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Abstract

This study aimed to systematically summarize the performance of the machine learning-based radiomics models in the
prediction of microsatellite instability (MSI) in patients with colorectal cancer (CRC). It was conducted according to the
preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA)
guideline and was registered at the PROSPERO website with an identifier CRD42022295787. Systematic literature search-
ing was conducted in databases of PubMed, Embase, Web of Science, and Cochrane Library up to November 10, 2022.
Research which applied radiomics analysis on preoperative CT/MRI/PET-CT images for predicting the MSI status in CRC
patients with no history of anti-tumor therapies was eligible. The radiomics quality score (RQS) and Quality Assessment
of Diagnostic Accuracy Studies 2 (QUADAS-2) were applied to evaluate the research quality (full score 100%). Twelve
studies with 4,320 patients were included. All studies were retrospective, and only four had an external validation cohort.
The median incidence of MSI was 19% (range 8-34%). The area under the receiver operator curve of the models ranged
from 0.78 to 0.96 (median 0.83) in the external validation cohort. The median sensitivity was 0.76 (range 0.32-1.00), and
the median specificity was 0.87 (range 0.69-1.00). The median RQS score was 38% (range 14-50%), and half of the studies
showed high risk in patient selection as evaluated by QUADAS-2. In conclusion, while radiomics based on pretreatment
imaging modalities had a high performance in the prediction of MSI status in CRC, so far it does not appear to be ready for
clinical use due to insufficient methodological quality.
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QUADAS-2  Quality assessment of diagnostic accuracy
studies 2

RQS Radiomics quality score

Introduction

Colorectal cancer (CRC) ranks as the third most common
malignant tumor and the second leading cause of cancer-
related death globally [1]. Microsatellite instability (MSI)
is a well-established cancer hallmark that is defined as the
generalized instability of the short, non-sense, repeat DNA
sequences (i.e., microsatellites) due to a deficient repair sys-
tem of the DNA mismatches at replication. About 13—-15%
of CRC patients have tumors with MSI [2, 3]. It occurs more
often in older patients, in right-sided locations, and has a
lower pathological stage, representing a distinct CRC sub-
type [4].

Clinical decision-making can benefit from the informa-
tion on pre-treatment MSI status for patients with CRC.
Patients with MSI often have better outcomes and are less
likely to have lymph node spread and metastasis [2, 5].
Besides, patients with CRC MSI generally do not benefit
from preoperative 5-fluorouracil-based adjuvant therapy
[6-8]. Under this context, MSI testing has been recom-
mended for all patients with stage II rectal patients by the
National Comprehensive Cancer Network practice guide-
lines since 2016 [9]. Furthermore, MSI status can also serve
as a predictor for the response to immunotherapy [10, 11].
Previous studies have shown that MSI CRC patients are
sensitive to immune checkpoint inhibitors due to the high
expression level of mutant neoantigens [12, 13]. Therefore,
the European Society for Medical Oncology recommends
MSI evaluation before immunotherapy [14] and the US Food
and Drug Administration has approved MSI as an indication
for cancer immunotherapy [15].

At present, MSI status is mainly evaluated through immu-
nohistochemistry or polymerase chain reaction on specimens
obtained by colonoscopy biopsy or surgical resection [2].
However, information about mismatch repair protein express
level obtained postoperatively exerts little influence on the
pretreatment planning, and the limited samples obtained via
biopsy may not thoroughly reflect the intra-tumoral hetero-
geneity [16]. In some cases, a false negative result may occur
(2.1-5.9%) [17]. In addition, biopsy and surgery are also
invasive procedures, leaving the patients at risk of proce-
dure-related complications and are not practical for repeated
monitoring [18]. A non-invasive, reliable, and cost-effective
approach to identifying the MSI status would be of great
value.

Imaging modalities, such as computed tomography (CT),
magnetic resonance imaging (MRI), and positron emission
tomography/CT (PET/CT), are commonly used for the

detection, characterization, and staging of CRC. The subtle
information underlying these images may reflect the genetic/
molecular alterations of CRC, such as MSI [19]. By using
modern computing techniques, the imaging information can
be mined and converted to quantitative high-dimension data,
and the latter can be further exploited for the construction
of prediction models via machine learning algorithms—this
technique has been coined as “radiomics” [19-22].In recent
years, plenty of studies using the radiomics approach for
CRC MST status prediction have emerged [22]. However, the
reported prediction accuracy and efficacy of these radiomics
models vary and the overall performance remains unknown.
To date, there is not any research summarizing current evi-
dence about radiomics methods for MSI status prediction in
CRC patients. Such summaries are of clinical importance for
evidence-based patient management. This systematic review
was therefore aimed to summarize the current evidence and
to provide a summary of the predictive performance of the
radiomics models in the diagnosis of MSI in CRC. In addi-
tion, the research and reporting quality of these studies were
also evaluated.

Materials and methods

This study was conducted according to the Preferred Report-
ing Items for a Systematic Review and Meta-analysis of
Diagnostic Test Accuracy Studies (PRISMA-DTA) guide-
line [23], and the checklist can be found in Supplementary
file 1. The research protocol has been registered at the
PROSPERO website (https://www.crd.york.ac.uk/prospero/)
under registration No. CRD42022295787.

Literature search

A systematic literature search was performed to detect any
potentially relevant publications at four public databases:
PubMed, Embase, Web of Science, and Cochrane Library
with key terms of “colorectal cancer (CRC)/colon can-
cer/rectal cancer/colorectal liver metastases (CRLM)”,
“microsatellite instability (MSI)/mismatch repair deficient
(dMMR)” and “radiomics/texture analysis/radiogenomics/
imaging biomarker”, their synonyms, and their Medical Sub-
ject Headings terms (detailed search queries are provided in
Supplementary file 2). The literature search was first con-
ducted on April 15 2022 and last updated on November 10
2022.

Study selection
Studies meeting the following inclusion and exclusion cri-

teria were regarded as eligible and included in this research.
Inclusion criteria: 1) retrospective or prospective design; 2)

@ Springer


https://www.crd.york.ac.uk/prospero/

138

La radiologia medica (2023) 128:136-148

patients with CRC confirmed by postoperative histopatho-
logical examination and no history of anti-tumor therapies
(i.e., neoadjuvant chemotherapy or radiation therapy) before
imaging examinations; 3) radiomics features extracted from
the entire volume of the lesion at CT, MRI or PET/CT exam-
inations and used as a single predictor or one of the variables
in a prediction model; 4) MSI status was evaluated on the
surgical specimens; 5) publications in English. Exclusion
criteria: 1) publications in the form of review, conference
abstract, corrigendum, book chapter, or study protocol,
2) research outcomes not involving MSI; 3) deep learning
research; 4) sample size of less than 50 patients.

Two researchers ('Q.W' and 'J.X', with 7 and 2 years of
experience in preparing and updating systematic reviews,
respectively) conducted study selection independently, first
by screening the title and abstract and then by reading the
full text of the potentially eligible studies. The disagree-
ment was solved by discussion or consultancy with a senior
researcher ('T.B.B"). In addition, review and cited references
in the included articles were manually identified to detect
any eligible research.

Data extraction

A predefined table was applied to extract the study infor-
mation, which included: 1) basic study characteristics (for
example the first author, publish year, country, and study
design); 2) patient characteristics; 3) characteristics in
radiomics workflow (such as tumor segmentation method,
software used for radiomics feature extraction; a typical
radiomics research workflow is shown in Fig. 1); 4) diag-
nostic performance metrics (true positives, false positives,

false negatives, and true negatives) to construct a 2 X 2 table.
When a study involved training and test cohorts, the diag-
nostic performance in the test cohort was selected for the
model’s prediction power. If several prediction models were
developed in one study, the model with the best performance
was chosen. If the study did not have a test cohort, the pre-
dictive metrics in the validation cohort were extracted. When
the provided data on diagnostic performance were insuffi-
cient to create a 2 X2 table, an email was sent to the cor-
responding author for the missing information. The metrics
were visualized as a forest plot to intuitively evaluate the
predictive performance of the radiomics prediction models,
which was achieved by using the software Review Manager
(RevMan, version 5.3. Copenhagen: The Nordic Cochrane
Centre, The Cochrane Collaboration, 2014).

The terms “validation” and “test” were unified in this
study to avoid any confusion: “validation cohort” was
defined as the part of the training cohort which was ran-
domly divided for fine-tuning of super-parameters during
modeling, while “test cohort” was defined as a hold-out
dataset that was externally separate from the training cohort,
not involved in the modeling [24]. The test cohort could be
temporally or geographically independent from the training
cohort [25]. “External cohort” and “test cohort” will be used
interchangeably in this study.

Assessment of radiomics quality score and the risk
of bias

The tool used for methodological quality evaluation of the
radiomics studies was the radiomics quality score (RQS)
scale, which was proposed by Lambin and colleagues in
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Fig. 1 A radiomics study workflow
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2017 [20]. The RQS scale consists of 16 items evaluating
the research and reporting quality in the workflow of the
radiomics model development. Different points are assigned
to each item according to the degree the research achieves.
The total points for this scoring system are 36, correspond-
ing to 100% in percentage [20].

Research quality was also evaluated by using the Quality
Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2)
criterion [26]. This tool assesses the risk of bias in a study
in four dimensions: patient selection, index test, reference
standard, and flow and timing, with results marked as low,
high, and unclear risk indicating different levels of risk in
each domain [26].

Data extraction and study quality evaluation were per-
formed and cross-validated by the same two research-
ers ('Q.W'and 'J.X',). In case of a discrepancy occurring,
the senior researcher ('T.B.B',) was consulted to reach an
agreement.

Results

The initial search yielded 97 records from the four public
databases. After the removal of 48 duplicates, 37 ineligible
studies, 12 studies were finally included in this systematic
review [27-38]. Among them, 10 studies with available data
were able to construct a 2X 2 contingency table [27-31,
33-35, 37, 38]. Figure 2 describes a PRISMA flowchart of
the study selection.

General characteristics and the incidence of MSI

The included studies were published between December
2019 and August 2022, and all studies were retrospectively
designed (one study claimed to be prospective, but was
judged as retrospective after discussion [32]). A total of
4,320 patients were included, with a sample size ranging
from 90 to 837 (median 238) and a male/female ratio of 1.5
(2,592/1,728). Four studies were performed as multicenter
research, with a sample size in the external cohorts ranging
from 61 to 441 (median 82) [30, 35, 37, 38]. Five studies
exclusively focused on rectal cancer, while the others on
CRC [29, 32, 36-38].

Based on the surgically resected specimens, eleven stud-
ies evaluated the MSI status using the immunohistochem-
istry approach and one using the polymerase chain reaction
method [31]. The incidence of MSI ranged from 8 to 34%
(median: 19%). Among nine studies with available data, a
majority of studies (8/9) reported an interval between imag-
ing examination and surgery of less than 2 weeks [27, 29, 30,
33, 34, 36-38]. Table 1 provides detailed information about
the basic characteristics of the included studies.

RQS and QUADAS-2 assessment

The median RQS score of the included studies was 13.5
points (range 5-18), corresponding to 38% (range 14-50%)
of the full RQS score. The highest score of 50% was
obtained in only one study [30]. The lowest score of 5 points
(14%) was observed in an early study on this topic, and the
main points were lost due to a lack of validation cohort [27].
Regarding performance in each item of the RQS, three items
were fulfilled by all studies (100%): “feature reduction or
adjustment,” “biological correlates,” and “comparison to
gold standard.” On the other hand, four items (‘“phantom
study,” “prospective study,” “cost-effectiveness analysis”
and “open science and data”) were assigned 0 as none of
the included studies involved them. A summary of the RQS
score is presented in Fig. 3 A and B, and detailed informa-
tion on the RQS score for each study is provided in Sup-
plementary file 3.

A majority of the studies showed a low or unclear risk of
bias and applicability concerns as evaluated by QUADAS-2
(Fig. 3 C). The main source of the high risk of bias and
application concern was the domain of “patient selection”
due to the retrospective nature of the studies, and patient
selection bias seemed inevitable. Detailed evaluation of the
included studies in each domain is provided in Supplemen-
tary file 4.

LEINT3

Study characteristics

The study characteristics are described according to the five
phases of a radiomics research workflow (Table 2):

(1) Imaging acquisition and tumor segmentation
Among the included studies, seven used CT imag-
ing, four MRI [29, 32, 37, 38], and one PET/CT [33].
Six studies applied images from one phase/sequence
[27-29, 34-36]; the most frequently used phase was
the portal venous phase of CT imaging (7/12) [27, 28,
30, 31, 34-36]. The tumor was segmented manually in
11 studies and semi-automatically in one [27].
(2) Imaging preprocessing and feature extraction
Seven studies stated imaging preprocessing before
feature extraction [30, 31, 33, 35-38], but only five of
them described their preprocessing techniques (resam-
pling or gray-level discretization) [30, 35-38]. Pyradi-
omics was the most frequently used package for feature
extraction (5/12) [29, 30, 33, 35, 38], and the number
of the extracted radiomics features ranged from 254 to
6,420 (median: 1037).
(3) Feature selection/dimension reduction
All studies performed dimension reduction to select
the most informative features and avoid potential model
overfitting. The least absolute shrinkage and selec-
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Fig.2 PRISMA flowchart of
study selection
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tion operator (LASSO) was the researchers’ favorite
machine learning tool to reduce redundant features
(7/12) [27, 29-31, 34, 36, 37], followed by correlation
analysis (3/12) [28, 36, 38]. After feature selection, the
number of radiomics features was reduced to 11 (range
2-51) to be included in the radiomics model.

In six studies, inter-/intra-observer correlation coef-
ficient analysis was not only used for the assessment
of feature reproducibility and stability but also feature
selection [29, 30, 34, 36-38].

Model development

Due to the relatively low incidence of MSI, resam-
pling techniques were applied to balance the negative/
positive classifications in six studies [27, 30, 32, 33,
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35, 37], among which the Synthetic Minority Over-
sampling Technique was the most frequently used
algorithm (4/6) [27, 30, 32, 37]. Logistic regression
was the most commonly used classifier for modeling
(6/12) [30-32, 34, 36, 37]. Cross-validation with 5 or
tenfold was applied in six studies (6/12) to avoid model
overfitting and to determine the superparameter [27,
29, 30, 34, 37, 38]. Six studies evaluated the predictive
value of clinicopathological variables [29-31, 34-36],
in which tumor location and age (both 4/6) were the
most frequent, significant indicators for the prediction
of MSI status, followed by carcinoembryonic antigen
(3/6). All those six studies then combined the studied
variables with the calculated radiomics risk score into
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a compound clinical radiomics model to predict MSI
status.
Model performance

Four studies visualized their models as a nomogram
[30, 31, 34, 36], two studies provided the formula [32,
37], and one study used radiomics-based artificial neu-
ral network [35]. The area under the receiver operator
curve (AUC) of the prediction models ranged from 0.75
to 0.99 (median 0.84) in the training cohort, from 0.74
to 0.93 (median 0.83) in the validation cohort, and from
0.78 to 0.96 (median 0.83) in the test cohort [30, 35,
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37, 38]. Among the 10 studies with available metrics
data, the median sensitivity was 0.76 (range 0.32-1.00)
and the median specificity was 0.87 (range 0.69-1.00)
(Fig. 4). In specific, in the radiomics model based on
CT or PET/CT, the median sensitivity was 0.79 (range
0.32-1.00) and the median specificity was 0.84 (range
0.69-1.00) [27, 28, 30, 31, 33-36]. Five studies evalu-
ated the agreement between the model-predicted out-
come and the observed outcome by plotting a calibra-
tion curve [30-32, 34, 36]. Decision curve analysis was
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Fig.4 Performance metrics and forest plot of the sensitivity and
specificity of the radiomics models in the prediction of microsatel-
lite instability in patients with colorectal cancer. CI, confidence inter-
val; CT, computed tomography; FN, false negative; FP, false posi-
tive; MRI, magnetic resonance imaging; PET/CT, positron emission

performed among five studies to evaluate the clinical
usefulness of their models [30-32, 34, 37].

Discussion

This systematic review showed that radiomics models using
the machine learning approach on pretreatment imaging
modalities had a high predictive efficacy, with a median
AUC of 0.83, a median sensitivity of 0.76, and a specific-
ity of 0.87. Despite these promising results, the radiomics
model is still far away from clinical utility due to the insuf-
ficient methodological quality as reflected by the low RQS
score.

The translation of these prediction models into clinical
routine settings is mainly determined by the study’s validity.
Ideally, a reliable radiomics signature can be developed from
a prospective, large sample cohort with a study population
consecutively enrolled. Although none of the included stud-
ies was prospectively designed, the largest sample size was
as high as 837 and almost half of the studies (5/12) had a
sample size of over 490. The median incidence of MSI in
the included studies was 19%, which was a little higher than
the reported incidence (13-15%) [3, 39-42]. Two studies
that did not state whether the subjects were consecutively
included or not had an MSI incidence as high as 33% and
34% [32, 38]. That might be due to their case—control study
design (1:2). In diagnostic test studies, this type of study
design is prone to overestimate the performance of the pre-
diction model and should be avoided as it cannot reflect
the real-world situation [26]. One may argue that when
performing machine learning algorithms, the positive and

0 020406081 002040608 1

tomography/CT; TN, true negative; TP, true positive. # data from the
test cohort (i.e., the independent external cohort); T data from the val-
idation cohort; i data from the training cohort. Note that meta-analy-
sis was not performed to synthesize the performance metrics due to
the study heterogeneity

negative classifications of a cohort should be balanced to
avoid potential overfitting. In fact, several techniques have
been proposed to deal with this situation, such as the Syn-
thetic Minority Oversampling Technique [43, 44]. Half of
the reviewed studies adopted techniques to cope with the
imbalanced classifications [28, 32, 35, 36, 38].

Before translating the radiomics models into clinical
implementation, it is also vital to verify the model in an
external cohort [25]. Given that the model developed in the
training cohort tends to be overfitting, the external cohort
can be used to evaluate the generalization of a prediction
model and provide a real performance of the model in real-
world practice [45]. One-third of the studies (4/12) tested
their models in an external cohort, yielding a median AUC
of 0.83 [32, 34, 38]. On the other hand, internal validation
using cross-validation or bootstrapping techniques within
the training cohort plays an equivalent role to avoid potential
overfitting and to optimize the prediction model [45-47]. Six
studies adopted five-/tenfold cross-validation when develop-
ing their models.

Researchers should also make their prediction model
reproducible and validated by other investigators. The first
step could be to deposit the radiomics codes/data at a pub-
lic platform (such as https://github.com) or to provide more
details on software usage. However, none of the included
research published their code or data, resulting in a zero
score for the “open science and data” item in the RQS scale.
Besides, the models should also be presented in a proper
and easy-to-use form for clinical usage, for example, pre-
sent as a nomogram. Six studies provided the formula and/
or nomogram, which forwarded one step for their models
validated by other centers. Furthermore, the determination
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of the optimal cutoff value of the prediction model is often
a trade-off between sensitivity and specificity. Its important
role has been emphasized by a specific item in the RQS
score. The knowledge of the specific cutoff value of a model
makes it possible for other researchers to validate the model.
However, only two studies stated the cutoff values of their
models [32, 35]. When implementing the prediction model,
researchers should also be aware of the target patient popula-
tion or subpopulation. The patients in the included studies
had different indications, where some studies merely focused
on rectal cancer or CRC stage II/III, while others were on
the general CRC population.

RQS is a commonly used tool for the appraisal of radi-
omics research quality [20]. As it evaluates the key steps
in the radiomics research workflow, RQS has the potential
to become not only a guide when performing the radiom-
ics study, but also a useful checklist when submitting their
manuscript to a journal. The included studies fulfilled well
in three domains of the RQS scale, accounting for 17%
of the full score (6 points). Besides, more than half of the
studies (7/12) reported both a discriminative performance
and a resampling technique in the item of “discrimination
statistics”, earning an average of 1.6 points for this item.
However, the included studies in this review only yielded a
median score of 13.5 points (corresponding to 38% of the
full score of 36) and the highest score of 18 points (50% of
the full score). The main reason was that four domains in
the RQS scale were not in response by any of the included
studies, for example, to make their code/data public. These
four domains account for 39% of the full scale (14 points).
However, the RQS scale may assign a too-high weight to the
item “prospective study” (7 points), which is approximately
equal to 20% of the full score. This is a relatively high score
given that most other items in the RQS tool often have a
maximum of 1-2 point(s). However, no prospective stud-
ies were included in this systematic review, which further
contributed to a lower RQS score in the included studies.

On the other hand, other appraisal tools, such as QUA-
DAS-2, which was designed for the appraisal of the general
diagnostic test studies, should also be adopted to comple-
ment the RQS tool in the assessment of radiomics research
quality. For instance, the RQS scale does not involve patient
selection, but this issue is of clinical importance when eval-
uating a diagnostic test study. In the QUADAS-2, patient
selection is one of the four main constituent dimensions.
Besides, other commonly used guidelines, such as the
“checklist for artificial intelligence in medical imaging”
(CLAIM) [48] and the “transparent reporting of a multi-
variable prediction model for individual prognosis or diag-
nosis (TRIPOD)” statement [25], may also be beneficial to
conduct a rigorous and reproducible radiomics study and to
improve the research and reporting quality.

@ Springer

There are some limitations in this study. First, the num-
ber of included studies was relatively limited, no study was
prospectively designed, and only four studies validated their
models in external cohorts. These limitations may under-
mine the conclusion drawn from our study. On the other
hand, the limited number of studies, as shown by the ini-
tial records retrieved from the four databases, also reflects
that this topic (using radiomics approach for predicting
gene expression levels in CRC) is relatively novel and the
research is still at its early stage. Second, the included stud-
ies were heterogeneous not only in the imaging modalities
and phase/sequence used but also in the imaging features
and modeling strategies. In this context, a meta-analysis to
synthesize the diagnostic metrics was not performed and a
pooled AUC for the radiomics model in the prediction of
MSI status was therefore absent. Third, deep learning stud-
ies were not included due to the poor interpretability of deep
learning-derived imaging features. This is also a burgeoning
field where the deep learning model is often assumed to
have higher accuracy than the radiomics models [49]. Lastly,
although RQS is a useful tool in the assessment of radiomics
research quality, it has limitations. Further revision of RQS
might make it more comprehensive in the quality appraisal
of the radiomics studies.

Conclusions

In conclusion, despite radiomics models derived from pre-
treatment imaging modalities having a high performance
in the prediction of MSI status in CRC patients, radiomics
does not seem to be ready to serve as an imaging biomarker
utilized in clinical practice due to the insufficient methodo-
logical quality of the research.
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