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Abstract
The development of autoimmune diseases often takes years before clinical symptoms
become detectable. We propose a mathematical model for the immune response dur-
ing the initial stage of Systemic Lupus Erythematosus which models the process of
aberrant apoptosis and activation ofmacrophages and neutrophils. NETosis is a type of
cell death characterised by the release of neutrophil extracellular traps, or NETs, con-
taining material from the neutrophil’s nucleus, in response to a pathogenic stimulus.
This process is hypothesised to contribute to the development of autoimmunogenicity
in SLE. The aim of this work is to study how NETosis contributes to the establishment
of persistent autoantigen production by analysing the steady states and the asymptotic
dynamics of the model by numerical experiment.
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1 Introduction

A pathogenic adaptive immune response manifests itself in terms of autoimmunity or
chronic inflammation, but just like the normal immune response, it relies on prior acti-
vation of the innate immunity. If the innate response is excessive or protracted in time,
it may trigger a pathogenic adaptive response, especially in genetically predisposed
patients (Theofilopoulos et al. 2011; Tsokos et al. 2016).

Aberrant apoptosis and dysfunctional clearance of biological waste are associated
with the emergence of autoimmune response in systemic lupus erythematosus (SLE).
In the process of programmed cell death, chromatin from the nucleus is translocated
to the cell surface in microvescicles or blebs. Under normal circumstances, early
apoptotic cells are cleared from the tissue by macrophages and dendritic cells, without
causing inflammation.

When this process is disrupted, apoptotic blebs at the surface of a dying cell
may start to break and nuclear material which has accumulated inside them could
be spontaneously released in the tissue (Casciola-Rosen et al. 1994) and exposed
to the immune system. Since cellular content has been partially modified during
the apoptotic process (resulting, for instance, in modified histones, chromatin), it
may escape the normal tolerogenic mechanism, become immunogenic and initiate an
aberrant immune response, involving abnormal T and B lymphocyte activation, pro-
inflammatory signalling, and production of broad spectrum of autoantibodies (Dieker
et al. 2007; Fransen et al. 2010; Tsokos et al. 2016; Yaniv et al. 2015). A hallmark
of SLE is the production of autoantibodies against components of nuclear origin,
including chromatin, and the deposition of chromatin-antibody complexes in tissue
exacerbates local inflammation and organ damage (Dieker et al. 2015). The process of
the spread of autoimmunity may last for years before the onset of clinical symptoms,
and the mechanisms behind the build-up and estabishment of persistent autoantigen
production during the initiation stage of SLE are not entirely clear (Tsokos et al. 2016;
Tsokos 2020).

Neutrophils are white blood cells (leukocytes) which make up to 70% of the white
blood cells in the human body (Okada et al. 2010). They play a critical role in the
innate immune response by fighting pathogens. Along with phagocytosis and degran-
ulation, another weapon in the neutrophil arsenal for fighting pathogens is NETosis,
a process based on expelling chromatin, nuclear, cytoplasmic and granular material,
proinflammatory cytokines, and antimicrobial peptides from the neutrophil cell, result-
ing in its death and the formation of a neutrophil extracellular trap (NET) (Smith and
Kaplan 2015). The NET is made of decondensed chromatin, forming web-like DNA
structures whose role is to trap pathogens and to prevent their further spread in the
organism (Gillot et al. 2021).

With increased understanding of the mechanism of NETosis, it has been nicknamed
a “double-edged” sword (Thiam et al. 2020), since the presence of NETs may also
be associated with an inadequate immune response (Gillot et al. 2021). The reason
is that exposed, extracellular chromatin could be recognised as an antigen, triggering
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an immunogenic response against the host organism itself. NETosis is suspected to
be a factor for the development of autoimmune diseases, such as SLE (de Bont et al.
2019; Thiam et al. 2020), and for complications in infectious diseases including blood
clots in severe forms of COVID-19 (Gillot et al. 2021), which may also occur in a
sex-biased manner (Ritter and Kararigas 2020; Kararigas 2022).

Defective clearance of biological waste (apoptotic cells, nuclear debris, immune
complexes, NETs) following an environmental trigger, an infection, injury, stress or
trauma is an important factor for the emerging loss of tolerance, initiation of an autoim-
mune response and tissue damage in SLE (Gaipl et al. 2005; Tsokos et al. 2016).
Circulating chromatin with apoptotic origin in serum is associated with SLE and is
absent from serum of patients with rheumatoid arthritis and systemic sclerosis (Dieker
et al. 2016). On one hand, microparticles derived from apoptotic cells in the case of
SLE have been found to enhance the formation of NETs, leading to a feed-forward
effect on the autoimmune response (Dieker et al. 2016; Villanueva et al. 2011). On
the other hand, neutrophils in SLE patients’ serum are more prone to NET formation,
serving as a source of autoantigen themselves (Bouts et al. 2012).

In this study, we present a novel mathematical model of the basic interactions
between the major players in NETosis: neutrophils and macrophages (M�), which are
antigen-presenting cells (APCs). We consider two types of antigen: material originat-
ing from apoptosis which does not elicit inflammation, and autoantigen with diverse
origins such as content of apoptotic blebs that have ruptured and expose modified
nuclear material, such as chromatin, as well as nuclear content expelled from neu-
trophils during NETosis.

We use this mathematical model to study the contribution of one innate immune
mechanism, NETosis, to the complex process in the SLE initiation stage. We per-
form theoretical analysis and conduct numerical experiments to identify conditions
that lead to persistence of autoantigen in the organism. This event is important for
SLE pathophysiology whereby it could cause inflammation and, over time, initiate an
adaptive autoimmune response process, for instance, after autoantigen delivery to the
lymph node. This distinguishes our work from models in the literature which focus
on the chronic stage of SLE and assume an established autoimmune response (Budu-
Grajdeanu et al. 2010; Gao et al. 2022), study organ damage in the case of Lupus
nephritis (Hao et al. 2014), or work with aggregate features of the disease without
elucidating the mechanisms behind its pathophysiology (Yazdani et al. 2023).

In Sect. 2, we present the model described as a system of ordinary differential
equations. In Sect. 3, we analyse the steady states branches of the model which have
biological relevance, and the type of bifurcations that connect them. Section4 sum-
marises the numerical experiments conducted to analyse the bifurcation structure
where it is not possible to derive analytical results, and some examples of the tem-
poral dynamics. We conclude in Sect. 5 with a discussion of the model’s properties
and their biological interpretation. The model reveals that several types of equilibria
are possible, which correspond to a normal and pathological states. The dynamics can
exhibit bistability as well as oscillatory regime for various parameter ranges. These
features support the important, but not exclusive role of NETosis in the pathogenesis
of SLE, but also show that macrophage activity is important in the accumulation of
apoptotic waste and autoantigen.
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2 Mathematical Model

We consider a simple scheme of interactions reflecting the production of apoptotic
material x1, autoantigen (modified and exposed nuclear and cytoplasmic material,
also known as exposed hidden-self in the literature) x2, and two types of cells: neu-
trophils z(t) and antigen-presenting cells y(t) (macrophages,M�) which are activated
and recruited by the presence of either types of antigen. The APCs produce proinflam-
matory cytokines, which in turn activate neutrophils. We study how the interactions
between them could lead to a sustained production of autoantigen that is a hallmark of
the initial stages of Lupus, whereby a dysfunctional immune response could arise as
a result of an environmental trigger, a pathogen infection or tissue damage [e.g. due
to UV irradiation or exposure to toxins (Tsokos et al. 2016)].

The variables with their units are listed in Table 1, a scheme of the model is given
in Fig. 1, and the system of ordinary differential equations describing the dynamics is
in (1):

x ′
1 = σ1y − β1yx1

κy + x1 + x2
− ν1x1 − μ1x1 (1a)

x ′
2 = ν1x1 − β2yx2

κy + x1 + x2
+ αν2zx2 − μ2x2 (1b)

y′ =
(

β1yx1
κy + x1 + x2

+ β2yx2
κy + x1 + x2

)
σ2 − μ4y − μ5y

2 (1c)

z′ = σ3 + β3y

κz + y
− μ3z − ν2zx2 (1d)

The equation for apoptotic material (1a) contains a term for its production which
depends on the macrophages σ1y. This is a simple way to model the very complex
process of apoptosis, which involves an intricate network of chemokines, cytokines
and immune cells. While macrophages induce apoptosis in normal cells in vivo (Diez-
Roux and Lang 1997; Lang and Bishop 1993), they also trigger production of pro-
inflammatory cytokines and chemokines (such as IL-6, IL-12, IL-18, TNFα). These
activate dendritic cells and killer T-cells, whose cytotoxic action causes apoptosis in
situ (Vermare et al. 2022).

The remaining terms in (1a) represent the removal of apoptotic material by
macrophages at rate ϕ1y, and due to other factors at rate μ1x1 (such as action of
the complement system) that we do not model explicitly. Apoptotic material x1 that is

Table 1 Phase variables of the
model with their units

Variable Definition Unit

x1(t) Apoptotic material µg/ml

x2(t) Autoantigen µg/ml

y(t) Macrophages cells/ml

z(t) Neutrophils cells/ml
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not picked up and cleared by macrophages action eventually converts into late apop-
totic material in blebs at rate ν1x1. The functional form of this conversion process is
well-known from ecological models of predation with resource conversion (Focardi
et al. 2017; Jansen and Van Gorder 2018; Nevai and Van Gorder 2012), and has been
used as well as in a model for type I diabetes (Marée et al. 2006).

The terms for autoantigen production in (1b) are two: one represents the quantity
originating from material in blebs ν1x1, and another for the amount of nuclear and
cytoplasmic material released as a result of NET formation. The term for the NET
formation in (1b) follows the law of mass action, and is proportional to the quantities
of neutrophils and autoantigen—it occurs at a rate αν2x2z. Here, the parameter α

represents the yield of autoantigen during NETosis, an important source of the nuclear
antigens that cause auto-antibody production in SLE patients (Lande et al. 2011;
Tsokos et al. 2016). autoantigen is picked up by macrophages at rate ϕ2y and removed
due to other factors such as complement at rate μ2x2.

The picking and removal of antigen by macrophages is modelled with a motivation
in ecological models of consumers with multiple resources (Abrams 1987; Marten
1973). We use a Holling type-II functional response with competition:

ϕ1(x1, x2) = β1x1
κy + x1 + x2

, ϕ2(x1, x2) = β2x2
κy + x1 + x2

.

This particular functional response represents the assumption that an individual
antigen-presenting cell is constrained in its capacity to pick up circulating antigen,
and to internalise it, processing it into the peptide fragments which are displayed on
its membrane. Hence, ϕi (x1, x2) is a increasing but saturating function in xi , i = 1, 2,
and reflects the constraint of pick-up and internalisation as in Holling’s original model
from ecology (Holling 1959). However, handling the other circulating antigen x3−i

reduces the APC capacity to pick up and process xi . Due to the competition between
the two types of circulating antigen in the model, the functional response ϕi is a
decreasing function of x3−i . In vitro observations of digestion of apoptotic cells by
macrophages in animals with autoimmune diabetes (Marée et al. 2005) also supports
the use of such functional response in the model.

The equation for activated macrophages (1c) contains a term for their activation
and recruitment after uptake of the two types of material: x1 being apoptotic in origin,
but not inflammatory, and x2 being autoimmunogenic stemming from nuclear material
in late apoptotic blebs or resulting from NETosis. This is represented by a bulk rate
σ2 to keep the model structure simple enough. The quadratic term −μ4y − μ5y2

representing the macrophages’ growth towards a carrying capacity (β1+β2)σ2−μ4
μ5

in
the presence of antigen. In this manner the model takes into account crowding effects
that reduce the growth of the activated macrophages population as done in a model
for type-1 diabetes (Marée et al. 2006).

The equation for neutrophils (1d) contains constant production termσ3 and degrada-
tion with rate μ3 term. The last term stands for NET formation, as already mentioned.
The term β3y

κz+y accounts for the stimulatory action of proinflammatory cytokines result-
ing from the action of macrophages. In fact, type I interferon primes neutrophils for
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Fig. 1 Scheme of the model

NET release in patients with SLE, suggesting a possible positive feedback loop (Lande
et al. 2011; Tsokos et al. 2016).

Note that the model (1) does not distinguish between macrophages which belong
to type M1 (classically activated) or M2 (alternatively activated). The reason for this
is to maintain the structure simple enough, especially because we do not explicitly
model any pro-inflammatory cytokines, nor presentation of antigens to B cells which
leads to production of autoantibodies in the longer run. We stress that strict positivity
of A = (β1 + β2)σ2 − μ4 is required in (1c) because otherwise y′(t) will always be
negative.

Parameter description and value ranges used in the model and in the numerical sim-
ulations are listed in Table 2 and under the respective figures illustrating the findings.
The parameter range estimates are provided in the Supplementary Material.

In Sect. 3, we perform analysis of the equilibria of (1). We show that this model
has stable equilibria with strictly positive amounts of autoantigen x2, as well as stable
limit cycles where the two types of antigen coexist in time. In addition, the model also
demonstrates multistationarity and bistability, as illustrated by numerical bifurcation
analysis in Sect. 4.

Estimates for the analytical solution of (1) (non-negativity and uniform bounded-
ness in time) are made for t > 0. Their proofs are included as Propositions 1 and 2 in
the Supplementary Material. These statements together imply that the solution to (1)
exists for all t > 0 for non-negative initial conditions.

3 Analysis of Equilibria

We study the equilibria (steady states) of the model by setting the right-hand side
of (1) to zero and solving the corresponding algebraic system. For every equilibrium,
we analyse the local asymptotic stability using the Jacobi matrix of the right-hand side
of system (1) We distinguish between three types of equilibrium points which have
biological relevance:
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1. Normal state E0 with x1 = x2 = y = 0, z = σ3
μ3
. In this equilibrium, there is

no apoptosis, no antigen and no activated macrophages, and neutrophils are at
equilibrium. The Jacobi matrix is

J(E0) =

⎛
⎜⎜⎝

−ν1 − μ1 0 σ1 0
ν1 αν2

σ3
μ3

− μ2 0 0
0 0 −μ4 0
0 −ν2

σ3
μ3

β3
κz

0

⎞
⎟⎟⎠ (2)

The eigenvalues of the Jacobi matrix in this case are

λ1 = −μ3, λ2 = −μ4, λ3 = −ν1 − μ1, λ4 = ασ3ν2 − μ2μ3

μ3
,

and the equilibrium E0 is locally asymptotically stable when the parameters of the
model satisfy the inequality ασ3ν2 − μ2μ3 < 0, i.e.

α < α0 = μ2μ3

σ3ν2
. (3)

2. Absence of apoptosis state E1, with equilibrium components

x1 = y = 0, x2 = ασ3ν2 − μ3μ2

μ2ν2
, z = μ2

αν2
.

In E1 there are no activated macrophages, and no material with apoptotic ori-
gin, while the only positive components are the neutrophils and the autoantigen
resulting from NETosis only. This state would represent a pathological state of the
immune system. E1 is feasible so long as ασ3ν2 − μ3μ2 > 0, i.e.

α > α0 = μ2μ3

σ3ν2
. (4)

The Jacobi matrix is

J(E1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−ν1 − μ1 0 σ1 0

ν1 0 β2

(
κyμ2ν2

−μ2μ3+κyμ2ν2+αν2σ3
− 1

)
α

(
αν2σ3

μ2
− μ3

)

0 0 β2σ2

(
1 − κyμ2ν2

−μ2μ3+κyμ2ν2+αν2σ3

)
−μ4 0

0 −μ2
α

β3
κz

− αν2σ3
μ2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(5)

The eigenvalues of the Jacobi matrix J(E1) are

λ1 = −μ1 − ν1,

λ2 = β2σ2

(
1 − k2μ2ν2

k2μ2ν2 + αν2σ3 − μ2μ3

)
−μ4,

λ3 = p + q, λ4 = p − q
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where p and q depend on the parameters of the model. Moreover, λ3 + λ4 =
−αν2σ3

μ2
< 0 and λ3λ4 = ασ3ν2 −μ2μ3 > 0 because otherwise the x2 component

of the equilibrium point E1 would be negative. The last two estimates together
mean that λ3 and λ4 are either both negative real or complex conjugates with
negative real parts. Therefore, the only condition for the (local) stability of E1 is
λ2 < 0 which depends on the choice of the parameters and requires

α < α1 = μ2μ3μ4 − κyμ2μ4ν2 − β2μ2μ3σ2

μ4ν2σ3 − β2ν2σ2σ3
. (6)

This condition is compatible with the feasibility condition (4) stated above because
α0 < α1 for every choice of parameters.
E1 may actually be never observed in vivo because, in practice, macrophages
would be always recruited to a site of inflammation, and some apoptosis would
occur there. It may so happen that in our simplified model, the system may con-
verge asymptotically to E1, a state where autoantigen production resulting from
NETosis would persist after clearance of apoptotic material. For the parameter
values we choose for the bifurcation analysis, the range of α where E1 is locally
asymptotically stable is very narrow.

3. Coexistence of antigen state E∗ (strictly positive quantities of all phase variables,
x∗
1 , x

∗
2 , y

∗, z∗ > 0). This equilibrium represents the onset of pathology where
autoantigen persists as a result of insufficient clearance of apoptotic material
becoming exposed to the immune system in the form of ruptured apoptotic blebs
or from nuclear or cytoplasmic content expelled from neutrophils during NETo-
sis. Computation of the exact values involves solutions of high-degree polynomial
whose explicit solution is not feasible.

3.1 Bifurcations at the Threshold Values

Bifurcation theory gives dependence of qualitative model outputs upon variation of
some or more parameter values. To examine the type of bifurcations at the threshold
values of α between E0, E1 and E1, E∗ we use Sotomayor’s theorem (Perko 2001).
Let us denote the right hand-side of (1) by

f(x1, x2, y, z, α) =

⎛
⎜⎜⎜⎜⎜⎝

σ1y − β1yx1
κy+x1+x2

− ν1x1 − μ1x1

ν1x1 − β2 yx2
κy+x1+x2

+ αν2zx2 − μ2x2(
β1yx1

κy+x1+x2
+ β2 yx2

κy+x1+x2

)
σ2 − μ4y − μ5y2

σ3 + β3y
κz+y − μ3z − ν2zx2

⎞
⎟⎟⎟⎟⎟⎠

.

Using the estimates from the previous section we set as bifurcation parameter α

and threshold values

α0 = μ2μ3

σ3ν2
,
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α1 = μ2μ3μ4 − κyμ2μ4ν2 − β2μ2μ3σ2

μ4ν2σ3 − β2ν2σ2σ3
.

The partial derivative of f with respect to α is

fα(x1, x2, y, z, α) = ∂f(x1, x2, y, z, α)

∂α
= (0, x2zν2, 0, 0)

T .

In the following we shall present some analysis of bifurcations of the model as we
vary the parameter α.

3.1.1 Transcritical Bifurcation Between E0 and E1

It is already shown in the previous section that J(E0) has three strictly negative eigen-
values. The only eigenvalue of J(E0) that can become zero is λ4 = ασ3ν2−μ2μ3

μ3
exactly

when α = α0. Let v0 be the right eigenvector corresponding to the zero eigenvalue
λ4 = 0 of J(E0) in this case,

v0 =
(
0,− μ2

3

ν2σ3
, 0, 1

)T

.

Let w0 be the right eigenvector corresponding to λ4 = 0 of JT(E0),

wT
0 =

(
μ4

σ1
,
μ4(μ1 + ν1)

ν1σ1
, 1, 0

)
.

Then

wT
0 fα

(
0, 0, 0,

σ3

μ3
, α0

)
= x2zμ4(μ1 + ν1)ν2

ν1σ1
= 0,

wT
0

[
D fα

(
0, 0, 0,

σ3

μ3
, α0

)
v0

]
= −μ3μ4(μ1 + ν1)

ν1σ1
< 0,

wT
0

[
D2 f

(
0, 0, 0,

σ3

μ3
, α0

)
(v0, v0)

]
= −2μ2μ3μ4(μ1 + ν1)

ν1ν2σ1σ
2
3

< 0.

Then Sotomayor’s theorem implies that the system (1) experiences a transcritical
bifurcation at E0 as α varies through the threshold value α0.

3.1.2 Bifurcation Between E1 and E∗

It is clear from the previous section that the only eigenvalue of J(E1) which can
vanish is λ2 and this happens exactly when α = α1. Let v1 be the right eigenvector
corresponding to the zero eigenvalue λ2 = 0 of J(E1),
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v1 =

⎛
⎜⎜⎜⎜⎜⎝

kyμ2μ4σ1σ2(kyμ4ν2+β2μ3σ2−μ3μ4)

(μ4−β2σ2)2(μ4(μ1+ν1)−ν1σ1σ2)σ3
(kyμ4ν2+β2μ3σ2−μ3μ4)

2(kyβ3μ2μ4(μ1+ν1)σ2+κz(μ4−β2σ2)(μ4(μ1+ν1)−ν1σ1σ2)σ3)

κzν2(β2σ2−μ4)3(μ4(μ1+ν1)−ν1σ1σ2)σ
2
3

kyμ2μ4(μ1+ν1)σ2(κyμ4ν2+β2μ3σ2−μ3μ4)

(μ4−β2σ2)2(μ4(μ1+ν1)−ν1 σ1σ2)σ3

1

⎞
⎟⎟⎟⎟⎟⎠

.

Let w1 be the left eigenvector corresponding to the zero eigenvalue λ2 = 0 of J(E1),

wT
1 = (0, 0, 1, 0).

Then

wT
1 fα

(
0,

α1σ3ν2 − μ3μ2

μ2ν2
, 0,

μ2

α1ν2
, α1

)
= 0,

wT
1

[
Dfα

(
0,

α1σ3ν2 − μ3μ2

μ2ν2
, 0,

μ2

α1ν2
, α1

)
v1

]
= 0,

whichmeans that theSotomayor’s theorem is inconclusive in this case, yet the transcrit-
ical bifurcation can be established by numerical continuation for the sets of parameter
values we employ.

The analytic expressions for the threshold valuesα0, α1 reveal an inverse correlation
with the rate of NETosis ν2. Whenever ν2 decreases, both α0, α1 increase. If other
parameters are kept constant, one would expect that with a sufficient decrease in ν2,
the normal state E0 could become locally and, potentially, globally asymptotically
stable over the entire biologically relevant range of α. However, in Sect. 3.2 we show
that in general, stability of E0 could be at most local for α ≈ 0.

3.2 Multistationarity for˛ ≈ 0

We show that the model (1) can exhibit the property of multistationarity for small
values of α. In other words we show that at least two equilibria of coexistence type
E1∗ �= E2∗ may exist in parallel for α ≈ 0 depending on the choice of parameters.
This is important because a dynamical system with multiple steady states may exhibit
bistability. In other words, for a given set of parameter values the temporal evolution
can have different asymptotic behaviour depending on the initial condition. In fact,
we have already established that for sufficiently small α, the normal state E0 is locally
asymptotically stable. If one of the coexistence equilibria for this range is also locally
asymptotically stable, then the system (1) has the bistability property.

Let α = 0, and set the right-hand side of (1) to 0. Then the algebraic equation
for z′ = 0 is uncoupled from the other three and we transform the equations for
x ′
1, x

′
2, y

′ = 0 algebraically to solve for the equilibrium values.
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We assume y �= 0 in order to divide y′ = 0 by y. Multiplying the resulting equation
from (1c) by σ2 and adding (1a) and (1b) to it yields

μ1x1 + μ2x2 = σ1y − μ4y

σ2
− μ5y2

σ2
. (7)

On the other hand, rearranging (1c) gives

(σ2β1 − (μ4 + μ5y))x1 + (σ2β2 − (μ4 + μ5y))x2 = κy(μ4 + μ5y). (8)

Taking y as free parameter we have a linear system for x1, x2, which has a unique
solution so long as

μ1(σ2β2 − (μ4 + μ5y)) − μ2(σ2β1 − (μ4 + μ5y)) �= 0. (9)

Observe that if both β1 = β2 andμ1 = μ2, the left-hand side of (9) is identically zero.
Assuming for simplicity β1 = β2 = β,μ1 �= μ2, κy = 1 we solve the system (7)-

(8) in the parameter y,

x1 = μ2μ4σ2−μ2
5 y

3+μ5[(β+σ1)σ2−2μ4]y2+
(
βμ4σ2−μ2

4+μ2μ5σ2+μ4σ1σ2−βσ1σ
2
2

)
y

σ2(μ1μ4−μ2μ4−βμ1σ2+βμ2σ2+μ1μ5y−μ2μ5y)
,

x2 = −μ1μ4σ2−μ2
5 y

3+μ5[(β+σ1)σ2−2μ4]y2+
(
βμ4σ2−μ2

4+μ1μ5σ2+μ4σ1σ2−βσ1σ
2
2

)
y

σ2(μ1μ4−μ2μ4−βμ1σ2+βμ2σ2+μ1μ5y−μ2μ5y)
.

After substitution into (1a) we arrive to the following fifth-order polynomial in y

�(y) = μ3
5y

5 + μ2
5 (3μ4 − 2βσ2 − σ1σ2) y

4

+
(
3μ2

4μ5 − μ1μ
2
5σ2 − μ2μ

2
5σ2 − μ2

5ν1σ2 + β2μ5σ
2
2 − 4βμ4μ5σ2

− 2μ4μ5σ1σ2 + 2βμ5σ1σ
2
2

)
y3

+
(
μ2
4 (μ4 − σ1σ2) − 2βμ2

4σ2 + β2σ 2
2 (μ4 − σ1σ2)

− 2μ1μ4μ5σ2 − 2μ2μ4μ5σ2 − 2μ4μ5ν1σ2

+βμ1μ5σ
2
2 + βμ2μ5σ

2
2 + βμ5ν1σ

2
2 + 2βμ4σ1σ

2
2

+ μ2μ5σ1σ
2
2 + μ5ν1σ1σ

2
2

)
y2

+
(
βμ1μ4σ

2
2 − μ2μ

2
4σ2 − μ2

4ν1σ2 − μ1μ
2
4σ2 + βμ2μ4σ

2
2 + βμ4ν1σ

2
2

−βμ2σ1σ
3
2 − βν1σ1σ

3
2

+ μ1μ2μ5σ
2
2 + μ2μ5ν1σ

2
2 + μ2μ4σ1σ

2
2 + μ4ν1σ1σ

2
2

)
y

+ (μ1 + ν1)μ2μ4σ
2
2

whose roots determine the values of y at equilibrium under the above conditions.
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Furthermore, to ensure positivity of both x1, x2, Eq. (7) implies y must satisfy

σ1y − μ4y

σ2
− μ5y2

σ2
> 0

or

0 < y < ỹ ≡ σ1σ2 − μ4

μ5
. (10)

To ensure the existence of at least two positive real roots y of � as in (10) we have
to impose

�(0) > 0, �(ỹ) > 0, ∃q ∈ (0, ỹ) : �(q) < 0. (11)

It holds that �(0) = (μ1 + ν1)μ2μ4σ
2
2 > 0, and

�(ỹ) = σ1σ
3
2 (μ2μ5(μ1 + ν1) + (β − σ1)μ1(σ1σ2 − μ4))

μ5
.

For �(ỹ) > 0 the following inequality has to be satisfied:

μ2μ5(μ1 + ν1) + (β − σ1)μ1(σ1σ2 − μ4) > 0,

which is equivalent to

μ1β(μ4 − σ1σ2) < μ1σ1(μ4 − σ1σ2) + μ2μ5(μ1 + ν1). (12)

The following cases arise from (12):

1. μ4 − σ1σ2 > 0: Then the right side of (12) is positive and therefore

β <
μ2μ5(μ1 + ν1) + μ1σ1(μ4 − σ1σ2)

μ1(μ4 − σ1σ2)
.

2. μ4 − σ1σ2 < 0: Then

(a) If μ2μ5(μ1 + ν1) + μ1σ1(μ4 − σ1σ2) > 0, (12) is satisfied for every positive
β.

(b) If μ2μ5(μ1 + ν1) + μ1σ1(μ4 − σ1σ2) < 0 then

β >
−μ2μ5(μ1 + ν1) + μ1σ1(σ1σ2 − μ4)

μ1(σ1σ2 − μ4)
.

If there are multiple roots of �(y) which satisfy the conditions for positivity, then
by continuing the solution of the algebraic system of the right-hand side of (1) set to
0 for positive α ≈ 0, we expect to find some range of α > 0 where multistationarity
of (1) is present. We shall give an illustration of this property in Sect. 4.
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4 Computational Results

Since the proposed model (1) is highly nonlinear, we shall continue the bifurcation
analysis using numerical methods. We use the MatCont toolbox for numerical con-
tinuation (Dhooge et al. 2008) and Wolfram Mathematica (Wolfram Research, Inc
2023) for time integration of the system of ordinary differential equations.

Model (1) aims at casting inmathematical terms processes that occur during the ini-
tial stage of SLE. Since these predate clinical manifestations by years, not all variables
in themodelmight be observed ormeasured.While some of themodel parametersmay
be estimated in some range from experimental observations, but many are not avail-
able from experimental measurements, we shall explore the behaviour of the model
by varying their values across biologically relevant ranges. We will explore several
scenarios which reflect the most important dynamical features of (1).

First,we explore changes in the yield of autoantigen fromNETosisα in Sect. 4.1.We
interpret smaller values of the yield α as a scenario where the immune systemmanages
to clear the neutrophil extracellular traps more efficiently, reducing the amount of
exposed cytoplasmic, nuclear and granular material which could trigger an aberrant
immune response.

Second, in Sect. 4.2 we also study the effect of changes in the macrophage recruit-
ment/activation rate σ2 on the model dynamics. Macrophage activation depends on the
amount of receptors involved in pathogen binding, and recruitment and/or activation
of macrophages may be influenced by biological sex and/or sex hormones.

We recall that the dysfunction of the complement system in SLE is well-
known (Botto and Walport 2002; Gaipl et al. 2005). Complement protein C1q
is important for an effective clearance of apoptotic material as demonstrated by
experimental mouse models. C1q-deficient mice are characterised by significantly
greater numbers of apoptotic bodies and autoantibody production compared with con-
trol (Botto et al. 1998); so, in our mathematical model we can suppose a positive
correlation between the functionality of C1q and the rate ν1 at which late apoptotic
material is produced from inappropriately cleared dying cells. Lower functionality or
deficiency of C1q would be associated to a higher value of ν1. In Sect. 4.3 we explore
the effect of changes of ν1 on the model dynamics.

There, we also perform bifurcation analysis using as free parameter the production
rate of apoptotic material σ1. In our model, this parameter is a generalised measure of
the rate at which apoptotic cells are introduced, as a result of for example, infection,
tissue damage, etc. We interpret larger values of σ1 as a more pronounced effect of
macrophages on preparing cells for apoptosis.

Finally, in Sect. 4.4 we vary the maximum pick-up rates β1, β2 to see how sensitive
is the relative abundance of autoantigen x2 in the total amount of antigen x1 + x2.

We have chosen different sets of parameter values to illustrate the wide range of the
asymptotic behaviours of model (1). Results of the numerical experiment are plotted
as bifurcation diagrams, which show the values at equilibrium for the variables of
model (1) as a function of a bifurcation parameter. In the bifurcation diagrams, locally
asymptotically stable equilibria are plotted as a thick curve,whereas unstable equilibria
are a dashed or dotted line. Solutions which are periodic in time are described in terms
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Fig. 2 Bifurcation diagram α versus x2 for α ∈ (0, 8×10−5). In the zoomed panel, the branch of state E0
is shown in green, branch of state E1 in magenta, the branch of E∗ in blue. The red lines mark the minima
and maxima values in the limit cycle which arises from the supercritical Hopf bifurcation (parameters (P.1)
(color figure online)

of the minimum and maximum value of the cycle as a function of the bifurcation
parameter.

4.1 Varying˛

For our first numerical experiment we use values

μ1 = 12, μ2 = 11, μ3 = 1.25, μ4 = 0.2;μ5 = 8.18×10−7,

σ1 = 10−5, σ2 = 9000, σ3 = 5×106, ν1 = 0.5, ν2 = 0.5,

β1 = 5.8×10−4, β2 = 5.9×10−4, β3 = 6000, κy = 1, κz = 104.

(P.1)

In Fig. 2 we present the bifurcation diagram of the values of x2 as functions of α. The
values of x1 are plotted in Fig. S.1 in the Supplementary Material. We vary the value
of α in the interval (0, 2.5×10−4) μg/cell. In accordance with the analytical result in
Sect. 3, for small values of α the normal state is locally asymptotically stable. There is
a transcritical bifurcation atα0 = 5.5×10−6 where E1 appears and exchanges stability
with E0, which is a consequence of the analysis in Sect. 3.1. At α1 ≈ 5.509×10−6,
E1 becomes unstable and the coexistence state E∗ branches from the state E1. This is
better observed in Fig. 2; note that since in both equilibria E0 and E1, the value x1 = 0,
and these branching points overlap on Figure S.1 in the Supplementary Material.

The state E1 is locally asymptotically stable for a very narrow range of α. We
observe the onset of supercritical Hopf bifurcation at α ≈ 8.71×10−6, where a stable
limit cycle appears from the coexistence state E∗. For larger values of α the solution of
(1a–1d) is periodic in timewith growing amplitude of oscillations. Forα ≈ 9.15×10−4

(beyond the assumedbiologically relevant range ofα inTable 2) the coexistence branch
regains stability (not plotted).
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For the second numerical experiment we use values

μ1 = 12, μ2 = 11, μ3 = 1.25, μ4 = 0.2, μ5 = 9×10−6,

σ1 = 10−5, σ2 = 105, σ3 = 5×106, ν1 = 0.5, ν2 = 3.33,

β1 = β2 = 0.002, β3 = 1.33×104, κy = 1, κz = 104.

(P.2)

We observe the occurrence of a transcritical bifurcation from E0 at α0 ≈
8.28×10−7, following the analysis in Sect. 3.1. Again, the state E1 is asymptotically
stable for a very narrow range of α (magenta branch, Fig. 3, left zoomed panel) before
a coexistence equilibrium branches from it via a transcritical bifurcation.

The parameter set (P.2) is checked against the necessary conditions (11) for multi-
stationarity at α = 0. Since for the selected parameters ỹ = 8.89×104, and further,

�(0) = 2.75×1011 > 0,�(ỹ) = 2.26×1013 > 0,�

(
ỹ

2

)
= −2.83×1016 < 0,

the conditions (11) are satisfied and �(y) has at least two real roots in the interval
(0, ỹ). Furthermoreμ4−σ1σ2 = −0.8 < 0 andμ2μ5(μ1+ν1)+μ1σ1(μ4−σ1σ2) =
0.11 > 0, so (12) is satisfied for every positive choice of β. Due to the continuity of
the solutions of the algebraic system, for α ≈ 0, there are two branches of coexistence
states E∗ which exist for α > 0.

In Fig. 3 we present the bifurcation diagram of the equilibrium values of x2 as
function of α. The values of x1 are shown in Figure S.2 in the SupplementaryMaterial.
The coexistence branches are plotted in blue and orange in Fig. 3. The blue branch of
states of type E∗ is actually disjoint from the states E0, E1 in the biologically relevant
range α ≥ 0, whereas the orange branch of states of type E∗ bifurcates from the
branch of states of type E1. Numerical computation of the eigenvalues of the Jacobi
matrix shows that bistability between E0 and E∗, E1 and E∗, or the two equilibria of
coexistence type is possible in different subintervals of α ∈ (0, 9×10−7) (Fig. 3, left
zoomed panel).

We plot in Fig. 4 two trajectories of the system (1) to illustrate the phenomenon of
bistability in (1), following the analysis of multistationarity in Sect. 3. For sufficiently
small value of α different initial conditions lead to trajectories which converge either
to the normal state E0, while the red trajectory converges to the coexistence state E∗.
Since the turnover of neutrophils z is rapid, the computed trajectories for z(t) converge
fast towards their steady state values.

Moreover, the model (1) may exhibit coexistence of a locally asymptotically sta-
ble equilibrium and a stable limit cycle (Supplementary Material, Figure S.12 for
parameter set (P.10).)

4.2 Varying�2

We study the effect of the macrophage recruitment/activation rate σ2. As mentioned
previously, biological sex and/or sex hormones may influence macrophages recruit-
ment and/or activation. This is not surprising, as sex-biased or sex hormone-dependent
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Fig. 3 Bifurcation diagram α versus x2 for α ∈ (0, 8×10−5), with zoomed panels for clarity of presentation
(parameters given in (P.2). The branch of states E0 is shown in green, the branch of E1 in magenta, the
two branches of type E∗ in blue and orange (top left only). The black dots represent the branching points
between E0, E1, E∗, and the red dot—the supercritical Hopf bifurcation (Color figure online)

Fig. 4 Illustration of bistability in (1) (parameters given in (P.2) with σ1 = 10−5, σ2 = 105, ν1 = 0.5, α =
5×10−7). The blue trajectory converges to the normal state E0, while the red trajectory converges to the
coexistence state E∗. Initial values are x1(0) = 0.01, nx2(0) = 0, y(0) = 200 (blue), 2000 (red), z(0) =
4×106 (Color figure online)

inflammatory responses have been previously reported (Gaignebet et al. 2020;Gaigne-
bet and Kararigas 2017; Horvath and Kararigas 2022; Kararigas et al. 2014; Sabbatini
and Kararigas 2020a, b; Siokatas et al. 2022; Spinetti et al. 2022). Simulations of the
concentrations of the two types of antigen are plotted in Figs. 5, 6 for different values
of σ2.

In Fig. 5 we observe that for increasing σ2 the system’s asymptotic behaviour
changes: from convergence to the normal state E0 for σ2 = 103, 104, 2×104 to con-
vergence to the coexistence state E∗ for σ2 = 5×104. In Fig. 5 (bottom panels) we
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Fig. 5 Plot of the model dynamics for different values of σ2 (remaining parameters in (P.1) with α =
5.2×10−6)

plot the active macrophages’ and neutrophils’ dynamics. As σ2 increases, so does the
active macrophages’ response. This reflects on the production of apoptotic material
x1 via the term σ1y in (1a). The peak in the autoantigen x2 shifts later in time if σ2 is
increased from 103 to 2×104, but consequently the autoantigen is cleared. A similar
picture emerges when β3 is increased (Fig. S.3 in the Supplementary Material).

In the simulation in Fig. 6 with a different value of α, we observe convergence onto
a stable limit cycle for σ2 = 103 and damped oscillations onto the coexistence state
E∗ for σ2 = 104, 2×104, 5×104. Note that this value of α is above the transcritical
bifurcation value α1 associated to parameter set (P.1).

4.3 Varying�1 and �1

We perform numerical bifurcation analysis of the equilibria by choosing as bifurcation
parameters σ1 or ν1. Neither of them appears in the bifurcation threshold values α0, α1
that determine the local asymptotic stability of E0, E1 calculated in Sect. 3, and thuswe
must employ numerical experiment in order to analyse their effect on the appearance
of equilibria branches.

For the simulation in Fig. 7 we use parameter set (P.1) and vary the rate of pro-
duction of apoptotic material σ1 in the range (0, 1.2×10−4). Observe that for the
particular value of α = 6×10−6, analysis of the local stability of these equilibria
implies that none of the stability conditions (3) for E0 and (6) for E1 is satisfied due to
α > α1 = 5.509×10−6. Another interesting feature is the coexistence of two locally
asymptotically stable equilibria of coexistence type E∗ (Fig. 7). We note that as σ1
increases, the steady state amount of autoantigen x2 actually decreases. Hence, the
model (1) shows that an increased rate of production of apoptotic material e.g. due to
inflammatory signalling may not necessarily increase the amount of autoantigen if the
immune system is already in a pathological state.
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Fig. 6 Plot of the model dynamics for different values of σ2 (remaining parameters in (P.1) with α =
6×10−6)

Fig. 7 Bifurcation diagram, σ1 versus x1 (left), σ1 versus x2 (right) (parameter values given in (P.1)
with ν1 = 0.5, σ2 = 9000, α = 6×10−6). A range of bistability between two coexistence states E∗ is
σ1 ∈ (0.373×10−4, 1.15×10−4)

In Fig. 8 we use the parameter set (P.2), with α = 7.5×10−7, and vary σ1. The
parameter σ1 does not enter in the local stability condition for the normal state E0
derived in (3). This chosen set of parameter values provides a locally asymptotically
stable steady state E0 because

α = 7.5×10−7 < α0 = μ2μ3

σ3ν2
= 8.25×10−7.

As we increase the value of σ1 (e.g. the rate of production of apoptotic material can
increase due to an inflammatory response or tissue damage), we observe the emergence
of a disconnected branch of equilibria of type E∗ (coexistence), one of which is locally
asymptotically stable. The numerical bifurcation analysis presented in Fig. 8 shows
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Fig. 8 Bifurcation diagram, σ1 versus x1 (left), σ1 versus x2 (right) (parameter values given in (P.2) with
ν1 = 0.5, σ2 = 105, α = 7×10−7). There is a range of bistability between the normal E0 (green) and the
coexistence state E∗ (orange) for a range of σ1 (Color figure online)

Fig. 9 Bifurcation diagram, ν1 versus x1 (left), ν1 versus x2 (right) (parameter values given in (P.2) and
σ1 = 0.1, σ2 = 10, α = 7.5×10−8). There is bistability between the normal state E0 and the coexistence
E∗ along the whole interval ν1 ∈ (0, 5]

that bistability between the normal state E0 and the pathological coexistence state E∗
can appear as we vary σ1.

For the parameter ν1 the situation is similar. Bistability is possible, and occurs for
an entire range of ν1 starting from 0 (Fig. 9). The parameter values are chosen so that
E0 is locally asymptotically stable, but at ν1 > 0 there exists a pair of branches of
equilibria of coexistence type E∗, and one of them is locally asymptotically stable.
Increasing ν1 leads to a saturation of the quantity of autoantigen.

4.4 Varyingˇi

In the following numerical experiments we vary themaximum pick-up rates β1, β2, β3
to examine the sensitivity of the steady state values x1, x2 both in absolute and
relative terms in the coexistence equilibrium. This is important as reports on
macrophages in SLE patients describe a range of defects in their capacity for phago-
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cytosis (Gaipl et al. 2005). We use the parameter values given in (P.3), while varying
β1, β2.

μ1 = 10, μ2 = 11, μ3 = 1.25, μ4 = 0.2, μ5 = 8.18×10−7,

σ1 = 10−5, σ2 = 9×103, σ3 = 5×106,

ν1 = 0.5, ν2 = 0.05, β3 = 600, κy = 1, κz = 104, α = 6×10−5.

(P.3)

Observe that for this set of parameters the steady state E0 is unstable. The
results are plotted as heat maps in the Supplementary Material (Fig. S.16 as
absolute values for E∗, and as relative abundance, or percentage at equilibrium
(x1/(x1 + x2), x2/(x1 + x2)) Fig. S.17). There is a range of β1, β2 where the
coexistence state E∗ is unstable, so the system undergoes oscillations into a limit
cycle.

Recall that for other sets of parameter values (for example, (P.2) for a range of α,
the system (1) may be bistable, with the steady state E0 (no apoptotic material, no
activated macrophages) being locally asymptotically stable. Results are plotted in the
SupplementaryMaterial (Fig. S.8 for varying β1, Fig. S.9 for varying β2, and Fig. S.11
for varying both β1, β2). Note that we do not plot those fractions that result from steady
state zero values for x1, x2.

We observe that there is a slight increase of the amount of apoptotic material x1
(and a decrease of the autoantigen x2) in relative terms as fraction of all antigen with
increasing β2. Such behaviour is not unusual, considering the nature of the parameter
β2 as the maximum pick-up rate of autoantigen. However, the experiments show that
varying β1 and β2 does not lead to any significant changes of the relative abundance
of either type of antigen, which means that their sensitivity to those parameters is low
when the yield of autoantigen formed by NETosis is low (i.e. for small values of α).

We also use a parameter set where the yield of autoantigen fromNETosis α is larger
(Supplementary Material, (P.12)). For these values, the system has only one stable
equilibrium of coexistence type. The sensitivities of the fractions to each parameter
β1, β2, β3 are plotted in the Supplementary Material (Fig. S.18).

We observe increasing relative abundance of autoantigen for increasing β1 unlike
the scenario plotted in Fig. S.8, which is probably due to the fact that the process of
NETosis is dominant in the production of autoantigen in this case. The sensitivities of
the respective fractions to β3 are relatively low.

5 Discussion and Conclusion

The proposed mathematical model is an attempt to describe some of the complex
processes involved in the SLE initiation stage before the immune tolerance breaks,
leading to changes in the humoral and adaptive immune response. Existing mathemat-
ical models of SLE consider the chronic stage of the disease where autoimmunity has
been already established (Budu-Grajdeanu et al. 2010), focus on treatment strategies
based on IL-2 for the chronic stage (Gao et al. 2022), or model the pathophysiology
(kidney injury) in the case of lupus nephritis (Hao et al. 2014). Othermodels workwith
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aggregate variables such as inflammatory potential and systemic inflammation (Yaz-
dani et al. 2023) and offer limited mechanistic understanding of the processes during
the disease onset.

We put forward that our model is able to capture qualitatively the most important
interactions between components of the innate immune system that eventually lead to
disruption of the organism homeostatis, systemic autoinflammation and the clinical
manifestations of the disease. The focus of our analysis was to examine conditions
leading to sustained production of autoimmunogenic material with origin either in
apoptotic material, or in the process of NET formation. Being presented to T- and
B-lymphocytes, such material may initiate an autoimmune response in the long-term
via production of autoantibodies with broad specificity (Tsokos et al. 2016; Yaniv et al.
2015).

There are three types of steady states of the model: a normal state denoted by
E0 where no apoptotic material and autoantigen, and no activated macrophages are
present; an absence of apoptosis state E1, without activatedmacrophages, andmaterial
with apoptotic origin, whose only positive components are the neutrophil population
and the autoantigen resulting from NETosis, and a coexistence state E∗ with positive
values for all variables. The state E∗ is the characterised by sustained production of
apoptotic material, activated macrophages and persistence of autoantigen. E∗ can be
interpreted as a state which favours the beginning of inflammation and onset of an
autoimmune response towards exposed nuclear material in blebs or NETs.

Despite its simple structure summarised in Fig. 1, our model is able to reproduce
several dynamic regimes corresponding to convergence to steady states of different
type, multistationarity and bistability and periodic oscillations. The condition for local
asymptotic stability of the normal state E0 is derived analytically in (3), and depends on
the removal rate of autoantigenμ2 due to other factors, the production σ3 and removal
rate of neutrophils μ3, the rate of NET formation from encounters of neutrophils
with autoantigen ν2 and the average yield α of autoantigen from NETosis. Therefore,
suppression of the average yield of autoantigen from NETosis α or the NET-forming
capacity of neutrophils ν2 would make the normal state locally asymptotically stable.

The bifurcation parameterwe focus on initially isα, the average yield of autoantigen
as result of NETosis. As expected, for larger value of α, the model predicts sustained
production of autoantigen x2—whether the system exhibits periodic oscillations or
converges towards a unique stable steady state of coexistence type. Small values of α

would be typically associated with good clearance of NETs and lower net production
of autoantigen, and lower likelihood of their becoming immunogenic. However, the
numerical experiments (Fig. 3 and in Supplementary Material) reveal the presence
of multistationarity for small values of α. In fact, we observe bistability for a range
of α ≈ 0 between the different types of steady states: bistability is possible not
only between the normal state E0 and the coexistence state E∗, but also between E1
and E∗, or between two states of coexistence type, or even between a coexistence
state and a limit cycle (Fig. S.12 in the Supplementary Material). This means that
even if the yield of autoantigen resulting from NET formation is small, due to the
presence of a bistable regime, for appropriate initial conditions the system (1) can
converge towards the pathological state E∗. In the coexistence state the presence of
activated macrophages means that inflammation is sustained, whereas the sustained
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abundance of autoantigen may prime B- and T-lymphocytes for long-term aberrant
immune responses directed towards the body itself.

The origin of themultistationarity phenomenon could lie in themechanismwe have
chosen to model the pick-up of antigen by macrophages using saturated kinetics with
competitive inhibition. Multistationarity is known from chemical reaction networks
employing similar type of competitive inhibition for access to binding sites (Markevich
et al. 2004; Wang and Sontag 2008). In fact, immune response to antigen has been
modelled as a sigmoidal function in the context of cancer (Milzman et al. 2021; Zheng
et al. 2008). It would be interesting to be able to explore this hypothesis using an
experimental model.

Moreover, we observe that bistability between the normal state E0 and the patholog-
ical coexistence state E∗ can appear as we increase either the rate σ1 at which apoptotic
material is introduced, or the rate ν1 at which inappropriately cleared apoptotic mate-
rial in ruptured blebs becomes exposed as autoantigen to the immune system. Neither
of the parameters ν1, σ1 enters in the stability condition (3) for the normal state E0,
but the existence of bistability is revealed from numerical experiments. The maximum
pick-up rates of apoptotic material and autoantigen β1, β2 affect the stability of the
state E1, and the onset of the coexistence state, but surprisingly, do not influence much
the respective equilibrium values in E∗.

The bifurcation analysis presented in Fig. 8 shows that a disjoint branch of equilibria
of coexistence type E∗ can appear for larger values of σ1. Similarly, in Fig. 9 one
stable and one unstable branch of equilibria of coexistence type E∗ exist for a range of
ν1 > 0, but they do not bifurcate from the normal state branch E0. Again, this property
may seem counterintuitive, as low values of ν1 would be associated with efficient
clearance of apoptotic material, preventing build-up of blebs that could rupture and
spill immunogenic content. The presence of bistability in the model is important as it
highlights a possibility where an external disturbance of the model state may tip the
dynamics from one basin of attraction into another. The numerical experiment plotted
in Fig. 4 shows that in a bistable regime a larger amount of activated macrophages
(following for example, an environmental trigger, stress or trauma) is sufficient to tip
the dynamics towards the pathological state.

Another dynamical property that our model can display is Hopf bifurcation, result-
ing in sustained periodic oscillations. This scenario can be interpreted as another
possible path to an aberrant immune response and the onset of autoimmunity. Apop-
totic waste and autoantigen are produced persistently with periods of remission where
the immune system manages to partially suppress them. However, this process is not
completed, leading to exhaustion of macrophage activity, accumulation of apoptotic
debris and a renewed peak of autoantigen. In this case, the model predicts an innate
immune response protracted in time, which may become pro-inflammatory via persis-
tent activation of Toll-like receptors (Theofilopoulos et al. 2011; Tsokos et al. 2016)
and initiate a cascade towards long-run spread of autoimmunity.

We have performed numerical experiments with different values of the recruitment
or activation rate of macrophages σ2 (Figs. 5 and 6). The rate of activation and recruit-
ment rate of macrophages is dependent on action of hormones (Verthelyi 2001; Polan
et al. 1989). As SLE is typically more common in women, a role of hormones may
be hypothesised in its pathophysiology. The sex- or sex hormone-dependent recruit-
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ment or activation of macrophages can be attributed to various mechanisms. These
include sex differences in the transcriptomic regulation of inflammatory genes and
pathways (Ober et al. 2008). The sex steroid 17β-oestradiol (E2) also exerts a key role
in immune responses, regulating pro-inflammatory cytokine expression throughmono-
cyte and macrophage regulation and affecting the expression of target genes (Kramer
et al. 2007; Tiyerili et al. 2012). Interestingly, E2 has been shown to reduce lipid
accumulation in female human macrophages but not in male macrophages (McCro-
hon et al. 1999). In particular, E2 reduced cholesteryl ester accumulation in human
monocyte-derived macrophages (Corcoran et al. 2011).

Our model predicts that as σ2 increases, the dynamics may converge onto the coex-
istence state with persistence of autoantigen and activated macrophages. For small
σ2, however, the system may also present a stable limit cycle. If macrophages are
insufficiently activated, then the clearance of apoptotic material is impaired leading
to accumulation of exposed nuclear contents such as chromatin which can initiate an
autoimmune response. For larger values of σ2, there are damped oscillations onto
a steady state of low quantity of autoantigen (Fig. 6). Thus, our model, while in
general predicting a persistent production of autoantigen and persistent activation
of macrophages for larger values of σ2, does not include explicitly transcriptomic or
signalling mechanisms, thus not excluding different routes that lead to initiation of
autoimmunity.

Both locally asymptotically stable states of coexistence type E∗ and limit cycles
resulting from a Hopf bifurcation correspond to a pathological, aberrant immune
response. Persistence or periodic cycling of autoantigen could have implications in
the further development of a long-term autoimmune reaction, in particular the pro-
duction of autoantibodies directed against the complement protein C1q. As C1q binds
to exposed nuclear material from blebs, it forms a complex, and the persistence of
antigen presentation to B-lymphocytes causes the production of antibodies against
C1q – a widely accepted hallmark of lupus (Schaller et al. 2009; Tsokos 2020). As
autoantibodies in SLE are result of autoantigen stimulation (Schaller et al. 2009), we
would argue that the proposed model represents fairly well the mechanisms at work
during the initiation stage of the disease.

Our model also has limitations which we briefly describe here. The first and fore-
most is that we focus only on one type of APCs (macrophages) because they are
generally responsible in clearing apoptotic cells, and their response to exposed nuclear
material is pro-inflammatory (Marée et al. 2006). The macrophage population we
model under the variable y represents a generic population of macrophages which are
recruited and activated in tissue to clear the dying cell material on the one hand, and
the by-products which could be immunogenic, including exposed self from NETs or
apoptotic blebs collect the two types of antigen. The second limitation is that we do
not include dendritic cells (DCs) explicitly in the model for two reasons: first, in order
to keep its structure simpler and, second, because we are not modelling activation of
naïve T-lymphocytes and the initialisation cascade of the adaptive immune response
via antigen presentation to B-lymphocytes in the lymph node. DCs have been shown to
be activated by the contents of apoptotic blebs (Dieker et al. 2015), and NETs (Tsokos
2020). In particular, plasmacytoid DCs are powerful producers of type-I interferon, a
pro-inflammatory cytokine with effect on broad range of immune cells, so DCs are
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candidate cells for inclusion in a future extension of the model. While currently it
is known that multiple cell types are capable of NETosis (Vorobjeva and Chernyak
2020), inmodel (1) the cells which perform it are neutrophils because they are themost
common type of leukocytes. Finally, for the sake of simplicity of the model equations
and, the signalling feedback between APCs and neutrophils is modelled implicitly. If
further variables are added to the model, other dynamical regimes could be possible
(e.g. chaos). However, we leave this for future work.

NETosis is suspected to be a key factor in the initiation of the an aberrant immune
response observed in experimentalmodels of lupus (Dieker et al. 2016;Villanueva et al.
2011). Our model demonstrates that increased yield of autoantigen production from
NETosis is a sufficient condition for the establishment and maintenance of apoptotic
waste and autoantigen production. However, there are cases where the production of
autoantigen can persist over time in a convergent or oscillatory manner despite a weak
yield of nuclear material from NETs. This is due to the property of bistability in the
model, where the healthy normal state and the pathological disease state coexist side
by side as locally asymptotically stable equilibria.
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