
Bulletin of Mathematical Biology (2024) 86:65
https://doi.org/10.1007/s11538-024-01293-1

ORIG INAL ART ICLE

Convex Representation of Metabolic Networks with
Michaelis–Menten Kinetics

Josh A. Taylor1 · Alain Rapaport2 · Denis Dochain3

Received: 8 December 2023 / Accepted: 8 April 2024 / Published online: 26 April 2024
© The Author(s) 2024

Abstract
Polyhedral models of metabolic networks are computationally tractable and can pre-
dict some cellular functions. A longstanding challenge is incorporating metabolites
without losing tractability. In this paper, we do so using a new second-order cone
representation of the Michaelis–Menten kinetics. The resulting model consists of lin-
ear stoichiometric constraints alongside second-order cone constraints that couple
the reaction fluxes to metabolite concentrations. We formulate several new problems
around this model: conic flux balance analysis, which augments flux balance analy-
sis with metabolite concentrations; dynamic conic flux balance analysis; and finding
minimal cut sets of networks with both reactions and metabolites. Solving these prob-
lems yields information about both fluxes and metabolite concentrations. They are
second-order cone or mixed-integer second-order cone programs, which, while not
as tractable as their linear counterparts, can nonetheless be solved at practical scales
using existing software.

Keywords Michaelis–Menten kinetics · Metabolite concentrations · Second-order
cone · Flux balance analysis · Minimal cut set

1 Introduction

The structure of a metabolic network contains useful information about its cellular
functions. Two techniques for analyzing this structure are
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• flux balance analysis (FBA), in which optimization is used to predict reaction
fluxes (Orth et al. 2010), and

• minimal cut set (MCS) analysis, which attempts to find critical subsets of reactions
that, when removed, disable certain functions (Klamt and Gilles 2004).

Standard formulations of FBA and MCS analysis are based on a linear approximation
in which only the reaction fluxes are variables. The benefit of this simplification is that
FBA is a linear program (LP),which can be reliably solved at large scales, and powerful
analytical tools like Farkas’ Lemma are available for finding the MCSs of polyhedral
systems. Quoting Orth et al. (2010), “FBA has limitations, however. Because it does
not use kinetic parameters, it cannot predict metabolite concentrations.” For the same
reason, MCS analysis cannot explicitly identify critical metabolites.

In this paper, we augment FBA and MCS analysis with Michaelis–Menten kinetics
and metabolite concentrations. Using the results of Taylor and Rapaport (2021), we
represent the Michaelis–Menten kinetics as a second-order cone (SOC) constraint.
This leads to several original problem formulations.

• Conic FBA (CFBA). CFBA predicts both reaction fluxes and metabolite concen-
trations in steady state. It is a single SOC program (SOCP), which, while not as
tractable as LP, can be solved at practical scales (Boyd and Vandenberghe 2004).
We use the dual to derive sensitivities to maximum reaction rates and Michaelis
constants. We also formulate dynamic CFBA, in which the SOC representations
of the reaction kinetics are used in dynamic FBA (Mahadevan et al. 2002).

• ConicMCS (CMCS).ACMCS is a cut set through anetworkof paths from reactions
to metabolites, as specified by the stoichiometric matrix, and from metabolites to
reactions, as specified by theMichaelis–Menten kinetics. To solve for CMCSs, we
follow the strategy of Ballerstein et al. (2012), which uses Farkas’ Lemma (Boyd
and Vandenberghe 2004) and results from Gleeson and Ryan (1990) and Parker
and Ryan (1996) on irreducible infeasible subsystems (IIS) to identify MCSs. We
generalize this to CMCSs using the recent results of Kellner et al. (2019) on the
IISs of semidefinite systems. We also formulate a linear approximation that, due
to the discrete nature of cut sets, produces similar results.

We remark that CFBA and CMCS analysis might not produce better predictions of
reaction fluxes than existing methods. The main benefit of CFBA and CMCS analysis
is that they incorporate metabolite concentrations and reaction kinetics while retaining
much of the tractability of standard linear formulations.

We now describe how our contributions relate to the existing literature. Using LP to
analyzemetabolic networks was first suggested byWatson (1984). Since then FBA has
gained wide acceptance (Varma and Palsson 1994; Orth et al. 2010), and is available
in open source implementations (Schellenberger et al. 2011; Ebrahim et al. 2013).
Dynamic FBA (DFBA) is an extension that incorporates reaction kinetics, which are
typically nonlinear, and metabolite concentrations, potentially as well as other tran-
sient information such as reprogramming and light intensity. Reference (Mahadevan
et al. 2002) first formulated the two main types of DFBA. The ‘dynamic optimization
approach’ is a large nonlinear program, in which the reaction kinetics constrain the
fluxes through time. In the ‘static optimization approach’, one solves a sequence of
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LPs and integrates the solution between time periods. There have been several refine-
ments such as putting the optimization directly into the ODE simulation (Hanly and
Henson 2011), and using lexicographic optimization to improve robustness when the
LP has multiple solutions (Gomez et al. 2014).

CFBA is similar to DFBA in that it also captures metabolite concentrations and
reaction kinetics, but only when modeled as Michaelis–Menten. They differ in that
CFBA is in steady state, and hence does not capture transients. If one approximates
the biomass concentration as a constant, or approximates Michaelis–Menten with
the Contois function (Contois 1959), one can formulate the dynamic optimization
approach of Mahadevan et al. (2002) as an SOCP. We refer to this as Dynamic CFBA.
Dynamic CFBA can capture transients and accommodate time-varying parameters.
CFBA and dynamic CFBA are not necessarily more accurate than dynamic FBA, but
are more tractable in that they are single SOCPs.

CFBA is also related to resource balance analysis (RBA) (Goelzer et al. 2011;
Goelzer and Fromion 2011), a more general problem that can predict fluxes, metabo-
lites, macromolecular cellular processes, and proteins. RBA differs from CFBA in
that it does not contain the Michaelis–Menten function or any other nonlinearities,
and as a result is an LP. In principle, our SOC representation of the Michaelis–Menten
function could be incorporated into RBA, leading to an SOCP.

Another relevant literature stream focuses on the analysis of pathways through
metabolic networks (see, e.g., Clarke 1980; Schilling et al. 2000). In the linear case, the
nonnegativity and stoichiometric constraints form a polyhedral cone, the extreme rays
of which correspond to the elementary flux modes of the metabolic network (Schuster
and Hilgetag 1994). It is not clear that this perspective extends to our setup because
SOC constraints are nonpolyhedral, and the SOC representation of the Michaelis–
Menten kinetics is not in fact a cone. TheMinkowski-Weyl Theorem states that a cone
is finitely generated if and only if it is polyhedral (Schrijver 1998). Therefore, such
a system could have an infinite number of elementary modes if it has any at all. If
elementary modes do exist, at present we are not aware of any reliable techniques for
obtaining them.

For these reasons, we focus on the adjacent problem of identifying MCSs. Ref-
erence (Ballerstein et al. 2012) showed that the MCSs of a metabolic network are
the elementary modes of a dual network specified by Farkas’ Lemma (Boyd and
Vandenberghe 2004). We make use of the results of Kellner et al. (2019) to general-
ize this strategy to networks with metabolite concentrations coupled to the reaction
fluxes through Michaelis–Menten kinetics. By then using a linear approximation of
the Michaelis–Menten kinetics, we recover the use of tools for polyhedral systems,
which we find produce more reliable results.

The paper is organized as follows. Section2 reviews metabolic network modeling
and the SOC representation of theMichaelis–Menten kinetics. Section3 presents FBA,
CFBA, and dynamic CFBA. Section4 presents the MCS analysis of Ballerstein et al.
(2012) and our extensions to systems with Michaelis–Menten kinetics. In Sect. 5, we
apply CFBA, dynamic CFBA, and CMCS analysis to a model of Escherichia coli.
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2 Background

2.1 Metabolic Networks

The reactions are indexed by the set N , where n = |N |. Let R ⊆ N and I ⊆ N be
the sets of reversible and irreversible reactions, where R ∪ I = N and R ∩ I = ∅.
There are a total of m′ metabolites.

Let z ∈ R
m′
+ be a vector of metabolite concentrations and v ∈ R

n a vector of fluxes
due to the reactions. S ∈ R

m′×n is the stoichiometric matrix. The dynamics of the
metabolites are given by

ż = zbSv, (1)

where zb is the element of z corresponding to biomass (Mahadevan et al. 2002; Hanly
and Henson 2011; Höffner et al. 2013). While the biomass is not a metabolite, its
evolution can be written as zb times a linear combination of the reaction fluxes, and
hence can be represented as a row of (1).

In quasi-steady state, ż = 0.We then have zbSv = 0, which, because zb is a nonzero
scalar, implies Sv = 0. The fluxes are subject to the bounds v ≤ v ≤ v. Typically,
vi = 0 for i ∈ I and −∞ otherwise. When v = 0 and v = ∞, the system is a
polyhedral cone (Schuster and Hilgetag 1994). Quasi-steady state models generally
do not explicitly model the metabolites. Here we will include a subset of them, M,
where m = |M|. We will henceforth let z ∈ R

m+.
Some of the fluxes are also bounded by a nonlinear function, usually theMichaelis–

Menten kinetics (Michaelis and Menten 1913). We denote this set by Q ⊆ N , where
q = |Q|. We expect that q ≥ m, because otherwise there are metabolites that are
not substrates in any reaction, and thus have no coupling to the rest of the model. To
simplify notation, we order N so that its first q elements are Q. Let Vmax ∈ R

q
+ and

Km ∈ R
q
+ be vectors of maximum reaction rates and Michaelis constants. We can

write this bound for each reaction i ∈ Q as

vi ≤ Vmax
i zσ(i)

Km
i + zσ(i)

. (2)

Here σ(i) identifies the index of the metabolite concentration appearing in reaction
i . In general σ is not invertible because the same metabolite can appear in multiple
reactions. Together with z ≥ 0, the inequality (2) defines a convex set because the
right-hand side is concave for zσ(i) ≥ −Km

i , as can be shown, e.g., by taking the
second derivative. Note that if i is a reversible reaction, (2) may be applied in the
reverse direction by putting a minus sign in front of vi . We note that there are other
ways tomodel reversible reactions, e.g., bymaking the productmetabolite the substrate
of a different kinetics (Ndiaye and Gouzé 2013).

When a reaction hasmultiple reactants, its fluxmay be limited bymore complicated
functions such as the product of several Michaelis–Menten kinetics (cf. Table IV in
Chassagnole et al. (2002)). We can straightforwardly generalize our notation to this
case. Suppose that reaction i has pi reactants. For k = 1, ..., pi , let σk(i) be the index

123



Convex Representation of Metabolic... Page 5 of 26 65

of the kth metabolite in the reaction. Then we can write the upper bound on reaction
i ∈ Q as

vik ≤ Vmax
ik zσk (i)

Km
ik + zσk (i)

(3a)

vi ≤
pi∏

k=1

vik . (3b)

Note that the product,
∏pi

k=1 V
max
ik , is the maximum reaction rate of reaction i , Vmax

i .
The intermediary variables, vik , k = 1, ..., pi , will be convenient for representing (3)
in SOC form. We remark that this is not a general model, and that there are reactions
with multiple reactants that are not well-described by (3).

2.2 Convex Representation of theMichaelis–Menten Kinetics

As shown by Taylor and Rapaport (2021), we can represent the inequality (2) as the
SOC constraint

∥∥∥∥∥∥

⎡

⎣
Vmax
i zσ(i)

Km
i vi

Vmax
i Km

i

⎤

⎦

∥∥∥∥∥∥
≤ Vmax

i zσ(i) − Km
i vi + Vmax

i Km
i , (4)

for i ∈ Q,1 One can confirm equivalence by squaring both sides and simplifying. We
refer the reader to Appendix A for a brief introduction to SOCP. As will be seen later,
the advantages of the SOC formulation include amenability to powerful, specialized
solvers, and more refined analytical tools such as conic duality.

Suppose now there are multiple reactants. As with (2), we can write (3a) as an
SOC constraint in the form of (4). Unfortunately, (3b) is nonconvex and has no SOC
representation, and so does not fit the problems we later formulate. As such, one
potential approximation is

vi ≤
pi∏

k=1

v
πik
ik , (5)

which has an SOC representation if
∑pi

k=1 πik ≤ 1 (Alizadeh and Goldfarb 2003).
When πik = 1/pi for k = 1, ..., pi , it is the geometric mean. Equation (5) is ad hoc in
that it cannot in general be derived from first principles. However, we believe it could
be a useful approximation because there is considerable room to tune the fit via the
exponents and Michaelis–Menten parameters; and, similar ad hoc expressions have
been used in the past when Michaelis–Menten alone was not sufficiently descriptive

1 The Hill function is a generalization of (2) with zζ
σ (i) instead of zσ(i) (Weiss 1997). If 0 < ζ ≤ 1 and

ζ ∈ Q, it is also representable as an SOC using standard compositional rules (Boyd and Vandenberghe
2004).
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(cf. Table IV in Chassagnole et al. (2002)). The exponents could be fit using nonlinear
least squares.

In the simple case where pi = 2 andπi1 = πi2 = 1/2, (5) is a hyperbolic constraint
with SOC representation

∥∥∥∥

[
2vi

vi1 − vi2

]∥∥∥∥ ≤ vi1 + vi2. (6)

We emphasize that as (5) and (6) have not been used in prior studies, they require
validation via simulation or experiments; this is a topic of future work.

Sometimes LP is more practical to work with than SOCP, e.g., when there are
numerous discrete constraints or commercial solvers are too expensive. Fortunately
an SOCP can always be approximated to arbitrary accuracy with an LP, albeit a poten-
tially large one. Ben-Tal and Nemirovski (2001) provide a constructive procedure for
approximating a generic SOC constraint with a family of linear constraints. Alterna-
tively, the right hand side of (2) can be straightforwardly approximated by a family of
line segments.

3 Flux Balance Analysis

In this section, we first review the standard formulation of FBA, and then formulate
CFBA and Dynamic CFBA. We also use the duals to derive several sensitivities.

3.1 Linear FBA

The below LP is a basic FBA routine.

max
v

c�v (7a)

subject to Sv = 0 (7b)

v ≤ v ≤ v. (7c)

Here c ∈ R
n+ selects and/or weights the fluxes for maximization. Let F denote the

optimal objective value.
Let λ ∈ R

m be the vector of dual multipliers of (7b), and let δL ∈ R
n+ and δU ∈ R

n+
be the vectors of dual multipliers associated with the upper and lower bounds in (7c).
The dual of (7) is

min
λ,δL,δU

v�δU − v�δL (8a)

subject to S�λ = c + δL − δU (8b)

δL ≥ 0, δU ≥ 0. (8c)
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The dual variables, or shadow prices, can be interpreted as the sensitivities of the
objective in (7) to changes in the constraints. More precisely, for each i ∈ N ,

δLi = dF
dvi

, δUi = dF
dvi

.

λ is similarly interpretable as the sensitivity of the objective to perturbations
to (7b). This, for example, can be used to determine which reactions are most
influential (Schilling et al. 2000; Reznik et al. 2013).

We an also obtain insight by observing that the objectives of (7) and (8) must be
equal due to strong duality:

v�c = v�δU − v�δL.

This breaks down the optimal objective into contributions from each constraint. In the
common case where we maximize a single reaction, vs , and v = 0, this simplifies to
vs = δ�

Uv, a convex combination of the upper flux limits.

3.2 Conic FBA

We now generalize the FBA (7) to include metabolites, which are coupled to the
reactions by the Michaelis–Menten kinetics. Let z ∈ R

m+ and z ∈ R
m+ be vectors of

upper and lower bounds on the metabolite concentrations. Let d ∈ R
m− be a vector

weighting the metabolites in the objective. Consider the below optimization.

max
v,z

c�v + d�z (9a)

subject to Sv = 0 (9b)

v ≤ v ≤ v (9c)

z ≤ z ≤ z (9d)

vi ≤ Vmax
i zσ(i)

Km
i + zσ(i)

, i ∈ Q. (9e)

We make the following comments.

• This is an SOCP if we write (9e) in the form of (4).
• Within the subset of reactions limited by Michaelis–Menten kinetics,Q, it may be
that not all are important, and therefore that not all metabolites are limiting.We can
identify which metabolites are limiting through sensitivity analysis, as described
later in this section. It is these influential metabolite concentrations that we expect
CFBA to predict well.

• We could include reaction limits in the form of (5) that depend on multiple
Michaelis–Menten kinetics, and retain the SOC structure. We have not done so
as to retain simplicity in (9) and its dual, and because the numerical examples in
Sect. 5 only have upper bounds with single Michaelis–Menten reactions.
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• (9e) is only meaningful if the corresponding metabolite concentrations are min-
imized in the objective, i.e., d < 0. Otherwise, it is trivially optimal to fix
the metabolites at their maximum concentrations, z, in which case (9e) can be
represented as an upper bound on v in (9c).

• The objective is interpretable as maximizing the fluxes specified by c while mini-
mizing the metabolite concentration. We discuss an alternative formulation below
in Sect. 3.2.1.

We now derive the dual. For matrices A and B of the same size, let A ◦ B denote
the element-wise product. We let Ai : and A: j denote the i th row and j th column of A.

Let λ ∈ R
m be the vector of dual multipliers of (9b), δL ∈ R

n+ and δU ∈ R
n+ of

(9c), and γL ∈ R
m+ and γU ∈ R

m+ of (9d).
Let � ∈ R

3×q and φ ∈ R
q
+. For a given reaction i ∈ Q, the constraint (9e) (in

SOC form (4)) has dual multipliers �:i ∈ R
3 and φi ∈ R+, which satisfy the SOC

constraint ‖�:i‖ ≤ φi .
Let M ∈ R

q×m be such that Mi j = 1 if σ(i) = j and zero otherwise. The
interpretation of M is complementary to that of S. S encodes a network representing
how the reactions influence the evolution of the metabolite concentrations. Similarly,
M encodes a network representing which metabolites appear in each reaction.

The dual of (9), which is also an SOCP, is below.

min
λ,δL,δU,γL,γU,�,φ

v�δU − v�δL + z�γU − z�γL −
(
�3: − φ�)

(Vmax ◦ Km)

(10a)

subject to

[(
��

2: + φ
) ◦ Km

0

]
+ S�λ = c + δL − δU (10b)

M� ((
��

1: − φ
)

◦ Vmax
)

= d + γL − γU (10c)

δL ≥ 0, δU ≥ 0, γL ≥ 0, γU ≥ 0 (10d)

‖�:i‖ ≤ φi , i ∈ Q. (10e)

Strong duality holds if a constraint qualification is satisfied, e.g., Slater’s condi-
tion (Boyd and Vandenberghe 2004). In this case λ, δL, λ, δU, γL, and γU all have the
usual LP sensitivity interpretations and complementary slackness with their respective
constraints.

We can similarly interpret � and φ; see, e.g., Section 5.9.3 of Boyd and Vanden-
berghe (2004). φi is the sensitivity of the optimal objective value, F , to perturbations
to the right hand side of (4). �:i is a vector of sensitivities of F to perturbations to
each element in the left hand side. We can use the chain rule to derive sensitivities for
the parameters of the Michaelis–Menten function. For i ∈ Q we have

dF
dVmax

i
= �1i zσ(i) + �3i K

m
i + φi

(
Km
i + zσ(i)

)
(11a)

dF
dKm

i
= �2ivi + �3i V

max
i + φi

(
Vmax
i − vi

)
. (11b)
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If the sensitivity to Km
i is high, then the corresponding metabolite concentration, zσ(i),

is limiting in the sense that a small change will substantially change the reaction flux,
vi , and the objective value. On the other hand, if the sensitivity to Vmax

i is high and Km
i

low, then the optimal solution is on the flatter, rightward part of theMichaelis–Menten
function, and so the corresponding metabolite concentration has little influence on
the solution. In this case, the Michaelis–Menten constraint could be replaced with a
simple upper limit on vi .

As in the previous section, the objectives of (9) and (13) match if strong duality
holds. If we assume that v = 0, z = 0, and z = ∞, the equality simplifies to

c�v + d�z = v�δU −
(
�3: − φ�)

(Vmax ◦ Km)

= v�δU −
∑

i∈Q
(�3i − φi ) V

max
i Km

i .

3.2.1 Alternative Objectives

A shortcoming of (9) is that the objective—flux rates minus metabolite
concentrations—mixes units. This is problematic because the corresponding value
does not have a clear interpretation, e.g., the concentration of a metabolite of interest;
and, the two terms might differ numerically by orders of magnitude. We need not
directly compare fluxes and metabolite concentrations if we instead maximize d�z
alone subject to a constraint on v, e.g., vs ≥ 1, where s is the index of a reaction of
interest. This is interpretable as the minimum metabolite concentration necessary to
carry out a certain function. Such a constraint could be incorporated into (9c).

An objective consisting only ofmetabolite concentrationsmight bemore physically
interpretable. For instance, minimizing internal metabolite concentrations was used
as a model of cellular function in Schuster and Heinrich (1991). A second advantage
is that the dual sensitivities in (11) also have physical meanings. For these reasons, we
maximize −1�z in the example in Sect. 5.1, where 1 is the appropriately sized vector
of all ones.

We could also maximize c�v alone and add constraints on z. This would be non-
trivial, e.g., with coupled polyhedral constraints. However, box constraints like (9d)
would simply lead to z binding at its upper bounds.

Note that while the dual is slightly different for these alternative formulations, the
expressions for the sensitivities to Vmax and Km in (11) are unchanged.

3.3 Dynamic FBA

Dynamic FBA extends conventional FBA in twoways: the incorporation of metabolite
concentrations, and changes over time not captured in a steady state model. Metabolite
concentrations are present in CFBA, but not transients. We thus formulate dynamic
CFBA for the purpose of capturing transient phenomena.

There are two main approaches to dynamic FBA, as described by Mahadevan et al.
(2002).
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• In the dynamic optimization approach, the full trajectory is optimized. The con-
centrations across time periods are coupled by a finite difference approximation
of the derivative; note that we could use a more accurate approximation, e.g., a
higher order Runge-Kutta scheme (Betts 1998). The optimization is nonlinear due
to theMichaelis–Menten kinetics and bilinearities between the fluxes and biomass
variables.

• In the static optimization approach, a conventional FBA is solved in each time
period. The resulting flux vector is used to propagate the concentrations to the
next time period.

The first is harder to solve because it is larger and nonlinear. Here, we optimize
the full trajectory as in the dynamic optimization approach. We render the problem
more computationally tractable by representing theMichaelis–Menten kinetics in SOC
form, (4).

A difficulty not present in steady state FBA is the biomass, zb, which we recall is
an element of the vector z. Because we are not setting the derivatives in (1) to zero, we
cannot divide it out, and the product of the Michaelis–Menten function and zb does
not have an SOC representation. To maintain consistent notation, we introduce the
variable ν ∈ R

n , which takes the place of the product zbv. We can recover convexity
in two ways.

1. If the biomass evolution is predictable, we can approximate it as a fixed param-
eter in each time period, z̄b(t). Then the kinetics can be represented as an SOC
constraint in the form of (4).

2. Instead of Michaelis–Menten, we can model the reaction limits with the Contois
function (Contois 1959):

νi ≤ Vmax
i zσ(i)zb

Km
i zb + zσ(i)

, i ∈ Q. (12)

The Contois function is commonly used to model biochemical processes (Bastin
and Dochain 1990), and differs from Michaelis–Menten only in that the denom-
inator depends on zb. Given its similarity to the Michaelis–Menten kinetics, (12)
could also be an acceptable approximation. As shown by Taylor and Rapaport
(2021), we can represent the inequality (12) as the SOC constraint

∥∥∥∥∥∥

⎡

⎣
Vmax
i zσ(i)

Km
i νi

Vmax
i Km

i zb

⎤

⎦

∥∥∥∥∥∥
≤Vmax

i zσ(i) − Km
i νi + Vmax

i Km
i zb.

Which approximation is more appropriate depends on the context. For example, if the
biomass does not varymuch, holding it constant inMichaelis–Menten is a clear choice.
If the evolution of the biomass does depend strongly on the other metabolites, then
the Contois function might be a better choice. Alternatively, we could fit a generic
SOC constraint to reaction data, which would retain compatibility with SOCP and
potentially be more accurate than either of the above approximations (Tan et al. 2022).
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There are time periods t = 0, ..., τ , each of length �. Let ν(t) and z(t) denote the
fluxes and metabolite concentrations in period t . We thus obtain the below SOCP for
dynamic CFBA.

max
ν(·),z(·)

τ∑

t=1

c�ν(t) + d�z(t) (13a)

subject to z(0) = z0 (13b)

z(t) − z(t − 1) = �Sν(t − 1) (13c)

z ≤ z(t) ≤ z (13d)

ν̇ ≤ ν(t) − ν(t − 1) ≤ ν̇

t = 1, ..., τ. (13e)

(13b) is the initial condition. (13c) is the Euler approximation of (1), and couples the
variables across time periods. If we approximate the biomass as a fixed parameter, we
also have for t = 1, ..., τ :

z̄b(t)v ≤ ν(t) ≤ z̄b(t)v (13f)

νi (t) ≤ Vmax
i zσ(i)(t)z̄b(t)

Km
i + zσ(i)(t)

, i ∈ Q. (13g)

If we model the reaction limits with the Contois function, (12), then instead of (13f)
and (13g), we have:

zb(t)v ≤ ν(t) ≤ zb(t)v (13h)

νi (t) ≤ Vmax
i zσ(i)(t)zb(t)

Km
i zb(t) + zσ(i)(t)

, i ∈ Q. (13i)

(13d) and (13f) (or (13h)) are bounds on the reactions and metabolites. (13e) limits
the rate of change of the reactions. In (13g) (or (13i)), νi (t) is less than either the
Michaelis–Menten kinetics with fixed biomass or the Contois function, depending on
which of the above approximations is used.

In dynamic FBA, the evolution of the metabolites generally depends on more than
just the stoichiometry, as in (13c). The same should also be the case for dynamicCFBA.
For example, there could be inflows and outflows with endogenous or exogenous
metabolite concentrations, or biomass death (Gomez et al. 2014).

4 Minimal Cut Sets

In (11) in Sect. 3.2, we used dual variables to compute sensitivities to kinetic parame-
ters. This was one of several potential applications of the CFBA dual system. We now
explore another in which we use Farkas’ Lemma to identify CMCSs.
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An MCS is the smallest set of reactions which, if constrained to be zero, disables
some function of interest. In this regard, the reactions in an MCS are the lynchpins
of the system. Ballerstein et al. (2012) showed that the MCSs of a metabolic network
correspond to the elementary modes of a dual network, which is specified by Farkas’
Lemma (Schrijver 1998). This was an application of a result from Gleeson and Ryan
(1990) and Parker and Ryan (1996), which states that there is a one-to-one mapping
between the IISs (irreducible infeasible subsystems) of a linear system and the vertices
of its dual polyhedron. One can therefore identify theMCSs of a metabolic network by
solving for the vertices of the dual polyhedron, which can be done via mixed-integer
LP (MILP).

In Kellner et al. (2019), a weaker version of the result of Gleeson and Ryan (1990)
and Parker and Ryan (1996) was extended to semidefinite systems, which generalize
SOC systems. We make use of this in Sect. 4.1 to extend the results of Ballerstein
et al. (2012) to networks with metabolites linked by Michaelis–Menten kinetics.
Whereas an MCS contains only reactions, a CMCS contains the smallest set of reac-
tions and/or metabolites that the system cannot function without. We then formulate
a linear approximation that produces similar results in Sect. 4.2.

4.1 Conic Minimal Cut Sets

We now describe the setup, starting with the linear part as given by Ballerstein et al.
(2012). Let Tv ⊆ N denote the polyhedral set of target reactions, parametrized by
the matrix T and vector v∗.The target set, which does not contain the origin, encodes
some function of interest, which the removal of a cut set disables. The constraint

T�v ≥ v∗ (14a)

forces the reactions in Tv to be active. The below two constraints encode the steady
state operation of the metabolic network:

Sv = 0 (14b)

vi ≥ 0, i ∈ I. (14c)

We say that Cv is a cut set for Tv if vi = 0 for i ∈ Cv implies that vi = 0 for i ∈ Tv

under (14b) and (14c). It is an MCS if it contains no smaller cut sets, i.e., cut sets with
fewer elements, for Tv .

To make (14a)–(14c) infeasible, following Tobalina et al. (2016), we add the
constraints

vi ≤ 0, i ∈ I and vi = 0, i ∈ R. (14d)

Note that together, (14c) and (14d) imply v = 0.
Lemma 1 of Ballerstein et al. (2012) states that each MCS corresponds to an IIS of

(14a)–(14d). Note that an MCS could correspond to multiple IISs, but no two MCSs
correspond to the same IIS.
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We now incorporate metabolite concentrations and reaction kinetics. We assume
there is also a target set of metabolites, Tz , each of which is constrained to be in some
concentration range by

W�z ≥ z∗, (14e)

whereW and z∗ are an appropriately dimensionedmatrix and vector. Tz similarly does
not contain the origin. The below two constraints prohibit negative concentrations and
relate the concentrations to the reactions:

z ≥ 0 (14f)

vi ≤ Vmax
i zσ(i)

Km
i + zσ(i)

, i ∈ Q. (14g)

Similar to (14d), wemake this portion of the system infeasible by adding the constraint

z ≤ 0, (14h)

which, together with (14f), implies z = 0.
We note that infeasibility is not always precise enough when moving from linear to

nonlinear systems because in the latter case, the set of solutions might not be closed.
As in Kellner et al. (2019), we say that a semidefinite system is weakly feasible if any
positive perturbation to its eigenvalues makes it feasible, and weakly infeasible if it is
notweakly feasible. Feasibility impliesweak feasibility, andweak infeasibility implies
infeasibility. (14) is weakly infeasible, and hence also infeasible, because there are
positive perturbations that do not make it feasible. We henceforth take the definition
of an IIS to refer to weak infeasibility.

We now extend the definition of an MCS.

Definition 1 C = {Cv, Cz} is a cut set for {Tv, Tz} under (14b), (14c), (14f), and (14g)
if the additional constraints vi = 0 for i ∈ Cv and zi = 0 for i ∈ Cz imply that vi = 0
for i ∈ Tv and zi = 0 for i ∈ Tz . It is a CMCS if it contains no smaller cut sets.

The following lemma relates Definition 1 to the IISs of the second-order cone
system, (14).

Lemma 1 Each CMCS C = {Cv, Cz} for target set {Tv, Tz} under (14b), (14c), (14f),
and (14g) specifies an IIS of (14).

The proof is similar to that of Lemma 1 of Ballerstein et al. (2012).

Proof Consider the CMCS C = {Cv, Cz} for target set {Tv, Tz}. The definition specifies
an infeasible system consisting of (14a)–(14c), (14e)–(14g), and

vi = 0, i ∈ Cv, zi = 0, i ∈ Cz . (15)

Denote this system .  is a subsystem of (14) because (15) is a subsystem of v = 0
and z = 0. If is not irreducible, it must contain an IIS. Because the cut set isminimal,

123



65 Page 14 of 26 J. A. Taylor et al.

the removal of any element from Cv or Cz makes  feasible. Therefore, any IIS of 

must contain (15). Because C = {Cv, Cz} is distinct to the CMCS, any IIS of  is also
distinct to the CMCS. ��
As discussed for MCSs by Ballerstein et al. (2012), Lemma 1 has the following
two implications: while each IIS corresponds to at most one CMCS, a CMCS can
correspond to multiple IISs; and there may be IISs that do not correspond to a CMCS.

We now seek to relate the IISs of (14) to some dual system, which we recall was
specified by Farkas’ Lemma in the linear case by Ballerstein et al. (2012). Farkas’
Lemma does not apply to (14) due to the SOC constraint, (14g). There are several
extensions to semidefinite systems, e.g., (Klep and Schweighofer 2013), which (Kell-
ner et al. 2019) employs to generalize the results of Gleeson and Ryan (1990) and
Parker and Ryan (1996) to semidefinite systems. The dual system in this case is also
referred to as the alternative spectrahedron. Because any SOC constraint can be writ-
ten as a semidefinite constraint, the results of Kellner et al. (2019) specialize to SOC
systems like (14) without modification.

The dual system of (14) is

(
�3: − φ�) (

Vmax ◦ Km) + ρ�
v v∗ + ρ�

z z
∗ = 1 (16a)

[(
��

2: + φ
) ◦ Km

0

]
+ S�λ + δ = T�ρv (16b)

M� ((
��

1: − φ
)

◦ Vmax
)

+ γ = W�ρz (16c)

ρv ≥ 0, ρz ≥ 0 (16d)

‖�:i‖ ≤ φi , i ∈ Q. (16e)

λ is the dual variable of (14b); δ of v = 0; γ of z = 0; ρv of (14a); ρz of (14e); and
(�i , φi ), i ∈ Q, of the SOC form of (14g).

Theorem 3.2 of Kellner et al. (2019) states that if (14) is weakly infeasible, then
each of its IISs corresponds to an extremal point of (16). More precisely, each IIS
determines the nonzero entries of some extremal point of (16). We can thus identify
CMCSs by finding the extremal points of (16).

Unfortunately, (16) may have extremal points that do not correspond to an IIS
of (14). Theorem 4.1 of Kellner et al. (2019) provides conditions under which the
alternative spectrahedron has a single solution; however, it does not appear to apply
in general to (16).

Lemma 3.1 of Kellner et al. (2019) states that the indices of a minimal cardinality
solution of (16) correspond to an IIS of (14). In our case, similar to Ballerstein et al.
(2012), we seek solutions in which the vectors δ and γ have minimal cardinality.

In the linear case, there are several different MILPs for solving for IISs. Likewise,
one could formulate multiple mixed-integer SOCPs (MISOCP) for finding the IISs of
(14); e.g., (9) of Kellner et al. (2019) can be expressed as anMISOCPwhen specialized
to our problem. The MISOCP below differs from Kellner et al. (2019) in that we only
seek minimal cardinality in δ and γ , and not the other variables. The portion of the
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problem corresponding to reaction fluxes is based on the MILP (14) of Klamt et al.
(2020).

min
λ,δ,γ,ρv,ρz ,�,φ,βδ,βγ

1�βδ + 1�βγ (17a)

subject to (λ, δ, γ, ρv, ρz,�, φ) solves (16)

βδ,i ∈ {0, 1}, βγ,i ∈ {0, 1} (17b)

|δi | ≤ ϒβδ,i , i ∈ R (17c)

0 ≤ δi ≤ ϒβδ,i , i ∈ I (17d)

0 ≤ γi ≤ ϒβγ,i , i ∈ M (17e)

|φi | + ‖�:i‖ ≤ ϒβγ,σ(i), i ∈ Q. (17f)

βδ and βγ are vectors of binary variables. (17b)–(17f) are disjunctive constraints that,
for large enough ϒ , either force their left hand sides to be zero or have no effect. The
left side of (17f) is the 2-norm of the SOC variable (�:i , φi ) (Alizadeh and Goldfarb
2003). We include this constraint because if β

γ

i = 0, the dual variables of (14g) and
(14h) should be zero. Given a solution, the IIS is specified by the entries of βδ and βγ

that are equal to one.
There are a number of further refinements one can make to (17). For example, by

weighting the terms in the objective, one can promote cuts with reactions or with
metabolites. To exclude either the reactions or metabolites in the target set, or a cut

that has already been found, say
(
β̂δ, β̂γ

)
, we can add the constraint

β̂δ�βδ + β̂γ�βγ ≤ 1�βδ + 1�βγ − 1.

4.2 Linear Approximation

There are severals reasons why solving (17) might not be the best way to identify
CMCSs. First, as discussed, the underlying theoretical results are weaker than in the
linear case—an extremal point of the alternative spectrahedron might not correspond
to an IIS (Kellner et al. 2019). Second, MISOCP is less tractable than MILP. And
third, given the discrete nature of cut sets, it is not clear that the nonlinearity could not
be replaced with something simpler.

The following is a standard linear approximation for when the metabolite
concentration is smaller than the Michaelis constant:

vi ≤ ηi zσ(i), i ∈ Q, (18)

where ηi = Vmax
i /Km

i . If zσ(i) is in a cut set, i.e., we set it to zero, then vi ≤ 0 under
either (14g) or (18). Definition 1 and Lemma 1 also hold in both cases. Note that while
this definition of η has precedent, any positive value would serve similarly.

Let (14)* denote (14) with (18) instead of (14g), and let α ∈ R
q
+ be the dual variable

of (18). The dual system of (14)* is
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ρ�
v v∗ + ρ�

z z
∗ = 1 (19a)

[
α

0

]
+ S�λ + δ = T�ρv (19b)

γ = M� (α ◦ η) + W�ρz (19c)

ρv ≥ 0, ρz ≥ 0, α ≥ 0. (19d)

Because (14)* is polyhedral, the results of Gleeson and Ryan (1990) and Parker and
Ryan (1996) apply—each IIS of (14)* corresponds to exactly one extreme point of
(19). Lemma 1 establishes that each CMCS corresponds to some IIS of (14)*.

Similar to (17), we can identify the IISs of (14)* by solving the below MILP.

min
λ,δ,γ,ρv,ρz ,α,βδ,βγ

1�βδ + 1�βγ (20a)

subject to (λ, δ, γ, ρv, ρz, α) solves 19 (20b)

17b − 17e (20c)

αi ≤ ϒβ
γ

σ(i), i ∈ Q. (20d)

Here (20d) serves the same role as (17f), but is linear because (18) is a linear inequality.
Note that the system Sv = 0, v ≥ 0, z ≥ 0, and (18) is a polyhedral cone, of which

we could therefore analyze the extreme rays. This is a topic of future work.

5 Escherichia coli Example

We now apply the tools we have developed to an example based on the model
e_coli_core in the BiGG database (King et al. 2016), which corresponds to
Escherichia coli str. K-12 substr. MG1655. The model has 95 reactions and 72
metabolites, of which we explicitly model the twelve that appear in Table 1.

We take all parameters for the FBA routine (7) from theCOBRAToolbox (Schellen-
berger et al. 2011;Ebrahimet al. 2013).Weaugment themodelwithMichaelis–Menten
kinetics for the reactions listed in Table 1. The values of Km and Vmax for each reaction
were taken from Table 1 from Meadows et al. (2010).

All optimizations were carried out in Python using CVXPy (Diamond and
Boyd 2016) and the solver Gurobi (Gurobi 2021). All figures were made with
Matplotlib (Hunter 2007).

5.1 CFBA

We first apply CFBA. We solve the alternative formulation described in Sect. 3.2.1,
which is identical to (9) except in two respects.

• The objective is −1�z, which corresponds to minimizing the sum of the
concentrations of the metabolites in Table 1.

• We add the constraint vb ≥ �. vb is the flux of the biomass reaction, which is
BIOMASS_Ecoli_core_w_GAM in the BiGG database.
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Fig. 1 Sensitivities of the optimal CFBA objective, the sum of the metabolite concentrations, to Vmax and
Km for ACONTa, GLCpts, and O2t. The lower bound on the biomass reaction flux is � = 0.1

We are thus finding the minimum metabolite concentrations necessary to keep the
biomass flux above �.

The SOCP for CFBA took 0.08 s to solve. For comparison, the LP for FBA took
0.007s, roughly an order of magnitude less.

Figure 1 shows the sensitivities of the optimal objective to Vmax and Km for three
of the reactions in Table 1 for � = 0.1. Given primal and dual CFBA solutions, the
sensitivities are computed via (11). Each represents the change in total metabolite
usage resulting from a small change in a Michaelis–Menten parameter, given that the
biomass reaction flux cannot go below �. Of the reactions that are not shown, 1 and
2 have sensitivities on the order of 10−4, and the rest 10−8.

We can see that the objective is most sensitive to the kinetics of Reaction 3
(ACONTa), which depends on the concentration of citrate. This reaction produces
H20 for a number of other reactions. Via inspection of the network structure and opti-
mal reaction fluxes, we can see that it also directly enables the reactions aconitase
(half-reaction B, Isocitrate hydrolyase) and then isocitrate dehydrogenase (NADP).

The objective is also sensitive to Km for Reactions 12 (GLCpts) and 17 (O2t),
which depend on glucose and oxygen, indicating that an increase in Km for either reac-
tion will significantly increase the amount of metabolite needed to keep the biomass
reaction flux at �.

Wemay interpret this as follows. High sensitivity to Km indicates that at the optimal
solution, we are near zero, on the steeply increasing part of the Michaelis–Menten
function—where a slight increase in concentration significantly increases the reaction
rate. On the other hand, high sensitivity to Vmax indicates thatwe are on the flatter, right
side of theMichaelis–Menten function—where changing themetabolite concentration
does not significantly affect the reaction rate. Note that conventional FBA does not
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Fig. 2 Optimal concentrations of citrate, glucose, and oxygen as a function of the lower bound on the
biomass reaction flux, �, in CFBA

provide this information because it identifies which reactions are important, but not
how they depend on the metabolite concentrations.

In this example, CFBA reveals that Reactions 3, 12, and 17 are successively further
to the left on the steeply increasing part of the Michaelis–Menten function. This
means that a slight increase in oxygen would significantly increase the maximum rate
of Reaction 17, whereas a slight increase in citrate and glucose would moderately
increase the maximum rates of Reactions 3 and 12, respectively.

Figure 2 shows the concentrations of citrate, glucose, and oxygen as�, the required
biomass flux, increases from 0.05 to 0.5. Because these are limiting metabolites,
their concentrations increase with �, and do so at a greater than linear rate. The
concentrations of citrate and glucose increase rapidly with � because, at the optimal
solution, they are further to the right on flatter part of the Michaelis–Menten function.
The concentration of oxygen increases least rapidly because, as described above, a
slight increase dramatically increases the reaction rate.

These concentrations are consistent with reported ranges. When � = 0.5, the pre-
dicted concentration of citrate is 1.17 mM, within the range of 1.1 to 3.5 mM reported
in Supplementary Table 3 of Bennett et al. (2009). Escherichia coli’s metabolism can
function over a wide range of oxygen concentrations. When � = 0.5, the predicted
oxygen concentration is 0.01 mM, which, for example, falls well within the range
depicted in Figure 4A of Henkel et al. (2014).
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Fig. 3 Computation time of dynamic CFBA as a function of the number of periods, τ

5.2 Dynamic CFBA

We now test dynamic CFBA by solving (13). Our secondary goal in this section is
to understand the scalability of CFBA and its dynamic extension, which we do by
varying the time horizon in (13), τ .

The objective, (13a), is to maximize the biomass concentration in the last period,
zb(τ ), as in equation (6b) in Case 2 of Mahadevan et al. (2002). The initial biomass
concentration is zb0 = 0.001, and the remaining elements of z0 are ones. The biomass
concentration evolves as

zb(t) − zb(t − 1) = �vb(t − 1),

where vb(t), as described in Sect. 5.1, is the biomass reaction flux.
As described in Sect. 3.3, we approximate the Michaelis–Menten kinetics with

the Contois function, parameterized using the values in Table 1. This means using
constraints (13h) and (13i) (and not (13f) or (13g)).

We solved (13) for time horizons ranging from τ = 50 to τ = 500. In each instance
the time step was � = 0.001 hours. Figure3 shows the time taken by the solver as
a function of τ . When τ = 50, there are 8,473 variables, and when τ = 500, there
are 84,073 variables. The trend is increasing with problem size, though some smaller
instances take longer than larger ones, presumably due to specific problem structure
and solver behavior. The longest time taken by the solver was roughly six minutes.
This confirms that, by virtue of being SOCPs, CFBA and dynamic CFBA are highly
tractable problems.

The upper plot in Fig. 4 shows the biomass, citrate, glucose, and glutamine con-
centrations through time for the case when τ = 500. Recall that in Sect. 5.1, citrate
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Fig. 4 Concentrations (upper) and reactions (lower) through time produced by dynamicCFBAwith τ = 500
periods

and glucose were two of the metabolites CFBA identified as most important. Glu-
tamine enables the glutaminase reaction, v9 (GLUN), and citrate enables aconitase, v3
(ACONTa), both of which are shown in the lower plot.

The biomass concentration increases from near zero, first exponentially, and then
more gradually—this is a standard behavior. The glutaminase reaction first increases
as the biomass concentration increases, and then decreases as the concentration of glu-
tamine drops. The aconitase reaction also increases as biomass concentration increases
and then levels out.

These observations point to several potential refinements of dynamic CFBA. First,
to induce more complicated behaviors like loss or death of biomass, one must include
more complicated exogenous conditions; e.g., in Meadows et al. (2010) there are five
different metabolic phases, some of which have distinct exogenous inputs.

A second potential shortcoming is that dynamic CFBA assumes toomuch foresight,
in that the entire trajectory of 500 periods is optimized at once, andwith full knowledge
of future exogenous inputs. Full foresight is consistent with the dynamic optimization
approach, as described in Sect. 3.3. However, it is the static optimization approach
that finds more usage today, wherein optimization only occurs within individual time
periods. A potential remedy is to implement dynamic CFBA with a shorter horizong
in receding horizon fashion (Mattingley et al. 2011). This would both limit foresight
and enhance scalability.
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Table 2 Target knockout reactions and the CMCSs found via (17) and (20)

Target CMCS from (17) CMCS from (20)

GLNS EX_nh4_e, GLUDy, GLUN gln__L_c, GLUDy, NH4t

FUM fum_c fum_c

SUCDi succ_c succ_c

CS ACONTb cit_c

MDH Biomass_Ecoli_core,
ACONTa, ADK1, FBA, PYK

ADK1, FBA, PIt2r PYK, cit_c

ME2 Did not converge EX_nh4_e, EX_pi_e FORti,
MALS, O2t AKGDH, AKGt2r,
ALCD2x, ATPS4r, NADTRHD,
TALA, succ_e

5.3 CMCS Analysis

We compute CMCSs of our example by solving (17), an MISOCP, and (20), an MILP.
In addition to the setup at the start of this section, we must also specify target sets, Tv

and Tz , in the form of (14a) and (14e).
Table 2 lists reaction ‘knockouts’ and the corresponding CMCSs found by (17) and

(20), specified by their IDs in the BiGG database (King et al. 2016). The target set in
each case consists of constraining the flux to be greater than one. Note that we only
list the first CMCSs found by the solver, that one target set can have many CMCSs,
and that a given CMCS can be a solution for both (17) and (20).

The CMCSs in Table 2 consist of reactions, metabolites, or combinations of both.
For example, to disable the glutamine synthetase reaction (GLNS), we can eliminate
the substrate L-Glutamine (gln__L_c) and disable the glutamate dehydrogenase
(NADP) (GLUDy) and ammonia reversible transport (NH4t) reactions. On the other
hand, conventional MCS analysis can only identify critical reactions, not metabolites.

The prevalence ofmetabolites in theCMCSs depends onwhich reactions are limited
by Michaelis–Menten kinetics. For instance, fum_c and succ_c are both CMCSs
because they limit FUM and SUCDi, among other reactions. Note that adding more
metabolites and Michaelis–Menten constraints will increase the number of CMCSs,
but does not invalidate those that exist for a smaller number of metabolites.

The computation time in all but the final case was under one second. In the last
case, (20) took six seconds to solve, and (17) was still not solved after an hour. This
highlights the fact that MILP and MISOCP are NP-hard, and similar instances of a
problem can take very different times to solve.

Problem (20) often has the same or similar solutions to (17) and, due to the higher
tractability and maturity of MILP, is easier to solve in some cases. For these reasons,
(20) appears to be more practical than (17).
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6 Conclusion

By representing the Michaelis–Menten kinetics as a second-order cone constraint, we
can add metabolite concentrations to standard models of metabolic networks without
losing much tractability. This has enabled us to formulate several new tools: conic
flux balance analysis, dynamic conic flux balance analysis, and conic minimal cut
set analysis. In our numerical examples, we demonstrated that each of these new
problems is tractable and can provide insight into both reaction fluxes and metabolite
concentrations.

There are several directions for future work. We believe that there are numerous
potential applications to the many different organisms there are. Such studies could
both provide new insights into metabolic networks and further clarify when these
tools are appropriate. A starting point for this is applying them to larger metabolic net-
work models. This entails augmenting more existing models with Michaelis–Menten
parameter data. There is also room for methodological advancements. For example, a
receding horizon implementation (Mattingley et al. 2011) could make dynamic conic
flux balance analysis both more realistic and tractable. The SOC representation of
Michaelis–Menten could be incorporated into flux variability analysis (Gudmundsson
and Thiele 2010) so as to find near optimal ranges of both fluxes and metabolites.
There is certainly more to understand about the basic geometry of our setup, which,
though convex, is not amenable to many of the techniques used to analyze polyhedral
models.

A Second-order Cone Programming

We here provide cursory background on SOCP, and refer the reader to Alizadeh and
Goldfarb (2003) and Boyd and Vandenberghe (2004) for in-depth coverage. Let A ∈
R
m×n , b ∈ R

m , c ∈ R
n , and d ∈ R. A standard form SOC constraint on the variable

x ∈ R
n is written

‖Ax + b‖ ≤ c�x + d,

where the left-hand side is the two-norm. If A = 0, this reduces to a linear constraint.
A commonly occurring constraint with SOC form is the hyperbolic constraint x21 ≤

x2x3. It can be written

∥∥∥∥

[
2x1

x2 − x3

]∥∥∥∥ ≤ x2 + x3.

We must also require x2 ≥ 0 and x3 ≥ 0.
An optimization problemwith a linear objective and p SOC constraints is an SOCP,

and can in general be written

min
x

f �x
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subject to ‖Ai x + bi‖ ≤ c�
i x + di , i = 1, ..., p,

where Ai ∈ R
mi×n , bi ∈ R

mi , ci ∈ R
n , and di ∈ R. Note that the number of rows

in Ai and bi can be different for each i . SOCP is a generalization of LP because any
linear constraint can be written as an SOC constraint.

The SOC is self-dual, i.e., its dual cone is the SOC. The dual of an SOCP is therefore
also an SOCP. The dual of the above SOCP is

min
ui ,vi , i=1,...,p

p∑

i=1

b�
i ui + divi

subject to
p∑

i=1

A�
i ui + vi ci = f

‖ui‖ ≤ vi , i = 1, ..., p.

Strong duality is attained if a constraint qualification holds, e.g., the existence of a
Slater point. In this case the two optimizations have the same objective.
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