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Abstract
We demonstrate that the Michaelis–Menten reaction mechanism can be accurately
approximated by a linear system when the initial substrate concentration is low.
This leads to pseudo-first-order kinetics, simplifying mathematical calculations and
experimental analysis. Our proof utilizes a monotonicity property of the system
and Kamke’s comparison theorem. This linear approximation yields a closed-form
solution, enabling accurate modeling and estimation of reaction rate constants even
without timescale separation. Building on prior work, we establish that the sufficient
condition for the validity of this approximation is s0 � K , where K = k2/k1 is
the Van Slyke–Cullen constant. This condition is independent of the initial enzyme
concentration. Further, we investigate timescale separation within the linear system,
identifying necessary and sufficient conditions and deriving the corresponding reduced
one-dimensional equations.
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1 Introduction and overview of results

The irreversible Michaelis–Menten reaction mechanism describes the mechanism of
action of a fundamental reaction for biochemistry. Its governing equations are:

ṡ = f1(s, c) := −k1e0s + (k1s + k−1)c
ċ = f2(s, c) := k1e0s − (k1s + k−1 + k2)c

(1)

with positive parameters e0, s0, k1, k−1, k2, and typical initial conditions s(0) = s0,
c(0) = 0. Understanding the behavior of this system continues to be crucial for
both theoretical and experimental purposes, such as identifying the rate constants
k1, k−1 and k2. However, the Michaelis–Menten system (2) cannot be solved via
elementary functions, hence approximate simplifications have been proposed since
the early 1900’s.

In 1913, Michaelis and Menten (1913) introduced the partial equilibrium assump-
tion for enzyme-substrate complex formation, effectively requiring a small value for
the catalytic rate constant k2. Later, for systems with low initial enzyme concentration
(e0), Briggs andHaldane (1925) derived the now-standard quasi-steady-state reduction
(see Segel and Slemrod (1989) for a systematic analysis). Both these approaches yield
an asymptotic reduction to a one-dimensional equation. Amathematical justification is
obtained from singular perturbation theory. Indeed, most literature on the Michaelis–
Menten system focuses on dimensionality reduction, with extensive discussions on
parameter combinations ensuring this outcome.

We consider a different scenario: low initial substrate concentration (s0). This
presents a distinct case from both the low-enzyme and partial-equilibrium scenar-
ios, which yield one-dimensional reductions in appropriate parameter ranges. Instead,
with low substrate, we obtain a different simplification:

(
ṡ
ċ

)
=

(−k1e0 k−1
k1e0 −(k−1 + k2)

)
·
(
s
c

)
. (2)

This linear Michaelis–Menten system (2) was first studied by Kasserra and Laidler
(1970), who proposed the condition of excess initial enzyme concentration (e0 � s0)
for the validity of the linearization of (1) to (2). This aligns with the concept of pseudo-
first-order kinetics in chemistry, where the concentration of one reactant is so abundant
that it remains essentially constant (Silicio and Peterson 1961).

Pettersson (1978) further investigated the linearization, adding the assumption that
any complex concentration accumulated during the transient period remains too small
to significantly impact enzyme or product concentrations. Later, Schnell andMendoza
(2004) refined the validity condition s0 � KM (where KM = (k−1 + k2)/k1 is the
Michaelis constant) to be sufficient for the linearization (alias dictus the application
of pseudo-first-order kinetics to the Michaelis–Menten reaction). However, Pedersen
and Bersani (2010) found this condition overly conservative. They introduced the total
substrate concentration s̄ = s + c (used in the total quasi-steady state approximation
(Borghans et al. 1996)) and proposed the condition s0 � KM + e0, reconciling
the Schnell–Mendoza and Kasserra–Laidler conditions. Derived under the standard
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quasi-steady-state assumption, the one-dimensional Michaelis–Menten equation can
be linearized, offering a useful method for parameter estimation at s0 � KM ; see
Keleti (1982).

In this paper, we demonstrate that the solutions of theMichaelis–Menten system (1)
admit a global approximation by solutions of the linear differential equation (2) when-
ever the intial substrate concentration is small. Our proof utilizes Kamke’s comparison
theorem for cooperative differential equations.1 This theorem allows us to establish
upper and lower estimates for the solution components of (1) via suitable linear sys-
tems. Importantly, these bounds are valid whenever s0 < K , where K = k2/k1
is the Van Slyke–Cullen constant, and the estimates are tight whenever s0 � K .
This effectively serves as sufficient condition for the validity of the linear approxi-
mation Michaelis–Menten system (2). We further prove that solutions of the original
Michaelis–Menten system (1) converge to solutions of the linear system (2) as s0 → 0,
uniformly for all positive times. Moreover, the asymptotic rate of convergence is of
order s20 .

Additionally, we explore the problem of timescale separation within the linear
Michaelis–Menten system (2). While a linear approximation simplifies the system, it
does not guarantee a clear separation of timescales. In fact, there are cases where no
universal accurate one-dimensional approximation exists. Since both eigenvalues of
the matrix in (2) are real and negative, the slower timescale will dominate the solu-
tion’s behavior. True timescale separation occurs if and only if these eigenvalues differ
significantly in magnitude. Importantly, we find that this separation is not always guar-
anteed. There exist parameter combinations where a one-dimensional approximation
would lack sufficient accuracy. Building upon results from (Eilertsen et al. 2022), we
establish necessary and sufficient conditions for timescale separation and derive the
corresponding reduced one-dimensional equations.

2 Low Substrate: Approximation by a Linear System

To set the stage, we recall some facts from the theory of cooperative differential equa-
tion systems. For a comprehensive account of the theory, we refer to the H.L. Smith’s
monograph (Smith 1995, Chapter 3) on monotone dynamical systems. Consider the
standard ordering, here denoted by ≺, on R

n , given by

⎛
⎜⎝
x1
...

xn

⎞
⎟⎠ ≺

⎛
⎜⎝
y1
...

yn

⎞
⎟⎠ ⇐⇒ xi ≤ yi for 1 ≤ i ≤ n.

Now let a differential equation

ẋ = f (x) on U ⊆ R
n, ∅ �= U open (3)

1 This concept is distinct from cooperativity in biochemistry.
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be given, with f continuously differentiable. We denote by F(t, y) the solution of the
initial value problem (3) with x(0) = y, and call F the local flow of the system.

Given a convex subset D ⊆ U , we say that (3) is cooperative on D if all non-
diagonal elements of the Jacobian are nonnegative; symbolically

Df (x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

∗ + · · · +
+ ∗ + · · · +
... + . . .

...
...

. . . +
+ · · · · · · + ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

for all x ∈ D.

(Matrices of this type are also known as Metzler matrices.)
As shown by Hirsch (1982, and subsequent papers) and other researchers (see

(Smith 1995, and the references therein)), cooperative systems have special qualitative
features. Qualitative properties of certain monotone chemical reaction networks were
investigated by De Leenheer et al. (2007). In the present paper, we consider a different
feature of such systems.Our interest lies in the following simplified version ofKamke’s
comparison theorem (Kamke 1932).2

Proposition 1 Let D ⊆ U be a convex positively invariant set for ẋ = f (x) given in
(3), with local flow F, and assume that this system is cooperative on D. Moreover let
ẋ = g(x) be defined on U, with continuously differentiable right hand side, and local
flow G.

• If f (x) ≺ g(x) for all x ∈ D, and y ≺ z, then F(t, y) ≺ G(t, z) for all t ≥ 0
such that both solutions exist.

• If g(x) ≺ f (x) for all x ∈ D, and z ≺ y, then G(t, z) ≺ F(t, y) for all t ≥ 0
such that both solutions exist.

2.1 Application to theMichaelis–Menten Systems (1) and (2)

For the following discussions, we recall the relevant derived parameters

KS := k−1/k1, KM := (k−1 + k2)/k1 K := k2/k1 = KM − KS, (4)

where KS is the complex equilibrium constant, KM is the Michaelis constant, and K
is the van Slyke-Cullen constant.

The proof of the following facts is obvious.

Lemma 1 (a) The Jacobian of system (1) is equal to

( ∗ k1s + k−1
k1(e0 − c) ∗ .

)

2 Kamke (1932) considered non-autonomous systems with less restrictive properties. In particular the
statement also holds on P-convex sets. A subset D of Rn is called P-convex if, for each pair y, z ∈ D with
y ≺ z, the line segment connecting y and z is contained in D. Thus, P-convexity is a weaker property than
convexity.
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The off-diagonal entries are ≥ 0 in the physically relevant subset

D = {(s, c); s ≥ 0, e0 ≥ c ≥ 0, s + c ≤ s0}

of the phase space, and D is positively invariant and convex. Thus system (1) is
cooperative in D.

(b) In D, one has

f1(s, c) ≥ g1(s, c) := −k1e0s + k−1c
f2(s, c) ≥ g2(s, c) := k1e0s − (k1s0 + k−1 + k2)c,

hence by Kamke’s comparison theorem the solution of the linear system with
matrix

G :=
(−k1e0 k−1

k1e0 −(k1s0 + k−1 + k2)

)
= k1

(−e0 KS

e0 −KM (1 + s0/KM )

)

and initial value in D provides component-wise lower estimates for the solution
of (1) with the same initial value.

(c) In D, one has

f1(s, c) ≤ h1(s, c) := −k1e0s + (k1s0 + k−1)c
f2(s, c) ≤ h2(s, c) := k1e0s − (k−1 + k2)c,

hence by Kamke’s comparison theorem the solution of the linear system with
matrix

H :=
(−k1e0 k1s0 + k−1

k1e0 −(k−1 + k2)

)
= k1

(−e0 KS(1 + s0/KS)

e0 −KM

)

and initial value in D provides component-wise upper estimates for the solution
of (1) with the same initial value.

Remark 1 The upper estimates become useless in the case k1s0 > k2, because then one
eigenvalue of H becomes positive. For viable upper and lower bounds one requires
that s0 < K = k2/k1.

The right hand sides of both linear comparison systems from parts (b) and (c) of
the Lemma converge to

Df (0) =
(−k1e0 k−1

k1e0 −(k−1 + k2)

)
= k1

(−e0 KS

e0 −KM

)
(5)

as s0 → 0. We will use this observation to show that a solution of (1) with initial value
in D converges to the solution of (2) with the same initial value on the time interval
[0, ∞), as s0 → 0.
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Fig. 1 Illustration of Proposition 2. The solution to the Michaelis–Menten system (1) converges to the
solution of the linear Michaelis–Menten system (2) as s0 → 0. In all panels, the solid black curve is the
numerical solution to the Michaelis–Menten system (1). The thick yellow curve is the numerical solution
to linear Michaelis–Menten system (2). The dashed/dotted curve is the numerical solution to the linear
system defined by matrix G. The dotted curve is the numerical solution to the linear system defined by
matrix H . All numerical simulations where carried out with the following parameters (in arbitrary units):
k1 = k2 = k−1 = e0 = 1. In all panels, the solutions have been numerically-integrated over the domain
t ∈ [0, T ], where T is selected to be long enough to ensure that the long-time dynamics are sufficiently
captured. For illustrative purposes, the horizontal axis (in all four panels) has been scaled by T so that the
scaled time, t/T , assumes values in the unit interval: t

T ∈ [0, 1]. Top Left: The numerically-obtained
time course of s with s0 = 0.5 and c(0) = 0.0. Top Right: The numerically-obtained time course of c
with s0 = 0.5 and c(0) = 0.0. Bottom Left: The numerically-obtained time course of s with s0 = 0.1
and c(0) = 0.0.Bottom Right: The numerically-obtained time course of cwith s0 = 0.1 and c(0) = 0.0.
Observe that the solution components of (2) become increasingly accurate approximations to the solution
components of (1) as s0 decreases (Color figure online)

2.2 ComparisonMichaelis–Menten Systems (1) and (2)

Both G and H , as well as Df (0), are of the type

(−α β

α −γ

)
(6)

with all entries> 0, and γ > β (to ensure usable estimates). The trace equals−(α+γ ),
the determinant equals α(γ − β), and the discriminant is

� = (α + γ )2 − 4α(γ − β) = (α − γ )2 + 4αβ.
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The eigenvalues are

λ1,2 = 1

2

(
−(α + γ ) ± √

�
)

with eigenvectors

v1,2 =
(

β
1
2 (α − γ ± √

�).

)

The following is now obtained in a straightforward (if slightly tedious) manner. We
specialize the initial value to the typical case, with no complex present at t = 0.

Lemma 2 The solution of the linear differential equation with matrix (6) and initial

value

(
s0
0

)
is equal to

(̃
s
c̃

)
= s0

2β
√

�

[
(α − γ − √

�)

(
β

1
2 (α − γ + √

�)

)
exp(

(
1
2 (−α − γ + √

�)t
)

+ (−α + γ − √
�)

(
β

1
2 (α − γ − √

�)

)
exp(

(
1
2 (−α − γ − √

�)t
)]

= s0

2
√

�

[(−α + γ + √
�

2α

)
exp(

(
1
2 (−α − γ + √

�)t
)

+
(

α − γ + √
�

− 2α

)
exp(

(
1
2 (−α − γ − √

�)t
)]

This enables us to write down explicitly the solution of (2), as well as upper and lower
estimates, in terms of familiar constants. We use Lemma 2 with α = k1e0, β = k1KS

and γ = k1KM , so � = k21
(
(KM − e0)2 + 4KSe0

)
, to obtain

(
s∗
c∗

)
= s0 exp(− 1

2 ((KM + e0) − √
(KM − e0)2 + 4KSe0)k1t)

2
√

(KM − e0)2 + 4KSe0
×

(+(KM − e0) + √
(KM − e0)2 + 4KSe0
2e0

)

+ s0 exp(− 1
2 ((KM + e0) + √

(KM − e0)2 + 4KSe0)k1t)

2
√

(KM − e0)2 + 4KSe0
×

(−(KM − e0) + √
(KM − e0)2 + 4KSe0

− 2e0

)
(7)

as the solution of (2), after some simplifications.

Proposition 2 To summarize:

(a) The solution

(
s∗
c∗

)
of the linear differential equation (2) with initial value

(
s0
0

)

is given by (7).
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(b) The solution

(
slow
clow

)
of the linear differential equation with matrix G and initial

value

(
s0
0

)
is obtained from replacing KM by KM + s0 in (7).

(c) The solution

(
sup
cup

)
of the linear differential equation with matrix H and initial

value

(
s0
0

)
is obtained from replacing KS by KS + s0 in (7).

(d) Given that s0 < K, for all t ≥ 0 one has the inequalities

sup ≥ s ≥ slow, sup ≥ s∗ ≥ slow,

cup ≥ c ≥ clow, cup ≥ c∗ ≥ clow; (8)

where

(
s
c

)
denotes the solution of (1) with initial value

(
s0
0

)
.

(e) Let M be a compact subset of the open positive orthant R
4
>0, abbreviate

π := (e0, k1, k−1, k2)tr and K ∗ := min{k2/k1; π ∈ M}. Then, there exists a
dimensional constant C (with dimension concentration−1), depending only on
M, such that for all π ∈ M and for all s0 with 0 < s0 ≤ K ∗/2 the estimates

∣∣∣∣ s − s∗

s0

∣∣∣∣ ≤ C · s0∣∣∣∣c − c∗

s0

∣∣∣∣ ≤ C · s0

hold for all t ∈ [0,∞). Thus, informally speaking, the approximation errors of s
by s∗, and of c by c∗, are of order s20 .

Proof The first three items follow by straightforward calculations. As for part (d), the
first column of (8) is just a restatement ofLemma 1, while the second follows from the
observation that (mutatis mutandis) the right-hand side of (2) also obeys the estimates
in parts (b) and (c) of this Lemma.

There remains part (e). In view of part (d) it suffices to show that

∣∣∣∣ sup − slow
s0

∣∣∣∣ ≤ C · s0∣∣∣∣cup − clow
s0

∣∣∣∣ ≤ C · s0

for some constant and, in turn, it suffices to show such estimates for both sup − s∗,
s∗ − slow, and cup − c∗, c∗ − clow. We will outline the relevant steps, pars pro toto, for
the upper estimates.

By (7) and part (c), one may write

1

s0

(
sup
cup

)
= B1(s0, π) exp(−A1(s0, π)t) + B2(s0, π) exp(−A2(s0, π)t),
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with the Bi and Ai continuously differentiable in a neighborhood of [0, K ∗/2]×M×
[0,∞). Moreover, one sees

1

s0

(
s∗
c∗

)
= B1(0, π) exp(−A1(0, π)t) + B2(0, π) exp(−A2(0, π)t).

It suffices to show that (with the maximum norm ‖ · ‖)

‖Bi (s0, π) exp(−Ai (s0, π)t) − Bi (0, π) exp(−Ai (0, π)t)‖ ≤ s0 · const.

in M̃ := [0, K ∗/2] × M × [0,∞), for i = 1, 2.
From compactness of [0, K ∗/2] ×M, continuous differentiability and the explicit

form of Ai and Bi one obtains estimates, with the parameters and variables in M̃:

• There is A∗ > 0 so that |Ai (s0, π)| ≥ A∗.
• There is B∗ > 0 so that ‖Bi (s0, π)‖ ≤ B∗.
• There are continuous B̃i so that Bi (s0, π) − Bi (0, π) = s0 · B̃i (s0, π) (Taylor),
hence there is B∗∗ > 0 so that ‖Bi (s0, π) − Bi (0, π)‖ ≤ s0 · B∗∗.

• By the mean value theorem there exists σ between 0 and s0 so that

exp (−Ai (s0, π)t) − exp (−Ai (0, π)t) = −t · ∂Ai

∂s0
(σ, π) · exp (−Ai (σ, π)t) s0.

So, with the constant A∗∗ satisfying A∗∗ ≥ |∂Ai

∂s0
| for all arguments in M̃ one

gets

| exp (−Ai (s0, π)t) − exp (−Ai (0, π)t) | ≤ A∗∗ · t exp (−Ai (σ, π)t) s0

≤ A∗∗ · t exp (−A∗t) ≤ A∗∗

A∗
s0.

So

‖Bi (s0, π) exp(−Ai (s0, π)t) − Bi (0, π) exp(−Ai (0, π)t)‖
≤ ‖Bi (s0, π) − Bi (0, π)‖ · exp(−Ai (s0, π)t)

+‖Bi (0, π)‖ · | exp(−Ai (s0, π)t) − exp(−Ai (0, π)t)|
≤ s0 · (B∗∗ + B∗ · A∗∗/A∗),

and this proves the assertion. ��
For illustrative purposes, a numerical example is given in Fig. 1.

Remark 2 Our result should not be mistaken for the familiar fact that in the vicinity of
the stationary point 0 the Michaelis–Menten system (1) is (smoothly) equivalent to its
linearization (2); see, e.g. (Sternberg 1958, Theorem 2). The point of the Proposition
is that the estimate, and the convergence statement, hold globally.
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Remark 3 Some readers may prefer a dimensionless parameter (and symbols like �)
to gauge the accuracy of the approximation. In view of Lemma 1 and equation (5) it
seems natural to choose ε := s0/KS < s0/KM , which estimates the convergence of
G and H to Df (0), and set up the criterion s0/KS � 1. But still the limit s0 → 0 has
to be considered.

Remark 4 Since explicit expressions are obtainable from (7) for the Ai and Bi in the
proof of part (e), one could refine it to obtain quantitative estimates. This will not be
pursued further here.

2.3 Timescales for the Linear Michaelis–Menten System (2)

In contrast to familiar reduction scenarios for the Michaelis–Menten system (1), the
linearization (2) for the low initial substrate case does not automatically imply a
separation of timescales. Timescale separation depends on further conditions that we
discuss next.

Recall the constants introduced in (4) and note

� = k21

(
(KM + e0)

2 − 4Ke0
)

.

In this notation, the eigenvalues of the matrix in the linearized system (2) are

λ1,2 = k1
2

(KM + e0)

(
−1 ±

√
1 − 4Ke0

(KM + e0)2

)
. (9)

This matrix is the Jacobian at the stationary point 0, thus it is possible to use the results
from earlier work (Eilertsen et al. 2022).

Remark 5 Since timescales are inverse absolute eigenvalues, by ( Eilertsen et al. 2022,
subsection 3.3), (9) shows:

(a) The timescales are about equal whenever

4Ke0 ≈ (KM + e0)
2,

which is the case, notably, when KS ≈ 0 (so KM ≈ K ) and KM ≈ e0.
(b) On the other hand, one sees from (9) that a significant timescale separation exists

whenever (loosely speaking, employing a widely used symbol)

4Ke0
(KM + e0)2

� 1. (10)

Notably this is the case when e0/KM is small, or when K/KM is small.
(c) Moreover, condition (10) is satisfied in a large part of parameter space (in a well-

defined sense) as shown in (Eilertsen et al. 2022, subsection 3.3, in sparticular
Figure 2).

Proposition 3 We take a closer look at the scenario with significant timescale sepa-
ration, stating the results in a somewhat loose language.
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(a) Given significant timescale separation as in (10), the slow eigenvalue is approxi-
mated by

λ1 ≈ −k1 · Ke0
KM + e0

= − k2e0
KM + e0

, (11)

and the reduced equation is

d

dt

(
s
c

)
= − k2e0

KM + e0

(
s
c

)
. (12)

(b) Given significant timescale separation as in (10), the eigenspace for the slow
eigenvalue is asymptotic to the subspace spanned by

v̂1 :=
⎛
⎝KM − Ke0

KM + e0
e0

⎞
⎠ . (13)

Proof Given (10) one has

√
(KM + e0)2 − 4Ke0 = (KM + e0)

√
1 − 4Ke0

(KM + e0)2

≈ (KM + e0)

(
1 − 2Ke0

(KM + e0)2

)

by Taylor approximation, from which part (a) follows.
Moreover, according to (7), the direction of the slow eigenspace is given by

v∗
1 =

(
(KM − e0) + √

(KM − e0)2 + 4KSe0
2e0

)

=
(

(KM − e0) + √
(KM + e0)2 − 4Ke0
2e0

)
.

By the same token, we have the approximation

v∗
1 ≈

⎛
⎝(KM − e0) + (KM + e0)

(
1 − 2Ke0

(KM + e0)2

)

2e0

⎞
⎠ = 2

⎛
⎝KM − Ke0

KM + e0
e0

⎞
⎠

= 2v̂1,

(14)

which shows part (b). ��
Remark 6 One should perhaps emphasize that Proposition 3 indeed describes a sin-
gular perturbation reduction when λ1 → 0. This can be verified from the general
reduction formula in Goeke andWalcher (2014) (note that the Michaelis–Menten sys-
tem (2) is not in standard formwith separated slow and fast variables), with elementary
computations.
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68 Page 12 of 13 J. Eilertsen et al.

Finally we note that Proposition 3 is applicable to the discussion of the linearized
total quasi-steady-state approximation. Details are discussed in Eilertsen et al. (2023).

3 Conclusion

Our comprehensive analysis of the Michaelis–Menten system under low initial sub-
strate concentration addresses an important gap in the literature. We obtain the
sufficient3 condition, s0 � K for the global approximation of the Michaelis–Menten
system (1) by the linear Michaelis–Menten system (2). This simplification, known as
the pseudo-first-order approximation, is widely used in transient kinetics experiments
to measure enzymatic reaction rates. Moreover, given the biochemical significance
of this reaction mechanism and the renewed interest in the application of the total
quasi-steady state approximation in pharmacokinetics experiments under low initial
substrate concentration (Back et al. 2020; Vu et al. 2023), the linearization analysis
holds clear practical relevance. The analytical expression derived from the lineariza-
tion also provides a direct method to estimate kinetic parameters, circumventing the
complexities of numerical optimization. These numerical procedures, which involve
solving nonlinear—frequently stiff—ordinary differential equations and fitting the
solutions to experimental data, can lead to inaccurate parameter estimates if the algo-
rithm becomes trapped in a local minimum—a risk that persists despite the availability
of significant computing power (Ramsay et al. 2007; Liang and Wu 2008). Our work
also illustrates the advantage of mathematical theory in the discussion and analysis of
parameter-dependent differential equations: The fact that initial enzyme is not relevant
for the low initial substrate scenario could not be shown by numerical simulation.

From a mathematical perspective, it is intriguing to observe a simplification that
arises independently of timescale separation or invariant manifolds. The natural
next step is to explore this approach with other familiar enzyme reaction mecha-
nism (e.g., the reversible Michaelis–Menten reaction, and those involving competitive
and uncompetitive inhibition, or cooperativity [see, for example, Keener and Sneyd
(2009)]). However, a direct application of Kamke’s comparison theorem is not always
feasible. Enzyme catalyzed reaction mechanism with competitive or uncompetitive
inhibition do not yield cooperative differential equations, and standard cooperative
networks do so only within specific parameter ranges. As to the reversible Michaelis-
Menten system, with rate constant k−2 for the reaction of product and enzyme to
complex, one has a cooperative system whenever k1 ≥ k−2. Investigating these sys-
tems under low initial substrate conditions will require the refinement of existing or
the development of further mathematical tools.

Data availibility We do not analyse or generate any datasets, because our work proceeds within a theoretical
and mathematical approach.
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3 Necessity can easily be verified. See also the discussion in Eilertsen et al. (2023) for examples.
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