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Abstract
Purpose  The aim of this study is to determine if radiomics features extracted from staging magnetic resonance (MR) images 
could predict 2-year long-term clinical outcome in patients with locally advanced cervical cancer (LACC) after neoadjuvant 
chemoradiotherapy (NACRT).
Materials and methods  We retrospectively enrolled patients with LACC diagnosis who underwent NACRT followed by 
radical surgery in two different institutions.
Radiomics features were extracted from pre-treatment 1.5 T T2w MR images.
The predictive performance of each feature was quantified in terms of Wilcoxon–Mann–Whitney test. Among the significant 
features, Pearson correlation coefficient (PCC) was calculated to quantify the correlation among the different predictors. A 
logistic regression model was calculated considering the two most significant features at the univariate analysis showing 
the lowest PCC value.
The predictive performance of the model created was quantified out using the area under the receiver operating characteristic 
curve (AUC).
Results  A total of 175 patients were retrospectively enrolled (142 for the training cohort and 33 for the validation one).
1896 radiomic feature were extracted, 91 of which showed significance (p < 0.05) at the univariate analysis. The radiomic 
model showing the highest predictive value combined the features calculated starting from the gray level co-occurrence-
based features. This model achieved an AUC of 0.73 in the training set and 0.91 in the validation set.
Conclusions  The proposed radiomic model showed promising performances in predicting 2-year overall survival before 
NACRT. Nevertheless, the observed results should be tested in larger studies with consistent external validation cohorts, 
to confirm their potential clinical use.

Keywords  Cervix uteri · Neoadjuvant chemotherapy · Magnetic resonance · Radiomics · Predictive medicine · Personalized 
medicine
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Introduction

Cervical cancer (CC) is the fourth most frequent cancer and 
the fourth leading cause of cancer death in women world-
wide [1].

The recommended standard treatment of patients with 
locally advanced cervical cancer (LACC) is currently repre-
sented by concomitant chemoradiotherapy (CRT), adminis-
tered with weekly cisplatin followed by intrauterine brachy-
therapy [2, 3].

Despite the recent improvements related to these thera-
peutic strategies, the long-term overall survival rate still 
ranges about 57–67%, urging novel therapeutic strategies 
[4].

Local recurrence and distant metastasis remain the main 
causes of therapeutic failure in CC, proving that the micro-
scopic residual disease, often undetectable with current 
diagnostic restaging strategies, represents the major risk 
factor for treatment failure observed after CRT.

In patients with limited response to CRT, neoadjuvant 
chemoradiotherapy (NACRT) followed by radical hysterec-
tomy seems to be a valuable option [5–7].

Several experiences demonstrated that surgery has the 
potential to remove radio- and chemo-resistant neoplastic 
foci, improving local control and possibly overall survival. 
[8–10].

In addition, surgery represents a valid alternative to utero-
vaginal brachytherapy, where brachytherapy equipment and 
specialists are or limited.

Magnetic resonance imaging (MRI) is currently con-
sidered the standard technique for CC local staging and 
prognosis evaluation before treatment, where T2-W and 
diffusion-weighted imaging (DWI) represent the mainstay 
of diagnostic sequences [11, 12].

A recent pilot study underling the efficacy of MRI in the 
assessment of treatment response after neoadjuvant chemo-
therapy plus cold knife conization, in patient affected by 
early CC (FIGO stage IB2- IIA1) [13].

Radiomics is a translational field of research consisting 
of mathematical-statistical procedures for extracting data 
from standard radiological images, resulting in quantitative 
features that describe tumor heterogeneity and other intrin-
sic characteristics related to its biological behavior [14–17].

It has been observed in several experiences that radiomic 
features extracted from MR images have the potential to 
predict staging, histology, node status, relapse and survival 
[18–20].

Great interest has been recently paid to radiomics appli-
cations focused on CC, with studies predicting treatment 
response, or long-term outcomes [21–24].

A recent study investigated the potential role of radiomics 
in predicting pathological complete response after NACRT 

in LACC patients, reporting promising performances in 
terms of receiver operating characteristic curve [25].

Prediction of outcome besides treatment response can be 
useful to tailoring therapeutic treatment scheduling, poten-
tially reducing treatment toxicity in gynecology cancer [26].

Aim of this study is to determine if radiomics features 
extracted from T2-weighted 1.5  T MRI could predict 
2-year local control (2yLC), distant metastasis-free survival 
(2yDMFS) and overall survival (2yOS) in patients affected 
by LACC and treated with NACRT followed by radical 
hysterectomy.

Materials and methods

Patient enrollment and treatment

We retrospectively enrolled patients affected by LACC, 
staged IB2 to IVA from International Federation of Gyne-
cology and Obstetrics (FIGO) 2018, treated with NACRT 
followed by radical hysterectomy plus pelvic lymphadenec-
tomy after 6–8 weeks.

Patients were recruited from two different institutions: 
Institution A, an academic tertiary hospital and Institution 
B, a non-academic tertiary center.

This study was approved by the ethics committee of Insti-
tution A.

Inclusion criteria were as follows: histological confirmed 
invasive carcinoma of the cervix, FIGO stage from IB2 to 
IVA and absence of distant metastasis.

Patients with incomplete documentation, younger than 
18 years, treated with palliative intent and did not undergo 
surgery were excluded.

Final cohort of institution A (training set) consisted 
of 142 patients (from a total of 157, 2 patients have been 
excluded for progression during NACRT, 13 patients were 
lost to follow-up); final cohort of institution B (validation 
set) included 33 patients (from a total of 37 patients, 4 were 
lost to follow-up) (Fig. 1).

Before treatment, all patients underwent pelvic MRI and 
total body contrasted enhanced CT scan as staging imaging. 
18F-FDG PET-CT was considered and performed only in 
few selected cases.

All patients included in the analysis underwent NACRT 
with concurrent weekly cisplatin (Cisplatin dose: 40 mg/sm) 
alone or plus 5-fluorouracil (Cisplatin dose: 20 mg/sm+5-
Fluorouracil dose: 1000 mg) during the first and the last 
week of treatment.

Radiotherapy volumes were delineated according to con-
sensus guidelines for the clinical target volume (CTV), and 
organs-at-risk.

CTV was defined as primary tumor (CTV1) plus whole 
pelvis (CTV2).
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In the case of common iliac or lumbo-aortic lymph nodes 
involvement (cN+) at the staging imaging, lumbo-aortic 
lymph nodes were also added to the CTV2.

Planning target volumes (PTV) were considered as iso-
tropic expansion of 5 mm from the relative CTV.

Radiotherapy treatment was administered using a simul-
taneous integrated boost technique delivered in 22 fractions 
and prescribing 50.6 Gy to PTV1 and 39.6 Gy to PTV2.

All patients were re-evaluated with a pelvic MRI and 
18F-FDG PET-CT, according to clinical FIGO stage, for 
local restaging and subsequently referred to surgery, which 
was carried out with a laparotomy approach between 7 and 
8 weeks from term of radiotherapy.

All patients underwent a Radical hysterectomy ± bilateral 
annessiectomy performed according to Querleu Morrow’s 
criteria in relation to the response to radiation treatment, 
verified by radiological imaging [27].

Systematic pelvic lymphadenectomy was always per-
formed; para-aortic lymph node dissection was added if 
pelvic or para-aortic lymph node were positive at the pre-
treatment imaging or at the intra-operatory frozen section of 
the pelvic lymph nodes.

Pathological response to treatment was evaluated on sur-
gical specimens.

Pathological complete response was defined as absence 
of any residual tumor after treatment at any site; micro-
scopic response (pR1) as persistent tumor foci of maximum 

dimension inferior to 3 mm; macroscopic response (pR2) as 
persistent tumor foci with maximum dimension exceeding 
3 mm [28].

Collected data included age, histology, FIGO stage, pres-
ence of positive lymph nodes on PET/CT and pelvic MRI 
and clinical status at 2 years from surgery.

Treatment outcome evaluation

Post-treatment surveillance consisted of follow-up visits 
every 3 months for the first 2 years and every 6 months 
thereafter.

All the patients with an observation period equal to or 
longer than 2 years with information relative to diagnostic 
imaging, surgery and pathological staging were included in 
the analysis.

Pelvic examination, serum tumor markers, abdominopel-
vic CT or pelvic MRI or PET-CT scans were performed at 
each follow-up visit, according to clinical stage.

2yLC, 2yDMFS and 2yOS were considered as treatment 
outcome, using the end of radiotherapy as reference time 
point.

Local control outcome (LC) was defined as the interval 
between the date of treatment completion and the date of 
tumor local recurrence. Distant metastasis-free survival was 
defined as the interval between the date of treatment comple-
tion and the date of onset of distance recurrence.

Overall survival (OS) was defined as the interval between 
the date of treatment and the date of cancer related death.

Image acquisition protocol, image analysis 
and features extraction

Radiomic analysis was focused on pre-treatment axial 
T2-weighted MR images, acquired for tumor staging accord-
ing to institutional staging protocols. The acquisition param-
eters adopted are reported in Table 1. A total of 564 radiomic 
features were extracted for each considered clinical outcome.

Gross tumor volume was considered as region of inter-
est; it was manually contoured in consensus by one radia-
tion oncologist and one radiologist, experts in gynecological 
imaging, using a radiotherapy treatment planning system 
(Eclipse, Varian Medical Systems, Palo Alto, CA, USA). (

MR images were resampled to a planar resolution of 
0.548 × 0.548 mm2 and preprocessed using the Laplacian 
of Gaussian filter, considering the filter widths (σ) ranging 
from 0 to 4.2 mm with steps of 0.35 mm 4–5. Radiomic 
analysis was performed using Moddicom, a radiomic soft-
ware included in the IBSI initiative [19, 29, 30].

Three radiomic features families were extracted for the 
analysis: morphological features were extracted from raw 

Fig. 1   Flowchart of our population
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images, while statistical and textural features were extracted 
from the filtered one [31, 32].

With regards to the textural features, three gray level 
matrices were considered: run length (rlm), co-occurrence 
(cm) and size zone (szm) matrices. The complete list of the 
extracted radiomic features is reported in the supplementary 
materials and in similar experiences of our group about this 
topic [32, 33].

Statistical analysis

The heterogeneity between training and validation cohorts 
was evaluated using χ2 test for categorical features and t test 
for continuous ones [31].

A comprehensive database including radiomic features, 
clinical data and outcomes was created.

For each radiomic feature object of the analysis, the nor-
mality of data distribution was evaluated using the Shap-
iro–Wilk test. The ability of each single feature in predicting 
at the univariate analysis the dichotomic outcomes object 
of this study (presence or absence of 2yLC, 2yDFS, 2yOS) 
was evaluated using the Wilcoxon–Mann–Whitney (WMW) 
test for features showing data characterized by non-Gaussian 
distribution and t test for data with Gaussian distribution 
[34, 35].

Feature showing the lowest p value was considered as 
the most significant feature and selected as first feature for 
model creation: the use of WMW test was recently consid-
ered the most accurate and robust method for feature selec-
tion in Radiomics [36]

For each clinical outcome object of this study, different 
linear logistic regression models with two variables were 
elaborated, combining the most significant feature at the 

univariate analysis (lowest p value) with all the others radi-
omic features object of this study [34].

The predictive performance of the different models cre-
ated was quantified using the area under the receiver operat-
ing characteristic (ROC) curve (AUC) [37].

The logistic model showing the highest AUC value was 
considered as the best predictive model and evaluated on 
the validation set. The 95% confidence intervals of the AUC 
value were calculated using the bootstrap method with 2000 
iterations.

The best cut-off threshold was identified maximizing the 
Youden Index (J), and values of sensitivity and specificity 
at the best threshold were calculated [33, 38].

The statistical analysis was performed using R software 
(version 3.6.1, Wien Austria) and dedicated packages [39].

Results

Clinical characteristics

A total of 175 patients with LACC were analyzed, 142 in the 
training cohort and 33 in the validation one).

Table 2 summarizes the clinical characteristics of both 
cohorts.

At the end of the follow-up period, 2yLC was observed in 
82% of patients in the training cohort and in 78% of patients 
in the validation cohort; 2yDMFS was observed in 73% of 
patients in the training cohort and in 82% of patients in the 
validation cohort; and 2yOS was observed in 86% of patients 
in the training cohort and in 88% of patients in the valida-
tion one.

Radiomic models

A total of 10 features showed significance (p < 0.05) at the 
univariate analysis for the prediction of 2yOS, 19 features 
for the 2yLC and 62 for the 2yDMFS. The list of the sig-
nificant features is reported in the supplementary materials 
for each outcome.

The two-variables predictive model for 2yDMFS showed 
moderate performance in training set (0.68) and limited per-
formance in the validation set (0.55).

The predictive model for 2yLC showed moderate perfor-
mance in both dataset (0.71 in training and validation). The 
only model showing good performance both in training and 
validation set was the one predicting 2yOS, with an AUC of 
0.77 (95% Confidence interval of 0.70–0.91) in the training 
set and 0.91 (0.70–1) in the validation set.

The 2yOS model combined two textural features: the cor-
relation based on gray level co-occurrence matrix, calculated 
after the application of the LoG filter at 0.7 mm and the 

Table 1   Magnetic resonance imaging acquisition parameters used in 
the MR clinical protocol adopted for axial (AX) acquisitions

AX T2-W

Sequence FRFSE
Echo time (ms) 85
NEX 2
Repetition time (ms), TR 4500
No. of sections 30
Receiver bandwidth (kHz) 31.25
Echo train length 26
Field of view (mm), FOV 24
Section thickness (mm) 4
Section spacing (mm) 0.5
Matrix size 384 × 256
b Value (s/mm2) –
Phase direction A/P
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variance calculated on the size zone matrix after the LOG 
application at 0.5 mm.

The ROC curves of the three models elaborated are 
reported in Fig. 2, while the predictive performance is sum-
marized in Table 3. The parameters and the coefficient of all 
the three models are reported in supplementary materials.

Discussion

Several studies aimed to predict and monitor treatment 
response and clinical outcome analyzing functional imag-
ing, such as MRI or 18-FDG PET-TC in patients affected by 
cervical cancer [24, 40–42].

In particular, some experiences analyzed temporal varia-
tions in tumor heterogeneity patterns on functional imaging 
such as dynamic contrast enhanced MRI, DWI [24] and FDG 
PET-CT [42] performed before, during and after CRT course 
to correlate imaging biomarkers with treatment response 
outcomes, so defining novel promising prognostic factors.

Our previous experience demonstrated the possibility of 
using radiomics based on staging MRI to predict pathologi-
cal complete response after NACRT in cervical cancer. [25]

Despite the important efforts made in terms of treat-
ment response prediction, only few experiences explored 
the correlation between radiomic predictors and long-terms 

outcomes, such as distant recurrence or overall survival in 
cervical cancer [22, 43, 44].

In a study proposed by Ho et al., the mean ADC value 
extracted from the primary tumor in pre-treatment DWI 
MR was indicated as a predictor of disease-free survival 
for CC patients treated with CRT. The authors found that a 
higher mean ADC value may result in a higher probability 
of disease-free survival and OS.

The mean ADC value of the primary tumor on pre-treat-
ment MRI was the only imaging feature which resulted to 
be an independent predictor of disease-free survival [22]

Similar experiences were reported in rectal cancer, where 
delta radiomic models analyzed the variation of radiomics 
features extracted from staging and post-treatment MRI to 
predict tumor behavior and long-term outcomes, such as dis-
tant metastasis-free survival and OS [45].

In this study, we aimed to identify radiomic features from 
staging T2-w MR images which are able to predict 2-year 
clinical dichotomic outcomes, obtaining promising results 
in case of OS prediction, but only limited results for LC and 
distant metastasis--free survival.

In particular, it emerged that the features with the highest 
performance in predicting the presence of OS after 2 years 
from the end of treatment are based on the textural analysis.

Being able to predict a long-term outcome from pre-
treatment MR images could allow patients to be stratified 
in different risk groups besides the ones generally used in 

Table 2   Patient characteristic 
and p value of difference 
calculated considering t test for 
continuous variables and chi-
square for categorical ones

Institution A Institution B p value
142 pts 33 pts

Age (mean) 23–76 (51) 28–79 (53) 0.33
Histology
Squamous cell carcinoma 131 (92%) 29(88%) 0.42
Glassy cell squamous carcinoma 0 (%) 1 (3%)
Clear cell adeno-squamous carcinoma 1 (1%) 0 (0%)
Adenocarcinoma 10 (7%) 2 (6%)
Adeno-squamous 0 (%) 1 (3%)
FIGO stage
IB2 5 (3%) 3 (9%) 0.47
IIA 7 (5%) 2 (6%)
IIB 116 (82%) 25 (76%)
IIIA 4 (3%) 2 (6%)
IIIB 10 (7%) 0 (0%)
IVA 0 (%) 1 (3%)
Nodal status
N0 68 (48%) 19 (58%) 0.32
N1 74 (52%) 14 (42%)
Pathological response
pR0 63 (44%) 11 (33%) 0.32
pR1 41 (29%) 9 (27%)
pR2 38 (27%) 13 (40%)
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clinical practice to define the most appropriate treatment 
schedule (e.g., disease stage).

Furthermore, identifying patients with higher risk of 
local or distant recurrences could guide clinicians to per-
sonalize follow-up schedules or early intercept local or 

distant recurrence that could represent therapeutic failure. 
On the other side, less invasive tailored therapeutic strat-
egies may be pursued in patients predicted with low OS 
probability.

Fig. 2   Receiver operating characteristic curve for 2-year overall survival, 2-year distant Metastasis-free survival and 2-year local control in the 
training set and in the validation set, respectively

Table 3   Predictive performance 
parameters for the three models 
elaborated in the study

Predictive performance 2yOS 2yDFS 2yLC

Training Validation Training Validation Training Validation

Sensitivity 58.5 82.6 69.2 47.6 50.9 95.2
Specificity 100.0 100.0 73.0 75.0 88.0 50.0
Threshold 0.9 0.8 0.7 0.8 0.9 0.6
J_index 0.6 0.8 0.4 0.2 0.4 0.5
AUC​ 77.0 91.3 68.3 55.0 70.9 71.4
Lowest_AUC (95% CI) 0.7 0.7 0.6 0.1 0.6 0.4
Highest_AUC (95% CI) 0.9 1.0 0.8 0.8 0.8 1.0
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Different limitations burden this work. First of all, the 
limited replicability of patients setting, as neoadjuvant set-
ting, does not represent the standard of treatment in LACC 
patient and is not adopted by the largest majority of the 
centers.

Despite the sound methodology applied (TRIPOD type 
3) [46, 47], promising specificity and sensitivity values were 
reached only in the prediction of 2yOS, this being partly 
related to the relatively small sample size.

Lastly, the lack of a biological interpretation of the sig-
nificant features limits the translational value of this expe-
rience, even if this issue is not considered mandatory for 
radiomics study [48].

Future studies are being planned to integrate such evi-
dence with clinical, histopathological and molecular data, 
which would allow to build multi-omics predictive models 
to be tested in larger cohorts of patients.

Conclusion

In this study, a radiomic model was proposed able to predict 
2yOS in LACC patients before undergoing NACRT.

An accurate outcome prediction before or during onco-
logical treatments could be an added clinical value to pro-
vide a guidance for clinicians in their decision-making pro-
cess to adapt and tailoring treatment.

To confirm the reliability of these results and translate the 
use of this model into clinical practice, larger studies with 
external validation are required.
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