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Abstract

Practical limitations of quality and quantity of data can limit the precision of parameter
identification in mathematical models. Model-based experimental design approaches
have been developed to minimise parameter uncertainty, but the majority of these
approaches have relied on first-order approximations of model sensitivity at a local
point in parameter space. Practical identifiability approaches such as profile-likelihood
have shown potential for quantifying parameter uncertainty beyond linear approxima-
tions. This research presents a genetic algorithm approach to optimise sample timing
across various parameterisations of a demonstrative PK-PD model with the goal of
aiding experimental design. The optimisation relies on a chosen metric of parameter
uncertainty that is based on the profile-likelihood method. Additionally, the approach
considers cases where multiple parameter scenarios may require simultaneous opti-
misation. The genetic algorithm approach was able to locate near-optimal sampling
protocols for a wide range of sample number (n = 3-20), and it reduced the parameter
variance metric by 33—-37% on average. The profile-likelihood metric also correlated
well with an existing Monte Carlo-based metric (with a worst-case r > 0.89), while
reducing computational cost by an order of magnitude. The combination of the new
profile-likelihood metric and the genetic algorithm demonstrate the feasibility of con-
sidering the nonlinear nature of models in optimal experimental design at a reasonable
computational cost. The outputs of such a process could allow for experimenters to
either improve parameter certainty given a fixed number of samples, or reduce sample
quantity while retaining the same level of parameter certainty.
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1 Introduction

Parameter identification is the process of determining the optimal values of a set of
model parameters to fit the model to observed behaviour (Villaverde and Banga 2014).
Parameter identifiability analysis is the process of determining how reliably parameters
can be estimated from data. When considering finite data, this is often called practical
identifiability analysis, while towards the infinite data limit, this becomes structural
identifiability analysis (Simpson et al. 2020). Practical limitations in experimentation
such as measurement noise and discrete sampling locations can restrict the information
available for the process of parameter identification, potentially leading to practical
identifiability issues (Raue et al. 2009; Hines et al. 2014; Wieland et al. 2021; Lam
et al. 2022; Muifioz-Tamayo and Tedeschi 2023). Consequently, a wide distribution
of parameters may exhibit similar model behaviour and are not distinguishable to
measured data. In such cases, the optimised parameter values have low certainty,
and thus, the information yielded by the model-based analysis is ambiguous. Such
issues have given rise to the model-based design of experiments (MBDoE) approach
(also known as Optimal Experimental Design), which aims minimise uncertainty for
parameter identification through adjusting experimental design settings (Franceschini
and Macchietto 2008).

MBDoE approaches have been developed to address the difficulty of optimising
experiments in non-linear models. MBDoE approaches can guide the choice of exper-
imental design elements such as test inputs, experiment duration, and measurement
timing. MBDoE has seen extensive research over several decades (Jacquez and Greif
1985; Walter and Pronzato 1990; Franceschini and Macchietto 2008; Galvanin et al.
2013). The approaches have predominantly required a scalar metric to be optimised
through the MBDOE process, such as those based on properties of the Fisher informa-
tion matrix (FIM).

The FIM is a first-order linear approximation of model sensitivity at a nominal
parameter set, and it is indicative of the local convexity of the objective surface (Lam
et al. 2022). D-optimality criteria, which maximises the determinant of the FIM, has
been the most commonly employed metric for MBDoE (Franceschini and Macchietto
2008). Other common metrics are E-optimality and A-optimality, which maximise the
smallest eigenvalue and trace of the FIM, respectively. However, as noted by Krausch
et al. (2019) and Raue et al. (2009), using the FIM to approximate the accuracy
of parameter estimation is not justified in the presence of nonlinearity in a region
proximal to the optimised parameter values. Furthermore, optimising designs around
a single parameter set can be an issue if multiple characteristic behaviours outside
of that parameter domain exist in measured data (Franceschini and Macchietto 2008;
Lam et al. 2022). For example, in a disease modelling context, a schedule optimised
based on the parameters of a healthy individual may be detrimental to the parameter
identification of a sick individual, or vice versa.

@ Springer



Evolving Improved Sampling Protocols for Dose-Response Modelling... Page3of16 70

Recent developments in MBDoE have focused on tackling the issue of non-linearity
in model behaviour. Methods have been developed alongside methods of practical iden-
tifiability analysis, since both methods share a goal of improving parameter estimation.
In 2019, Krausch et al. (2019) developed a new metric, the Q-criterion, based on quan-
tiles of Monte Carlo simulations performed on the model rather than a measure of the
FIM. The Q-criterion was shown to capture non-linearities in a Michaelis—Menten
kinetic example when used in conjunction with a MBDoE toolbox. Outside of the
traditional MBDoE approach, practical identifiability based methods such as the gen-
eralised sensitivity functions developed by Thomaseth and Cobelli (1999), a graphical
approach by Docherty et al. (2011), and profile-likelihood (PL) approach popularised
by Raue et al. (2010) have been developed to improve experimental design. Of these
methods, uptake of the PL approach has been particularly high (Wieland et al. 2021,
Lam et al. 2022; Villaverde et al. 2023). Distinct advantages of the PL approach have
been its ease of implementation and interpretability, along with computation speeds
roughly an order of magnitude lower than comparable Monte Carlo-based methods
(Simpson et al. 2020).

Asnoted by Lin etal. (2015), the use of genetic algorithms (GA) to generate optimal
sampling schedules has seen an increase in recent decades. Inspired by evolutionary
biology, GAs for MBDoE consider a population of candidate sampling schedules
as organisms, and these organisms compete in successive generations with a goal
of gradual improvement towards a near-optimal solution. The selection process that
determines successive generations is reliant on a metric that acts as a fitness function
to rank the optimality of each organism. In one selection scheme of GA known as
the elitist variant, the best individuals from a current generation are selected for the
next, along with additional individuals that have been created with crossover and/or
mutation operations (Lin etal. 2015). However, applications of GA and other stochastic
optimisation methods for MBDoE have predominantly used measures based on the
FIM such as D-optimality (Broudiscou et al. 1996; Heredia-Langner et al. 2004; Chen
et al. 2015). As noted earlier, these measures can miss nonlinear model behaviour.

This paper proposes the use of a profile-likelihood based metric in conjunction with
a genetic algorithm to overcome the limitations of both the linear assumptions implicit
in FIM-based measures, and the computational burden of Monte Carlo simulations.
The proposed methodology is used to determine the optimal sample placement in a
simple dose-response experiment with concomitant models of varying complexity.
There is literature that describes the relationship between confidence interval width
and sample size (Rothman and Greenland 2018). Using confidence interval-based
metrics in MBDoE is complicated by the need to consider both sample placement and
sample size, and current research on these methods is limited. In the pharmacokinetic-
pharmacodynamic (PK-PD) context of this modelling, sampling is often limited by
both the physical consequences of drawing multiple blood samples and the cost of
analyte measurement in a lab setting (Mori and DiStefano 1979; DiStefano 1981,
Docherty et al. 2011; Galvanin et al. 2013). Recent research has highlighted that
quantifying uncertainty pharmacological model parameters is challenging due to the
range of complexity in prospective models (Sher et al. 2022). The aim of the study is
to explore the benefits of optimising sampling schedules in a sparse sampling scenario
using a novel method that is rapid and relatively easy to implement.
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Table 1 Values of parameters used for parameter scenarios 1-3 with Eq. (1)

k Uy \% B(Case 1-2) B(Case 3)
Scenario 1 4.0e—3 1.0e—2 40 0 1.0
Scenario 2 2.0e—3 5.0e—3 40 0 1.0
Scenario 3 1.0e—3 2.5¢e—3 40 0 1.0

2 Method
2.1 Cases Investigated
A toy model with simple pharmacokinetic-pharmacodynamic behaviour was chosen

for testing the GA approach. First-order dynamics for a concentration C are described
by

* _ c@ Un+Ux ()
C) = —kgen + )

where C is an arbitrary concentration, and C is its time derivative, k is a first-order
decay rate, V is the volume of distribution, Uy is the endogenous production rate, and
U, (¢) is the external bolus. The bolus U,(¢) is defined as an instantaneous input at
time ¢ = 60 min. For the purposes of testing the experimental design protocol, Case
1 considered @ = {k, Un}" as unknown parameters to be identified, while V is an a
priori value and 8 = 0. Case 2 considered § = {k, Uy, V}T as unknown parameters to
be identified with 8 = 0. Case 3 considers a model with Michaelis—Menten mechanics
(Michaelis and Menten 1913). In this more complex model, 8 = {k, Uy, V, ﬂ}T were
non-zero and identified.

To consider and explore the local nature of optimality in experimental design,
three distinct parameter scenarios were considered for each model case (Table 1).
Numerical integration of Eq. 1 was performed for 0-600 min, the magnitude of U, ()
was set as 4.0 for 1 min at # = 60 min. Simulations, shown in Fig. 1, were undertaken
using Euler’s method with a step size of 1 min. For all simulated cases and parameter
identification, it was assumed that Cp was at equilibrium. The three scenarios were
chosen to resemble the progression towards a biological saturated response, where
either age or the progression of a disease may inhibit the body’s ability to process an
1nput.

2.2 Practical Identifiability Methods

The Q-criterion (Q ;) was developed by Krausch et al. (2019) as a measure of average
parameter confidence interval width, where

Ocrit = (06,09 — Qai,o.l)2 )

i
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Fig. 1 Trajectories of model scenarios used in Cases 1 and 2 (left) and Case 3 (right)
uses Qg 0.9 and Qg 0.1, the 90th and 10th quantile bounds of samples generated by
Monte Carlo analysis, respectively. Q; is summed over each i’" parameter within

the parameter vector #. Based on Eq. 2, a general metric for capturing parameter
identifiability based on confidence intervals is proposed as

(€)

where éi is the best estimate of 6; from parameter identification, and [Oi_, 9i+] are the
confidence intervals of the parameters obtained from a given method. Based on the
coefficient of variation, the metric scales the confidence interval width by é,- to allow for
comparison of parameters of differing magnitudes. Minimisation of CI,;; results in
reduction of average normalised parameter uncertainty. Profile-likelihood was selected
as the method to form confidence intervals in this study. Using the profile-likelihood to
form confidence intervals has advantages over FIM-based methods: it is invariant under
nonlinear transformations and applicable to nonlinear models (Wieland et al. 2021).
Additionally, profile-likelihood can identify confidence intervals more efficiently than
Monte Carlo simulations, making it computationally advantageous for the methods
covered later in Sect. 3.2.

Raue et al. (2009) defined a method for using profile-likelihood to determine con-
fidence intervals for model parameters. Parameters are ‘profiled’ by fixing a single 6;
along a range of values while fitting the non-fixed 6;-; to data. By assuming zero-
mean additive white Gaussian noise on the parameters, the weighted sum of squared
residuals, 1, can be used as a placeholder for the likelihood. i can be defined as

Ns

yo) = 3 (C0-Cur)’ )

i=1

where N; is the number of datapoints, @ is the parameter vector, oy ; is the standard
deviation of the measurement error, C (8, t;) and Cjy ; are the simulated and measured
concentrations at schedule time ¢;, respectively. Then, likelihood-based confidence
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intervals can then be based on likelihood thresholds defined by the Chi-squared dis-
tribution x, with a confidence region

[orv® - v(8) < P@.an) )

where the confidence interval is constructed for a nominal parameter set ] (Raue
et al. 2009). In this research, a quantile of « = 0.68 and #dof = 1 as in (Raue et al.
2009) were used to construct point-wise confidence intervals for each parameter 6;.
The parameter 6; is considered practically identifiable when the confidence interval is
finite. Henceforth, when CI,.;; from Eq. 3 is calculated using the confidence interval
from profile-likelihood, it will be referred to as P L B.,i; to show that it was calculated
through the profile likelihood bounds. In contrast, when Cl..;; is calculated with
comparable Monte Carlo quantile bounds (Qg, 0.84 and Qg; 0.16, the 84th and 16th
quantiles to also capture 0.68 of the cluster), it will be referred to as Q B.i;.

Both PLB.i; and QB.,i; enable quantitative measurement of parameter uncer-
tainty, which allows for direct comparison of different sampling schedules. Confidence
intervals have been used to compare model performance and measurement schemes
(Simpson et al. 2020), and P L B.,;; uses these intervals to form a scalar performance
measure. The metrics are minimised when confidence intervals or quantile bounds are
narrower, which indicates that residual error rapidly increases as one moves away from
the optimal parameter solution. Conversely, higher values of the metrics indicate that
residual error increases only when moving much further away from the optimal param-
eters, which is symptomatic of parameter trade-off and practical non-identifiability
issues.

2.3 Genetic Algorithm Method

Prior to applying the genetic algorithm, a practical identifiability analysis was per-
formed with profile-likelihood to ensure that parameter bounds would be finite and
physically feasible. Then a relatively simple GA implementation was implemented to
find the optimum sample placement (S,,;). One hundred organisms (Sy) were iterated
upon in each generation, and they competed to improve the P L B.,;; metric in each
generation.

The procedure used for the genetic algorithm is as follows:

1. Randomly select k = {1, 2, ... 100} initial sampling schedules (organisms) (Sk).

2. Determine the PL B,,;; value for each organism (PLB C};it i) and parameter sce-
nario (P).

3. Across the considered parameter scenarios, save the worst-case (maximum) value
for each organism: PLB;’;?& = m}gx(PLBC}:”’k).

max

4. Re-order organism values (Sj) in ascending order of PLB!" AP

minimum value among the organisms being ranked the best.
5. Carry forward the best organisms to the next generation through a weighted cloning
process.

leading to the
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6. Mutate (add noise) to the sample placement of all but the highest ranked organism

1.N
(S2.100, = 83 190 + N(O. 16);750)-
7. Repeat steps 2—6 to simulate successive ‘generations’.

Some practical constraints were imposed on the sampling schedules throughout
the genetic algorithm procedure. One data point was always placed at the fp = 0. A
condition of At > 5 minutes was imposed on samples to represent the limitation of
practical sampling. Additionally, the 5 min of time following the bolus input at t =
60 min were set as infeasible sampling times, due to a practical consideration of local
mixing effects being present immediately post-bolus (Lam et al. 2021). In cases where
the change would violate one of the constraints, the sampling point was shifted to the
nearest valid location. MATLAB’s ‘Isqnonlin’ function was used to perform parameter
identification through minimisation of (@) given Si. The lsqnonlin function with
‘StepTolerance’ = le—7, ‘OptimalityTolerance’ = le—7, and the other settings were
left as default. Computational time was reduced for step 2 by running the 100 organisms
through a parallel for-loop using MATLAB’s parallel computing toolbox.

Steps 3—4 implement a simple minimax scheme to consider the performance of
multiple parameter scenarios in the optimal experimental design process. The true
parameter values are not known in a practical setting, the worst-case behaviour under
the range of representative scenarios is considered to address this issue. In contrast to a
Bayesian modelling approach, this process does not require setting a prior distribution
for the parameters, but it is limited to covering a finite number of feasible scenarios.
Step 5 was performed through cloning organisms through to the next generation using
the following function. Each j clone in the new generation was selected based on the
previous generation’s ordered organisms:

S*(j) = S(ceil(ﬁ)z) (6)

which cloned 14 of the best, 5 of the second best, 5 of the next, and so on until the
last cloned organism in the new generation was the 52nd from the previous. For the
mutation in step 6, except in the best sampling schedule from the generation (j =
1), normally distributed noise (i = 0, o = 16 [min]) was sequentially added to each
sampling time following the initial t = 0 min sample. If the noise added to a particular
sampling time contradicted the Az > 5 min or post-bolus cooldown conditions, then
the time was shifted to the nearest valid location.

The genetic algorithm was applied to each of the three cases for all three parameter
scenarios. This was performed for a minimum number of samples Ny = 3, 4, or 5
for cases 1-3 respectively, up to a maximum Ny = 20. The algorithm was applied
using a minimax design rule, in which the three parameter scenarios were optimised
upon the same Sk set simultaneously such that the maximum P L B.;; value of the
parameter scenario was minimised for each generation. 150 generations were run for
each case to observe speed of convergence of the sampling schedules. All analyses were
undertaken on an Intel core i7-9700 (@3.00Ghz) with 32 GB RAM and MATLAB
(Version R2022a 64-bit).
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The confidence interval of parameter values achievable with the proposed method
was compared to the confidence intervals obtained by traditional time-uniform sam-
pling methods. Such a direct comparison targets the metric of primary value in
model-based analysis. Positive performance of the proposed algorithm will be evident
in a consistent ability to lead to parameter values with a small confidence interval.
Furthermore, to enable comparison of each of the scenarios (P), a second analysis
was undertaken wherein the genetic algorithm was applied separately to each of the
three scenarios. 100 generations were run for each individual scenario, and steps 3—4
of the genetic algorithm were simplified down to simply ordering the organisms by
their minimum P L B,,;; values.

3 Results
3.1 Genetic Algorithm Results

Across all of the tested sampling quantities, the genetic algorithm was able to locate
sampling schedules with lower PL-measures than time-uniform sampling. Figure 2
shows the progression of 100 generations for Ny = 12 in case 2, parameter scenario
1, along with the sampling locations visualised on the simulated C-profile on Fig. 3.
From generation six onwards, convergence can clearly be seen as the same sampling
schedule continues to dominate successive generations. For Cases 1 and 2, results of
the genetic algorithm are similar across all the cases and N;. In data not shown, there
was a general trend for slower convergence for larger N;. To validate the usage of
the minimax algorithm, the ratio of optimised P L B.,j; to PL B.,;; from sampling at
equi-distant times was checked in a grid of parameter values. The optimised sampling
outperformed the time-uniform sampling within the neighbourhood of the scenarios,
and an example of one of the validation outputs for Ny = 10 is shown in Fig. 4.

In the first generation of each Case I and II setting, the modified Q B.,;; derived
from Krausch et al. (2019) was calculated for comparison with P L B.;;. Values of the
Q-criterion were strongly correlated with the PL-measure. Across all the simulated
parameter scenarios and N, correlations in the range [0.893, 0.998], and [0.953,
0.996] were found for Cases 1 and 2 respectively. On average, the calculation of
PLB,,;; was 25 to 36 times faster than Q B.,;;. Due to its stochastic nature, the values
for O B.,i; fluctuated slightly between runs unless the MATLAB’s random number
generator had a fixed at the start of simulations. On average, when considering a single
parameter scenario, each generation of Case 1 and 2 took 0.38 and 0.77 s, respectively.
Implementing the minimax algorithm increased computational time additively, i.e.
considering the three scenarios increased the computational time threefold.

3.2 Case 1 and 2 Results
The final results for the full range of N; tested for each case in Cases 1 and 2 are shown

in Fig. 5. The methods were able to consistently reduce P L B.,;; for each of the three
cases. Simulations for the full Case 1 and 2 trade-off curves took 15 and 21 min for
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Fig. 2 Genetic algorithm output over 100 generations of convergence for Model 1, parameter scenario 1,
Ng = 12. The organism with the lowest PLB ;¢ (S’f) is plotted in colour, while the other 99 organisms
are grey dots to show clustering (Color figure online)
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Fig. 3 The optimal sampling points resulting from the genetic algorithm applied for Model 1, parameter
scenario 1, Ny = 12
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Fig. 4 Validation of the genetic algorithm optimisation for Ny = 10. The heatmap shows the ratio of
optimised PLB,,;; to time-uniform PLB,;;, and the black dots from left to right represent parameter
scenarios 1-3, respectively (Color Figure Online)
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Fig. 5 Tradeoff curves for the 2-parameter Case 1 (left) and 3-parameter Case 2 (right). The dotted lines
represent the error when naive uniform sampling (uni) is implemented, while the solid lines represent the
optimal sampling (opt) following optimisation of P LB ,;; via genetic algorithm (Color Figure Online)
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Fig. 6 Profile likelihood analysis of Case 3, parameter scenario 1, for Ny = 20. The threshold at ¥ = 0.99
indicates the bound for the pointwise confidence interval of each parameter. Note the scale of 8 exceeds
the physiologically feasible range

each parameter scenario, respectively. Additionally, the minimax approach was able
to locate sampling times that yielded sampling times with a lower P L B.,;; than the
time-uniform sampling schedules of all three scenarios, except in the case of Ny = 3
for Case 1. Compared to Case 1, values of P L B,,;; were consistently higher for Case
2, and the confidence intervals of individual parameters k and Uy (not pictured) were
also greater for each parameter scenario.

3.3 Case 3 Results

Within the local region of parameters and inputs that were tested, the lower confi-
dence bound of g fell below 8 = 0, indicating physically infeasible parameter values
for Michaelis—Menten mechanics. Additionally, the upper bounds for the k and Uy
parameters started tending towards infinity for small Ny in parameter scenario 3. These
practical identifiability issues were identified during the profile likelihood analysis per-
formed prior to implementing the genetic algorithm, and the results of this analysis for
Case 3, parameter scenario 1 are shown in Fig. 6. These identifiability issues persisted
when modifications to the experimental design, such as doubling the bolus or halving
the theoretical measurement noise, were attempted. Despite the identifiability issues,
the genetic algorithm methods were attempted for parameter scenario 1, and they con-
sistently yielded reductions in the P L B.,;; metric. However, the confidence intervals
for the § variable remained in infeasible regions, and the variance in 8 dominated
the P L B,;; metric. Thus, the model of Case 3 failed the primary practical identifi-
ability check that the proposed approach requires, hence the optimisation process is
somewhat moot. The results of this analysis are presented in “Appendix”.

4 Discussion

Through optimising P L B.,i;, the GA was able to locate much better sampling sched-
ules across the wide range of cases and parameter scenarios tested. For Cases 1 and 2,
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shifting from a uniform to an optimised sampling schedule led to an average reduc-
tion in PLB.i; of 33.1% and 36.9%, respectively (see Fig. 5). Furthermore, Fig. 5
shows that the minimax optimisation of the three parameter scenarios yielded sampling
protocols which still improved identifiability outcomes for all scenarios in all cases
(with the single exception of ny; = 3 in Case 1). The P L B.;; metric achieved high
correlations (mean correlations > 0.95) with a form of the Q B.,;; metric previously
established by Krausch et al. (2019), while also reducing computational time by an
order of magnitude.

In addition to providing a clear path towards improving the placement of samples,
the methodology allows for the clear visualisation of trade-off curves for guiding exper-
imental design decisions. The relatively fast execution of the profile-likelihood values
enables the comparison of optimal curves against the naive time-uniform sampling
curve. The trade-off curves plotted in Fig. 5 allow for a clear comparison where one
could either reduce the number of samples required while maintaining the same level
of parameter certainty or improve the level of parameter certainty through optimising
a fixed quantity of samples. The increase in parameter variability when moving from
Case 1 to Case 2 is in agreement with the concept of parsimony in modelling—the
increased complexity of the parameter identification led to the corresponding increase
of PLBcri;.

Despite the increasing use of PL in practical identifiability analyses, there seems
to have been little utilisation of PL for experimental design optimisation. Through
sharing the statistical principles of the Monte Carlo methods, the P L., is able to
detect nonlinearities. However, rather than relying on the stochastic nature of the MC,
the P L.i; provides a deterministic metric that remains consistent between iterations.
While relatively simplistic in its implementation, the GA used for this work was able
to quickly locate sampling protocols that made clear improvements to identifiability
outcomes. Practical identifiability concerns were also able to be addressed, as seen
from the results of applying profile likelihood to Case 3. Additionally, several stages
of the process were parallelisable: the calculation of each organism’s P L.;; value
was parallelised in this process, and further improvements could be made through
calculating the scenarios of different Ny values in parallel.

The methodology presented in this paper shares downsides common to other meth-
ods for optimal design of experiments. The optimisation of sampling was undertaken
using a domain of suspected parameter values. Having knowledge of these local param-
eters would require either preliminary studies, or estimation via some indicative a priori
information. This was partially addressed through using the minimax to address the
differences between the three parameter scenarios without significant additional cost
to computational time. However, this still assumed some level of a priori knowledge
about how the local parameters were distributed. Additionally, the simulated nature of
this methodology assumes that the model itself is accurate to measured phenomena. In
the case that the model has mismatch or bias compared to the true data, the clustering
of sampling around some perceived optimality could hinder the unique identification
of parameters and mask the issue of model mismatch. However, if the model has pre-
viously undergone validation and the likely parameter scenarios are known, then the
usage of this methodology would be justified (Wieland et al. 2021).
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In cases where data could be limited in quantity due to cost of sampling, or a lim-
ited nature of the data (e.g., blood sampling), the methods could provide a means
for maximising the information available within each sample. Furthermore, applying
the methodology to generate the trade-off curves in Fig. 5 could provide guidance
and evidence to support decisions regarding changes in sampling procedure. From the
modeller’s perspective, the PL B.,;; metric allows for a reduction in computational
requirements for experimental design, and the minimax approach allows for consid-
eration of multiple parameter behaviours. Additionally, the level of complexity of the
GA implemented in this paper has been kept relatively low to demonstrate the ease of
implementation of the methods. While it is certainly possible to make further adjust-
ments to the GA in order to improve the convergence speeds, it is not necessary to
make such changes in order to achieve a near-optimal sampling protocol with current
computational capabilities.

This research focussed on applying the PLB..;; metric and GA approach to a
PK-PD dose-response model. In the future, it would be valuable to test the method
on a wider range of modelling contexts. This research has shown that it is not possi-
ble to locate an optimal sample timing common to all parameter scenarios. However,
the minimax approach could lead to optimal sample timing schedules that lead to
the best possible parameter confidence across the expected range of characteristics.
Nonetheless, the likely parameter domain remains a critical input to this approach.
Additionally, this work focussed on testing candidate sampling protocols on a contin-
uous time measure. A more restricted region of sample timing (i.e. allowing discrete
sampling locations on minutely grid points) could yield improvements in the GA
convergence speed, while also aligning with practical limitations of physical data
collection.

5 Conclusion

This analysis considers the usage of a novel, PL based experimental design metric for
optimising the identifiability of parameters with relatively low computational effort. A
genetic algorithm was applied with this metric to optimise sampling protocols across a
range of model complexities, parameter scenarios, and number of samples. The meth-
ods were demonstrated consistent reductions in parameter variance (~ 33%) across the
parameters and scenarios explored, including an example in which three parameter
scenarios had to be simultaneously optimised using minimax rule. The results showed
clear trade-off curves that quantified the extent to which either parameter variance
could be reduced, or numbers of samples could be reduced.

Overall, this analysis showed that it is possible to account for the nonlinear nature
of models in MBDoE while maintaining reasonable computation times. The P L B.,;;
metric provides adds a new alternative to the existing Q B.,i; metric. By giving up a
small amount of information regarding higher dimensional parameter constellations,
the PLB.i; metric reduces computational time by an order of magnitude, leaving
more time available for running computationally intensive applications such as model
optimisation via GA. However, it must be acknowledged the optimisation of sampling
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schedules through these methods, while mathematically useful, must be considered
against the practical considerations of those implementing the experiments.
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Appendix

Figure 7 shows the results of optimising sampling schedules for Case 3. In all cases, the
lower bound of the 8 parameter was negative, indicating physically infeasible values
for Michaelis Menten mechanics. Additionally, the P L B.,;; metric was mainly influ-
enced by the variance in the B bounds. Coefficient of variation values for parameters
were calculated using the profile likelihood bounds with the following definition:
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