Skip to main content

Advertisement

Log in

Noninvasive imaging of congenital cardiovascular defects

  • Cardiac radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Advances in the treatment have drastically increased the survival rate of congenital heart disease (CHD) patients. Therefore, the prevalence of these patients is growing. Imaging plays a crucial role in the diagnosis and management of this population as a key component of patient care at all stages, especially in those patients who survived into adulthood. Over the last decades, noninvasive imaging techniques, such as cardiac magnetic resonance (CMR) and cardiac computed tomography (CCT), progressively increased their clinical relevance, reaching stronger levels of accuracy and indications in the clinical surveillance of CHD. The current review highlights the main technical aspects and clinical applications of CMR and CCT in the setting of congenital cardiovascular abnormalities, aiming to address a state-of-the-art guidance to every physician and cardiac imager not routinely involved in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hoffman JIE, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900

    Article  Google Scholar 

  2. Marelli AJ, Mackie AS, Ionescu-Ittu R et al (2007) Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 115:163–172. https://doi.org/10.1161/CIRCULATIONAHA.106.627224

    Article  Google Scholar 

  3. Muscogiuri G, Secinaro A, Ciliberti P et al (2017) Utility of cardiac magnetic resonance imaging in the management of adult congenital heart disease. Lippincott Williams and Wilkins, Philadelphia

    Book  Google Scholar 

  4. Schicchi N, Secinaro A, Muscogiuri G et al (2016) Multicenter review: role of cardiovascular magnetic resonance in diagnostic evaluation, pre-procedural planning and follow-up for patients with congenital heart disease. Radiol Med 121:342–351. https://doi.org/10.1007/s11547-015-0608-z

    Article  Google Scholar 

  5. Ntsinjana HN, Hughes ML, Taylor AM (2011) The role of cardiovascular magnetic resonance in pediatric congenital heart disease. J Cardiovasc Magn, Reson, p 13

    Google Scholar 

  6. Orwat S, Diller G-P, Baumgartner H (2014) Imaging of congenital heart disease in adults: choice of modalities. Eur Heart J Cardiovasc Imaging 15:6–17. https://doi.org/10.1093/ehjci/jet124

    Article  Google Scholar 

  7. Tworetzky W, McElhinney DB, Brook MM et al (1999) Echocardiographic diagnosis alone for the complete repair of major congenital heart defects. J Am Coll Cardiol 33:228–233. https://doi.org/10.1016/S0735-1097(98)00518-X

    Article  CAS  Google Scholar 

  8. Heathfield E, Hussain T, Qureshi S et al (2013) Cardiovascular magnetic resonance imaging in congenital heart disease as an alternative to diagnostic invasive cardiac catheterization: a single center experience. Congenit Heart Dis 8:322–327. https://doi.org/10.1111/chd.12032

    Article  Google Scholar 

  9. Di Cesare E, Cademartiri F, Carbone I et al (2013) Indicazioni cliniche per l’utilizzo della cardio RM. A cura del Gruppo di lavoro della Sezione di Cardio-Radiologia della SIRM. Radiol Med 118:752–798. https://doi.org/10.1007/s11547-012-0899-2

    Article  Google Scholar 

  10. Francone M, Carbone I, Agati L et al (2011) Utilità delle sequenze STIR T2 pesate in risonanza magnetica cardiaca: spettro di applicazioni cliniche in varie cardiopatie ischemiche e nonischemiche. Radiol Med 116:32–46. https://doi.org/10.1007/s11547-010-0594-0

    Article  CAS  Google Scholar 

  11. Powell AJ, Geva T (2000) Blood flow measurement by magnetic resonance imaging in congenital heart disease. Pediatr Cardiol 21:47–58

    Article  CAS  Google Scholar 

  12. Beerbaum P, Körperich H, Barth P et al (2001) Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation 103:2476–2482. https://doi.org/10.1161/01.CIR.103.20.2476

    Article  CAS  Google Scholar 

  13. Lovato L, Giardini A, La Palombara C et al (2007) Ruolo ed utilità clinica della RM nella diagnosi, nella valutazione pre-operatoria e nel follow-up delle cardiopatie congenite. Radiol Med 112:660–680

    Article  CAS  Google Scholar 

  14. Secchi F, Di Leo G, Papini GDE et al (2011) Cardiac magnetic resonance: impact on diagnosis and management of patients with congenital cardiovascular disease. Clin Radiol 66:720–725. https://doi.org/10.1016/j.crad.2011.03.007

    Article  CAS  Google Scholar 

  15. Fratz S, Chung T, Greil GF et al (2013) Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson. https://doi.org/10.1186/1532-429X-15-51

    Article  Google Scholar 

  16. Henningsson M, Zahr RA, Dyer A et al (2018) Feasibility of 3D black-blood variable refocusing angle fast spin echo cardiovascular magnetic resonance for visualization of the whole heart and great vessels in congenital heart disease 11 Medical and Health Sciences 1102 Cardiorespiratory Medicine and Haematology. J Cardiovasc Magn Reson 20:76. https://doi.org/10.1186/s12968-018-0508-1

    Article  Google Scholar 

  17. Ichikawa Y, Sakuma H, Kitagawa K et al (2003) Evaluation of left ventricular volumes and ejection fraction using fast steady-state cine MR imaging: comparison with left ventricular angiography. J Cardiovasc Magn Reson 5:333–342. https://doi.org/10.1081/JCMR-120019422

    Article  Google Scholar 

  18. Hartnell GG, Meier RA (1995) MR angiography of congenital heart disease in adults. Radiographics 15:781–794

    Article  CAS  Google Scholar 

  19. Steeden JA, Pandya B, Tann O, Muthurangu V (2015) Free breathing contrast-enhanced time-resolved magnetic resonance angiography in pediatric and adult congenital heart disease. J Cardiovasc Magn Reson. https://doi.org/10.1186/s12968-015-0138-9

    Article  Google Scholar 

  20. Di Leo G, Fisci E, Secchi F et al (2016) Diagnostic accuracy of magnetic resonance angiography for detection of coronary artery disease: a systematic review and meta-analysis. Eur Radiol 26:3706–3718. https://doi.org/10.1007/s00330-015-4134-0

    Article  Google Scholar 

  21. Grosse-Wortmann L, Al-Otay A, Woo Goo H et al (2007) Anatomical and functional evaluation of pulmonary veins in children by magnetic resonance imaging. J Am Coll Cardiol 49:993–1002

    Article  Google Scholar 

  22. Di Leo G, D’Angelo ID, Alì M et al (2017) Intra- and inter-reader reproducibility of blood flow measurements on the ascending aorta and pulmonary artery using cardiac magnetic resonance. Radiol Med 122:179–185. https://doi.org/10.1007/s11547-016-0706-6

    Article  Google Scholar 

  23. Rathod RH, Powell AJ, Geva T (2016) Myocardial fibrosis in congenital heart disease. Circul J 80:1300–1307. https://doi.org/10.1253/circj.CJ-16-0353

    Article  CAS  Google Scholar 

  24. Taylor AM, Dymarkowski S, Hamaekers P et al (2005) MR coronary angiography and late-enhancement myocardial MR in children who underwent arterial switch surgery for transposition of great arteries. Radiology 234:542–547. https://doi.org/10.1148/radiol.2342032059

    Article  Google Scholar 

  25. Secinaro A, Ntsinjana H, Tann O et al (2011) Cardiovascular magnetic resonance findings in repaired anomalous left coronary artery to pulmonary artery connection (ALCAPA). J Cardiovasc Magn Reson. https://doi.org/10.1186/1532-429X-13-27

    Article  Google Scholar 

  26. Ntsinjana HN, Tann O, Hughes M et al (2017) Utility of adenosine stress perfusion CMR to assess paediatric coronary artery disease. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jew151

    Article  Google Scholar 

  27. Cademartiri F, Di Cesare E, Francone M et al (2015) Italian registry of cardiac computed tomography. Radiol Med 120:919–929. https://doi.org/10.1007/s11547-015-0518-0

    Article  Google Scholar 

  28. Secinaro A, Curione D (2019) Congenital heart disease in children. In: Nikolaou K, Laghi FBA, Rubin GD (eds) Medical radiology, multislice CT, 4th edn, pp 987–1009. https://doi.org/10.1007/978-3-319-42586-3

  29. Secinaro A, Curione D, Mortensen KHKH et al (2019) Dual-source computed tomography coronary artery imaging in children. Pediatr Radiol 49:1823–1839. https://doi.org/10.1007/s00247-019-04494-2

    Article  Google Scholar 

  30. Cannaò PM, Secchi F, Alì M et al (2018) High-quality low-dose cardiovascular computed tomography (CCT) in pediatric patients using a 64-slice scanner. Acta Radiol 59:1247–1253. https://doi.org/10.1177/0284185117752981

    Article  Google Scholar 

  31. Suranyi P, Varga-Szemes A, Hlavacek AM (2017) An overview of cardiac computed tomography in adults with congenital heart disease. J Thorac Imaging 32:258–273

    Article  Google Scholar 

  32. Stockton E, Hughes M, Broadhead M et al (2012) A prospective audit of safety issues associated with general anesthesia for pediatric cardiac magnetic resonance imaging. Paediatr Anaesth 22:1087–1093. https://doi.org/10.1111/j.1460-9592.2012.03833.x

    Article  Google Scholar 

  33. Powell AJ, Tsai-Goodman B, Prakash A et al (2003) Comparison between phase-velocity cine magnetic resonance imaging and invasive oximetry for quantification of atrial shunts. Am J Cardiol 91:1523–1525. https://doi.org/10.1016/S0002-9149(03)00417-X

    Article  Google Scholar 

  34. Dakkak W, Oliver TI (2020) Ventricular septal defect. StatPearls Publishing, Treasure

    Google Scholar 

  35. Baumgartner H, Bonhoeffer P, De Groot NMS et al (2010) ESC Guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J 31:2915–2957. https://doi.org/10.1093/eurheartj/ehq249

    Article  Google Scholar 

  36. Valente AM, Cook S, Festa P et al (2014) Multimodality imaging guidelines for patients with repaired Tetralogy of fallot: a report from the American society of echocardiography: developed in collaboration with the society for cardiovascular magnetic resonance and the society for pediatric radiology. J Am Soc Echocardiogr 27:111–141. https://doi.org/10.1016/j.echo.2013.11.009

    Article  Google Scholar 

  37. Gatzoulis M, Balaji S, Webber S, Siu S (2000) Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet 356(9234):975–981. https://doi.org/10.1016/S0140-6736(00)02714-8

    Article  CAS  Google Scholar 

  38. Geva T (2013) Indications for pulmonary valve replacement in repaired tetralogy of fallot: the quest continues. Circulation 128:1855–1857

    Article  Google Scholar 

  39. Malone L, Fonseca B, Fagan T et al (2017) Preprocedural risk assessment prior to PPVI with CMR and cardiac CT. Pediatr Cardiol 38:746–753. https://doi.org/10.1007/s00246-017-1574-0

    Article  Google Scholar 

  40. Sridharan S, Derrick G, Deanfield J, Taylor AM (2006) Assessment of differential branch pulmonary blood flow: a comparative study of phase contrast magnetic resonance imaging and radionuclide lung perfusion imaging. Heart 92:963–968. https://doi.org/10.1136/hrt.2005.071746

    Article  CAS  Google Scholar 

  41. Babu-Narayan SV, Kilner PJ, Li W et al (2006) Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of Fallot and its relationship to adverse markers of clinical outcome. Circulation 113:405–413. https://doi.org/10.1161/CIRCULATIONAHA.105.548727

    Article  CAS  Google Scholar 

  42. Dijkema EJ, Leiner T, Grotenhuis HB (2017) Diagnosis, imaging and clinical management of aortic coarctation. Heart 103:1148–1155. https://doi.org/10.1136/heartjnl-2017-311173

    Article  Google Scholar 

  43. Therrien J, Thorne SA, Wright A et al (2000) Repaired coarctation: a cost-effective approach to identify complications in adults. J Am Coll Cardiol 35:997–1002. https://doi.org/10.1016/S0735-1097(99)00653-1

    Article  CAS  Google Scholar 

  44. Nordmeyer J, Gaudin R, Tann OR et al (2010) MRI may be sufficient for noninvasive assessment of great vessel stents: an in vitro comparison of MRI, CT, and conventional angiography. Am J Roentgenol 195:865–871. https://doi.org/10.2214/AJR.09.4166

    Article  Google Scholar 

  45. Karaosmanoglu AD, Khawaja RDA, Onur MR, Kalra MK (2015) CT and MRI of aortic coarctation: pre-and postsurgical findings. American Roentgen Ray Society

  46. ESC Guidelines for the management of grown-up congenital heart disease (new version (2010) The Task Force on the Management of Grown-up Congenital Heart Disease of the European Society of Cardiology (ESC). Eur Heart J 31:2915–2957. https://doi.org/10.1093/eurheartj/ehq249

    Article  Google Scholar 

  47. Martins P, Castela E (2008) Transposition of the great arteries. Orphanet J Rare Dis 3:27

    Article  Google Scholar 

  48. Hornung TS, Derrick GP, Deanfield JE, Redington AN (2002) Transposition complexes in the adult: a changing perspective. Cardiol Clin 20:405–420. https://doi.org/10.1016/S0733-8651(02)00012-7

    Article  Google Scholar 

  49. Cohen MS, Eidem BW, Cetta F et al (2016) Multimodality imaging guidelines of patients with transposition of the great arteries: a report from the american society of echocardiography developed in collaboration with the society for cardiovascular magnetic resonance and the society of cardiovascular computed tomography. J Am Soc Echocardiogr 29:571–621. https://doi.org/10.1016/j.echo.2016.04.002

    Article  Google Scholar 

  50. Muzzarelli S, Ordovas KG, Higgins CB, Meadows AK (2012) Collateral flow measurement by phase-contrast magnetic resonance imaging for the assessment of systemic venous baffle patency after atrial switch repair for transposition of the great arteries. J Thorac Imaging 27:175–178. https://doi.org/10.1097/RTI.0b013e31823fb9a0

    Article  Google Scholar 

  51. Fontan F, Kirklin JW, Fernandez G et al (1990) Outcome after a “perfect” fontan operation. Circulation 81:1520–1536. https://doi.org/10.1161/01.CIR.81.5.1520

    Article  CAS  Google Scholar 

  52. Edwards RM, Reddy GP, Kicska G (2016) The functional single ventricle: how imaging guides treatment. Clin Imaging 40:1146–1155

    Article  Google Scholar 

  53. Fredenburg TB, Johnson TR, Cohen MD (2011) The Fontan procedure: anatomy, complications, and manifestations of failure. RadioGraphics 31:453–463. https://doi.org/10.1148/rg.312105027

    Article  Google Scholar 

  54. Burchill LJ, Huang J, Tretter JT et al (2017) Noninvasive imaging in adult congenital heart disease. Circ Res 120:995–1014

    Article  CAS  Google Scholar 

  55. Grosse-Wortmann L, Al-Otay A, Yoo SJ (2009) Aortopulmonary collaterals after bidirectional cavopulmonary connection or fontan completion quantification with MRI. Circ Cardiovasc Imaging 2:219–225. https://doi.org/10.1161/CIRCIMAGING.108.834192

    Article  Google Scholar 

  56. Dori Y, Keller MS, Rome JJ et al (2016) Percutaneous lymphatic embolization of abnormal pulmonary lymphatic flow as treatment of plastic bronchitis in patients with congenital heart disease. Circulation 133:1160–1170. https://doi.org/10.1161/CIRCULATIONAHA.115.019710

    Article  Google Scholar 

  57. Meinel FG, Huda W, Schoepf UJ et al (2013) Diagnostic accuracy of CT angiography in infants with tetralogy of Fallot with pulmonary atresia and major aortopulmonary collateral arteries. J Cardiovasc Comput Tomogr 7:367–375. https://doi.org/10.1016/j.jcct.2013.11.001

    Article  Google Scholar 

  58. Jia Q, Cen J, Li J et al (2018) Anatomy of the retro-oesophageal major aortopulmonary collateral arteries in patients with pulmonary atresia with ventricular septal defect: results from preoperative CTA. Eur Radiol 28:3066–3074. https://doi.org/10.1007/s00330-017-5224-y

    Article  Google Scholar 

  59. Dillman JR, Hernandez RJ (2009) Role of CT in the evaluation of congenital cardiovascular disease in children. Am J Roentgenol 192:1219–1231

    Article  Google Scholar 

  60. Mery CM, De León LE, Molossi S et al (2018) Outcomes of surgical intervention for anomalous aortic origin of a coronary artery: a large contemporary prospective cohort study. J Thorac Cardiovasc Surg 155:305–319.e4. https://doi.org/10.1016/j.jtcvs.2017.08.116

    Article  Google Scholar 

  61. Kim SY, Seo JB, Do KH et al (2006) Coronary artery anomalies: classification and ECG-gated multi-detector row CT findings with angiographic correlation. Radiographics 26:317–333. https://doi.org/10.1148/rg.262055068

    Article  Google Scholar 

  62. Agarwal PP, Dennie C, Pena E et al (2017) Anomalous coronary arteries that need intervention: review of pre- and postoperative imaging appearances. Radiographics 37:740–757. https://doi.org/10.1148/rg.2017160124

    Article  Google Scholar 

  63. Goo HW (2018) Coronary artery anomalies on preoperative cardiac CT in children with tetralogy of Fallot or Fallot type of double outlet right ventricle: comparison with surgical findings. Int J Cardiovasc Imaging 34:1997–2009. https://doi.org/10.1007/s10554-018-1422-1

    Article  Google Scholar 

  64. Yu F, Lu B, Gao Y et al (2013) Congenital anomalies of coronary arteries in complex congenital heart disease: diagnosis and analysis with dual-source CT. J Cardiovasc Comput Tomogr 7:383–390. https://doi.org/10.1016/j.jcct.2013.11.004

    Article  Google Scholar 

  65. Sunidja AP, Prabhu SP, Lee EY, Sena L (2012) 64-Row-MDCT evaluation of postoperative congenital heart disease in children: review of technique and imaging findings. Semin Roentgenol 47:66–78. https://doi.org/10.1053/j.ro.2011.10.001

    Article  Google Scholar 

  66. Stadler A, Schima W, Ba-Ssalamah A et al (2007) Artifacts in body MR imaging: their appearance and how to eliminate them. Eur Radiol 17:1242–1255

    Article  Google Scholar 

  67. Ahmed S, Johnson PT, Fishman EK, Zimmerman SL (2013) Role of multidetector CT in assessment of repaired tetralogy of fallot. Radiographics 33:1023–1036. https://doi.org/10.1148/rg.334125114

    Article  Google Scholar 

  68. Srivastava NT, Hurwitz R, Kay WA et al (2019) The long-term functional outcome in Mustard patients study: another decade of follow-up. Congenit Heart Dis 14:176–184. https://doi.org/10.1111/chd.12698

    Article  Google Scholar 

  69. Campanale CM, Pasquini L, Santangelo TP et al (2019) Prenatal echocardiographic assessment of right aortic arch. Ultrasound Obstet Gynecol 54:96–102. https://doi.org/10.1002/uog.20098

    Article  CAS  Google Scholar 

  70. An HS, Choi EY, Kwon BS et al (2013) Airway compression in children with congenital heart disease evaluated using computed tomography. Ann Thorac Surg 96:2192–2197. https://doi.org/10.1016/j.athoracsur.2013.07.016

    Article  Google Scholar 

  71. Leonardi B, Secinaro A, Cutrera R et al (2015) Imaging modalities in children with vascular ring and pulmonary artery sling. Pediatr Pulmonol. https://doi.org/10.1002/ppul.23075

    Article  Google Scholar 

  72. Ullmann N, Secinaro A, Menchini L et al (2018) Dynamic expiratory CT: an effective non-invasive diagnostic exam for fragile children with suspected tracheo-bronchomalacia. Pediatr Pulmonol 53:73–80. https://doi.org/10.1002/ppul.23831

    Article  Google Scholar 

  73. Steeden JA, Kowalik GT, Tann O et al (2018) Real-time assessment of right and left ventricular volumes and function in children using high spatiotemporal resolution spiral bSSFP with compressed sensing 08 Information and Computing Sciences 0801 Artificial Intelligence and Image Processing. J Cardiovasc Magn Reson 20:79. https://doi.org/10.1186/s12968-018-0500-9

    Article  Google Scholar 

  74. Zhong L, Schrauben EM, Garcia J et al (2019) Intracardiac 4D flow MRI in congenital heart disease: recommendations on behalf of the ISMRM flow & motion study group. J Magn Reson Imaging 50:677–681. https://doi.org/10.1002/jmri.26858

    Article  Google Scholar 

  75. Moon JC, Messroghli DR, Kellman P et al (2013) Myocardial T1 mapping and extracellular volume quantification: a society for cardiovascular magnetic resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15:92. https://doi.org/10.1186/1532-429X-15-92

    Article  Google Scholar 

  76. Muthurangu V, Taylor A, Andriantsimiavona R, Hegde S, Miquel ME, Tulloh R, Baker E, Hill DL, Razavi RS (2004) Novel method of quantifying pulmonary vascular resistance by use of simultaneous invasive pressure monitoring and phase-contrast magnetic resonance flow. Circulation 110:826–834. https://doi.org/10.1161/01.CIR.0000138741.72946.84

    Article  Google Scholar 

  77. Rhode KS, Sermesant M, Brogan D et al (2005) A system for real-time XMR guided cardiovascular intervention. IEEE Trans Med Imaging 24:1428–1440. https://doi.org/10.1109/TMI.2005.856731

    Article  Google Scholar 

  78. Biglino G, Capelli C, Leaver LK et al (2015) Involving patients, families and medical staff in the evaluation of 3D printing models of congenital heart disease. Commun Med 12:157–169. https://doi.org/10.1558/cam.28455

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelio Secinaro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The present review study has been written in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

The authors affirm that there is no concern about identifying information for images included in the manuscript, such as computed tomography and magnetic resonance, and all human participants provided informed consent for publication of the images in Figs. 2,4,5,6,7,8,9,10,11,12,13.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciancarella, P., Ciliberti, P., Santangelo, T.P. et al. Noninvasive imaging of congenital cardiovascular defects. Radiol med 125, 1167–1185 (2020). https://doi.org/10.1007/s11547-020-01284-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-020-01284-x

Keywords

Navigation