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Abstract
Background Visualization, analysis and characterization of the angioarchitecture of a brain arteriovenous malformation 
(bAVM) present crucial steps for understanding and management of these complex lesions. Three-dimensional (3D) segmen-
tation and 3D visualization of bAVMs play hereby a significant role. We performed a systematic review regarding currently 
available 3D segmentation and visualization techniques for bAVMs.
Methods PubMed, Embase and Google Scholar were searched to identify studies reporting 3D segmentation techniques 
applied to bAVM characterization. Category of input scan, segmentation (automatic, semiautomatic, manual), time needed 
for segmentation and 3D visualization techniques were noted.
Results Thirty-three studies were included. Thirteen (39%) used MRI as baseline imaging modality, 9 used DSA (27%), 
and 7 used CT (21%). Segmentation through automatic algorithms was used in 20 (61%), semiautomatic segmentation in 6 
(18%), and manual segmentation in 7 (21%) studies. Median automatic segmentation time was 10 min (IQR 33), semiauto-
matic 25 min (IQR 73). Manual segmentation time was reported in only one study, with the mean of 5–10 min. Thirty-two 
(97%) studies used screens to visualize the 3D segmentations outcomes and 1 (3%) study utilized a heads-up display (HUD). 
Integration with mixed reality was used in 4 studies (12%).
Conclusions A golden standard for 3D visualization of bAVMs does not exist. This review describes a tendency over time 
to base segmentation on algorithms trained with machine learning. Unsupervised fuzzy-based algorithms thereby stand out 
as potential preferred strategy. Continued efforts will be necessary to improve algorithms, integrate complete hemodynamic 
assessment and find innovative tools for tridimensional visualization.

Keywords Cerebrovascular surgery · Cerebral arteriovenous malformation · Segmentation · Augmented reality · Blood 
vessel delineation

Introduction

Brain AVMs (bAVMs) are complex vascular lesions. Tai-
loring management for each patient is challenging and 
demands an accurate knowledge and understanding of the 

angioarchitecture of the malformation. bAVMs represent a 
relevant cause of secondary intracerebral hemorrhage, with 
a risk of rupture of approximately 1% yearly that on average 
increases fivefold after rupture [1–3].

Brain bAVMs are composed of feeding arteries and drain-
ing veins entangled in a nidus, without an intervening capil-
lary bed [4]. Visualization of these structures is vital in the 
understanding of the angioarchitecture. Comprehension of 
flow direction and amount is necessary to grasp the hemo-
dynamic effects. Determination of vessel positions in rela-
tionship to the nidus and brain structures is fundamental to 
optimize treatment strategies. The best imaging tools for the 
characterization of bAVMs are digital subtraction angiog-
raphy (DSA) and magnetic resonance angiography (MRA)
[5]. Both imaging modalities play a role in the diagnostic 
and perioperative management of these lesions, highlighting 
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bAVMs’ features that drive their therapeutic management 
[6–8]. In neurosurgery, based on clinical and imaging find-
ings, the severity of bAVMs, their predicted risk of rupture 
and necessity for intervention are mostly rated according to 
the classical Spetzler–Martin classification and its supple-
mentation provided by Lawton et al. in 2010, demonstrating 
a stronger correlation with surgical outcomes [9–11].

Visualization of feeding arteries, nidus and venous drain-
age system is vital in the understanding of bAVM angio-
architecture and related hemodynamics: to tailor a therapeu-
tic strategy, it is important to determine vessel positions and 
flow directions and to distinguish them depending on their 
nature and role. An accurate understanding of the angio-
architecture of bAVMs can be achieved by segmentation 
[3, 12–16]. Segmentation is intended as manual delineation 
of structures on a Digital Imaging and Communications 
in Medicine (DICOM) series to create its 3D shape. With 
segmentation, size and shape of cerebral structures can be 
measured to determine their spatial characterization and to 
plan a precise therapeutic intervention [16, 17]. Modern 
visualization techniques such as augmented reality (AR), 
3D screens, as well as mixed reality (MR) and virtual real-
ity (VR) have also been implemented to show segmentation 
results [18–22].

Several publications have reviewed vessel extraction tech-
niques [15, 23–25]. They have helped to classify segmenta-
tion and visualization strategies and show the diversity and 
limitations of the used methods. Nonetheless, a major lack 
in the current literature is the presence of a gold standard 
technique shared by multiple centers worldwide to address 
segmentation of bAVMs, as well as the integration of hemo-
dynamic information to characterize not only the morphol-
ogy, but also the physiology of these complex lesions. The 
aim of this systematic review is to provide an up-to-date 
collection of on 3D methods to study the angioarchitecture 
of bAVMs for pretreatment planning and during emboli-
zation, surgery or radiosurgical treatment, as well as their 
integration to hemodynamic information and augmented 
reality rendering.

Materials and methods

A systematic review was performed using the Preferred 
Reporting Items for Systematic Reviews and Meta-Analy-
ses (PRISMA) guidelines [26]. Two reviewers (EC and TF) 
screened records independently, and disagreements at any 
stage were resolved by discussion and consensus. Two addi-
tional records were identified through reference search. Stud-
ies were excluded when considered beyond the scope for the 
aims of the present analysis, and/or when their outcomes 
were not of interest. The critical appraisal of the included 

studies was performed by means of risk of bias score as 
shown in Table 1.

Search strategy

The PubMed, Embase and Google Scholar databases were 
searched to identify eligible papers. The query was per-
formed using the Boolean operators “AND” or “OR” and 
database-related filters to maximize the chance to identify 
articles focusing on segmentation strategies and their 3D 
visualization specific of bAVMs. The string ((‘cerebral 
arteriovenous malformations’) AND (‘brain arteriovenous 
malformations’) AND segmentation OR ‘tridimensional 
visualization’ OR ‘3D’ OR ‘skeletonization methods’ OR 
‘augmented reality’) was entered. The most recent search 
was performed on February 18, 2022.

Selection criteria

Articles were included if all the following criteria were 
met. 1) Studies published after 1997; 2) studies analyzing 
specifically the angioarchitecture of brain arteriovenous 
malformations; 3) a 3D segmentation technique on top 
of source data as a mean to study angioarchitecture; 4) 
English, Italian, French or German language; 5) studies 
integrating the segmentation outcome with augmented 
reality technology.

Data extraction

The following information was extracted from all included 
publications: (1) study group and year of publication; (2) 
segmentation methods and their outcomes (volume model, 
surface model); (3) segmentation technique (purely manual 
strategies, semiautomatic techniques or automatic segmen-
tations based on mathematical algorithms); (4) imaging 
data source (CT, MRI or DSA); (5) treatment modality; 
(6) duration of the segmentation; (7) blood flow incorpora-
tion; (8) 3D visualization methods (screens, virtual reality, 
mixed reality or augmented reality).

Statistical analysis

The descriptive statistical analyses were performed using 
IBM SPSS Statistics 25. Data were presented as num-
bers and percentages, and medians with IQR. Heteroge-
neity was tested by Chi-square test (significance level: 
p-value < 0.01).
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Results

A PRISMA flowchart is displayed in Fig. 1. A total of 
7212 publications were screened, 37 full-text articles were 
assessed for eligibility and 32 studies were included in 
this review.

Segmentation input (Table 1)

Thirteen out of 33 studies (39%) described high-resolution 
magnetic resonance imaging (MRI)-based segmentation [20, 
27–38]. Within this group, tridimensional time of flight-MR-
Angiography (TOF-MRA) was used in 11 studies (85%): 9 
studies applied a protocol without gadolinium and 2 studies 

Table 1  Descriptive analysis of the main data extracted from the 33 included studies

Risk of bias score legend
A: Appropriate eligibility criteria
B: Exposure/outcome measurement
C: Failure to adequately control confounding
D: Incomplete follow-up
CT computer tomography, DSA digital subtraction angiography, MRI magnetic resonance imaging, NA not applicable

Author Segmentation method Imaging source Treatment Timing_min Goal_vessels Risk of bias A B C D

Muacevic A et al. [48] Manual CT Microsurgery NA Feeders, nidus, veins  +  +  + NA
Söderman M et al. [39] Manual DSA Radiosurgery NA Volume  +—- NA
Coste E et al. [40] Semiautomatic DSA Radiosurgery NA Volume  +—- NA
Bullitt E et al. [27] Semiautomatic MRI Microsurgery 120 Feeders, nidus, veins  +  +  + NA
Bullitt E et al. [58] Semiautomatic CT, MRI, DSA Microsurgery 120 Nidus, nidus, veins  +—+ NA
Zhang XQ et al. [21] Manual CT, DSA Radiosurgery NA Nidus  +—+ NA
Lee CC et al. (2003) Semiautomatic MRI Radiosurgery NA Nidus  +—NA NA
Nyui Y et al. [49] Automatic CT Radiosurgery NA Feeders, veins  +—+ NA
Coenen VA et al. 

(2005)
Semiautomatic CT Microsurgery 15 Feeders, nidus, veins  +  +  + NA

Berger MO et al. (2008) Semiautomatic DSA Radiosurgery NA Nidus  +—NA NA
Forkert ND et al. [28] Automatic MRI Microsurgery 35 Feeders, nidus, veins  +  +  + NA
Forkert ND et al. [29] Automatic MRI Microsurgery NA Feeders, nidus, veins  +  +  + NA
Forkert ND et al. [30] Automatic MRI Microsurgery NA Feeders, nidus, veins  +  +  + NA
Forkert ND et al. [31] Automatic MRI Microsurgery 5 Feeders, veins  +—+ NA
Hristov D et al. [42] Automatic DSA Radiosurgery NA Image source integra-

tion
 +—+ NA

Babin D et al. [52] Automatic CT Microsurgery NA Feeders, veins  +—+ NA
Babin D et al. [51] Automatic CT Microsurgery 15 Feeders, nidus, veins  +  +  + NA
Forkert ND et al. [32] Automatic MRI Microsurgery 45 Image source integra-

tion
 +—+ NA

Babin D et al. [25] Automatic CT Microsurgery 2 Feeders, nidus, veins  +  +  + NA
Forkert ND et al. [33] Automatic MRI Microsurgery 5 Feeders, veins  +—+ NA
Clarencon et al. (2014) Semiautomatic DSA Microsurgery 64 Feeders, nidus, veins  +  +—NA
Li F et al. (2014) Automatic DSA Microsurgery 4 s per vessel Feeders, nidus, veins  +  +  + NA
Di Ieva et al. (2014) Manual MRI Radiosurgery NA Feeders, nidus, veins  +  +  + NA
Cabrilo I et al. (2014) Automatic CT, MRI, DSA Microsurgery NA Feeders, veins  +—- NA
Li F et al. [44] Automatic DSA Embolization NA Veins  +—+ NA
Phellan R et al. [35] Manual MRI Microsurgery NA NA  + NANANA
Peng SJ et al. (2018) Automatic MRI Radiosurgery NA Nidus  +—+ NA
Babin D et al. [46] Automatic DSA Embolization NA Veins  +—+ NA
Mascitelli JR et al. [55] Manual CT, MRI Microsurgery NA NA  + NANANA
Wang T et al. [54] Semiautomatic CT Radiosurgery NA Volume  +—+ NA
Chenoune Y et al. [47] Automatic DSA Embolization NA Feeders, nidus, veins  +  +  + NA
Simon AB et al. [37] Automatic MRI Radiosurgery NA Feeders, nidus, veins  +  +  + NA
Mandel M et al. [39] Manual MRI Microsurgery 10 Feeders, nidus, veins  +  +—NA
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with gadolinium (28, 31). Nine studies (27%) described 
digital subtraction angiography (DSA)-based segmentations 
[39–47], and 7 (21%) described native CT and CT-Angi-
ography (CTA)-based segmentations [25, 48–53] (Table 1).

Segmentation aim (Table 1)

Thirteen out the 33 studies (39%) aimed to render feeding 
arteries, the architecture of the nidus and draining veins [25, 
28–30, 34, 37, 38, 43, 45, 47, 48, 50, 51]. Seven studies 
(21%) provided an analysis of feeders and veins, without 
specific focus on the nidus [18, 27, 31, 33, 49, 52, 54]. The 
exclusive focus on the nidus was documented in four stud-
ies (12%) [20, 21, 36, 54]. Information on the aim of the 
segmentation is provided in Table 1. Thirty studies (91%) 
implemented a segmentation strategy to achieve preopera-
tive characterization of bAVMs; however, three studies (9%) 
segmented with the purpose to visualize on a navigation-
linked intraoperative display [38, 55, 56].

Manual and semiautomatic segmentation (Table 2)

Seven studies (21%) described manual bAVM segmen-
tation [21, 34, 35, 38, 39, 48, 55], and 6 studies (18%) 
described semiautomatic algorithms [27, 40, 43, 54] In 
this subgroup, 3 studies (23%) aimed for delineation of 
all the bAVM components [34, 38, 48], while the other 

10 studies (77%) focused on the segmentation on a single 
component of the bAVM or on the volume of the lesion. 
Four semiautomatic segmentation studies documented a 
median duration of 25 (IQR 73) minutes [27, 43, 51, 54].

Automatic segmentation (Table 2)

Twenty studies (61%) used an automatic mathematical 
algorithm to segment bAVMs [20, 25, 28–33, 36, 37, 42, 
44–47, 49, 51–53, 56]. Eight of these studies (40%) aimed 
to segment all three bAVM components [25, 28–30, 37, 
45, 47, 51]. Median segmentation time was 10 min (IQR 
33), described in 6 out of the 20 studies. Eight automatic 
segmentation studies (40%) performed segmentation by 
an unsupervised fuzzy-based method, with a median pro-
cessing time of 10 min (IQR 33) [20, 28–32, 36]. Only 1 
research group further provided a hemodynamic charac-
terization of the segmented bAVM components. Hemody-
namics were provided by integrating temporal blood flow 
information of the vessels in proximity of the nidus [32, 
33].

Other groups included in this cohort performed an auto-
matic image segmentation based on supervised methods 
[37, 49, 53]. These strategies included supervised princi-
pal component analysis [49], supervised 3D V-Net with a 
compound loss function [53] and supervised convolutional 
neural network [37].

The most utilized imaging input in the automatic seg-
mentation subgroup was MRI (10/20, 50%).

Fig. 1  Summary of search 
strategy (PRISMA flow chart) 
for relevant studies
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Segmentation variability

A Chi-square test of homogeneity was performed to 
examine the methodological variability of the collected 
studies. The homogeneity between the segmentation 

strategies and the reported outcomes, namely segmenta-
tion of all bAVM components, segmentation of the nidus 
only or other outcomes (e.g., volume), was not signifi-
cant, with a Chi-squared = 0.13 (p-value 0.99).

Table 2  Overview on the segmentation strategies other that fuzzy-based methods

Technology Machine learning Advantages pointed out by the authors

Intersecting code model (Ref: 31, 33) 0 Reasonable approximation of the volume inside the prescrip-
tion isodose line. Allows quantification of volume variations. 
Aids in selecting the optimal management plan. Manual to 
semiautomatic

Image intensity ridges (Ref: 19) 0 The approach requires a seed point for each extracted vessel, 
and it requires 30 to 60 min to extract all vessels from an 
MRA. Semiautomatic

Epipolarity geometry (Ref: 13, 32) 0 High quality and accurate localization method based on DSA 
examinations. Manual to semiautomatic

Principal component analysis (Ref: 41) 1—supervised Accurate identification of the physiological location of 
arteries, veins and background images. Possibility to 3D 
reconstruction. Automatic

Integrated volume rendering (Ref: 42) 0 Precise distinction of arteries and veins, as well as identi-
fication of the nidus in spite on intracerebral hematoma. 
Semiautomatic

User-defined VOI (Ref: 34) 0 Integration of 2D DAS and 3D rotational angiography to 
process the nidus better. Automatic

Pixel neighborhood structure and intensities, and variations 
(Ref: 38, 43, 44)

0 Once the parameters of the analysis are fixed, the algorithm 
works automatically. It allows processing 2D and 3D images 
with high-range luminance values and noise values. It shows 
blood vessels precisely. Automatic

Support vector machine (Ref: 26) 1—supervised Automatic segmentation of the seed point and reproducible 
and fast extraction of the bAVMs nidus and the vessels in its 
proximity. Automatic

Continuity propagation (Ref: 35) 0 The mean duration of the method is 64 min showing high-
quality results, especially in the delineation of venous 
ectasias and the drainage patterns. Semiautomatic

Fractal-based computational methods (Ref: 27) 0 Reliable quantification of vascular complexity capable of nidal 
characterization. Manual

Region-growing algorithm (Ref: 36, 37) 0 The principal feeding arteries and draining veins connected to 
the nidus can be clearly identified. It enables a description of 
the brain vasculature in a hierarchical model, which aids to 
simulate the microcatheter navigation for an embolization. 
Automatic

Simple global thresholding (Ref: 28) 0 Elimination of noise artifacts and integration with vessel 
enhancement algorithms to improve the spatial analysis of 
bAVMs components. Manual

BrainLab (Ref: 40, 47) 0 Smartbrush function: intuitive to use. Manual
Supervised 3D V-Net with a compound loss function (Ref: 

45)
1—supervised Novel deep-learning-based method to segment a bAVM target 

volume on CT. It achieves higher accuracy. Automatic
3D-region-based (Ref: 39) 0 Improved 3D visualization and delineation of arteries, nidus 

and veins. Accurate decomposition of bAVMs structure and 
guidance of the embolization. Automatic

Convolutional neural network (Ref: 29) 1—supervised Accurate delineation of bAVM components, as well as brain 
parenchyma, CSF and embolized vessels across an anatomi-
cally variable validation set. Automatic

Horos Software (Ref: 30) 0 Useful for preoperative 3D reconstruction allowing accurate 
delineation of bAVM major components Manual
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3D visualization

Four studies (12%) described an integration of their segmen-
tation strategies with mixed reality for intraoperative guid-
ance under the microscope [37, 47, 55, 56]. While integra-
tion with AR was positively endorsed, the future necessity to 
integrate hemodynamic considerations to the AR rendering 
to provide more useful and precise intraoperative informa-
tion was also suggested [18]. None of the included studies 
aimed to a rendering of the segmentation outcomes with VR.

Clinical value and blood flow analysis

In 19 studies (58%), the final goal of segmentation was an 
accurate and more precise planning and intraoperative man-
agement of bAVM [25, 27–33, 35, 38, 43, 45, 48, 50–52, 
54–56]. Eleven studies (33%) aimed to a better delineation 
of bAVM components to achieve a more effective and safer 
radiosurgical treatment [20, 21, 34, 36, 37, 39–42, 49, 53]. 
Three (9%) of the included studies set embolization as the 
final goal of segmentation and better angioarchitecture visu-
alization [44, 46, 47].Only one research group aimed and 
achieved the inclusion of hemodynamic considerations to 3D 
bAVM visualization. They could provide temporal informa-
tion on blood flow of the vessels in the close proximity of 
the nidus by calculating a time-to-peak parameter map and 
registering it to TOF-MRA sequences [32, 33].

Discussion

The present study represents a systematic analysis on seg-
mentation techniques of bAVMs for 3D visualization and 
accurate angioarchitectural study. This systematic review 
focusses on 3D bAVM segmentation and visualization 
strategies, which have been published from 1997 to 2022 
on the characterization of the angioarchitecture of bAVMs. 
Although most studies use MRI as input and a tendency was 
shown in the direction of automatic machine learning trained 
algorithms, this review shows how significantly variable the 
possible methods of segmenting a bAVM are, and with this 
the absence of a gold standard.

Due to methodological variety of manual, semiauto-
matic and automatic segmentation techniques and their 
outcomes, the results should be interpreted with caution. 
Intrinsic biases of included publications cannot be ruled 
out. The average segmentation duration was evaluated 
using very limited data from only a few studies. Because 
of the great variability of the data collected in the present 
systematic review, a descriptive statistical analysis was 
performed. Given the technical and preclinical nature of 
most of the included studies, very few of them documented 
sensitivity and specificity of the segmentation method. 

Therefore, the scarcity of statistical data made the perfor-
mance of a pooled analysis impossible.

This review describes a tendency over time to base 
bAVM segmentation on algorithms trained with machine 
learning, especially deep learning, because manual seg-
mentations are prone to human error and interindividual 
assessment and are labor intensive [28]. Algorithms 
trained with machine learning stem from two principles: 
supervised and unsupervised learning. Supervised learn-
ing algorithms, such as support vector machine, have 
the disadvantage of relying on manual segmentations. In 
addition, the variability of scans should be large, because 
algorithms trained on scans from 1 center are rarely easily 
extrapolated. Unsupervised learning does not require ini-
tial information, and algorithms based on this technology 
are generally fast. In the present analysis, fully automated 
segmentation via unsupervised learning has good results 
using fuzzy-based methods. This approach is based on the 
computation of vesselness filter and maximum parameter 
images on MRI-TOF sequences, providing a highly precise 
delineation of large as well as fine vessels [32, 36].

The deep-learning algorithm developed by Forkert et al. 
describes the extra advantage of producing surface models 
of the vascular system, which can be not only visualized 
but also manipulated in 3D [28, 32]. In the settings of 3D 
segmentation, operability of surface models differentiates 
them from outcomes of computational heavier volumetric 
models, that in general are more detailed and look sharper 
than surface models but do not allow any interaction and are 
mostly too heavy to visualize in a head-up display without 
streaming [57]. In view of extensive integration of medical 
imaging with mixed reality or virtual reality in the future, 
the use of surface models versus volume models as a pos-
sible output of algorithms in highly complex 3D lesions as 
bAVMs should be further investigated.

In a medical world moving toward personalized medi-
cine, segmentation strategies and 3D imaging visualization 
techniques are increasingly gaining popularity. Pre- and 
intraoperative delineation of complex anatomical entities 
like bAVMs with these technologies provides important 
clinical advances [58]. First is a more precise understand-
ing of bAVM angioarchitecture and anatomical relationships 
with the surrounding structures [37, 38]. Therefore, a more 
accurate and individualized therapy planning and the pos-
sibility to achieve more efficient patient management and 
potentially better clinical outcomes [56]. Only one research 
group incorporated flow in 3D bAVM segmentation. How-
ever, flow is extremely important in assessing brain AVM 
(re-)rupture risk analysis [59]. Transcranial Doppler (TD), 
DSA and quantitative MR-Angiography (QMRA) [60, 61] 
have been described as useful techniques to analyze flow in 
bAVM [22, 62–64]. The integration of these techniques in 
3D bAVM segmentation should be a future goal.
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Conclusion

A golden standard for 3D visualization of bAVMs does not 
exist. This review describes a tendency over time to base 
segmentation on algorithms trained with machine learn-
ing. Unsupervised fuzzy-based algorithms thereby stand 
out as potential preferred strategy. Continued efforts will 
be necessary to further improve algorithms, integrate com-
plete hemodynamic assessment and find new innovative 
tools for tridimensional visualization.
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