Skip to main content

Advertisement

Log in

Rectal cancer: 3D dynamic contrast-enhanced MRI; correlation with microvascular density and clinicopathological features

Carcinoma del retto: studio dinamico post-contrasto in 3D mediante risonanza magnetica; correlazione con la densità microvascolare e le caratteristiche clinico-patologiche

  • Abdominal Radiology / Radiologia Addominale
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

The primary aim of this prospective study was to evaluate the relationship between three-dimensional dynamic contrast-enhanced magnetic resonance (3D-DCE-MR) imaging parameters and clinicopathological features of rectal cancer and assess their potential as new radiological prognostic predictors.

Materials and methods

Three-dimensional DCE-MR was performed on 26 cases of pathologically proved rectal adenocarcinoma 1 week prior to operation. Data were analysed to calculate transfer constant (Ktrans), leakage space (Ve) and rate constant (Kep) of both tumour and normal rectal wall. Microvessel density (MVD) was evaluated by immunohistochemical staining of surgical specimens. All findings were analysed prospectively and correlated with tumour/node/metastasis (TNM) staging, Dukes staging, histological grading, presence of lymph node metastasis, serosal involvement and MVD.

Results

Mean Ktrans, Ve and Kep for tumours were as follows: Ktrans 7.123±3.850/min, Ve 14.2±3.0%, Kep 49.446±20.404/min, revealing the significant difference between the tumour and normal rectal wall (p=0.001). There was a significant difference for Ktrans not only between patients with and without lymphatic involvement (p=0.000), but also among Dukes staging (p=0.04) and pTNM staging (p=0.03). Kep showed moderate correlation with TNM stages (r=0.479, p=0.02). Ve and MVD revealed no significant correlation with the clinicopathological findings described above (p>0.05).

Conclusion

Owing to the moderate and strong relationship between Ktrans and clinicopathological elements, Ktrans might be the prognostic indicator of rectal cancer. Threedimensional DCE high-resolution MR imaging provides a competing opportunity to assess contrast kinetics.

Riassunto

Obiettivo

L’obiettivo principale dello studio è valutare la correlazione tra i parametri ottenuti mediante studio dinamico post-contrasto in risonanza magnetica tridimensionale (3D-DCE-MRI) te le caratteristiche clinico-patologiche del carcinoma rettale e definire le potenzialità di tali parametri di imaging come nuovi fattori prognostici.

Materiali e metodi

Ventisei pazienti affetti da adenocarcinoma del retto, confermato istologicamente, sono stati sottoposti a 3D-DCE-MRI una settimana prima dell’intervento chirurgico. A livello del tessuto tumorale e della parete rettale indenne sono stati calcolati i seguenti parametri: costante di transito (Ktrans), la percentuale dello spazio di distribuzione extravascolare extracellulare — leakage space — (Ve) te la rate constant (Kep). La densità microvascolare è stata stimata mediante analisi immunoistochimica su sezioni del pezzo operatorio. Le analisi sono state condotte in modo prospettico ed i risultati ottenuti correlati alle seguenti caratteristiche clinico-patologiche: stadio di malattia secondo i sistemi TNM e Dukes, grading istologico, presenza di linfonodi metastatici, coinvolgimento della tunica sierosa e densità microvascolare.

Risultati

Dall’analisi del tessuto tumorale sono stati ottenuti i seguenti valori medi di Ktrans, Ve e Kep: Ktrans 7,123±3,850/min, Ve 14,2±3,0 %, Kep 49,446±20,404/min con differenza statisticamente significativa (p=0,001) rispetto ai valori relativi alla parete rettale indenne. Il valore della costante di transito (Ktrans) è risultato significativamente diverso in caso di presenza o meno di coinvolgimento linfonodale di malattia (p=0,000) e nei diversi stadi sia secondo la classificazione di Dukes (p=0.04) che secondo il pTNM (p=0,03). Moderata correlazione è stata dimostrata tra il parametro Kep e gli stadi TNM (r=0,479, p=0,02). Nessuna correlazione statisticamente significativa è stata stabilita per i parametri Ve e MVD (p>0,05).

Conclusioni

La stretta correlazione dimostrata tra i valori di Ktrans e le caratteristiche clinico-patologiche prese in esame rende tale parametro un utile indice prognostico per l’adenocarcinoma del retto. Lo studio dinamico mediante risonanza magnetica 3D rappresenta un valido strumento diagnostico per la valutazione della vascolarizzazione tumorale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. World Health Organization, February vn 2006. http://www.who.int/mediacentre/factsheets/fs 297/en/

  2. National Cancer Institute (2009) http://www.cancer.gov/cancertopics/commoncancers

  3. Xu AG, Yu ZJ, Jiang B et al (2010) Colorectal cancer in Guangdong Province of China: A demographic and anatomic survey. World J Gastroenterol 16(8):960–965; DOI: 10.3748/wjg.v16.i8.960

    Article  PubMed  Google Scholar 

  4. Smith N, Brown G (2008) Preoperative staging of rectal cancer. Acta Oncologica 47:20–31; DOI: 10.1080/02841860701697720

    Article  PubMed  Google Scholar 

  5. Folkman J (1971) Tumor angiogenesis: therapeutic implications. New Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  6. Tuncbilek N, Karakas HM, Altaner S (2004) Dynamic MRI in indirect estimation of MVD, histologic grade, and prognosis in colorectal adenocarcinomas. Abdominal Imaging 29:166–172;DOI: 10.1007/s00261-003-0090-2

    Article  PubMed  CAS  Google Scholar 

  7. Brown G, Daniels IR, Richardson C et al (2005) Techniques and troubleshooting in high spatial resolution thin slice MRI for rectal cancer. Br J Radiol 78(927):245–251; DOI: 10.1259/bjr/33540239

    Article  PubMed  CAS  Google Scholar 

  8. Brown G, Kirkham A, Williams GT et al (2004) High-resolution MRI of the anatomy important in total mesorectal excision of the rectum. Am J Roentgenol 182:431–439; DOI: 0361-803X/04/1822-431

    Google Scholar 

  9. Nicholls RJ, Galloway DJ, Mason AY et al (1985) Clinical local staging of rectal cancer. Br J Surg 72[Suppl]:S51–S2; DOI: 10.1002/bjs.1800721329

    Article  PubMed  Google Scholar 

  10. Tytherleigh MG, Ng VV, Pittathankal AA et al (2008) Preoperative staging of rectal cancer by MRI remains an imprecise tool. ANZ J Surg 78:194–198; DOI 10.1111/j.1445-2197.2007.04402

    Article  PubMed  Google Scholar 

  11. Fiocchi F, Iotti V, Ligabue G et al (2010) Contrast-enhanced MRI and PET-CT in the evaluation of patients with suspected local recurrence of rectal carcinoma. Radiol Med DOI 10.1007/s11547-010-0558-4

  12. N. Faccioli, P. Marzola, F. Boschi et al (2007) Pathological animal models in the experimental evaluation of tumour microvasculature with magnetic resonance imaging. Radiol Med 112:319–328;DOI 10.1007/s11547-007-0144-6

    Article  PubMed  CAS  Google Scholar 

  13. Brasch RC, Li KC, Husband JE et al (2000) In vivo monitoring of tumor angiogenesis with MR imaging. Acad Radiol 7:812–823; DOI: 10.1016/S1076-6332(00)80630-3

    Article  PubMed  CAS  Google Scholar 

  14. Goh V, Padhani AR, Rasheed S (2007) Functional imaging of colorectal cancer angiogenesis. Lancet Oncol 8:245–55; DOI 10.1016/S1470-2045 (07)70075-X

    Article  PubMed  Google Scholar 

  15. Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101; DOI 10.1002/jmri.1880070113

    Article  PubMed  CAS  Google Scholar 

  16. Parker GJ, Tofts PS (1999) Pharmacokinetic analysis of neoplasms using contrast-enhanced dynamic magnetic resonance imaging. Top Magn Reson Imaging 10(2):130–142; DOI 10.1097/00002142-199904000-00006

    Article  PubMed  CAS  Google Scholar 

  17. Bloch BN, Lenkinski RE, Rofsky NM (2008) The role of magnetic resonance imaging (MRI) in prostate cancer imaging and staging at 1.5 and 3 Tesla: The Beth Israel Deaconess. Medical Center (BIDMC) approach. Cancer Biomarkers 4:251–262

    PubMed  Google Scholar 

  18. Collins DJ, Padhani AR (2004) Dynamic Magnetic Resonance Imaging of Tumor Perfusion. IEEE Engineering in Medicine and Biology Magazine 23:65–83; DOI 10.1109/MEMB.2004.1360410

    Article  PubMed  Google Scholar 

  19. Bian J, Sha L, Yang C, Sun CS (2008) Three-dimensional dynamic contrast-enhanced MR angiography for evaluating recipient vessels in orthotopic liver transplantation. Hepatobiliary Pancreat Dis Int 7(5):476–480

    PubMed  Google Scholar 

  20. Zhong L, Li L, Yao QY. (2005) Preoperative evaluation of pancreaticobiliary tumor using MR multi-imaging techniques. World J Gastroenterol 11(24):3756–3761

    PubMed  Google Scholar 

  21. Atkin G., Taylor N. J, Daley F M et al (2006) Dynamic contrast-enhanced magnetic resonance imaging is a poor measure of rectal cancer angiogenesis. Br J Surg 93:992–1000; DOI: 10.1002/bjs.5352

    Article  PubMed  CAS  Google Scholar 

  22. Zhang X M, Yu D, Zhang H L et al (2008) 3D Dynamic Contrast-Enhanced MRI of Rectal Carcinoma at 3T: Correlation With Microvascular Density and Vascular Endothelial Growth Factor. Markers of Tumor Angiogenesis. J Magn Reson Imaging 27:1309–1316; DOI 10.1002/jmri.21378

    Article  PubMed  Google Scholar 

  23. Chen CN, Hsieh FJ, Cheng YM et al (2004) The significance of placenta growth factor in angiogenesis and clinical outcome of human gastric cancer. Cancer Letters 213:73–82; DOI 10.1016/j.canlet.2004.05.020

    Article  PubMed  CAS  Google Scholar 

  24. Weidner N, Semple JP, Welch WR et al (1991) Tumor angiogenesis and metastasis correlation in invasive breast carcinoma. N Engl J Med 324:1–8

    Article  PubMed  CAS  Google Scholar 

  25. Maclean AB, Reid WM, Rolfe KJ et al (2000) Role of angeogenesis in benign, premalignant vulvar lesions. J Reprod Med 45:609–612

    PubMed  CAS  Google Scholar 

  26. George ML, Dzik-Jurasz AS, Padhani AR et al (2001) Non invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br J Surg 88:1628–1636; DOI 10.1046/j.0007-1323.2001.01947.x

    Article  PubMed  CAS  Google Scholar 

  27. Jager G.J, Ruijter E T, van de Kaa CA et al (1997) Dynamic Turbo FLASH subtraction technique for contrast enhanced. MR imaging of the prostate: correlation with histopathologic results. Radiology 203:645–652

    PubMed  CAS  Google Scholar 

  28. Anthony T, George R, Rodriguez-Bigas M et al (1996) Primary signet-ring cell carcinoma of the colon and rectum. Ann Surg Oncol 3:344–348; DOI 10.1007/BF02305663

    Article  PubMed  CAS  Google Scholar 

  29. Kim H, Folks KD, Guo Ll et al (2010) DCE-MRI Detects Early Vascular Response in Breast Tumor Xenografts Following Anti-DR5 Therapy. Mol Imaging Biol DOI: 10.1007/s11307-010-0320-2

  30. Benjaminsen IC, Brurberg KG, Ruud EB et al (2008) Assessment of extravascular extracellular space fraction in human melanoma xenografts by DCE-MRI and kinetic modeling. Magn Reson Imaging 26(2):160–170

    Article  PubMed  CAS  Google Scholar 

  31. Kim D J, Kim J H, Lim J S et al (2010) Restaging of Rectal Cancer with MR Imaging after Concurrent Chemotherapy and Radiation Therapy. Radiographics 30:503–516; DOI: 10.1148/rg.302095046

    Article  PubMed  Google Scholar 

  32. Vandecaveye V, Keyzer FD, Dymarkowski S (2010) Imaging and targeted agents in gastrointestinal cancers: overview on perfusion-and diffusion-weighted magnetic resonance imaging and angiogenesis inhibitors. Targ Oncol DOI 10.1007/s11523-008-0076-7

  33. Saclarides TJ, Speziale NJ, Drab E et al (1994) Tumor angiogenesis and rectal carcinoma. Dis Colon Rectum 37:921–926; DOI 10.1007/BF02052599

    Article  PubMed  CAS  Google Scholar 

  34. Frank RE, Saclarides TJ, Leurgens S et al (1995) Tumor angiogenesis as predictor of recurrence and survival in patients with node negative colon cancer. Ann Surg 222:695–699; DOI: 10.1097/00000658-199512000-00002

    Article  PubMed  CAS  Google Scholar 

  35. Tanigawa N, Amaya H, Matsumura M et al (1997) Tumor angiogenesis and mode of metastasis in patients with colorectal cancer. Cancer Res 57:1043–1046

    PubMed  CAS  Google Scholar 

  36. Svagzdys S, Lesauskaite V, Pavalkis D et al (2009) Microvessel density as new prognostic marker after radiotherapy inrectal cancer. BMC Cancer 9:95–99; DOI: 10.1186/1471-2407-9-95

    Article  PubMed  Google Scholar 

  37. Cianchi F, Palomba A, Messerini L et al (2002) Tumor angiogenesis in lymph node negative rectal cancer: correlation with clinicopathological parameters and prognosis. Ann Surg Oncol 9:20–26; DOI 10.1245/aso.2002.9.1.20

    Article  PubMed  Google Scholar 

  38. Lindmark G, Gerdin B, Sundberg C et al (1996) Prognostic significance of microvascular count in colorectal cancer. J Clin Oncol 14:461–466

    PubMed  CAS  Google Scholar 

  39. Abdalla SA, Behzad F, Bsharah S et al (1999) Prognostic relevance of microvessel density in colorectal tumours. Oncol Rep 6:839–842

    PubMed  CAS  Google Scholar 

  40. Abdalla SA, Behzad F, Bsharah S et al (1999) Prognostic relevance of MVD in colorectal tumors. Oncol Rep 6:839–842

    PubMed  CAS  Google Scholar 

  41. Eberhard A, Kahlert S, Goede V et al (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60:1388–1393

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, W.W., Zhang, H., Ding, B. et al. Rectal cancer: 3D dynamic contrast-enhanced MRI; correlation with microvascular density and clinicopathological features. Radiol med 116, 366–374 (2011). https://doi.org/10.1007/s11547-011-0628-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-011-0628-2

Keywords

Parole chiave

Navigation