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Abstract
Purpose  To evaluate stability and machine learning-based classification performance of radiomic features of spine bone 
tumors using diffusion- and T2-weighted magnetic resonance imaging (MRI).
Material and methods  This retrospective study included 101 patients with histology-proven spine bone tumor (22 benign; 38 
primary malignant; 41 metastatic). All tumor volumes were manually segmented on morphologic T2-weighted sequences. 
The same region of interest (ROI) was used to perform radiomic analysis on ADC map. A total of 1702 radiomic features was 
considered. Feature stability was assessed through small geometrical transformations of the ROIs mimicking multiple manual 
delineations. Intraclass correlation coefficient (ICC) quantified feature stability. Feature selection consisted of stability-based 
(ICC > 0.75) and significance-based selections (ranking features by decreasing Mann–Whitney p-value). Class balancing 
was performed to oversample the minority (i.e., benign) class. Selected features were used to train and test a support vector 
machine (SVM) to discriminate benign from malignant spine tumors using tenfold cross-validation.
Results  A total of 76.4% radiomic features were stable. The quality metrics for the SVM were evaluated as a function of 
the number of selected features. The radiomic model with the best performance and the lowest number of features for clas-
sifying tumor types included 8 features. The metrics were 78% sensitivity, 68% specificity, 76% accuracy and AUC 0.78.
Conclusion  SVM classifiers based on radiomic features extracted from T2- and diffusion-weighted imaging with ADC map 
are promising for classification of spine bone tumors. Radiomic features of spine bone tumors show good reproducibility 
rates.
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ROC	� Receiver operating characteristics
ROI	� Region of interest
SMOTE	� Synthetic minority oversampling technique
SVM	� Support vector machine

Introduction

Bone tumors of the spine include benign and malignant enti-
ties. The incidence of benign lesions, such as hemangioma, 
is hard to determine as they are often asymptomatic and 
remain undetected or are discovered incidentally. Among 
malignant bone tumors of the spine, metastatic lesions are 
far more common than primary lesions [1]. Imaging, and 
particularly magnetic resonance imaging (MRI), plays a 
pivotal role in the discrimination among these entities [2]. 
Although MRI performed with conventional pulse sequences 
has good reliability, some features of benign and malignant 
spinal lesions overlap and make the differential diagnosis 
challenging [3]. Diffusion-weighted (DW) imaging pro-
vides information regarding tumor cellularity. Specifically, 
apparent diffusion coefficient (ADC) maps are quantitative 
measures of the magnitude of diffusion within tissues. The 
role of DW imaging has been highlighted in previous studies 
dealing with bone tumors of the spine [4], and mean ADC 
values have been shown to discriminate between benign and 
malignant entities, including both primary malignant and 
metastatic lesions [5].

Radiomics includes extraction, analysis and interpreta-
tion of large numbers of quantitative data, known as radi-
omic features, from medical imaging [6, 7]. Radiomics has 
gained attention in oncologic imaging, and most studies 
to date have focused on discriminating tumor grades and 
types before treatment, monitoring response to therapy and 
predicting outcome [8]. A great variability in radiomic fea-
tures has, however, emerged as a major issue across these 
studies, particularly with regard to the segmentation pro-
cess, thus highlighting the need for preliminary assessment 
of feature stability [9]. Machine learning aids in analyzing 
radiomic data, as it performs inferences from large amounts 

of radiomic features and creates classification models for the 
diagnosis of interest [10, 11].

The objectives of this study were to evaluate stability 
and machine learning-based classification performance of 
radiomic features of spine bone tumors extracted from DW 
and T2-weighted magnetic resonance imaging (MRI). ADC 
value differences among benign, primary malignant and 
metastatic tumors of the spine were also assessed.

Materials and methods

Dataset description

Institutional Review Board approval and a waiver for 
informed consent were obtained. This retrospective study 
included 101 patients with histology-proven spine bone 
tumors and DW MRI performed over the last 10 years at one 
tertiary bone tumor center. Of the 101 patients used for the 
study, 22 were benign and 79 were malignant (38 primary 
and 41 metastatic). Clinical and demographic characteristics 
are summarized in Table 1.

All images were acquired using 1.5 T MRI scanners 
and different image acquisition parameters (pixel spacing, 
slice thickness, time of repetition and echo). T2-weighted 
and DW images were available for all patients included. 
T2-weighted images were acquired using turbo spin-echo 
pulse sequences, while DW images were acquired using 
echo-planar imaging with b-values of 0 and 1000 s/mm2. 
Further details on MRI acquisition are displayed in Table 2. 
The DW images were used to fit ADC maps.

Image segmentation

3D image segmentation was manually performed by a last-
year resident in radiology experienced in musculoskeletal 
and oncologic imaging using the open-source software 
ITK-SNAP (version 3.6) [12]. The reader drew a region of 
interest (ROI) along tumor borders on each slice using axial 
T2-weighted sequence, which provided more morphological 

Table 1   Main demographic 
and clinical data involved in the 
project

IQR: interquartile range

Demographic and Clinical Data

Age (median [IQR]) 58 years [46–67]
Sex 49 Male; 52 Female
Tumor type Benign (n = 22) Primary malignant (n = 38) Bone metastases (n = 41)

Fibrous dysplasia (n = 3)
Giant cell tumors (n = 2)
Hemangioma (n = 7)
Osteoblastoma (n = 10)

Chondrosarcoma (n = 3)
Chordoma (n = 10)
Ewing sarcoma (n = 5)
Lymphoma (n = 8)
Multiple myeloma (n = 12)

Breast (n = 14)
Kidney (n = 6)
Lung (n = 13)
Thyroid (n = 3)
Gastrointestinal tract (n = 5)
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details compared to DW images. Since there was not an 
excessive movement of the patient from one sequence to the 
other, the same segmentation was used as a mask to extract 
the radiomic features from both ADC and T2-weighted 
images. An example of segmentation overlaid on both 
T2-weighted and ADC images is displayed in Fig. 1.

Image preprocessing

Different preprocessing steps were applied to the MRI 
images prior to the extraction of the radiomic features. First, 
a 3D Gaussian filter with a 3 × 3× 3 voxel kernel and σ = 0.5 
was used to denoise the images. In case of T2-weighted 

images, a bias field correction was performed using the 
N4ITK algorithm [13] to correct for potential effects due to 
inhomogeneity of the magnetic field. Also, Z-score standard-
ization was performed to ensure that the range of intensity in 
the T2-weighted images was the same. Last, the images were 
resampled to a common isotropic resolution of 2 mm (as in 
[14]) using B-spline interpolation. Bias field correction and 
intensity standardization were not applied on the ADC maps 
because those types of images already have a standardized 
range of intensity (diffusion coefficients are within the maxi-
mum range of 0–4 10–3 mm2/s) and are not affected magnetic 
field inhomogeneity.

Radiomic features extraction

An initial set of 1702 radiomic features was extracted from 
the MRI volumes (851 features per sequence) using the 
PyRadiomics library (version 3.0) [15]. Features belonged 
to different categories such as shape and size, first-order sta-
tistics (FOS) and textural features. Textural features were 
computed using five different textural matrices: the gray-
level co-occurrence matrix (GLCM); the gray-level run 
length matrix (GLRLM); the gray-level size zone matrix 
(GLSZM); the neighboring gray tone difference matrix 
(NGTDM); and the gray-level dependence matrix (GLDM). 
FOS and textural features were extracted from both the origi-
nal volumes and the 8 volumes obtained by first-level wave-
let decomposition [16]. For the full list of radiomic features, 
refer to PyRadiomics documentation (https://​pyrad​iomics.​
readt​hedocs.​io/​en/​latest/​featu​res.​html) and to supplemen-
tary material “Supplementary 1 – Features description.” A 
32-bins gray-level discretization was used prior to the radi-
omic features extraction.

Table 2   Acquisition information for the magnetic resonance images 
used for this study. For the numerical variables, the full range of val-
ues was represented

T2w: T2-weighted; DWI: diffusion-weighted images; ADC: apparent 
diffusion coefficient maps

MRI Acquisition Info

Image type T2w DWI/ADC

Scanner - Siemens Avanto: 80 patients
- Siemens Espree: 18 patients
- Philips Ingenia: 2 patients
- Philips Achieva: 1 patient

Magnetic field 1.5 T
Pulse sequence Turbo spin-echo Echo-planar imaging
Echo train length 13–59 1
Number of averaging 1–10 2–6
Time of repetition (ms) 2000–10,360 2700–10,700
Time of echo (ms) 69–117 65–94
Slice thickness (mm) 2–5 3–6
Pixel spacing (mm) 0.36–1.45 1.30–2.57
Slice spacing (mm) 2.2–7 3.3–7.8
Flip Angle (°) 90–150 90

Fig. 1   Example of tumor 
segmented by the radiologist. 
The tumor is segmented on the 
T2-weighted image (a) but the 
same segmentation has been 
used as a mask to extract the 
radiomic features from the 
apparent diffusion coefficient 
map (b) as well

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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Stability analysis

Prior to the training of any radiomic model, a side experi-
ment was performed to evaluate the stability of radiomic 
features to variations in the ROI. This stability analysis 
was performed to mimic the effect of potential sources of 
variability such as the intra- and inter-reader variability that 
comes with manual segmentation or the potential mismatch 
between the ROI and the underlying tumor when the same 
ROI is used to extract features from multiple sequences; like 
it was done in this study. The stability analysis was per-
formed as described in [17], by applying different translation 
of the ROI in the positive and negative direction of the x and 
y directions, respectively (Fig. 2). The entity of the transla-
tion was 10% of the length of the bounding box of the tumor 
in the corresponding direction (x or y). For each patient, the 
radiomic features were extracted from 5 different ROIs (the 
original and the 4 translated versions). Intraclass correlation 
coefficient (ICC) was used to quantify the stability of each 
radiomic feature [18]. A feature was considered stable if ICC 
was higher than 0.75 [19].

Radiomic classifier training and validation pipeline

Figure 3 shows the scheme including all the steps for the 
training and validation of the radiomics-based classifier. 
First, according to the previous stability analysis, radiomic 

features having an ICC of 0.75 or lower were consider unsta-
ble and excluded. The second step of features selection was 
related to the ability of radiomic features to discriminate 
between malignant and benign tumors. Mann–Whitney tests 
were used to identify features with a statistically different 
distribution between the two groups. The statistically dif-
ferent features were kept and ranked by their p-value (from 
lower to higher). Of these ranked features, only the first n 
were selected (with n ranging from 1 to 10).

Prior to the training of the classifier, a class balancing was 
applied using the Synthetic Minority Oversampling Tech-
nique (SMOTE) [20], which is a technique used to artifi-
cially oversample the minority class (in this case, the benign 
tumors). The balanced dataset was used to train a support 
vector machine (SVM) classifier to discriminate the type of 
tumor. The reference “positive” group for the training of the 
classifier was the group of malignant tumors. The training 
was performed in MATLAB using fitcsvm function with the 
default hyperparameters (see Name-Value Pair Arguments 
in https://​it.​mathw​orks.​com/​help/​stats/​fitcs​vm.​html) and a 
linear kernel.

Radiomic classifier validation

The diagnostic performance of the radiomic model was 
evaluated using tenfold cross-validation on the training set. 
In each iteration, the training pipeline was applied to 9/10 

Fig. 2   Translated versions of 
the same region of interest used 
for the stability analysis. (a) 
Upward translation. (b) Down-
ward translation. (c) Translation 
to the right. (d) Translation to 
the left

https://it.mathworks.com/help/stats/fitcsvm.html
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of the dataset and the train model was used to classify the 
remaining patients. For each patient, an unbiasedly evaluated 
class and a classification score could be computed. Using 
these two elements, both a confusion matrix and a receiver 
operating characteristics (ROC) curve could be computed. 
Sensitivity, specificity and accuracy of the classification as 
well as the area under the ROC curve (AUC) were deter-
mined and used to evaluate the quality of the classifier. In 
the computation of these metrics, the group of malignant 
tumors was considered as the “positive” class. The number 
of selected features used to train the different model was 
varied from 1 to 10 to evaluate the effect of an increasing 
number of features on model’s performance.

Discriminative power of mean ADC

Since previous studies [5] reported the ability of mean ADC 
in discriminating the different categories of tumor (benign, 
primary malignant or metastatic), we tried to confirm this 
ability, using the mean ADC obtained by the ROI of this 
dataset. A Kruskal–Wallis test and post hoc comparisons 
were performed to evaluate whether mean ADC had a sig-
nificantly different distribution among the groups. Also, the 
AUC of mean ADC for the benign vs. malignant classifica-
tion was evaluated.

Results

Stability analysis

A total of 1300 extracted radiomic features (76.4%) were 
stable to transformations of the ROI. The full list of radi-
omic features used for the following analysis is detailed 
in supplementary material “Supplementary 2—Features 
stability.xlsx.”

Radiomic classifier validation

The quality metrics for the SVM models are displayed 
in Table 3 as a function of the number of selected fea-
tures. The model with the best performance and the lowest 
number of features was the model with 8 features, with a 
sensitivity of 0.78, specificity of 0.68 and accuracy of 0.76 
(Fig. 4a). The ROC curve of the best model is displayed 
in Fig. 4b. Its area under the ROC curve (AUC) was 0.78.

Fig. 3   Workflow of the radiomic classifier training

Table 3   Results of the different classifiers tested as a function of the 
number of features

The best model is highlighted in bold
AUC: area under the ROC curve

Model Performance by Number of Features

Features 
number

Sensitivity Specificity Accuracy AUC​

1 0.80 0.59 0.75 0.77
2 0.80 0.59 0.75 0.78
3 0.78 0.64 0.75 0.78
4 0.77 0.55 0.72 0.77
5 0.76 0.59 0.72 0.78
6 0.76 0.59 0.72 0.78
7 0.77 0.64 0.74 0.78
8 0.78 0.68 0.76 0.78
9 0.77 0.59 0.73 0.78
10 0.78 0.59 0.74 0.77
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Discriminative power of mean ADC

The boxplots in Fig. 5a show the distribution of mean 
ADC among the different groups of tumors (benign, 
primary malignant and metastasis). The values of mean 
ADC were 1.30 ± 0.35 *10–3 mm2/s for benign tumors, 
1.17 ± 0.24 *10–3 mm2/s for metastasis and 1.08 ± 0.36 
*10–3 mm2/s for primary malignant tumors. The p-value 
for the Kruskal–Wallis test was 0.02, and post hoc com-
parisons showed that the difference between benign and 
primary malignant tumors was statistically significant 
(p = 0.01) but not between benign tumors and metastasis 
(p = 0.38). The AUC of mean ADC for benign vs. malig-
nant tumor was 0.66.

Discussion

The main finding of this study is that SVM models based 
on radiomic features derived from T2-weighted and DW 
MRI with ADC map allowed for benign vs. malignant clas-
sification of spine bone tumors with up to 76% accuracy. 
Additionally, the reproducibility rate of radiomic features 
was higher than 76% as features were stable to geometrical 
transformations of the ROIs.

Previous studies dealt with MRI radiomics-based classi-
fication of spine bone tumors. In cancer patients with bone 
marrow metastatic disease, a very preliminary investigation 
showed that MRI-based radiomic signature could be help-
ful to discriminate between metastatic and non-metastatic 
vertebral bodies [21]. Recently, Chianca et al. tested differ-
ent extraction software for radiomics-based classification of 
spine bone tumors using T1-weighted and T2-weighted MRI 
and reported that PyRadiomics outperformed other extrac-
tion software [22]. The reason is likely that PyRadiomics 
directly enables robust image preprocessing, thus removing 
dependencies on some image parameters and allowing for 
generalizability of the results, as it was done in our study. 
Lang et al. [23] focused on dynamic contrast-enhanced MRI 
and differentiated spine metastatic lesions originated from 
lung and other cancers using radiomics and deep learning. 
In a dataset of 30 metastases from lung cancer and 31 metas-
tases from other cancers, classification using convolutional 
neural networks achieved a mean accuracy of 71% [23]. Our 
current study adds to the literature by highlighting the role of 
machine-learning classification of spine bone tumors based 
on radiomic features extracted from DW MRI with ADC 
maps, coupled with morphologic T2-weighted sequences. 
A SVM was trained and tested based on selected radiomic 
features and had an accuracy of up to 76%.

Stability analysis allows for assessing the robustness of 
radiomic features and represents a preliminary step in the 
process of feature selection. Several strategies can be used 
for stability evaluation, such as changes in image acquisition 

Fig. 4   Results of the best radi-
omic classifiers. (a) Confusion 
matrix on which sensitivity, 
specificity and accuracy have 
been computed. (b) Receiver 
operating characteristic (ROC) 
curve, with the black dot rep-
resenting the actual sensitivity 
and specificity of the classifier

Fig. 5   Boxplots showing the distribution of the values of mean appar-
ent diffusion coefficient (ADC). (a) Values of this study. (b) Distribu-
tions observed in [5]
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parameters [24] and multiple ROI delineations performed by 
different readers [25], which are, however, time-consuming. 
In our study, feature stability was assessed through a time-
saving method based on geometrical transformations of the 
ROIs mimicking multiple manual delineations [17]. More 
than 76% radiomic features were stable to these transforma-
tions and then showed good overall reproducibility.

A recent meta-analysis showed that quantitative assess-
ment of ADC was excellent for differentiating benign from 
malignant bone marrow lesions of the spine [4]. In a study 
included in this meta-analysis, mean ADC values were 
found to be higher in benign bone tumors in comparison 
with both primary malignant and metastatic lesions of 
the spine [5]. Our results are in line with those findings 
(Fig. 5B), as benign tumors showed higher ADC values 
than primary malignant lesions and metastases, although 
statistical significance was not reached in the latter case. 
The AUC of mean ADC for benign vs. malignant tumor 
discrimination was 0.66 and 0.76 in our and previous [5] 
studies, respectively. However, an overlap between mean 
ADC values of benign and malignant tumors was high-
lighted in the previous investigation, e.g., giant cell tumor 
of the bone is histologically benign but has low ADC mean 
value [5]. In this regard, an objective assessment of tumor 
heterogeneity by means of radiomics and machine learning 
might aid in the diagnosis.

Some limitations of this study need to be taken into 
account. First, it has a retrospective design as a prospec-
tive analysis is not strictly necessary for radiomic stud-
ies [8]. Second, the number of histology-proven benign 
lesions was small, i.e., approximately one fifth of the pop-
ulation of study, because histology was not available for 
unbiopsied benign lesions with typical imaging findings. 
However, this limitation was overcome by means of class 
balancing with SMOTE technique [20]. Finally, an inde-
pendent cohort of patients was not available for external 
validation of the radiomics-based classifier and needs to 
be included in further investigations.

Limitations notwithstanding, we conclude that SVM 
models based on radiomic features extracted from 
T2-weighted and DW MRI with ADC map are promising 
for classification of bone tumors of the spine and radiomic 
features show good overall reproducibility.
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