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ABDOMINAL RADIOLOGY
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Abstract
Purpose To compare liver MRI with AIR Recon Deep Learning™(ARDL) algorithm applied and turned-off (NON-DL) 
with conventional high-resolution acquisition (NAÏVE) sequences, in terms of quantitative and qualitative image analysis 
and scanning time.
Material and methods This prospective study included fifty consecutive volunteers (31 female, mean age 55.5 ± 20 years) 
from September to November 2021. 1.5 T MRI was performed and included three sets of images: axial single-shot fast spin-
echo (SSFSE) T2 images, diffusion-weighted images(DWI) and apparent diffusion coefficient(ADC) maps acquired with both 
ARDL and NAÏVE protocol; the NON-DL images, were also assessed. Two radiologists in consensus drew fixed regions of 
interest in liver parenchyma to calculate signal-to-noise-ratio (SNR) and contrast to-noise-ratio (CNR). Subjective image 
quality was assessed by two other radiologists independently with a five-point Likert scale. Acquisition time was recorded.
Results SSFSE T2 objective analysis showed higher SNR and CNR for ARDL vs NAÏVE, ARDL vs NON-DL(all P < 0.013). 
Regarding DWI, no differences were found for SNR with ARDL vs NAÏVE and, ARDL vs NON-DL (all P > 0.2517).CNR 
was higher for ARDL vs NON-DL(P = 0.0170), whereas no differences were found between ARDL and NAÏVE(P = 1). No 
differences were observed for all three comparisons, in terms of SNR and CNR, for ADC maps (all P > 0.32).
Qualitative analysis for all sequences showed better overall image quality for ARDL with lower truncation artifacts, higher 
sharpness and contrast (all P < 0.0070) with excellent inter-rater agreement (k ≥ 0.8143). Acquisition time was lower in 
ARDL sequences compared to NAÏVE (SSFSE T2 = 19.08 ± 2.5 s vs. 24.1 ± 2 s and DWI = 207.3 ± 54 s vs. 513.6 ± 98.6 s, 
all P < 0.0001).
Conclusion ARDL applied on upper abdomen showed overall better image quality and reduced scanning time compared 
with NAÏVE protocol.

Keywords Artificial intelligence · Image quality · Scanning time · Sequences optimization

Introduction

Medical imaging plays a central role in modern medicine 
and technical improvements are fundamental to achieve the 
best diagnostic performances with the most efficient imaging 
protocol. In recent years Artificial Intelligence (AI) allowed 

huge improvements in different aspects such as image acqui-
sition/reconstruction, image post-processing, image analysis, 
image storage, and integration of complex data for medical 
decision-making process [1–7].

Focusing on image acquisition, several in-house AI and 
deep-learning (DL) tools have been developed to improve 
image quality and their application since now has been 
mainly in research field [8].

In September 2020 one of the first AI-derived tool has 
been approved for clinical use for all anatomies at 1.5 T, 
the AIR™ Recon DL (ARDL), GE Healthcare, Waukesha, 
WI [9]. Unlike post-processing-based approaches that might 
alter image detail,  this method is a deep learning-based 
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reconstruction model applied directly on k-space-based 
raw data for maximum image quality, by preserving non-
DL data acquired. In addition, to improve signal-to-noise 
ratio (SNR), this technology has a unique intelligent ring-
ing suppression that preserves fine image details, helping 
address two common delicate aspects for radiologists and 
technologists that are image noise and ringing. In addition, 
with ARDL is possible to obtain simultaneously a dataset, 
called NON-DL, resulted from the same MRI parameters set 
without the intervention of ARDL on the sequence.

Until now, MRI acquisition has been a compromise 
between image quality and scan time; in fact, to achieve 
high-quality images with improved SNR and/or spatial reso-
lution, necessitated long scan times. On the contrary, shorter 
scan acquisition time enables to improve patient comfort 
and productivity, with reduced image quality. With new DL 
algorithms, the possibility to achieve good image quality in 
reduced acquisition time is becoming a reality. Moreover, it 
is important to compare the new algorithms not only with 
standard protocol but also with high-quality protocol, more 
similar to the ground truth.

Up to now, a few studies has assessed the impact of AI 
on MRI acquisition in clinical setting and in particular on 
upper abdomen [10–13].

The aim of the study is to compare ARDL-protocol, 
NON-DL dataset and high-resolution NAÏVE protocol 
applied to upper abdomen district, in terms of quantitative 
and qualitative image analysis and acquisition time.

Methods

Study design and patient population

This prospective single-center study included 50 volunteers 
from September 2021 to November 2021, in accordance 
with local IRB, and informed consent was signed by all 
participants.

All volunteers underwent upper abdomen MRI scan 
and both protocols (ARDL and NAÏVE) were performed; 
details of the two protocols and three datasets obtained are 
described below in Deep-learning algorithm and Imag-
ing protocol sections Volunteers with contraindications to 
perform MRI (e.g. non-compatible MRI devices, claustro-
phobia), and volunteers who underwent upper abdomen 
surgery were excluded; also MRI acquisitions with severe 
motion artefacts or magnetic susceptibility artefacts related 
to abdominal metallic devices were not included in the 
analysis.

Deep‑learning algorithm

The specific DL algorithm applied during image acquisi-
tion is the AIR™ Recon DL, GE Healthcare, Waukesha, 
WI. It consists of a feed-forward deep convolutional neural 
network (CNN) that enables to reconstruct images with 
higher SNR, reduced truncation artifacts, and higher spa-
tial resolution [14]. This innovative CNN works directly 
integrated with the standard reconstruction pipeline, on 
the raw data obtained during MRI examination. A super-
vised learning approach with over 4.4 million parameters 
in over 10.000 kernels has been used to train this CNN.

AIR™ Recon DL works by accepting raw, unfiltered 
input and to provide improved output in terms of SNR 
and image artefacts; another important aspect is the pos-
sibility to set the range of applicability of the CNN before 
the acquisition to generate images with a different CNN 
application strength (Low, Medium and High).

From each acquisition are also obtained two different 
dataset available simultaneously during the scanning, 
without different reconstruction time. In particular, one 
dataset is reconstructed with ARDL applied and, the other 
one, defined as NON-DL, resulted from the same param-
eters set without the ARDL reconstruction on k-space. It 
is important to underline that NON-DL dataset returns the 
conventional reconstruction with non-optimized param-
eters so, without the ARDL reconstruction. As a result, 
images will appear noisier, due to the lack of the usual 
parameters that are set to balance image quality and acqui-
sition time.

An image artefact that the AIR™ Recon DL is trained 
to recognize and reduce is the truncation (Gibbs) artefact, 
usually present near structures with transition between 
regions of high and low signal intensity such as spinal cord 
and cerebral-spinal fluid or liver parenchyma and abdomi-
nal fat [15]. The CNN is able to recognize Gibbs artefact 
in proximity of sharp edges and reduce consistently the 
ringing artefact to improve image sharpness. As a result, 
ARDL tool has the possibility to acquire MRI images with 
less compromise than usually in terms of MRI parameters 
(e.g. reduced NEX, thickness) and acquisition time.

Imaging protocol

Each acquisition has been performed on the same scan-
ner (1.5 T Signa Voyager, GE Healthcare, Waukesha, WI) 
with the same protocol. All scans have been performed 
in supine position, with a dedicated 16-channel highly 
flexible Adaptive Image Receiver (AIR, GE Healthcare, 
Waukesha, WI) coil and, no contrast medium administra-
tion. Field of View (FOV) will include upper abdomen 
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coverage from pulmonary bases to the upper margin 
of iliac bones, with the same number of slices for both 
protocols.

Acquisition protocol includes high-quality NAÏVE pro-
tocol and ARDL protocol, the latter with two reconstruction 
dataset (ARDL and NON-DL datasets) as described above.

Acquisition protocol included axial T2 single-shot fast 
spin-echo (SSFSE) sequences acquired with breath-hold 
technique for both ARDL protocol (TR: 412 ms, TE:92 ms, 
nex: 1, slice thickness: 4  mm matrix: 384X288, FOV: 
430 × 430 mm, Recon DL strength: High) and NAÏVE pro-
tocol (TR: 502 ms, TE:89 ms, nex: 1, slice thickness: 4 mm, 
spacing: 0.5 matrix: 232X200, FOV: 430 × 430 mm). Then, 
axial DWI will be acquired with navigator-triggered tech-
nique for both ARDL protocol (TR: 6000 ms, TE:61 ms, 
slice thickness: 4 mm, spacing: 0.5, matrix: 128X128, FOV: 
430 × 430 mm, b values acquired: b50, nex: 2; b400, nex:2, 
b1000, nex: 4, Recon DL strength: Medium) and NAÏVE 
protocol (TR: 14811 ms, TE:57 ms, slice thickness: 4 mm, 
spacing: 0.5, matrix: 128X128, FOV: 430 × 430 mm, b val-
ues acquired: b50, nex: 2; b400, nex:8, b1000, nex: 12). 
ARDL reconstruction has been chosen among Low, Medium 
and High options after a pilot protocol consisted in five vol-
unteers scanning with the various DL strength applied. The 
obtained images were assessed by three expert readers that 
chose in consensus the DL strength for both sequences. ADC 
maps obtained from DWI of both protocols have been also 
analyzed. During ARDL-protocol also native images (named 
NON-DL as abovementioned) were obtained and included 
in the analysis. Acquisition time was also recorded for each 
sequence.

Quantitative Image analysis

A total of three dataset have been obtain for each sequence 
as follows: ARDL dataset, NAÏVE dataset and NON-DL 
dataset, each for T2 SSFSE sequence, DWI and for ADC 
maps. Each sequence was anonymized in order to avoid bias. 
Two readers (B.M. and M.Z., with 3 and 8 years of expe-
rience in abdominal MRI imaging respectively) assessed 
objective image quality in consensus and simultaneously. 
In particular, to quantify signal-to-noise ratio (SNR) and 
contrast-to-noise ratio (CNR) three circular regions of inter-
est (area  1cm2) were placed in the liver parenchyma at the 
V, VI and VIII segments, by avoiding vessels and biliary 
tree, and liver edge, and then, the averaged measurements 
of the three was reported. In addition and a single region 
of interest (ROI) in the background and in the gallbladder 
were placed. Explicatory single slice of the ROIs placement 
is provided in Fig. 1.

SNR and CNR were calculated with the following formu-
las modified by previous study [12]:

where S represents mean signal intensity while SD repre-
sents signal intensity standard deviation.

Qualitative image analysis

Two readers (M.P. and G.G.) with 6 and 7 years of experi-
ence in abdominal MRI imaging respectively, independently 
assessed subjective image quality. Subjective image quality 
has been assessed with a five-point Likert scale considering: 
(a) upper abdomen parenchyma edge sharpness: 1 = poor; 
2 = mild; 3 = moderate; 4 = good; 5 = very good.

(b) contrast: 1 = insufficient; 2 = mild; 3 = moderate; 
4 = good; 5 = excellent.

(c) truncation artifacts: 1 = severe (hindering diagnosis); 
2 = acceptable; 3 = moderate; 4 = mild; 5 = absence of artifacts.

(d) motion artifacts: 1 = severe (hindering diagnosis); 
2 = acceptable; 3 = moderate; 4 = mild; 5 = absence of artifacts.

(e) overall image quality (the four factors above added 
together): 1 = unacceptable; 2 = poor; 3 = moderate; 4 = good; 
5 = excellent. Example of the qualitative dataset analyzed is 
provided in Fig. 2.

Statistical analysis

Continuous variables were compared using the paired-samples 
t-test or the Wilcoxon test according to the normality of data 
distribution priorly assessed with Kolmogorov–Smirnov Test. 
Multiple tests were assessed by One way repeated measures 
ANOVA test for the SNR and the CNRand, for the qualitative 
analysis, with Bonferroni correction of the P values. The t-test 
or Wilcoxon signed-rank test will be adopted to compare the 
acquisition times between ARDL and NAÏVE MRI protocols.

The intraclass correlation coefficient (ICC) will be used 
to investigate the inter-observer agreement of qualitative val-
ues (0.21–0.40, fair; 0.41–0.60, moderate; 0.61–0.80, good; 
0.81–1.00, excellent).

A two-sided P value < 0.05 was considered statistically 
significant.

All statistical analyses will be performed using SPSS (21.0; 
SPSS, Chicago, IL, USA) and MedCalc version 12.7.2 (Med-
Calc Software, Ostend, Belgium).

Results

Patient population

From an initial population of 57 volunteers, 5 were excluded 
for ferromagnetic artifacts due to surgery, one for incomplete 

SNR = Sliver∕SDbackground

CNR = |Sgall - bladder−Sliver|∕ SDbackground
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MRI protocol due to claustrophobia and one due to several 
motion artifact. The final population included 50 volunteers 
(19 male, 31 female), mean age 55.5 ± 20 years old.

Quantitative analysis

Axial SSFSE T2 quantitative analysis showed significantly 
higher SNR for ARDL protocol (181.40 ± 135.09) com-
pared with NAÏVE protocol (109.79 ± 108.98, P = 0.0012), 
and NON-DL dataset (18.08 ± 12.26, P < 0.0001) and 
for NAÏVE protocol compared to NON-DL acquisitions 
(109.79 ± 108.98 vs. 18.08 ± 12.26, P < 0.0001).

Axial SSFSE T2 CNR analysis showed significantly 
higher values for ARLD dataset (674.76 ± 453.82) com-
pared with NAÏVE group (457.29 ± 449.25, P = 0.013), for 
ARDL compared with NON-DL protocol (68.66 ± 39.06, 
P < 0.0001) and for NAÏVE compared with NON-DL data-
sets (457.29 ± 449.25 vs. 68.66 ± 39.06, P < 0.0001).

Axial DWI sequences showed no significant differ-
ences for SNR between ARDL and NAÏVE protocols 
(181.15 ± 134.93 vs. 216.41 ± 157.47, P = 0.7231), 
ARDL and NON-DL datasets (181.15 ± 134.93 vs. 

161.65 ± 155.87, P = 1) and NAÏVE and NON-DL 
sequences (261.41 ± 157.47vs.  161.65 ± 155.87, 
P = 0.2517).

Axial DWI sequences CNR showed no significant differ-
ences, between ARDL and NAÏVE protocol (92.58 ± 84.32 
vs. 93.06 ± 83.50, P = 1); on the contrary, significant 
higher CNR was observed for ARDL protocol compared 
with NON-DL dataset (92.58 ± 84.32 vs. 54.36 ± 48.90, 
P = 0.0170) and NAÏVE protocol versus NON-DL one 
(93.06 ± 83.50 vs. 54.36 ± 48.90, P = 0.0177).

ADC maps SNR showed no significant differences 
between ARDL and NAÏVE protocols (3.97 ± 2.27 
vs. 4.16 ± 1.60, P = 1), ARDL and NON-DL datasets 
(3.97 ± 2.27 vs. 3.85 ± 1.66, P = 0.3366) and NAÏVE and 
NON-DL maps (4.16 ± 1.60 vs. 3.85 ± 1.66, P = 0.5179).

ADC maps CNR showed no significant differences, 
for ARDL protocol and NAÏVE protocols (7.97 ± 5.34 
vs. 7.19 ± 3.89, P = 1), ARDL protocol compared with 
NON-DL group (7.97 ± 5.34 vs. 7.55 ± 5.45, P = 0.32) 
and NAÏVE protocol in comparison with NON-DL data-
set (7.19 ± 3.89 vs. 7.55 ± 5.45, P = 0.5733). All results 
are listed in Table 1.

Fig. 1  ROIs placement on MRI scan for quantitative analysis. Unen-
hanced axial SSFSE T2 images of a 52-years-old male with one of 
the three ROIs placed on the V hepatic segment liver, one ROI on the 

background and one in the gallbladder with ARDL a, c NAÏVE b, d 
showing significant differences in SNR and CNR between ARDL and 
NAÏVE images
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Fig. 2  Comparison of ARDL, NAÏVE, NON-DL dataset on SSFSE 
T2, DWI and ADC. Female, 28-years old underwent unenhanced 
upper-abdomen MRI. Axial images showing SSFSE T2 sequences 
with ARDL a, NAÏVE b, NON-DL c dataset respectively; DWI 
sequences with ARDL d, NAÏVE e, NON-DL f; ADC maps with 
ARDL g, NAÏVE h and NON-DL i. Anonymized datasets were 

obtained to perform qualitative image analysis with 5-point Likert 
scale assessing Sharpness, Contrast, Truncation artefacts, Motion 
artifacts and Overall image quality. ARDL dataset showed higher 
image quality in all datasets in terms of overall image quality com-
pared to NAÏVE and NON-DL dataset.

Table 1  Results of quantitative analysis in terms of mean val-
ues ± deviation standard of signal-to-noise ratio (SNR) and contrast-
to-noise ratio (CNR) in axial SSFE T2 and DWI sequences and ADC 

maps between ARDL and NAÏVE images, ARDL and NON-DL 
images and NAÏVE and NON-DL images

Significant P values are reported in bold

ARDL NAÏVE NON-DL ARDL vs NAÏVE 
(P value)

ARDL vs NON-DL 
(P value)

NAÏVE vs 
NON-DL (P 
value)

SSFE T2
SNR 181.40 ± 135.09 109.79 ± 108.98 18.08 ± 12.26 0.0012  < 0.0001  < 0.0001
CNR 674.76 ± 453.82 457.29 ± 449.25 68.66 ± 39.06 0.013  < 0.0001  < 0.0001
DWI
SNR 181.15 ± 134.93 216.41 ± 157.47 161.65 ± 155.87 0.7231 1 0.2517
CNR 92.58 ± 84.32 93.06 ± 83.50 54.36 ± 48.90 1 0.0170 0.0177
ADC
SNR 3.97 ± 2.27 4.16 ± 1.60 3.85 ± 1.66 1 0.3366 0.5179
CNR 7.97 ± 5.34 7.19 ± 3.89 7.55 ± 5.45 1 0.32 0.5733
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Qualitative analysis

Qualitative image analysis showed higher significant results 
for the characteristics assessed (sharpness, truncation, con-
trast, motion) for SSFSE T2, DWI and ADC with ARDL 
protocol compared with NAÏVE protocol, and for ARDL 
protocol vs NON-DL sequences (all P < 0.05). Non-signif-
icant results were observed for NAÏVE protocol compared 
with NON-DL sequences (all P > 0.05) except for trunca-
tion artifact of DWI sequence (3.48 ± 0.83 vs 2.92 ± 1.02, 
P = 0.0146).

Overall image quality in SSFSE T2 resulted higher for 
ARDL protocol compared with NAÏVE protocol (4.94 ± 0.23 
vs. 3.26 ± 0.75, P < 0.0001) and, ARDL compared with 
NON-DL dataset (4.94 ± 0.23 vs. 3.28 ± 0.60, P < 0.0001); 
non-significant differences were observed for NAÏVE pro-
tocol in comparison with NON-DL dataset (3.26 ± 0.75 vs. 
3.28 ± 0.60, P = 1).

Overall image quality for DWI sequences resulted higher 
in ARDL protocol compared with NAÏVE one (4.22 ± 0.81 
vs. 2.92 ± 0.85, P < 0.0001), and for ARDL compared with 
NON-DL datasets (4.22 ± 0.81 vs. 2.90 ± 0.73, P < 0.0001); 
non-significant differences were observed for NAÏVE pro-
tocol in comparison with NON-DL dataset (2.92 ± 0.85 vs. 
2.90 ± 0.73, P = 1).

Overall image quality for ADC maps resulted higher in 
ARDL protocol compared with NAÏVE one (4.17 ± 0.77 vs. 

3.07 ± 0.66, P < 0.0001), for ARDL compared with NON-
DL datasets (4.17 ± 0.77 vs. 2.46 ± 0.79, P < 0.0001) and, 
for NAÏVE protocol in comparison with NON-DL dataset 
(3.07 ± 0.66 vs. 2.46 ± 0.79, P = 0.0070). Detailed results for 
all the qualitative analyses are listed in Table 2.

Interrater agreement regarding image analysis was excel-
lent (k = 0.8273 for SSFSE T2, k = 0.8143 for DWI and 
k = 0.8165 for ADC maps).

Scanning time

Scanning time resulted significantly lower for Axial SSFSE 
T2 ARDL compared to NAÏVE with an average time of 
19.08 ± 2.58 s compared with 24.11 ± 2.03 s (P < 0.001), 
with 31% of time reduction for ARDL protocol compared 
to NAÏVE protocol.

Similar results are appreciable for DWI sequence with 
a mean acquisition time of 207.33 (3.45 min) ± 54.03 s vs 
513.60 (8.56 min) ± 98.69 s (P < 0.001), with 60% of time 
reduction for ARDL protocol compared to NAÏVE protocol.

Discussion

The present study compared image quality of deep-learn-
ing MRI sequences with non-deep learning sequences. 
Results showed how SNR and CNR are higher for SSFSE 

Table 2  Results of qualitative analysis, expressed as mean ± deviation standard, in axial SSFE T2 and DWI sequences and ADC maps between 
ARDL and NAÏVE images, ARDL and NON-DL images and NAÏVE dataset compared to NON-DL dataset

Significant P values are expressed in bold

ARDL NAÏVE NON-DL ARDL vs NAÏVE 
P value)

ARDL vs NON-DL 
(P value)

NAÏVE vs 
NON-DL (P 
value)

SSFSE T2
Sharpness 4.88 ± 0.32 3.1 ± 0.99 2.84 ± 0.65  < 0.0001  < 0.0001 0.0794
Contrast 4.9 ± 0.30 2.94 ± 0.91 2.82 ± 0.62  < 0.0001  < 0.0001 1
Truncation artefacts 4.78 ± 0.41 3.96 ± 0.80 3.6 ± 1.03  < 0.0001  < 0.0001 0.1371
Motion artefacts 4.86 ± 0.40 3.92 ± 0.77 3.72 ± 0.88 0.0063  < 0.0001 0.4523
Overall 4.94 ± 0.23 3.26 ± 0.75 3.28 ± 0.60  < 0.0001  < 0.0001 1
DWI
Sharpness 4.16 ± 0.73 2.86 ± 0.92 2.72 ± 0.75  < 0.00001  < 0.0001 1
Contrast 4.14 ± 0.72 2.92 ± 0.92 2.66 ± 0.79  < 0.00001  < 0.0001 0.2542
Truncation artefacts 3.9 ± 0.97 3.48 ± 0.83 2.92 ± 1.02 0.05  < 0.0001 0.0146
Motion artefacts 4.18 ± 0.86 3.52 ± 1.01 3.22 ± 0.88 0.0001  < 0.0001 0.2242
Overall 4.22 ± 0.81 2.92 ± 0.85 2.90 ± 0.73  < 0.0001  < 0.0001 1
ADC
Sharpness 4.17 ± 0.77 2.46 ± 0.83 2.53 ± 0.79  < 0.0001  < 0.0001 1
Contrast 4.14 ± 0.80 2.32 ± 0.66 2.53 ± 0.92  < 0.0001  < 0.0001 0.7388
Truncation artefacts 3.78 ± 0.91 2.53 ± 1.45 2.78 ± 1.28  < 0.0001 0.0001 0.2093
Motion artefacts 3.85 ± 0.93 2.67 ± 1.33 2.82 ± 1.18  < 0.00001 0.0002 0.9786
Overall 4.17 ± 0.77 3.07 ± 0.66 2.46 ± 0.79  < 0.0001  < 0.0001 0.0070
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T2 sequences of ARDL protocol compared to NAÏVE pro-
tocol including NON-DL dataset. No differences in SNR 
calculated from DWI between ARDL, NAÏVE and NON-DL 
dataset were observed as well as in CNR between ARDL 
and NAÏVE; on the other hand, CNR of DWI was higher 
in ARDL compared with NAÏVE protocol and in NAÏVE 
compared with NON-DL dataset. No differences in SNR and 
CNR for ADC maps were observed for all datasets.

Very positive results were also obtained for qualitative 
analysis that showed how ARDL protocol was superior to 
NAÏVE and NON-DL datasets for both SSFSE T2, DWI 
and ADC. In addition, acquisition time resulted significantly 
lower in ARDL protocol for both sequences tested.

Significant results in terms of quantitative and qualita-
tive analysis for SSFSE T2 sequence are in line with data 
reported by Wang and colleagues [16] that reported how 
deep-learning sequences showed better image quality and 
fewer artifacts in prostate MRI compared with non-deep 
learning protocol.

Diffusion-weighted imaging analysis showed interesting 
results that need some consideration. DWI acquired without 
ARDL protocol was performed with high-quality param-
eters and it is possible to consider them as the ground truth. 
These acquisition parameters have returned a high-quality 
image with the disadvantages of a long acquisition time. In 
fact, quantitative analysis showed how there were no sig-
nificant differences in terms of SNR and CNR with ARDL 
protocol acquired with a mean time of three minutes, 60% 
less than NAÏVE protocol. Moreover, the deep learning pro-
tocol showed improved image quality compared with the 
NAÏVE one. To the best of our knowledge, there are no stud-
ies performed on abdominal DWI; however, Misaka et al. 
[17] conducted an interesting study on female pelvis. They 
built a deep learning algorithm to improve single-shot turbo 
spin-echo (SSTSE) sequences and compare them with TSE, 
considered as ground truth, and SSTSE. Results showed how 
DL SSTSE were superior in terms of contrast ratio and SNR 
to SSTSE while no differences were observed with TSE. 
Image quality was higher for DL protocol compared to the 
others. Even though the sequences and the district are dis-
similar, the approach of the analysis is comparable and in 
line with our results.

Similar results for DWI were obtained in other anatomical 
districts [18, 19]. An example is provided by Kaye and col-
leagues on prostate MRI [19]. They performed a comparison 
study on DWI obtained with a high average number with a 
retrospective guided denoising CNN that worked on low b 
values. Results performed on 118 patients divided into train-
ing and validation datasets of prostate MRI showed higher 
peak signal-to-noise ratio, higher structural similarity index 
and lower normalized mean square error compared to stand-
ard images. Also image quality resulted better for guided 
denoised CNN compared with the reference standard. In 

addition, the ADC map values obtained from denoised DW 
images had good agreement with the reference ADC values. 
Despite the retrospective method used and the different algo-
rithm tested, our results are in line in terms of image quality 
and reduction of acquisition time and this aspect strength 
the role of AI and DL for clinical imaging. In fact, reduced 
acquisition time without affecting image quality would allow 
to improve clinical imaging scheduling.

Another aspect of the results obtained concerns the NON-
DL dataset. In fact, in all the sequences analyzed, NON-
DL dataset resulted inferior in terms of quantitative image 
analysis and image quality. Results are coherent with the 
actual meaning of the NON-DL dataset, which represents the 
acquisition obtained with non-optimized MRI parameters 
without the application of ARDL. NON-DL dataset is usu-
ally kept in the examinations for radiologists’ consultation. 
In fact, at the beginning radiologists might need some time 
to get confident with ARDL algorithm and the idea of non-
DL images helps in that direction, even if they actually do 
use the ARDL dataset after a few scans.

The last aspect that needs important consideration is rep-
resented by the impact of ARDL on scanning time; it was 
faster for ARDL protocol compared with NAÏVE protocol, 
from 31% for SSFSE to 60% for DWI. Our results are in line 
with literature present with an average reduction of scanning 
time ranging from 30 to 60% [18, 20]. By reducing scanning 
time without affecting image quality represents an important 
goal achievable for AI. By so doing it would be possible 
to increase number of patients in the scheduling, without 
affecting the quality of examination, with a net improvement 
of healthcare process.

Despite the interesting results, our study has some limi-
tations such as: lack of analysis of pathologic entities; only 
two sequences of the MRI upper abdomen protocol were 
tested also because ARDL for now has been approved for 
clinical use only for 2D sequences; lack of comparison 
with a standard NAÏVE protocol because we aimed to test 
a higher image quality protocol with DL to assess image 
quality; in fact, some acquisition parameters such as matrix 
or average for b values are different in SSFSE T2 and DWI 
acquisitions respectively.

Conclusion

In conclusion, deep learning algorithm applied on MRI 
sequence acquisition for SSFSE T2 and DWI resulted better 
for image quality and comparable in terms of signal-to-noise 
ratio and contrast-to-noise ratio with high quality non deep 
learning protocol, by enabling a considerable reduction of 
acquisition time.
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