 0.860 (0.799–0.934)
0.843 (0.756–0.933)

0.899/0.939 0.644/0.667 0.806/0.833 0.816/0.816 0.855/0.873

RF (TD/VD) 0.905 (0.850–0.960)
0.894 (0.806–0.982)

0.937/0.939 0.622/0.667 0.823/0.833 0.813/0.816 0.871/0.873

Clinical + radiomics 
model

LR (TD/VD) 27 0.877 (0.813–0.942)
0.899 (0.809–0.989)

0.911/0.909 0.689/0.810 0.831/0.870 0.837/0.882 0.873/0.896

RF (TD/VD) 0.892 (0.833–0.951)
0.895 (0.801–0.989)

0.911/0.909 0.689/0.810 0.831/0.870 0.837/0.882 0.873/0.896

Imaging + radiomics 
model

LR (TD/VD) 28 0.893 (0.834–0.951)
0.883 (0.795–0.971)

0.911/0.879 0.622/0.667 0.806/0.796 0.809/0.806 0.857/0.841

RF (TD/VD) 0.911 (0.859–0.962)
0.870 (0.775–0.965)

0.886/0.788 0.778/0.762 0.847/0.778 0.875/0.839 0.881/0.812

Clinical + imag-
ing + radiomics model

LR (TD/VD) 29 0.904 (0.849–0.960)
0.870 (0.775–0.965)

0.924/0.879 0.689/0.714 0.839/0.815 0.839/0.829 0.880/0.853

RF (TD/VD) 0.920 (0.871–0.969)
0.862 (0.763–0.961)

0.911/0.818 0.778/0.762 0.863/0.796 0.878/0.844 0.894/0.831

Clinical + imaging 
model

LR  (test) 3 0.651 (0.502–0.782) 0.857 0.333 0.633 0.632 0.727

RF  (test) 0.638 (0.488–0.770) 0.893 0.238 0.612 0.610 0.725
T1V + T1 model LR  (test) 23 0.716 (0.550–0.882) 0.857 0.619 0.755 0.750 0.800

RF  (test) 0.816 (0.693–0.940) 0.857 0.619 0.755 0.750 0.800
T1V + T1D model LR  (test) 19 0.814 (0.689–0.939) 0.964 0.619 0.816 0.771 0.857

RF  (test) 0.792 (0.680–0.904) 0.964 0.619 0.816 0.771 0.857
Radiomics model LR  (test) 26 0.782 (0.639–0.925) 0.750 0.619 0.694 0.724 0.737

RF  (test) 0.813 (0.693–0.932) 0.750 0.571 0.673 0.700 0.724
Clinical + radiomics 

model
LR  (test) 27 0.767 (0.625–0.909) 0.750 0.667 0.714 0.750 0.750

RF  (test) 0.806 (0.681–0.931) 0.750 0.667 0.714 0.750 0.750
Imaging + radiomics 

model
LR  (test) 28 0.760 (0.612–0.909) 0.786 0.714 0.755 0.786 0.786

RF  (test) 0.771 (0.628–0.914) 0.750 0.810 0.776 0.840 0.792
Clinical + imag-

ing + radiomics model
LR  (test) 29 0.815 (0.688–0.941) 0.750 0.767 0.714 0.750 0.750

RF  (test) 0.807 (0.680–0.934) 0.714 0.810 0.755 0.833 0.769

Bold values are models with stable and/or desirable predictive performance
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model has the largest risk threshold range of 0.5–1.0, and 
the predicted Ki67 status is highly consistent with the actual 
Ki67 status with risk thresholds ranging between 0.5 and 1.0 
(Fig. 5D–I). The heatmap of the correlation between Ki67 
status, clinicoradiological features and radiomics features is 
shown in Fig. 6A and Table S5. The confusion matrixes of 
the fusion models in the training, validation and test models 
are shown in Fig. 6B.

Discussion

In this study, we established a multiparametric model for 
predicting Ki67 status in ICC patients preoperatively. The 
final combined Ki67 prediction model incorporates clinical, 
imaging and radiomics features, and it exhibits an excellent 
predictive efficiency.

As previous studies [11, 21], we classified ICC lesions 
into low Ki67 status group and high Ki67 status group by 
25% in our study. However, in the majority of studies on pre-
dicting Ki67 status of HCC preoperatively, the cut-off value 
of low and high Ki67 status is usually selected as 10–15% 
[17, 26]. This may be due to the fact that ICC is a much 
more aggressive cancer than HCC [27, 28]. Tsokos et al. 
[29] found that well-differentiated ICC had higher Ki67 LI 
than benign proliferations (22.7% vs. 1.4%, respectively; 
p < 0.001), and none of the benign biliary lesions had Ki67 
LI greater than 10%. Therefore, it is inferred that 10% is 
more likely to be the cut-off value for differentiating benign 
biliary lesion and ICC, and 25% are more rational in differ-
entiating low and high Ki67 status in ICC lesions.

The multivariate analysis shows HBV is the only inde-
pendent clinical predictor of Ki67 status in our study. HBV 
and cirrhosis are risk factors for ICC, with overall odds 
ratios of 5.10 and 22.92, respectively [30], and Tovoli et al. 
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Fig. 3  Comparison of receiver operating characteristics (ROC) curves for Ki67 status prediction in training (A, D), validation (B, E) and test (C) 
cohorts by logistic regression
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Table 4  The comparison of models in training, validation, and test cohorts

Bold values are statistically significant with p < 0.05 corrected by false discovery rate (FDR)

Models Classifiers p-train p-validation p-test

Radiomics model versus T1V + T1 model LR 0.828 0.160 0.336
RF 0.476 0.627 0.955

Radiomics model versus T1V + T1D model LR 0.018 0.653 0.760
RF 0.040 0.633 0.809

Clinical + radiomics model versus clinical + imaging model LR < 0.01 0.001 0.917
RF < 0.01 < 0.01 1.000

Imaging + radiomics model versus clinical + imaging model LR < 0.01 0.011 0.690
RF < 0.01 < 0.01 1.000

Clinical + radiomics model versus imaging + radiomics model LR 0.228 0.609 0.838
RF 0.120 0.445 0.192

Imaging + clinical + radiomics model versus radiomics model LR 0.018 0.424 0.236
RF 0.023 0.526 0.870

Imaging + clinical + radiomics model versus imaging + clinical model LR < 0.001 < 0.001 0.886
RF < 0.001 < 0.001 0.216

Imaging + clinical + radiomics model versus clinical + radiomics model LR 0.010 0.271 0.072
RF 0.025 0.244 0.978

Imaging + clinical + radiomics model versus imaging + radiomics model LR 0.018 0.347 0.046
RF 0.233 0.592 0.230

Fig. 4  The predictive flowchart of the combined Ki67 prediction model
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[27] also found that cirrhotic patients with ICCs have differ-
ent clinical presentation and outcomes. However, Peng et al. 
[31] showed there was no statistical differences between low 
and high Ki67 status in ICC patients, it may be due to an 
irrational cut-off value of 10% was selected in his study. The 
multivariate analysis also shows that arterial rim enhance-
ment on AP and enhancement pattern are two independent 
imaging predictors of Ki67 status. Min et al. [32] found that 

arterial peripheral rim enhancement pattern was prognostic 
factor for increased risk of death, which is consistent with 
the relationship between arterial rim enhancement on AP 
and Ki67. Our study also suggests that ICC lesions with 
enhancement pattern like HCC (wash-in and wash-out) may 
yield a higher Ki67 LI.

Since neither clinical model nor imaging model nor 
clinical + imaging model can achieve desirable AUC, so 
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Fig. 5  Evaluation and verification of the fusion models. (A, B) Cal-
ibration curves of the fusion models in term of agreement between 
predicted and actual Ki67 status in the training (A) and validation 
(B) cohort. X-axis represents predicted Ki67 status, Y-axis represents 
actual Ki67 status, and dashed line represents the ideal prediction. 
(C) Decision curves of the fusion models. The grey line represents 
the assumption that all patients with high Ki67 status, and the hori-

zontal black line represents the assumption that no patient with high 
Ki67 status. (D–I) Clinical impact curves of the fusion models. The 
dashed line is the actual number of ICC patients with high Ki67 sta-
tus. The combined Ki67 model has the largest risk threshold range of 
0.5–1.0, and the predicted Ki67 status is highly consistent with the 
actual Ki67 status with risk thresholds ranging between 0.5 and 1.0
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we further analyze the predictive performance of radiomics 
features using 6 single MR sequences. Obviously, none of 
them can meet the prediction requirements. But the single 
MR sequence models including T1, T1V and T1D models 
show stable predictive efficiency, more importantly, pairwise 
combination models of these three models yield stable pre-
dictive efficacy and higher AUCs in validation than training 
cohort. Thereby, the final radiomics model constructed with 
T1, T1V and T1D models may be more reliable. Although 
the final radiomics model performs better than T1V + T1D 
models in the training cohort, it performs poorly in test 
cohort and its specificity is unsatisfying, so a fusion model 
incorporates clinicoradiological and radiomics features is 
needed. Clinical + radiomics model, imaging + radiomics 
and the combined Ki67 prediction model achieve better than 
clinical + imaging model, indicating that radiomics features 
are vital to the prediction of Ki67 status in ICC patients. 

Decision curves show that the combined Ki67 model could 
predict Ki67 status in all range risk threshold and obtain 
the highest net benefit. Clinical impact curves show that the 
combined Ki67 model has the largest risk threshold range of 
0.5–1.0 to identify the Ki67 status accurately.

The principle of the LASSO algorithm is to compress 
coefficients of features by introducing a regularization 
parameter, and remove some features with zero coefficients, 
so as to achieve the purpose of feature selection [33]. Rad-
score is obtained by matrix multiplication of the features 
and their coefficients obtained by the LASSO algorithm, 
usually as an independent prediction signature. However, 
Rad-score completely relies on the feature selection results 
of LASSO, and the category information is not directly cor-
related. LDA is a supervised feature dimensionality reduc-
tion method, which takes the category information studied 
as a priori knowledge [34]. The main purpose of LDA was 

Fig. 6  (A) The heatmap of the correlation between Ki67 status, clinicoradiological features and radiomics features. (B) The confusion matrixes 
of the fusion models in the training, validation and test models
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to maximize the variation between samples of different cat-
egories and further fit a combined signature that was more 
suitable for discriminating high and low Ki67 status of ICCs 
in our study. Therefore, the combined signature obtained by 
the LDA method, with maximum inter-class variance and 
minimum intra-class variance, may could make the samples 
to be predicted obtain the best separability.

Recently, there have been several studies on the Ki67 
prediction in HCC based on CT [26] and MR [17, 35], but 
there is no study on the Ki67 prediction in ICC based on 
CT or MR. In our study, a total of 22 radiomics features 
(T1WI image: 10, PVP image: 9, DP image: 7) are cor-
related with the Ki67 status (Fig. 6A and Table S5). And 
T1V_firstorder_Maximum (r = − 0.225, p = 0.002), T1V_
glszm_LowGrayLevelZoneEmphasis (r = 0.216, p = 0.004), 
T1V_ngtdm_Busyness (r = − 0.210, p = 0.005), and T1D_
glszm_LargeAreaEmphasis (r = − 0.212, p = 0.005) have 
strong correlation, which happens to explain why T1V 
model shows the most sable predictive efficiency among 
single MR sequence models. Peng et  al. [31] predicted 
Ki67 status in ICC based on ultrasound radiomics features, 
principal component analysis as an unsupervised feature 
dimensionality reduction method, was used before LASSO 
in the feature selection, therefore, the features finally used 
to predict Ki67 status were weakly interpretable. The study 
about Ki67 status prediction in HCC conducted by Ye et al. 
[17] was similar to our study, only two glrlm features (Lon-
gRunHighGrayLevelEmphasis, LongRunLowGrayLevelEm-
phasis) are identical to our study, suggesting that these two 
features may be independently related to the Ki67 status, 
regardless of tumor type.

There are several limitations in our study. Firstly, we 
define “Ki67 LI ≥ 25%” as high Ki67 status in our study 
according to previous studies, however, the reason why the 
Ki67 cut-off value of ICC is higher than that of HCC needs 
further study. Secondly, selection bias is inevitable in retro-
spective study, and an estimation of the effect of the splitting 
procedure may be needed in future study. Thirdly, there is 
no study on the Ki67 prediction in ICC based on MR in the 
past, thus more studies in this area are needed to compare 
and verify our study, and the correlation between radiomics 
features and Ki67 status, complex clinicoradiological fea-
tures need to be further explained. Finally and importantly, 
larger cohorts from other centers are needed to be enrolled 
for prospective validation of our Ki67 prediction model.

In summary, the combined Ki67 model incorporat-
ing clinical feature (HBV), imaging features (arterial rim 
enhancement on AP and enhancement pattern) and radiom-
ics features (on T1, T1V and T1D sequences) is a potential 
biomarker in Ki67 prediction, and the flowchart of the com-
bined Ki67 prediction model may be a potential tool in Ki67 
stratification of ICC patients (Fig. 4).
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