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Abstract
Background The aim is to find a correlation between texture features extracted from neuroendocrine (NET) lung cancer 
subtypes, both Ki-67 index and the presence of lymph-nodal mediastinal metastases detected while using different computer 
tomography (CT) scanners.
Methods Sixty patients with a confirmed pulmonary NET histological diagnosis, a known Ki-67 status and metastases, were 
included. After subdivision of primary lesions in baseline acquisition and venous phase, 107 radiomic features of first and 
higher orders were extracted. Spearman’s correlation matrix with Ward’s hierarchical clustering was applied to confirm the 
absence of bias due to the database heterogeneity. Nonparametric tests were conducted to identify statistically significant 
features in the distinction between patient groups (Ki-67 < 3—Group 1; 3 ≤ Ki-67 ≤ 20—Group 2; and Ki-67 > 20—Group 
3, and presence of metastases).
Results No bias arising from sample heterogeneity was found. Regarding Ki-67 groups statistical tests, seven statistically 
significant features (p value < 0.05) were found in post-contrast enhanced CT; three in baseline acquisitions. In metastasis 
classes distinction, three features (first-order class) were statistically significant in post-contrast acquisitions and 15 features 
(second-order class) in baseline acquisitions, including the three features distinguishing between Ki-67 groups in baseline 
images (MCC, ClusterProminence and Strength).
Conclusions Some radiomic features can be used as a valid and reproducible tool for predicting Ki-67 class and hence the 
subtype of lung NET in baseline and post-contrast enhanced CT images. In particular, in baseline examination three features 
can establish both tumour class and aggressiveness.
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Abbreviations
NET  Neuroendocrine tumour
CT  Computed tomography
TC  Typical carcinoid
AC  Atypical carcinoid
LCNEC  Large-cell neuroendocrine carcinoma
SCLS  Small-cell lung carcinoma
GEP-NEN  Gastrointestinal neuroendocrine tumour
ROI  Regions of interest
MRI  Magnetic resonance imaging
PET-CT  Positron emission tomography computed 

tomography
PACS  Picture archiving and communication system
GLCM  Grey level co-occurrence matrix
GLSZM  Grey level size zone matrix
GLRLM  Grey level run length matrix
NGTDM  Neighbouring grey tone difference matrix
GLDM  Grey level dependence matrix
MCC  Maximal correlation coefficient

Background

Pulmonary neuroendocrine tumours (NETs) are a group 
of neoplasms that account for about 25% of all NETs and 
2% of lung cancers, they are divided into different groups 
according to their aggressiveness [1, 2]. In particular, NETs 
are classified as low-grade or typical carcinoids (TCs), 
intermediate grade or atypical carcinoids (ACs) and high 
grade, divided into large-cell neuroendocrine carcinomas 
(LCNECs) and small-cell lung carcinomas (SCLC) [3]. This 
division into successively more aggressive forms is based on 
the progressive increase in the number of mitoses and the 
presence of necrosis at the histological evaluation: usually 
typical carcinoid does not show necrosis unlike the atypical 
ones, whereas the highest percentage of mitoses are found in 
SCLC, the most aggressive form of NETs [4–7].

Computed tomography (CT) is the imaging of choice 
in diagnosing this pathology, being able not only to detect 
changes related to the presence lesion, but also necessary 
for loco-regional staging of disease [8, 9]. The most fre-
quent findings on CT are the presence of a solid consolida-
tive lesion within the lung parenchyma, frequently polylo-
bate, especially in the case of low-grade forms, with vivid 
enhancement after administration of contrast medium. The 
lesion may also present as endo-bronchial or with a mixed 
parenchymal and bronchial component. Parenchymal atelec-
tasis may also be present in the case of bronchial obstruction 
[10, 11].

Increasingly important in assessing tumour aggressive-
ness and thus meaning in the prognosis of these patients by 
the correlation of nuclear antigen expressed by proliferat-
ing cells (Ki-67). Although this classification is not yet part 

of the grading system of lung NETs, it is currently used 
in gastrointestinal neuroendocrine tumours (GEP-NENs) 
according to the 2019 WHO classification. Well-differen-
tiated NENs are further divided into grades based solely on 
Ki-67 proliferation index and mitotic index: into grade 1 
(G1, mitotic rate < 2, Ki-67 index < 3), grade 2 (G2, mitotic 
rate 2–20, Ki-67 index between 3 and 20) and grade 3 (G3, 
mitotic rate > 20, Ki-67 index > 20) [12, 13]. It has been 
studied how these grading values can play a fundamental 
role in prognostic evaluation and differentiation between 
various tumour histotypes and in particular in discriminat-
ing between TCs and ACs tumours or high-grade SCLS and 
LCNEC from carcinoid tumours [12, 13].

In recent years, radiomics, with the use of texture analy-
sis, is becoming an increasingly used tool, capable of giving 
more precise structural information, not always visible by 
the human eye and not subject to interindividual variabil-
ity [14–21]. Radiomics is therefore an innovative technique 
used to characterize the inhomogeneity of a given tissue, 
and more specifically, as in our case, the lung NET lesions, 
through the extraction and analysis of features obtained 
by investigating regions of interest (ROI) from different 
imaging modalities such as CT, magnetic resonance imag-
ing (MRI) or positron emission tomography CT (PET-CT) 
[22–26]. The application of texture analysis in NET of the 
lung could therefore be useful in both the diagnosis and 
early differentiation of distinctive NET tumour histotypes 
[27, 28]. In this paper, we faced the reproducibility of CT 
radiomics features in lung NETs using different CT scanners, 
trying to integrate different features or to find new metrics 
in assessing tumour aggressiveness and histotype, that could 
be reproducible in daily practice.

Materials and methods

Patients and ethics issues

This is a single-centre, observational, retrospective study. 
Between September 2008 and October 2021, all patients 
with a histological diagnosis of pulmonary NET who 
underwent pre-treatment CT exam were selected by search-
ing our Picture Archiving and Communication System 
(PACS). Inclusion criteria were: patients aged between 18 
and 99 years; histological diagnosis of pulmonary NET 
confirmed by biopsy or by surgical specimen; Ki-67 value; 
CT examination performed in our department with non-
enhanced acquisition and venous phase; at least one CT or 
PET-TC in the follow-up. The workflow of patient’s selec-
tion is shown in Fig. 1. The initial population included 91 
patients; of these 15 had no pre-treatment CT performed in 
our hospital. To make the sample more homogeneous, we 
excluded those who did not have a baseline-CT (six patients) 
and those who did not have venous phase acquisition (10 
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patients). Our study population resulted in 60 patients, 29 
males and 31 females. As there is still no standardization 
in the use and class division of lung NETs using the Ki-67 
index, we relied in our study on the most recent WHO 2019 
GEP-NENs grading. Selected patients were then divided in 
three groups: Ki-67 < 3 (Group 1), 3 ≤ Ki-67 ≤ 20 (Group 2) 
and Ki-67 > 20 (Group 3). This retrospective observational 
study was approved by the Ethics Committee of our Institu-
tion (study protocol n:14776_oss).

Images acquisitions and analysis

CT images were acquired using different CT scanners, as 
shown in Table 1. The study protocol consisted of a baseline 
acquisition followed by a venous phase acquisition with a 
70s’ delay after administration of an intravenous contrast 
medium (flow 3 mL/s, followed by bolus of saline with a 
dose of 40 ml). Two types of contrast medium were injected, 
Ultravist®370 (Bayer Healthcare) and Iomeron®400 
(Bracco Imaging Italia). The acquisition parameters for 
the basal scan were: matrix size 512 × 512 pixels with 
slice thickness between 1 and 5 mm, 120 kVp, 145 ± 97 
mAs, CTDIvol of 10.3 ± 6.7 mGy and DLP in the range 

237–1226 mGy*cm; for contrast enhanced scans acquisi-
tion parameters were: matrix size 512 × 512 pixels with 
slice thickness between 1 and 5 mm, 120 kVp, 156 ± 101 
mAs, CTDIvol of 11.4 ± 6.6 mGy and DLP in the range 
253.5–1228 mGy*cm. All studies were reviewed by two 
radiologists, with 5 and 15 years’ experience in thoracic 
imaging. The entire volume of the primary tumour was visu-
ally segmented in both unenhanced and enhanced acquisi-
tions employing a volumetric ROI (region of interest) using 
3DSlicer software version 4.10.2 (open source software; 
https:// www. slicer. org/). The ROI was delineated slice by 
slice for each patient. Textural features extraction was car-
ried out by means of SlicerRadiomics tool. A total of 107 
features of the PyRadiomics lists were selected, belonging to 
first-order, 3D shape-based, grey level co-occurrence matrix 
(GLCM), grey level size zone matrix (GLSZM), grey level 
run length matrix (GLRLM), neighbouring grey tone differ-
ence matrix (NGTDM) and grey level dependence matrix 
(GLDM) classes.

Statistical analysis

The intrinsic heterogeneity of the database due to the use of 
different contrast agents, scanners and reconstruction kernels 
could lead to the presence of bias in the statistical differ-
entiation of the patient classification groups; to verify the 
absence of this bias a Spearman’s correlation matrix with 
Ward’s hierarchical clustering was created using R software 
(https:// www.R- proje ct. org/). Nonparametric tests were per-
formed to identify features that showed significant differ-
ences between the three classes of Ki67 (Ki-67 < 3 (Group 
1), 3 ≤ Ki-67 ≤ 20 (Group 2) and Ki-67 > 20 (Group 3)) or 
between the presence or absence of mediastinal lymph-node 
metastases. This statistical analysis was performed sepa-
rately on unenhanced and on contrast enhanced CT scans 
databases using SPSS (IBM SPSS Statistics for Windows, 
version 27.0. Armonk, NY: IBM Corp). For the Ki-67 class 
distinction, the Kruskal–Wallis test was used and the post 
hoc analysis was performed with the Dunn’s test, consider-
ing the Bonferroni correction. For the metastases grouping 
distinction, the Mann–Whitney test was employed. Signifi-
cance threshold was set at p = 0.05.

Fig. 1  Workflow of patients’ selection

Table 1  List of computed 
tomography (CT) scanners used 
in our study

CT scanners

Bright Speed, Optima CT 660, LightSpeed VCT, Revolution HD—General Electric Healthcare
SOMATOM Emotion 16, Definition Flash, Definition AS + , Sensation 16, Sensation 64, Sensation 

Open—Siemens Healthineers
iCT SP—Philips Healthcare

https://www.slicer.org/
https://www.R-project.org/
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Results

This retrospective observational study was approved by 
the Ethics Committee of our Institution (study protocol 
n:14776_oss). The 60 patients selected were aged between 
35 and 90 years old (mean age 71 years; 35 women, 25 
men). Histopathological analysis revealed 45 cases of 
TCs (75.0%), 12 SCLCs (20.0%) and 3 LCNECs (5.0%). 
According to Ki-67 expression, patients in Group 1 were 
18/60 (30.0%), Group 2 24/60 (40.0%) and Group 3 18/60 
(30.0%). Typical carcinoids showed mean Ki-67 values of 
7.02, while SCLCs of 74.58 and LCNECs of 80,0. Medi-
astinal lymph-nodal metastases were present in 30/60 
(50.0%) at the first follow-up made by CT or PET-CT. The 
absence of bias in the database due to possible confound-
ing factors was verified through Spearman’s correlation 
matrix with Ward’s hierarchical clustering, as shown in 
Fig. 2. No evidence of a bias associated to these factors 
was found. In Tables 2 and 3, the features that showed 
significant differences among the Ki-67 classes, after 
Kruskal–Wallis with Dunn’s post hoc test, are listed for 
unenhanced and contrast enhanced CT scans, respectively 
(Tables 2, 3). The list of significant features, resulting 

from the Mann–Whitney test, in the distinction between 
the absence (0) and presence (1) of metastases, is also 
reported.

In the correlation analysis between the different types 
of tumour and Ki-67 classes, three features were statis-
tically significant in non-contrast enhanced scans: MCC 
(p = 0.048), ClusterProminence (p = 0.046) and Strength 
(p = 0.040). While in the contrast enhanced scans, seven 
features resulted statistically significant: Correlation 
(p = 0.046), Median (p = 0.004), Maximum (p = 0.005), 
RootMeanSquared (p = 0.002),  90th Percentile (p = 0.001), 
 10th Percentile (p = 0.020), Mean (p = 0.006). All of them, 
except for Correlation, are first-order class features.

When assessing the correlation between tumour his-
totype and the presence of metastases, three characters 
(Median (p = 0.049), RootMeanSquared (p = 0.045) and 
 90th Percentile (p = 0.030) were found in the feature’s 
statistical analysis of the venous phase contrast medium 
images. In the analysis performed on the unenhanced 
images, 15 features were statistically significant, includ-
ing those that distinguished the presence or absence of 
metastases also in post-contrast medium acquisitions, 
namely MCC (p = 0.016), ClusterProminence (p = 0.033) 
and Strength (p = 0.003).

Fig. 2  Heatmaps. Heatmap representing Spearman’s correlation 
matrix with Ward’s hierarchical clustering for unenhanced (a) and 
contrast enhanced (b) CT acquisitions. The colour of the heatmap 
goes from red (high correlation) to blue (low correlation). The top of 
the matrix shows the dendrogram of the clustering and three coloured 

bars which represent exam characteristics that could lead to a bias 
in the statistical correlation between groups (CT model, convolution 
kernel and contrast medium). It can be seen that all of those charac-
teristics are randomly distributed over the database and none of them 
can be associated to a specific cluster
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Discussion

To the best of our knowledge, this is the first study evaluating 
the efficacy of radiomics in considering the aggressiveness 

and tumour histotype of pulmonary NETs by analysing the 
possibility of results’ standardization and reproducibility on 
different CT scanners, therefore avoiding an important bias 
due to the heterogeneity of the machine used for imaging. 

Table 2  List of features that showed significant differences among the Ki-67 classes in Kruskal–Wallis test for unenhanced CT scans

For each feature are reported median and Tukey’s 1° and 3° quartile for each class, p value and classes pairs that passed Dunn’s test, if present. 
List of significant features, resulting from Mann–Whitney test, in the distinction between the absence (0) and presence (1) of metastases. For 
each feature are reported median and Tukey’s 1° and 3° quartile, separately for the two groups, and the p value

Feature Ki67 class Median 1° quartile 3° Quartile p value Dunn’s test

Baseline-CT
1 0.525 0.33 0.6225

MCC 2 0.44 0.34 0.5825 0.048 /
3 0.34 0.265 0.43
1 182.46 9.1325 1968.1775

Cluster prominence 2 17.01 3.4025 194.9325 0.046 1–3
3 3.66 9.01 18.8
1 0.67 0.2075 2.24

Strength 2 0.385 0.1275 0.9875 0.040 1–3
3 0.16 0.045 0.215

Feature Metastasis Median 1° Quartile 3° Quartile p value

Grey level variance (gldm) 0 0.83 0.5725 2.04 0.041
1 0.58 0.415 0.885

Small dependence emphasis 0 0.05 0.04 0.0675 0.025
1 0.04 0.03 0.05

MCC 0 0.505 0.345 0.6525 0.016
1 0.36 0.285 0.47

Sum squares 0 0.715 0.5 2.1 0.048
1 0.53 0.395 0.845

Cluster prominence 0 39.575 5.3075 1152.3575 0.033
1 9.01 3.69 21.935

Imc1 0 -0.1 -0.16 -0.07 0.048
1 -0.07 -0.12 -0.045

Cluster tendency 0 1.895 1.1625 6.6975 0.041
1 1.16 0.905 2.225

Variance 0 468.395 310.345 1196.237 0.039
1 306.71 195.815 500.74

Grey level variance (glrlm) 0 0.995 0.7175 3.0175 0.045
1 0.71 0.525 1.005

Grey level non uniformity normalized (glszm) 0 0.205 0.1325 0.27 0.017
1 0.26 0.215 0.32

Grey level non uniformity (glszm) 0 7.8 4.64 21.1475 0.017
1 23.82 8.765 40.975

Large area emphasis 0 7606.69 1944.933 34,346.72 0.047
1 40,481.62 5396.74 115,192.56

Zone percentage 0 0.05 0.03 0.07 0.035
1 0.03 0.02 0.05

Large area low grey level emphasis 0 189.485 92.2725 1300.74 0.035
1 1181.95 244.225 2984.82

Strength 0 0.67 0.225 2.12 0.003
1 0.15 0.05 0.415
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In our previous study, we have selected significant features 
in Ki-67 classes and aggressiveness stratification, using a 
small number of patients trying to have the most homogene-
ous group of subjects, using only one CT scanner [27]. We 
therefore attempted with this additional study to evaluate a 
larger number of patients, assessing whether with hierarchi-
cal clustering analysis there was any bias resulting from the 
use of different CTs. Different studies have been conducted 
to assess how variation in the acquisition parameters and 
reconstruction techniques of different CTs could affect radi-
omics features [29]. The study by Meyer et al. assessed how 
most features can be altered secondary to variations in acqui-
sition parameters: in particular slice thickness showed the 
greatest impact on the reproducibility of these features. This 
demonstrates how the selection of reproducible features that 

are not affected by variations secondary to different techni-
cal acquisition parameters is therefore a fundamental factor 
[30]. One of the main results of our study is that none of the 
features extracted and selected is affected by bias arising 
from sample heterogeneity.

An important goal of our study was the identification of 
features capable of differentiating tumour histotypes accord-
ing to the Ki-67 value. In particular, three features (maxi-
mal correlation coefficient—MCC, ClusterProminence and 
Strength) were significant in non-contrast acquisitions, as 
explained in the Results section. Cluster Prominence and 
MCC are second-order features belonging to the class of 
the grey level co-occurrence matrix (GLCM). The former 
is a measure of the skewness and asymmetry of the GLCM. 
The latter represents a quantification of the complexity of 

Table 3  List of features that showed significant differences among the Ki-67 classes in the Kruskal–Wallis test between the Ki-67 classes for 
contrast enhanced CT scans.

For each feature are reported median and Tukey’s 1° and 3° quartile for each class, p value and classes pairs that had passed Dunn’s test, if pre-
sent. List of significant features, resulting from the Mann–Whitney test, in the distinction between the absence (0) and presence (1) of metasta-
ses. For each feature are reported median and Tukey’s 1° and 3° quartile separately for the two groups and the p value

Feature Ki67 class Median 1° Quartile 3° Quartile p value Dunn’s test

 BASELINE-CT
1 0.4115 0.3325 0.58875

Correlation 2 0.4015 0.294 0.52 0.046 1–3
3 0.293 0.229 0.411
1 93 79 116.5

Median 2 78 59.75 95 0.004 1–3
3 60 52.5 70
1 233 147.5 378.5

Maximum 2 196 139 267.25 0.005 1–3
3 134 122 153
1 98.965 83.5675 128.56

Root mean squared 2 81.3765 67.108 102.3775 0.002 1–3
3 64.473 58.3855 72.0255
1 120.5 102 158.75

90th  Percentile 2 104 84.75 124.2 0.001 1–3
3 86 79.5 93.7
1 63.9 47.5 77.75

10th Percentile 2 53 35 58.35 0.020 1–3
3 32 29.5 46
1 91.549 74.37 116.8468

Mean 2 76.712 59.16125 89.25025 0.006 1–3
3 58.515 52.965 69.818

Feature Metastasis Median 1° Quartile 3° Quartile p value

Median 0 86.5 66.25 104.75 0.049
1 68 55 84.5

Root mean squared 0 95.6215 72.4565 118.7953 0.045
1 71.166 61.829 91.037

90th Percentile 0 115 94.5 137.4 0.030
1 93 83.2 111.5
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the texture. Strength belongs to neighbouring grey tone dif-
ference matrix (NGTDM), representing a measure of the 
primitives in an image. Equally, these features were also 
significant in acquisitions without contrast medium in cor-
relating with the presence of metastases.

Considering that the majority of patients have lesions 
with high contrast enhancement, which is a typical char-
acteristic of all neuroendocrine tumours, an evaluation 
after the administration of contrast medium is manda-
tory [31–33]. Concerning the correlation between Ki-67 
classes and tumour histotypes in enhanced CT images, 
six first-order features and one second-order feature were 
significant. Median is the median of grey level intensity 
within the region of interest and was higher in the class 
with lower Ki-67 values in relation to the greater pres-
ence of solid tissue without necrotic or necrotic areas [34]. 
Maximum represents the highest grey level intensity within 
the region of interest and even this was higher in typi-
cal carcinoids due to the absence of necrosis and greater 
uptake of contrast medium in a more homogeneous tissue 
structure. 10th and 90th Percentiles are mirror of the  10th 
and  90th Percentiles of the grey level intensity within the 
region of interest, while Mean represents the average grey 
level intensity within the region of interest. As mentioned 
above, also these features showed higher values in class 
1, therefore representing low-grade tumours. Root mean 
squared (RMS) is the square root of the mean of all the 
squared intensity values. Median, RMS and 90th Percen-
tile were also significant when analysing the correlation 
with the presence or absence of metastases in enhanced 
images, showing higher values in tumours with no medi-
astinal lymph-node metastases, underlining their ability to 
detect low-grade tumours. This represents another impor-
tant point in our study as it identifies these three features 
as highly useful in differentiating tumours with a high 
risk of metastasis and high Ki-67 values: these tumours 
are therefore more inhomogeneous due to the presence of 
necrosis or colliquation from those with a low tendency 
to metastasise and with low grading, thus allowing the 
early identification of those tumours at high risk [35]. Cor-
relation is a second-order feature representing the linear 
dependency of grey level values to their respective voxels 
in the grey level co-occurrence matrix (GLCM). Higher 
values of this feature were found to be present in Group 
1: this result needs further investigation, maybe not be 
related to a real tissue inhomogeneity, not common in typi-
cal carcinoids. Other features correlate with the presence 
of metastases, including Grey Level Variance belonging 
to grey level dependence matrix (GLDM), representing the 
variance in grey level in the image and Grey Level Vari-
ance of grey level size zone matrix (GLSZM) that is the 
variance in grey level intensities for the zone. Both these 

features showed higher values in tumours with metastasis 
in relation to the tissue heterogeneity of poorly differenti-
ated NETs. As evidence of this, Grey Level non-uniformity 
(GLSMZ) also showed higher values in tumours that had 
metastases and were therefore more aggressive.

This study still has some limits: first of all, we acknowl-
edge the relatively small number of patients and we are 
collecting further exams for future radiomics applications. 
Moreover, we lack validation of our results with a control 
group. Another limit is the segmentation performed manu-
ally by one radiologist: even if an expert one, it could be 
interesting to repeat in the next future these evaluations 
applying an automatic approach based on deep learning. 
Finally, enhanced exams were performed using two differ-
ent types of contrast media that may have affected the CT 
texture of NETs imaging. However, a previous study by 
Botta et al. demonstrates that radiomic features were not 
influenced by different contrast media, in fact this was not 
investigated in our study [36–38].

In conclusion, texture analysis can be a useful tool in 
the stratification of lung NET tumour histotypes in corre-
lation with Ki-67 values and the presence of metastases. 
Limitations resulting from sample inhomogeneities can be 
overcome by selecting features unaffected by acquisition 
parameters, making the results reproducible and stand-
ardized. Although radiomics is not yet used in clinical 
practice, it may become in the future a valuable aid in 
the evaluation of both tumour class and aggressiveness of 
NETs tumour and, therefore, in decision-making process.
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