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Abstract
Metabolites have to diffuse within the sub-cellular compartments they occupy to spe-
cific locations where enzymes are, so reactions could occur. Conventional flux balance
analysis (FBA), a method based on linear programming that is commonly used to
model metabolism, implicitly assumes that all enzymatic reactions are not diffusion-
limited though that may not always be the case. In this work, we have developed a
spatial method that implements FBA on a grid-based system, to enable the exploration
of diffusion effects on metabolism. Specifically, the method discretises a living cell
into a two-dimensional grid, represents the metabolic reactions in each grid element
as well as the diffusion of metabolites to and from neighbouring elements, and sim-
ulates the system as a single linear programming problem. We varied the number
of rows and columns in the grid to simulate different cell shapes, and the method
was able to capture diffusion effects at different shapes. We then used the method to
simulate heterogeneous enzyme distribution, which suggested a theoretical effect on
variability at the population level. We propose the use of this method, and its future
extensions, to explore how spatiotemporal organisation of sub-cellular compartments
and the molecules within could affect cell behaviour.

Keywords Flux balance analysis · Grid-based · Metabolism · Reaction–diffusion ·
Spatial method · Cell shape

1 Introduction

Cellular metabolism is a set of biochemical reactions occurring inside living cells
that supports growth and maintenance. Nutrient metabolites are transported into cells,
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then converted through a series of reactions into energy and building blocks of macro-
molecular components that make up cellular biomass. Reactions generally occur at
regions where enzymes catalysing the reactions are localised. Therefore, metabolites
have to diffuse to where enzymes are located to participate in reactions .

In cells, diffusion occurs as molecules collide constantly with one another in a
crowded environment. In time, these collisions generate a net movement for each
molecular species, from regions where its concentration is high to regions where its
concentration is low. Therefore, factors such as the mass and size of the molecular
species, and how crowded the environment is, affect the rate of diffusion (Minton 2001;
Gershon et al. 1985; Luby-Phelps et al. 1987). Metabolites are relatively small so they
tend to have higher rates of diffusion compared to large molecules like enzymes.
However, the effect of metabolite diffusion on the overall rate of reaction depends
on diffusion rate relative to enzyme catalytic rate (Schnell and Turner 2004). Con-
sider the example of a simple single-substrate enzyme-catalysed reaction. Substrate
(metabolite) diffusion and catalysis occurs in serial, so the overall rate of reaction
is limited by the slower of the two events. When diffusion occurs much faster than
enzyme catalysis, the reaction is said to operate at the reaction-limited regime. On
the other hand, the reaction is said to operate at the diffusion-limited regime if dif-
fusion is much slower than enzyme catalysis. Which regime any particular reaction
operates at may be dynamic because the sub-cellular environment in cells can vary
a lot among different cell types and change as the cells grow. Interestingly, several
recent studies suggested that some cells may have evolved to achieve optimal growth
rates by adopting a molecular composition that provides an optimal (macro)molecular
crowding; so as to balance a concentrated environment that supports high catalytic
rates and room for movement that enables diffusion (Vazquez 2010; Oldewurtel et al.
2021; Pang and Lercher 2023; Dourado et al. 2021). Modelling provides a useful
tool to study complex reaction network like metabolism. One established method for
modelling metabolic reactions is ordinary differential equations (ODEs). However,
this method requires enzyme kinetic parameters whose values are only available for a
small fraction of metabolic reactions, such as those in the central carbon metabolism
(Teusink et al. 2000; Peskov et al. 2012; Jahan et al. 2016). This limits the use of ODEs
for modelling large metabolic network. To circumvent the lack of kinetic measure-
ments, flux balance analysis (FBA) has been commonly used especially for modelling
metabolism at the genome scale (Orth et al. 2010). FBA uses linear programming to
solve for the rates of reactions by optimising an objective function (that represents an
assumed biological objective in each particular study), constrained by measurements
such as nutrient uptake, gene expression and/or enzyme concentration. Due to the way
linear programming works, reaction rates in the solution may not be unique or obey
kinetic rate laws, but analysis of the solution space can provide useful information
about the system. While the above are generic methods that can be adopted to model
detailed events in metabolism, many metabolic modelling using these methods focus
only on the reaction events. Some models consider multiple events and lump them
into simple effective functions to represent the overall rate but they also implicitly
ignore effects of diffusion. For example, a common rate law used in ODE metabolic
models is the Michaelis-Menten equation and its parameters are usually measured in
vitro, which does not represent the crowded environment in cells where metabolite
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diffusion is slowed down (Chang et al. 2021; Wittig et al. 2018; Srinivasan 2022).
Genome-scale FBA models, on the other hand, are mostly concerned with (enzyme)
capacity that constrains the rate instead of the exact rate because kinetic parameters
are not easily available (Blazier and Papin 2012; Machado and Herrgard 2014). Esti-
mation from various studies, including analysing the catalytic efficiency of >1000
different enzymes, suggested that ignoring diffusion effects may be valid in most
cases because enzymatic reactions tend to occur at much lower rates compared to the
diffusion of metabolites (Sweetlove and Fernie 2018; Bar-Even et al. 2015). Thus, it is
believed that most metabolic reactions are not diffusion-limited. However, there exists
a small number of highly efficient enzymes, where reactions occur very fast such that
metabolite diffusion becomes limiting (Pettersson 1992; Sweetlove and Fernie 2018).
Diffusion-limited effects are exacerbated if the enzymes are in low abundance and
heterogeneously distributed within particular cell shapes that require metabolites to
travel a long distance or a narrow path (Kinsey et al. 2011; Szymanska et al. 2015).

Various approaches have been used to consider diffusion effects, directly and indi-
rectly, in the modelling of metabolism. These include creating separate rate laws for
diffusion-limited and reaction-limited regimes, adjusting the Michaelis-Menten con-
stant to incorporate effects of molecular crowding, and developing a general theory of
growth rate optimisation that balances mass conservation, reaction kinetics and limits
on cellular density (that can affect diffusion) (Vazquez 2010; Pang and Lercher 2023;
Dourado and Lercher 2020). These approaches made theoretical predictions of protein
content and cellular density that would be optimal for growth, and it was found that
the predicted values fell in the range of experimental measurements in bacterial cells
such as Escherichia coli. This suggests that the principle of optimality that is assumed
in methods such as FBA may be valid, at least under certain growth conditions. Addi-
tionally, the approaches above provide an improved representation of metabolism that
occur in a crowded environment in cells. They have been useful for studying the quan-
titative relationship between molecular composition (hence diffusion indirectly) and
growth at the cell scale. However, they are not suitable for exploring diffusion effects
brought about by spatial properties such as cell shape and heterogeneous distribution
ofmolecular species in the cell. Studies suggested that these effects are not always neg-
ligible (Kinsey et al. 2011). A common method for spatial modelling that accounts for
both reaction and diffusion is partial differential equations (PDEs). Reaction is usually
modelled using the law of mass action that relates reaction rate to substrate concen-
tration, while diffusion is usually modelled using Fick’s first law that relates diffusion
rate to concentration gradient. Thus like ODEs, this method requires parameters such
as reaction rate constants and diffusion coefficients. Acquiring their values is still a
non-trivial problem. A recent work that used PDEs to model the energy metabolism
in glial cells proposed a new method to enable simulation of complex cell shapes, and
they intentionally left out parameter identification for this very reason (Farina et al.
2021).

To help circumvent the difficulty in obtaining parameter values,we present amethod
for spatial modelling of reaction–diffusion in single-cell metabolism that has low
parameter requirements. Specifically, we expand FBA spatially, add representation
of intracellular metabolite diffusion directly to the reaction set, and use linear pro-
gramming to solve for both the rates of reaction and diffusion that would yield an
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optimal value for an objective function. Thus, our method embeds diffusion into FBA
and only employs linear programming. In this manner, our work differs from existing
FBA methods that also extend to implement diffusion, because they coupled FBA
with PDE or other methods to represent diffusion outside of the linear programming
framework (Henson 2015; Chen et al. 2016; Borer et al. 2019; Dukovski et al. 2021).
Additionally, these methods were developed to consider diffusion in the extracellu-
lar environment whereas our method simulates the diffusion of metabolites within
an individual living cell. Note that our method is not an alternative to PDE or similar
spatial modelling method, but an option for theoretical exploration when rate laws and
data such as concentration and kinetic measurements are scarce. In the next section,
we provide a description of our method. Then, we describe two example toy metabolic
networks and the simulation settings that we used to test and demonstrate the utility of
the method; followed by a discussion of the simulation results and their implications.
We also suggest potential extension to this method for future work.

2 Discretised Flux Balance Analysis

In its basic form, FBA assumes that metabolite concentrations are at steady state,
which is generally valid because metabolism operates at a much faster time scale
compared to other cellular processes such as transcription and translation (Orth et al.
2010). With this assumption, one can write the mass balance for each metabolite m as
the following linear equation:

∑

r∈R

Sm,rvr = 0 (1)

where,

m ∈ M

M is the set of all metabolites and R is the set of all reactions in the model. Sm,r

represents the stoichiometric coefficient, which indicates the number of molecules
of metabolite m that participate in reaction r relative to other participants. The sto-
ichiometric coefficient takes a negative sign if the metabolite is a substrate in the
reaction, and a positive sign if it is a product. vr is the flux, i.e. the conversion rate of
a substrate to product metabolites, of reaction r . Equation (1) can also be represented
mathematically in matrix form as follows:

Sv = 0 (2)

where S is amatrix of stoichiometric coefficientswith each row representing ametabo-
lite and each column representing a reaction (Fig. 1c). v is then a column vector with
each element representing a reaction flux variable. Like ODEs, FBA can be used to
solve compartmental models by treating the same metabolite as a distinct species for
each of the different compartments (or organelles) that the metabolite occupies; and
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Fig. 1 a In discretised flux balance analysis (FBA), a cell is discretised into a two-dimensional I × J grid,
where I represents cell width and J represents cell length. Each square element on the grid is a cell region
k. Cell regions can be grouped into layers, from cell boundary to the centre of the cell; b Metabolites can
diffuse in and out of each cell region to its neighbouring regions (green arrows). For regions at the boundary
of a cell, metabolites can also be imported and exported to the extracellular environment (yellow arrows);
c In FBA, the metabolic network is represented as an M × R matrix of stoichiometric coefficients S, where
each row represents a metabolite and each column represents a reaction. v is a column vector representing
reaction flux variables. FBA assumes that the network is at steady state, and solves for the variables by
optimising an objective function. c is a vector of weight for each variable in the objective function. In this
example, v-bio is the objective function to be optimised; d Discretised FBA expands conventional FBA by
creating regional metabolites Mk and reactions Rk that also include metabolite diffusion d between regions.
v and c are also expanded accordingly (Colour figure online)

incorporating transport event between compartments. Therefore, R includes not only
biochemical reactions, but also metabolite transport; from extracellular compartment
into the cell through the plasma membrane, or from one sub-cellular compartment
to another. In this case, transport flux variable is the rate of metabolite movement
between compartments, akin to “converting” a metabolite in one compartment to the
same metabolite in another compartment. Thus, the stoichiometric coefficient takes
the value of one, with a positive sign for metabolite in the target compartment and
a negative sign for the origin compartment. When modelling single-cell metabolism,
flux is in units of particle number (usually moles) per unit of time per cell.

In this work, we expand FBA to enable spatial modelling within a single cell and
include intracellularmetabolite diffusion. To spatially represent a cell, we first simplify
the representation of cell shape by assuming that each living cell is a rectangle. We
discretise a cell into a two-dimensional I×J grid, where I (number of rows) represents
cell width and J (number of columns) represents cell length (Fig. 1a). We term each
square element on the grid a cell region k,which has the properties i and j that denote its
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coordinate on the grid. Similar to compartmental models, we treat the samemetabolite
as a distinct species for each of the cell regions. Thus, each cell region contains its
own sets of metabolites Mk and reactions Rk . Conventional FBA explicitly represents
transport of metabolites between compartments by including these events as part of
the reaction set. In our discretised cell, intracellular diffusion can be considered a
form of passive transport between cell regions. We can therefore add representation
of intracellular metabolite diffusion as a natural extension to FBA. We do this in the
following manner: (1) for every cell region k, movements of metabolites to and from
its neighbouring regions are represented as diffusion events and added to Rk ; (2) if a
cell region is located at the boundary between cell and the extracellular compartment,
movements of metabolites through the plasma membrane are represented as transport
events that are also included in Rk (Fig. 1b). Note that our method considers the
extracellular compartment as a single homogeneous region outside of the grid system,
therefore only one transport per metabolite is created for each boundary cell region.
Similar to a transport event, the stoichiometric coefficient for a diffusion event takes
the absolute value of one, and diffusion flux variable is the rate of net metabolite
movement between cell regions. The new sets of metabolites M and reactions R for
the whole cell are now the union of all cell-region sets Mk and Rk , respectively. Our
method therefore expands the number of elements in the matrix of the original FBA
problem, by decomposing eachmetabolite and reaction flux at thewhole-cell scale into
their constituents at the cell-region scale, and incorporating diffusion fluxes between
regions (Fig. 1d). Flux in this case is in units of particle number (or moles) per unit of
time per cell region.

Metabolic network usually contains a higher number of reactions than the num-
ber of metabolites. This creates an under-determined system where there are more
unknown fluxes than there are equations. FBA uses linear programming to determine
the unknown fluxes by adding inequality constraints and optimising an objective func-
tion. The linear programming problem can be formulated as follows:

Maximise (or minimise):
Z = cT v

Subject to:
Sv = 0

lr ≤ vr ≤ ur ∀r ∈ R

Here, c is a vector of weights, or objective function coefficients, that is used to indicate
the level of contribution of each flux to the objective function Z . A common objective
function in modelling genome-scale metabolic network is the biomass reaction, which
is a pseudo-reaction that represents cell growth (see example in Sect. 3.1). This can be
indicated by setting the weight of biomass reaction to one and all others to zero. As
ourmethod decomposes cell-scale flux variables into regional-scale variables, we need
to re-compose the latter to generate the equivalent objective function. Using biomass
reaction as an example, ourmethodwill set theweight of biomass reaction in every cell
region to one, so that their fluxes will be added back to give whole-cell biomass growth
(Fig. 1c, d). The optimised value of the objective function depends on the inequality
constraints. Each flux variable vr is constrained between a lower bound lr and an upper
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bound ur . Their values can be set based on experimental measurements or knowledge
about the variable. For example, in the case of irreversible reactions that can only occur
in the forward direction, one can set their lower bounds to zero. If no data or knowledge
is available, variables can be left unbounded, i.e. the lower and upper bounds are set to
negative infinity and positive infinity, respectively. For diffusion flux variables, their
lower bounds are automatically set to zero because our method creates a separate
variable for each direction between any two neighbouring cell regions. Note that
FBA does not have any notion of metabolite concentration; flux values in the optimal
solution depend on the constraints set in each particular simulation. These constraints
eliminate infeasible states to help narrow down the solution space. Within the feasible
region, it is possible to have more than one set of solution that yield the same optimal
value for the objective function. Depending on the accuracy and sufficiency of the
constraints, some of these solutions may not be biologically feasible. Nevertheless, in
the absence of parameters such as rate constants and diffusion coefficients, setting the
objective function and constraints for flux variables in different ways allows one to
theoretically explore the solution space and gain insights into the system (Loghmani
et al. 2022).

Note that in general, FBA does not have explicit representation of mass, volume
and surface area. The scale of the system to be modelled is indicated by the units of
the constraints. Therefore, changing the number of cell regions, i.e. grid elements,
does not necessarily indicate a change in cell size in our method. For example, one
can increase the number of grid elements but sets the units of the constraints such that
the sum over all regions will recover the same cell-scale units and values. Doing this
does not change cell size but increases the spatial resolution of the simulation. One
advantage of having spatial resolution is that we can use different constraints for the
same reaction in different regions. This can be useful for studying local effects and
how they influence the whole system.

Our method has been implemented as a Python API. Codes for the method, as
well as the following toy models and simulations, are available on GitHub at https://
github.com/YinHoon/discretised_FBA. Our API uses COBRApy, a constraint-based
modeling package that is commonly used for running conventional FBA (Ebrahim
et al. 2013).

3 Model Description

In general, genome-scale metabolic modelling using FBA requires two elements: (1)
a metabolic network; (2) a set of constraints and objective function that turns the net-
work into a simulable model. Metabolic networks are composed of interconnected
pathways; and a pathway in its simplest form can be described as the path, made
of a series of biochemical reactions, that a starting metabolite takes and ends with
a final product. The metabolic network of an organism can be reconstructed from
its genomic information. By comparing to a reference genome, we can infer which
established enzyme-catalysed reactions likely take place in the organism based on the
existence of genes that express the associated enzymes. Typically, individual steps
within enzyme-catalysed reactions, such as the formation of enzyme-substrate com-
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plex and the release of product, are not part of metabolic networks. Instead, genes
(and indirectly the enzymes that they express) are only incorporated as metadata asso-
ciated to the relevant reactions. These metadata may be used when determining the
constraints of flux variables. For example, if gene expression data indicate that some
genes have very little expression, the flux variables for reactions associated to these
genes can be constrained to smaller values to reflect reduced enzyme capacities. In
terms of setting up an objective function, the underlying assumption in FBA is that
cells have evolved through selective pressure to achieve an optimal rate of specific
cellular functions. For example, bacteria and cancer cells are assumed to operate at
metabolic states that maximise their growth rate, while muscle cells may be maximis-
ing energy production. The validity of these assumptions is open to debate, but they
have provided solutions that best matched measured data in various contexts (Costa
et al. 2014; Schuetz et al. 2007; Schnitzer et al. 2022).

To test our method, we created two toy models that exemplify two common types
of metabolic pathways. The first is a linear pathway, where a metabolite is converted
into one final product through a series of intermediate forms. The second is a branched
pathway, where the path diverges and an intermediate can go on to form different final
products.

3.1 Example 1: A Linear Pathway

In this section, we first present the model at the cell scale, i.e. the set of reactions
(metabolic network) and parameters (constraints and objective function) at the organ-
ism level that is normally represented when using conventional FBA.We then describe
how our method transforms cell-scale representations into regional-scale representa-
tions that include region-specific reactions and metabolite diffusion.

The toy metabolic network consists of only a few reactions, as follows:

−−→ A[e] (R1)

A[e]
E1−−→ A[c] (R2)

A[c]
E2−−→ B[c] (R3)

B[c]
E3−−→ Biomass (R4)

Biomass −−→ (R5)

The network of reactions occurs in two compartments (as denoted in square brack-
ets): an extracellular compartment “e” and a cellular compartment “c”. In reaction
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R2, metabolite A is transported from the extracellular compartment into the cellular
compartment via a transporter E1. Metabolite A is then converted into B in the cell,
catalysed by enzymeE2. Finally, B is converted into cell biomass, catalysed by enzyme
E3. R1 and R5 are exchange reactions, i.e. pseudo-reactions that act as the source and
sink to balance out all other reactions in the network. R5 is the biomass reaction, a
proxy of cell growth, that will be set as the objective function and maximised during
simulation. All reactions are irreversible.

Given the above reaction network, conventional FBA converts it into the following
matrix–vector equation of the product of S and v to represent a system at steady state:

Sv =

⎡

⎢⎢⎣

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

⎤

⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

vR1
vR2
vR3
vR4
vR5

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

0
0
0
0
0

⎤

⎥⎥⎥⎥⎦
(3)

The rows in S represent the four metabolite species in the network: “A[e]”, “A[c]”,
“B[c]” and “Biomass”. For example, one molecule of metabolite species “A[e]” is
produced through reaction R1 but consumed through reaction R2. This is represented
in the first row of S, where the values of 1 and -1 are entered in the first two columns.
Since “A[e]” does not participate in the rest of the reactions, entries for the rest of the
columns in this row are zeroes. The objective function is to maximise vR5, which can
be represented in vector form as follows:

argmax Z (4)

where

Z = cT v = [
0 0 0 0 1

]

⎡

⎢⎢⎢⎢⎣

vR1
vR2
vR3
vR4
vR5

⎤

⎥⎥⎥⎥⎦
= vR5 (5)

Finally, inequality constraints are added to complete the linear programming problem.
These constraints determine the range of values that each flux variable is allowed to
take, and the solver will eliminate sets of solution that violate the constraints even if
they satisfy equations (3)–(5). Common types of data for constraining conventional
FBAmodels include nutrient uptake rates, fluxomic, transcriptomic andproteomic data
(Blazier and Papin 2012;Machado andHerrgard 2014; Cook andNielsen 2017).When
using transcriptomic and proteomic data, one assumptionmade is that the level of gene
expression indicates maximum enzyme capacity which limits the rate of reaction. For
our simulation, we chose to constrain the fluxes of reactions R2, R3 and R4 whose
rates are limited by the amount and efficiency of E1, E2 and E3, respectively. We
picked these reactions so that we could demonstrate the utility of spatial resolution
in our method (see next section for details). Since the reactions are irreversible, we
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constrained the reaction fluxes by setting their lower bounds to zero while their upper
bounds are determined based on maximum enzyme capacity. This can be written as
the following inequality:

0 ≤ vr ≤ kcat,Er [Er ] ∀r ∈ {R2,R3,R4} (6)

where kcat is the catalytic constant, in per unit of time, and [Er ] is the concentration
of enzyme (transporter) E that catalyses (facilitates) reaction r . We employed this
upper-bound expression because it is commonly used in enzyme kinetic studies to
represent maximum enzyme capacity (Davidi et al. 2016; Heckmann et al. 2018,
2020). Here, enzyme concentration is expressed as particle number per cell, i.e. total
cellular amount, in accordance with the units of fluxes.We set the total cellular amount
of each enzyme (or transporter) to 100 and their kcat values to 1.0. We further set the
upper bound for the flux of exchange reaction R1 to 100, as a proxy of maximum rate
of nutrient provision, as follows:

0 ≤ vR1 ≤ 100 (7)

For the flux of biomass reaction R5, its upper value was left unbounded and to be
maximised in the objective function, while its lower bound was set to zero to ensure
a positive growth, as follows:

vR5 ≥ 0 (8)

We chose the above set of parameter values so that the maximum feasible growth per
cell is 100 and no specific enzyme is limiting growth. Note that we are not assigning
specific units in this toy example, but the parameter values are to be taken as being
consistent in units.

Given a cell-scale representation such as the one described above, our method
converts it into a regional-scale representation using the following steps (see Appendix
A for more details on using the Python API):

1. Create a two-dimensional I × J grid containing a set of regions, K , that define
the spaces occupied by the individual living cell;

2. Expand the set of metabolites by decomposing each metabolite species in the
cellular compartment into regional species, and create the metabolite objects for
every cell region. For example, an object “A[c]k” is created for each cell region k
to represent metabolite A in that region. The same is done for metabolite B and
biomass. Doing this increases the number of rows in the matrix S in equation (3).
For metabolite A that also exists in the extracellular compartment “e”, only one
object “A[e]” is created since this compartment is treated as a single region outside
of the grid system;

3. Expand the set of reactions by decomposing each biochemical reaction that occurs
in the cellular compartment into regional reactions, and create the reaction objects
for every cell region. For example, an object “R3k” is created for each cell region
k to represent reaction R3 in that region. This reaction converts one molecule of
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metabolite “A[c]k” to one molecule of “B[c]k”. Thus, the stoichiometric coeffi-
cients SA[c]k ,R3,k and SB[c]k ,R3,k are assigned the values of -1 and 1, respectively.
A variable vR3,k is generated to represent the flux through this reaction event. This
increases the number of columns in the matrix S and the size of vector v in equation
(3). Since reaction R1 only involves metabolites in the extracellular compartment,
only one reaction object “R1” is created;

4. Create an objective function that is mathematically equivalent to the cell-scale
objective function, by recomposing over all cell regions. In the toymodel presented
above, the objective is to maximise the (total cellular) flux through reaction R5.
The recomposed objective function is therefore:

Z =
∑

k∈K
vR5,k (9)

5. Further expand the set of reactions (and the size of S and v) by decomposing each
cross-membrane transport process into regional transport processes, and create the
reaction objects for every cell region located at the boundary between cell (grid
system) and the extracellular compartment (outside the grid system). For example,
an object “R2k” is created for each boundary cell region k to represent the transport
process R2 between that region and the extracellular compartment. This reaction
“converts” one molecule of metabolite “A[e]” to one molecule of “A[c]k”. As in
previous, the stoichiometric coefficients SA[e],R2,k and SA[c]k ,R2,k are assigned the
values of -1 and 1, respectively, and a variable vR2,k is generated to represent the
flux through this transport event;

6. Further expand the set of reactions (and the size of S and v) by creating new reaction
objects that represent the diffusion process of each metabolite species between
each pair of neighbouring cell regions. For example, to represent the diffusion of
metabolite A from cell region k1 to a neighbouring region k2, a reaction object
“A[c]k1→k2” is created. Just like a transport event, the stoichiometric coefficients
SA[c]k1 ,D (where D is a shorthand for the diffusion identifier) and SA[c]k2 ,D are
assigned the values of -1 and 1, respectively, and a variable vD is generated to
represent the flux through this diffusion event;

7. Set the bounds that constrain the flux variables generated in steps 3, 5 and 6. For
reactions R2, R3 and R4, [Er ] in inequality (6) represents the total cellular amount
that limits the total cellular flux of reaction r . Since each cell region k only contains
a portion of the total cellular enzyme, the regional flux is capped by the regional
portion [Er ]k . This can be expressed as:

0 ≤ vr ,k ≤ kcat,Er [Er ]k ∀r ∈ {R2,R3,R4},∀k ∈ K (10)

For reaction R5, the lower bound for each regional flux is set to zero to ensure a
positive growth everywhere:

vR5,k ≥ 0 ∀k ∈ K (11)
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For reaction R1 that has not been decomposed, its flux variable is bounded as in
inequality (7). For the diffusion flux variables generated in step 6, we used different
bounds to simulate different rate-limiting regimes (see details in Sect. 4).

3.2 Example 2: A Branched Pathway

Branched pathways are basically (linear) pathways that intersect at a branch point.
They are prevalent in metabolic networks and methods continue to be developed to
identify them (Huang et al. 2021). One prominent branch point in metabolism is pyru-
vate, which is the end-product of the linear glycolysis pathway that starts from glucose.
Pyruvate can move on to produce energy efficiently through oxidative phosphoryla-
tion, or it can be converted to lactate and produce energy quickly but less efficiently
under certain conditions, such as during low oxygen availability. Pyruvate and lactate
metabolism have great implications on human health; they have been associated with
conditions such as cancer, inflammation, neurodegeneration and heart failure (Li et al.
2022; Gray et al. 2014). In this example, we created a simple branch pathway that
encapsulates some of the scenarios above, as follows:

−−→ X[e] (R6)

X[e]
E4−−→ X[c] (R7)

X[c]
E5−−→ Y[c] (R8)

Y[c]
E6−−→ 4 Energy (R9)

Y[c]
E7−−→ 3 Energy + Toxin (R10)

Energy −−→ (R11)

Toxin −−→ (R12)

As in the previous example, this network of irreversible reactions also occurs in two
compartments. Metabolite X is first transported from the extracellular compartment
into the cellular compartment via a transporter E4. Metabolite X is then converted into
Y in the cell, catalysed by enzyme E5. From this point, metabolite Y can participate in
reaction R9 or R10. In reaction R9, each molecule Y can produce four units of energy
through catalysis by enzyme E6. In reaction R10 that is catalysed by enzyme E7, each
molecule Y can produce three units of energy and one molecule of a compound that
can be toxic to the cell. Again, pseudo-reactions R6, R11 and R12 were added to
balance out all other reactions in the network. For this model, we would be combining
two objectives: (1) maximising energy production; (2) minimising toxin production.
Again, we set the total cellular amount of each enzyme (or transporter) to 100. The
kcat values for all enzymes were set to 1.0, except enzyme E7 which has a kcat of 2.0.
We further set the upper bound of exchange reaction R6 to 100, to represent maximum
rate of nutrient provision.
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With this reaction network, the steady-state equation and inequality constraints for
a cell-scale representation become:

Sv =

⎡

⎢⎢⎢⎢⎣

1 −1 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 1 −1 −1 0 0
0 0 0 4 3 −1 0
0 0 0 0 1 0 −1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

vR6
vR7
vR8
vR9
vR10
vR11
vR12

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

0 ≤ vr ≤ kcat,Er [Er ] ∀r ∈ {R7,R8,R9,R10} (13)

0 ≤ vR6 ≤ 100 (14)

To ensure that reactions R11 and R12 have positive fluxes, the following inequality is
used:

vr ≥ 0 ∀r ∈ {R11,R12} (15)

Since thismodel has two objectives, wewould need to performmulti-objective optimi-
sation and there are various ways this can be done (Gunantara 2018). Here, we chose to
use linear scalarisation, where multiple objectives are linearly combined into a single
objective function and a weight is assigned to each objective term. In the current case
where flux variable vR11 is to be maximised while vR12 is to be minimised, we used
positive and negative weights, as follows:

argmax Z (16)

where

Z = cT v = [
0 0 0 0 0 1 −2

]

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

vR6
vR7
vR8
vR9
vR10
vR11
vR12

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

= vR11 − 2vR12 (17)

We assigned a higher absolute value to the weight of vR12 to exert a strong penalty on
toxin production.With this value, it is generallymore favourable to direct allmolecules
Y to be converted to energy through reaction R9.

Using the same steps as described for the previous example, a regional-scale rep-
resentation can be created by decomposing flux variables into regional variables,
expanding S and v accordingly, adding new flux variables for diffusion, constrain-
ing regional variables with local limits (e.g. based on regional portions of the total
cellular enzyme; see next section for details), and recomposing the flux variables in
the objective function.
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4 Simulation Settings

We conducted a series of simulations using the two examples described above, with
the aim of testing our method and its utility. First, we wanted to check that our
method has the ability to reproduce the expected effects of diffusion. Even though
we have expanded conventional FBA to explicitly represent events of intracellular
metabolite diffusion, their fluxes are solved using linear programming that depends
on the objective function and set of constraints used. There is no guarantee that
the solution(s) will capture the diffusion phenomenon at all. To test this, we ran
simulations of different cell shapes, with intracellular reactions operating at either
reaction-limited or diffusion-limited regime. To simulate a reaction-limited regime
(vr � vD), we left the diffusion flux of substrate in the reaction unbounded,
i.e. the substrate diffuses instantaneously. To simulate a diffusion-limited regime,
(vr � vD), i.e. substrate diffusion is negligible, there are two ways this can
be done. One can constrain every flux variable vD to be equal zero, or one can
omit diffusion from the set of reaction objects and flux variables all together. We
chose to do the latter since it reduces the size of the linear programming prob-
lem.

Second,wewanted to test the utility of themethod for simulating spatial heterogene-
ity within a single cell. It is known that the sub-cellular environment is heterogeneous,
which means that enzymes are likely not distributed uniformly. However, other than
the confinement of specific enzymes within certain organelles, it is unclear if there are
distinct enzyme distribution patterns, how cellular behaviour is affected by these pat-
terns if any, and under what conditions. Our method is well-suited to explore this
theoretically since the flux variable for each intracellular reaction is decomposed
into regional flux variables, and they can be separately constrained with their own
bounds as shown in inequality (10). Using this inequality, we can incorporate the
spatial information of enzyme distribution by assigning specific portions of total cel-
lular enzyme to specific regions based on the regions’ spatial location within the
cell. This means that we can simulate the local rates of each reaction, as deter-
mined by local availability of enzymes, and evaluate the global rate at the cellular
level.

To facilitate the exploration of enzyme distribution effect, we have included an
additional function in the Python API that allocates enzymes based on user-specified
parameters. Currently, we have implemented four options for allocating enzymes in
the cell: (1) uniformly; (2) on a positive gradient (increasing concentration from the
boundary to the centre of the cell); (3) on a negative gradient or; (4) randomly. The
function uses the following to determine the portion [E]k that each cell region will
receive out of the total cellular amount [E]:

[E]k = nk∑
k∈KE

nk
[E] (18)

Here, KE is the set of cell regions where enzymes will be allocated to and nk is
a non-negative value assigned to cell region k. If a user chooses to distribute an
enzyme uniformly, nk will be set to one for all cell regions. For positive (negative)
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gradient distribution, nk for cell regions in the outermost (innermost) layer of the cell
will be assigned a value of one and increase by a user-defined gradient parameter
value for each layer into (away from) the cell centre (Fig. 1a). Finally, users can also
choose to distribute an enzyme randomly without any specific pattern. In this case, nk
for each cell region is sampled from a random number generator. Once the regional
portions of each enzyme have been allocated using equation (18), they can be used to
constrain the corresponding flux variables (see Appendix B for more details on using
the API).

Third, we wanted to test using the method for spatial stochastic simulation. As
mentioned earlier, our method allows us to incorporate the spatial information of
enzyme distribution. One type of enzyme distribution we have implemented is random
distribution. With a random distribution, the portion of total cellular enzyme that each
region gets does not depend on its spatial location within the cell. Instead, each time
we simulate a cell with the same shape, the same region k will be allocated a different
portion because a new value will be sampled for nk in equation (18). Consequently,
the region’s flux variables will be constrained by different values each time. Therefore,
compared to the other three distribution patterns that will always yield the same set
of constraints and the same solution, a random enzyme distribution could produce
a different solution to the linear programming problem in each run. This is akin to
simulating a different cell each time we run the simulation. We used this feature to do
spatial stochastic simulation.

Altogether, we conducted the three tests above through different combinations of
the following parameters:

• Cell shape: 1× 36, 2× 18, 3× 12, 4× 9, 6× 6 (note that the total number of cell
regions is the same for every cell shape so they all have the same spatial resolution)

• Rate-limiting regime: no substrate diffusion (all intracellular reactions are
diffusion-limited), one substrate diffuses instantaneously while the other cannot
diffuse (a mixed of reaction-limited and diffusion-limited reactions), all substrates
diffuse instantaneously (all intracellular reactions are reaction-limited)

• Distribution pattern for transporters:uniform, random (wedistributed transporters
only among cell regions in the outermost layer of the cell since transporters reside
on the membrane)

• Distribution pattern for enzymes: uniform, positive gradient, negative gradient,
random (we distributed enzymes among all cell regions)

For positive and negative gradients, we set the gradient parameter to 1 and -1,
respectively. For stochastic simulations, i.e. ones that involved random enzyme dis-
tribution, we ran batches of 100 simulations to determine population-level behaviour.
Note that we did not seed the random number generator for these simulations,
but we have repeated the batches of simulations multiple times, and our results
were robust and showed consistent population-level behaviour. Scripts for running
these simulations can be found on the method’s GitHub page. All were steady-
state simulations, an inherent feature of FBA. Simulation results are presented
next.
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5 Simulation Results

5.1 Method Captures the Effects of Diffusion

Wefirst testedwhether ourmethod can reproduce the effects of intracellularmetabolite
diffusion, by comparing simulations across different cell shapes. For this test, we
looked at simulations of the linear-pathway example because it has a straightforward
single path for mass flux. We also focused only on deterministic simulations, i.e.
parameter combinations that do not involve any random enzyme distribution. To allow
a quantitative comparison across cell shapes, we used the perimeter-to-area (PA) ratio
to represent each shape. We defined this ratio as the number of cell regions in the
outermost layer divided by the total number of cell regions. This ratio was chosen
over a commonly used aspect ratio because it is the two-dimensional equivalent of
surface-area-to-volume ratio, which is known to correlate positively with the rate of
diffusion (Okie 2013). If the effects of diffusion are captured by the method, we would
expect to see differences in optimised cell growth at different PA ratios when diffusion
becomes limiting. Note that in our simulations, transporter E1 was distributed only
to regions in the outermost layer regardless of cell shape. We can therefore rule out
cellular capacity for nutrient uptake as the cause of any differences in simulated growth
if observed. As seen in Fig. 2, when either or both metabolites A and B have limited
ability to diffuse, there is a general trend of reduced growth at low PA ratios. On the
other hand, in the control where both metabolites can diffuse instantaneously, i.e. all
intracellular reactions are reaction-limited as implicitly assumed in conventional FBA,
cell growth can achieve the maximal value of 100 regardless of the ratio. We observed
these relations in all combinations of non-random enzyme distributions. It is worth
noting that both 1 × 36 and 2 × 18 cells achieve the same growth in our simulations
despite having different elongated shapes. This is because at this spatial resolution,
they have the same PA ratio where all cell regions are in the outermost layer. Each
cell region can receive nutrients from the extracellular compartment via transporters
instead of being dependent on diffusion from neighbouring regions. A higher spatial
resolution would be needed to discriminate between the two shapes, but we included
both in our simulations as controls to check that the reduced growth effectswe observed
in other shapes were indeed due to intracellular diffusion. These results demonstrated
that our method can spatially simulate reaction–diffusion in single-cell metabolism.
It can capture the theoretical effects of both reaction-limited and diffusion-limited
regimes on growth, as well as the spatial effect of cell shape.

The extent towhich optimal growth is reducedwith PA ratio, i.e. the slope of lines in
Fig. 2, depends on the metabolite(s) that is not diffusible. In general, the effect of cell
shape is strongest when both metabolites A and B cannot diffuse. This is because all
intracellular reactions are diffusion-limited, so a reduction in diffusion in rounder cells
increases the severity of the limitation. The effect is weaker if metabolite A can diffuse
instantaneously, since only one reaction is diffusion-limited. However, combination
of enzyme distribution also plays a role. We explored this next.
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Fig. 2 Simulated biomass growth plotted against perimeter-to-area ratio for different rate-limiting regimes
(no diffusion, metabolite A can diffuse instantaneously, metabolite B can diffuse instantaneously, both
metabolites can diffuse instantaneously). Each panel illustrates plots for a different combination of enzyme
distribution patterns, as indicated by three characters at the top of the panel (“0”: uniform distribution; “+”:
positive gradient; “-”: negative gradient) that represent the distribution of transporter E1, enzyme E2 and
enzyme E3, respectively. Opacity of the lines was adjusted so that overlapping lines appear as a blend of
the overlapping colours (Colour figure online)

5.2 Method Enables Study of Enzyme Distribution Effect

To inspect how enzyme distribution influences the effect of diffusion on growth, we
further analysed simulated growth of a 6×6 cell where diffusion-limiting effect ismost
severe. Again, we only focused on deterministic simulations where transporter E1 has
a uniform distribution, while enzymes E2 and E3 can be distributed uniformly or on a
(positive/negative) gradient.We found that for each rate-limiting regime, combinations
of enzyme distribution can be grouped based on their effective maximal growth rates
(Fig. 3).

For the regime where only metabolite A can diffuse instantaneously (left panel in
Fig. 3), a maximal growth of 100 can still be achieved as long as enzymes E2 and
E3 have the same distribution pattern, i.e. both enzymes have the same concentration
in every cell region. This is because A can move freely and instantaneously so it is
optimally channelled in the simulation to occupy each cell region at a rate proportional
to regional concentration of enzyme E2. This enables enzyme E2 in every region to
operate at maximal capacity, without being limited by diffusion, to convert A to B. If in
addition there is proportional amount of regional enzyme E3 to convert B to biomass
on site, growth is not limited by the diffusion of B either so the maximal growth is
achieved. On the contrary, if the enzymes are distributed in opposing gradient to each
other, the growth in every cell region is limited by either of the enzymes. Even if
A can diffuse accordingly to enable maximal conversion to B in every region, some
regions do not have sufficient E3 to fully support on-site conversion of B to biomass,
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Fig. 3 Simulated biomass growth for a 6× 6 cell for different rate-limiting regimes: only metabolite A can
diffuse instantaneously (left panel); only metabolite B can diffuse instantaneously (middle panel); and both
metabolites are restricted (right panel). The combinations of enzyme distribution patterns that produce each
growth level are indicated at the bottom of each bar. Each combination of three characters (“0”: uniform
distribution; “+”: positive gradient; “-”: negative gradient) represents the distribution of transporter E1,
enzyme E2 and enzyme E3, respectively (Colour figure online)

and any excess B cannot diffuse to other regions with higher E3 to make up for
it. Thus, overall growth is lowest for combinations with opposing gradients. In the
middle range are cases where one enzyme is uniformly distributed while the other
has a gradient distribution. In these cases, a negative gradient is more favourable for
growth. This can be explained by the fact that the number of cell regions in each layer
decreases from the outer layers to the inner layers (Fig. 1a). With a negative gradient
where concentration of an enzyme is higher in the outer layers, more cell regions are
allocated with high amount of the enzyme thereby generating higher overall growth.
Again, this highlights how PA ratio, metabolite diffusion and enzyme distribution
interact to give rise to growth behaviour.

Our analysis also shows that there are only three growth levels when metabolite A
cannot diffuse, regardless of whether B can diffuse (middle and right panels in Fig. 3).
However, combinations of enzyme distribution are grouped differently depending on
the ability of B to diffuse. If B can instantaneously diffuse, combinations are grouped
based only on the distribution of enzyme E2. A negative gradient is most favourable,
followed by a uniform distribution and lastly a positive gradient. The reason is quite
simple. Since metabolite A cannot diffuse, they stay in cell regions in the outermost
layer after being transported into cell. A negative gradient means there is a higher
concentration of enzyme E2 in the outermost layer to maximise conversion of A to
B. Hence, there is more B that can be converted to biomass either immediately in this
layer or after diffusing to the inner layers, to produce a higher growth rate. If both
metabolites A and B cannot diffuse, reactions and growth only occur in cell regions in
the outermost layer. Thus, a high growth rate can only be achieved when both enzymes
E2 and E3 have high concentrations in this layer. In accordance with this, growth is
lowest when any enzyme has a positive gradient distribution, i.e. a low concentration
in the outermost layer.
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In the optimal solutions above, for cases with reaction-limited regime, metabolites
diffuse in the direction and rate that maximises growth. Each metabolite tends to move
towards regions with high enzyme capacity, where it will be consumed at a higher rate
and stays at a lower level. If we assume that volume exclusion by othermolecules is the
same in each region, then the optimal solutions have simulated metabolite diffusion in
the direction from regionswith high concentrations to regionswith low concentrations,
without explicitly representing concentration gradient. Note however that the reaction
network in this simple example only consists of a single-substrate linear pathway.
For more complex reaction network, the optimal solutions may not necessarily favour
diffusion that follows the concentration gradient.Additional constraintsmaybe needed
to obtain more accurate solutions.

5.3 Effect on Cell-to-Cell Variability

In this section, we focus on simulations that involve random enzyme distribution.
Figure 4 shows the growth distribution of 100 stochastic simulations for each rate-
limiting regime and combination of enzyme distribution for a 6×6 cell. As previously
observed, the maximal growth of 100 is always achieved when metabolites A and B
can diffuse instantaneously. For some rate-limiting regimes, cells can switch between
deterministic and stochastic growth, depending on the combination of enzyme distri-
bution. Interestingly, several growth distributions have lower standard deviation than
others. To explore this further, we plotted the coefficient of variation (CV) against the
PA ratio for each case (Fig. 5). We used CV instead of standard deviation because the
former is normalised to the population mean so it is comparable across cases.

In the cases where metabolites A and B diffuse instantaneously, the CV is always
zero as expected. For most other rate-limiting regimes, the CV does not generally
change much with the PA ratio, and there are overlaps among regimes for some com-
binations of enzyme distribution. However, CV tends to be slightly sensitive to the PA
ratio when both metabolites cannot diffuse. Specifically, CV increases at decreasing
PA ratio. As previously discussed, growth only occurs in regions in the outermost
layer when both metabolites cannot diffuse. At low PA ratios, only a small number
of cell regions actually contribute to overall growth. The contribution of each region
depends on its enzyme concentrations, some of which are sampled randomly. Since
variance is usually high when sample size is small, the variance of regional growth
among a small number of contributing regions tends to be high (Hajagos and Steiner
2001). Consequently, cell growth which is the sum of these highly variable regional
growth can take a wide range of values; thus CV tends to be higher at low PA ratios.

In the simulations so far, the reaction network and parameter values were designed
such that no specific enzyme would be limiting growth if simulated as a cell-scale
representation. In other words, there are just enough of each enzyme to support a spe-
cific cell growth level assuming that all reactions are not diffusion-limited. We called
this the “default model”. When the “default model” is simulated as a regional-scale
representation, some regions may have disproportional enzyme contents depending
on how each enzyme is distributed. As diffusion becomes limiting, there are regions
where some enzymes are in excess or unused. Consequently, the overall cell growth
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Fig. 4 Kernel density plots of simulated biomass growth for different rate-limiting regimes (no diffusion,
metabolite A can diffuse instantaneously, metabolite B can diffuse instantaneously, both metabolites can
diffuse instantaneously). Each panel illustrates plots for a different combination of enzyme distribution
patterns, as indicated by three characters at the top of the panel (“r”: random distribution; “0”: uniform
distribution; “+”: positive gradient; “-”: negative gradient) that represent the distribution of transporter E1,
enzyme E2 and enzyme E3, respectively. Each plot describes the population distribution of 100 simulations.
A vertical line indicates that all 100 simulations produce the same value. Opacity of the lines was adjusted
so that overlapping lines appear as a blend of the overlapping colours (Colour figure online)

is lower than the theoretical maximum (Fig. 3). How much growth is reduced thus
indicates the degree to which enzymes are not fully utilised. At the population level,
a high CV indicates that a large proportion of cells under-utilise their enzymes and
grow much lower than the maximum and mean levels. Therefore, the CV measures
the extent of under-utilisation within the population.

We also explored alternativemodelswhere some enzymeswere in excess evenwhen
diffusionwas not limiting, by changing the stoichiometry in the reaction networkwhile
maintaining total cellular amount of each enzyme.Wechose this over changing enzyme
amount directly so that enzyme distribution patterns were consistent and comparable
across models. In the first alternative which we called the “B-limiting model”, we
increased the stoichiometric coefficient of metabolite B in reaction R4 as follows:

2 B[c]
E3−−→ Biomass (R4a)

This was implemented by changing the element in the fourth column and third row in S
in equation (3) to−2. Note that we are not indicatingmetabolite B is a growth-limiting
nutrient.With this change, E3 becomes an excessive enzyme. Compared to the “default
model”, there is not much difference in CV sensitivity to the PA ratio (Fig. 6). The
most noticeable difference is a decrease in CV for several combinations of enzyme
distribution in the regime where only metabolite A can diffuse instantaneously. We

123



Discretised Flux Balance Analysis for Reaction–Diffusion... Page 21 of 37 39

Fig. 5 The coefficient of variation (CV) of biomass growth simulated using the “default model”. CV is plot-
ted against perimeter-to-area ratio for different rate-limiting regimes (no diffusion, metabolite A can diffuse
instantaneously, metabolite B can diffuse instantaneously, both metabolites can diffuse instantaneously).
Each panel illustrates plots for a different combination of enzyme distribution patterns, as indicated by
three characters at the top of the panel (“r”: random distribution; “0”: uniform distribution; “+”: positive
gradient; “-”: negative gradient) that represent the distribution of transporter E1, enzyme E2 and enzyme E3,
respectively. Opacity of the lines was adjusted so that overlapping lines appear as a blend of the overlapping
colours (Colour figure online)

also tested a second alternative which we called the “A-limiting model”, where we
increased the stoichiometric coefficient of metabolite A in reaction R3 instead (third
column and second row of S), as follows:

2 A[c]
E2−−→ B[c] (R3a)

In the “A-limiting model”, both enzymes E2 and E3 become excessive. CV becomes
zero in all cases where metabolite A can diffuse instantaneously, regardless of whether
B can diffuse (Fig. 7).More interestingly, the sensitivity of CV to the PA ratio increases
for the other rate-limiting regimes, i.e. CV is high at low ratios and low at high
ratios. In a number of cases, CV even approaches zero at the ratio of one, going
from highly stochastic to almost deterministic just by changing the PA ratio. Together,
our simulations suggest that enzyme distribution patterns within individual cells could
affect not only single-cell behaviour but also variability at the population level. Besides
rate-limiting regime and cell shape, effect at the population level also depends on the
overall relative abundance of enzymes.
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Fig. 6 The coefficient of variation (CV) of biomass growth simulated using the “B-limiting model”. CV
is plotted against perimeter-to-area ratio for different rate-limiting regimes (no diffusion, metabolite A
can diffuse instantaneously, metabolite B can diffuse instantaneously, both metabolites can diffuse instan-
taneously). Each panel illustrates plots for a different combination of enzyme distribution patterns, as
indicated by three characters at the top of the panel (“r”: random distribution; “0”: uniform distribution;
“+”: positive gradient; “-”: negative gradient) that represent the distribution of transporter E1, enzyme E2
and enzyme E3, respectively. Opacity of the lines was adjusted so that overlapping lines appear as a blend
of the overlapping colours (Colour figure online)

5.4 Effect on Robustness

Simulations of the linear-pathway example presented earlier have shown that cell shape
and enzyme distribution pattern can affect the ability of cells to convert nutrients into
final products such as biomass. These effects are due to diffusion and can be seen
at both the individual and population levels. Using our method, we also investigated
these effects in a branched-pathway example where nutrient can be converted into
energy via an efficient primary path or a secondary path that also produces a toxic
compound. Similar to the biomass objective in the first example, the maximised value
of the objective function in this example is generally reduced at low PA ratios when
either or both metabolites X and Y have limited ability to diffuse (Fig. 8). Again,
the extent of reduction is strongest when both metabolites cannot diffuse, while the
maximal value of 400 can be achieved regardless of the ratio when both metabolites
can diffuse instantaneously. As for enzyme distribution, the effect of diffusion is only
influenced by the distribution patterns of transporter E4, enzyme E5 and enzyme E6.
The spatial distribution of enzyme E7 that catalyses the secondary path has negligible
influence. This is not surprising given that the secondary path is not favourable and
rarely used (Fig. 10). Besides analysing the maximised value of the objective function
that includes a penalty for toxin production, we also examined the effect of diffusion
on energy production alone (Fig. 9). By comparing the slope of lines in Figs. 8 and 9, it
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Fig. 7 The coefficient of variation (CV) of biomass growth simulated using the “A-limiting model”. CV
is plotted against perimeter-to-area ratio for different rate-limiting regimes (no diffusion, metabolite A
can diffuse instantaneously, metabolite B can diffuse instantaneously, both metabolites can diffuse instan-
taneously). Each panel illustrates plots for a different combination of enzyme distribution patterns, as
indicated by three characters at the top of the panel (“r”: random distribution; “0”: uniform distribution;
“+”: positive gradient; “-”: negative gradient) that represent the distribution of transporter E1, enzyme E2
and enzyme E3, respectively. Opacity of the lines was adjusted so that overlapping lines appear as a blend
of the overlapping colours (Colour figure online)

can be seen that the total amount of energy produced is less sensitive to PA ratio. In fact,
when metabolite X can diffuse instantaneously, PA ratio has almost no effect on total
energy production even when the objective value is sensitive. Simulated cells achieve
this by diverting someportion ofmetaboliteY to utilising the secondary path for energy
production (Fig. 10). A similar scenario can also be observed when both metabolites
X and Y have limited ability to diffuse, though this only occurs for some combinations
of enzyme distribution patterns and the decrease in sensitivity is not as large. Thus,
utilising the secondary path can help buffer against diffusion limitation. However,
this comes at the cost of toxin production so the trade-off is only advantageous under
certain conditions. Note that the extent of trade-off and the conditions under which it is
advantageous depend on the objective function, i.e. the choice of objective coefficient
or weight that determines the amount of penalty incurred.

We also found that for each rate-limiting regime, combinations of enzyme distri-
bution can be grouped based on their effective maximal energy production (Fig. 11).
For the regime where only metabolite X can diffuse instantaneously (left panel in
Fig. 11), a maximal energy production of 400 can still be achieved solely through
the primary path, i.e. zero secondary-to-primary flux ratio, as long as enzymes E5
and E6 have the same distribution pattern. The reason for this is similar to the linear-
pathway example. Since X can move freely and instantaneously, it can theoretically
occupy each cell region at a rate that enables enzyme E5 in every region to operate at
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Fig. 8 Maximised value of the objective function in the branched-pathwaymodel, plotted against perimeter-
to-area ratio for different rate-limiting regimes (no diffusion, metabolite X can diffuse instantaneously,
metabolite Y can diffuse instantaneously, both metabolites can diffuse instantaneously). Each panel illus-
trates plots for a different combination of enzyme distribution patterns, as indicated by four characters at
the top of the panel (“0”: uniform distribution; “+”: positive gradient; “-”: negative gradient) that represent
the distribution of transporter E4, enzyme E5, enzyme E6 and enzyme E7, respectively. Opacity of the lines
was adjusted so that overlapping lines appear as a blend of the overlapping colours (Colour figure online)

maximal capacity, to convert X to Y without being limited by diffusion. When both
enzymes have the same distribution pattern, there is proportional amount of regional
enzyme E6 to convert Y to energy on site, so the limited ability of Y to diffuse has
no effect on energy production. Interestingly, this diffusion limitation of Y has very
little effect even in other combinations of enzyme distribution pattern. The largest
decrease in energy production for this diffusion regime is less than 15%, with con-
comitant increase in the secondary-to-primary flux ratio. This reiterates the advantage
of partial diversion to an alternative path. However, this path is not utilised at all if
Y can diffuse instantaneously while X has limited ability to diffuse (middle panel in
Fig. 11). This means that, at the level of penalty that we used in the simulation, toxin
production is too high a cost to pay in this diffusion regime under any combinations
of enzyme distribution patterns. On the other hand, if both metabolites have limited
ability to diffuse (right panel in Fig. 11), three groups of enzyme distribution patterns
can benefit from partial diversion to the alternative path but not the other three. The
largest secondary-to-primary flux ratio is seen in this diffusion regime, going up to
0.9 in the case where enzyme E5 is spatially distributed on a positive gradient while
enzyme E6 is on a negative gradient. This flux ratio enables simulated cells to generate
about 88% of the maximal energy production achievable in this diffusion regime.

For stochastic simulations that involve at least one enzyme that is spatially dis-
tributed in a random pattern, the CV for both objective value (Fig. 12) and total energy
produced (Fig. 13) are always zero in the cases where metabolites X and Y can dif-
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Fig. 9 Simulated energyproductionplotted against perimeter-to-area ratio for different rate-limiting regimes
(no diffusion, metabolite X can diffuse instantaneously, metabolite Y can diffuse instantaneously, both
metabolites can diffuse instantaneously). Each panel illustrates plots for a different combination of enzyme
distribution patterns, as indicated by four characters at the top of the panel (“0”: uniform distribution;
“+”: positive gradient; “-”: negative gradient) that represent the distribution of transporter E4, enzyme E5,
enzyme E6 and enzyme E7, respectively. Opacity of the lines was adjusted so that overlapping lines appear
as a blend of the overlapping colours (Colour figure online)

fuse instantaneously, as expected. Similar to the linear-pathway example, CV tends
to be slightly sensitive to the PA ratio when both metabolites cannot diffuse, with CV
increasing at decreasing PA ratio. On the other hand, when only metabolite Y has a
limited ability to diffuse, this sensitivity is lost for both objective value and total energy
produced. We also observed that the CV for total energy produced is generally lower
than that for objective value and approaches zero in many cases. Mathematically, the
CV can differ between the two only if the secondary path is utilised. This means that
the observed reduction in both cell-to-cell variability of total energy produced and the
sensitivity of this variability to cell shape is due to partial diversion to the alternative
path. Altogether, our results show that a branched pathway, where there is an alter-
native path to generating the same desirable products, can provide robustness to the
system. This concurs with a previous study demonstrating that enhanced robustness in
metabolic networks is related to the organisation of branched metabolites (Smart et al.
2008). Our results further suggest that factors such as cell shape, diffusion regime and
spatial distribution of enzyme can influence this robustness, at both single-cell and
population levels.
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Fig. 10 The secondary-to-primary flux ratio plotted against perimeter-to-area ratio for different rate-limiting
regimes (no diffusion, metabolite X can diffuse instantaneously, metabolite Y can diffuse instantaneously,
both metabolites can diffuse instantaneously). Each panel illustrates plots for a different combination of
enzymedistribution patterns, as indicated by four characters at the top of the panel (“0”: uniformdistribution;
“+”: positive gradient; “-”: negative gradient) that represent the distribution of transporter E4, enzyme E5,
enzyme E6 and enzyme E7, respectively. Opacity of the lines was adjusted so that overlapping lines appear
as a blend of the overlapping colours (Colour figure online)

Fig. 11 Simulated energy production (blue bars, left axis) and secondary-to-primary flux ratio (red bars,
right axis) for a 6× 6 cell for different rate-limiting regimes: only metabolite X can diffuse instantaneously
(left panel); onlymetaboliteY can diffuse instantaneously (middle panel); and bothmetabolites are restricted
(right panel). The combinations of enzyme distribution patterns that produce each growth level are indicated
at the bottom of each bar. Each combination of four characters (“0”: uniform distribution; “+”: positive
gradient; “-”: negative gradient) represents the distribution of transporter E4, enzyme E5, enzyme E6 and
enzyme E7, respectively (Colour figure online)
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Fig. 12 The coefficient of variation (CV) of maximised objective value in the branched-pathway model.
CV is plotted against perimeter-to-area ratio for different rate-limiting regimes (no diffusion, metabolite X
can diffuse instantaneously, metabolite Y can diffuse instantaneously, both metabolites can diffuse instanta-
neously). Each panel illustrates plots for a different combination of enzymedistribution patterns, as indicated
by four characters at the top of the panel (“r”: random distribution; “0”: uniform distribution; “+”: positive
gradient; “-”: negative gradient) that represent the distribution of transporter E4, enzyme E5, enzyme E6
and enzyme E7, respectively. Opacity of the lines was adjusted so that overlapping lines appear as a blend
of the overlapping colours (Colour figure online)

6 Discussion

In this paper, we present discretised FBA, a spatial modelling method and algorithms
that extend conventional FBA to include representation of metabolite diffusion inside
cells. Implemented on a grid-based system, our method allows us to spatially explore
metabolism and cell behaviour such as growth when diffusion becomes a limiting
factor in enzymatic reactions. Coupling FBA with spatial representation has been
done previously, for example to describe the interactions and spatial dynamics among
microbial communities (Henson 2015; Borer et al. 2019; Karimian and Motamedian
2020; Dukovski et al. 2021). To the best of our knowledge, our work is the first
spatially informed FBAmethod that looks into reaction–diffusion within a single cell.
Compared to existing spatial modelling methods such as PDE, our method requires
very few parameters.

We simulated diffusion-limited and reaction-limited regimes using extreme settings
where metabolites are either restricted or able to diffuse freely and instantaneously.
This allowed us to compare themaximum extent of their potential impact on behaviour
such as growth and energy production. In real systems, metabolites are generally small
so they canmove around quite freely and rapidlywithin the same compartment, but can
be impeded by surrounding macromolecules. Even so, it is unlikely that metabolites
will be fully restricted to the extreme level of diffusion limitation in our simulations.
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Fig. 13 The coefficient of variation (CV) of total energy produced. CV is plotted against perimeter-to-area
ratio for different rate-limiting regimes (no diffusion, metabolite X can diffuse instantaneously, metabolite
Y can diffuse instantaneously, both metabolites can diffuse instantaneously). Each panel illustrates plots
for a different combination of enzyme distribution patterns, as indicated by four characters at the top of the
panel (“r”: random distribution; “0”: uniform distribution; “+”: positive gradient; “-”: negative gradient) that
represent the distribution of transporter E4, enzyme E5, enzyme E6 and enzyme E7, respectively. Opacity
of the lines was adjusted so that overlapping lines appear as a blend of the overlapping colours (Colour
figure online)

Besides, highly efficient enzymes that are diffusion-limited are rare (Sweetlove and
Fernie 2018). The majority of enzymes have not evolved to the “perfect” level of
catalytic efficiency, so most reactions likely operate under a reaction-limited regime
even when the diffusion rates of substrates are low (Bar-Even et al. 2015). Addition-
ally, metabolism consists of reaction networks that are much more complex than our
examples, so we expect the overall impact is intricate but much less severe. Some
studies have proposed that diffusion limitation can be overcome through metabolite
channelling, where intermediate products in a series of reactions are directly trans-
ferred from one enzyme to the next in the pathway to shorten diffusion distance
(Obata 2020). All these seem to indicate a negligible effect of metabolite diffusion on
single-cell metabolism. However, several studies have noticed that the density of some
bacterial cells seem to be optimal for achieving cellular efficiency, with a trade-off
between high volume density that can improve biochemical efficiency and molecu-
lar crowding that can slow down diffusion (Pang and Lercher 2023; Vazquez 2010).
Since the sub-cellular environment is not static, spatial and structural organisation in
cells could provide another dimension of regulation. Our method provides a theoret-
ical means to study the relationship between local reaction/diffusion limitations and
optimal behaviour such as growth, energy production or any other objective function.
This relationship could be useful, for example to study cancer cells that are known to
have abnormal growth and display drug resistance predictable by cell shape (Longden
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et al. 2021). Another potential use is to facilitate the design of synthetic systems, such
as protocells where structure is a major consideration (Gözen et al. 2022).

We also demonstrated another utility of our spatial method by presenting simula-
tions of different enzyme distribution patterns. Experimental observations have shown
thatmost cellularmolecules are heterogeneously distributed. Such heterogeneity could
arise as the direct effect of regulation and the indirect effect of cell shape (Halatek
et al. 2018; Ovádi and Saks 2004). Since enzymes are usually large and metabolism is
a relatively fast process, we assumed that enzymes do not move during the time-scale
of our steady-state simulations. Our results suggest that some distribution patterns are
more favourable for growth and energy production than others. For linear pathways,
the more favourable distributions are those where enzymes that act in series have simi-
lar range of concentration or capacity within the same region. This supports the notion
that cells have organelles and compartments, among other theories, to concentrate
enzymes and substrates that participate in the same pathways to increase biochemi-
cal efficiency (Diekmann and Pereira-Leal 2013; Conrado et al. 2007). For branched
pathways, some combinations of enzyme distribution patterns and diffusion regimes
favour a partial diversion of branch-point metabolites to the alternative paths, even
when there is a large incurred cost. In our example, this cost comes in the form of
toxin production that could be detrimental to cell growth and survival. The detrimental
effect of toxin can occur directly and indirectly through metabolism as well as other
cellular processes.We demonstrated one way of representing this cost, through the use
of multi-objective optimisation. This can be further explored in future, for example
by varying the weight of each objective, which could be useful for helping design
cancer therapy (Lee et al. 2020). A recent work made promising progress in engineer-
ing cells with specific patterns of protein localisation, so it may soon be possible to
experimentally test theoretical effects of enzyme distribution patterns (Rajasekaran
et al. 2024).

Our results also suggest that enzyme distribution within individual cells can affect
variability at the population level, if some reactions are diffusion-limited. Enzymes
are required for cell growth but their production is costly (Buttgereit and Brand 1995;
Russell and Cook 1995). In our simulations, the same investment, i.e. the same amount
of total cellular enzyme, could yield different returns in growth and energy production
if cells change their shape and enzyme distribution pattern. At the population level,
a low CV indicates a trade-off between overall return (population growth and energy
production) and low cell-to-cell variability. On the other hand, a high CV means
that a small number of cells in the population yield unusually high (or low) growth
and energy, which could confer a selective advantage under fluctuating environments
(Balaban et al. 2004; Acar et al. 2008). Most studies on variability have focused on
stochasticity in gene expression (Thattai and van Oudenaarden 2004; Schwabe et al.
2011; Evans and Zhang 2020); our study suggests that other aspects such as cell shape
and spatial organisation may have effects under certain conditions.
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7 Conclusions and FutureWork

In conclusion, our method expands the widely used FBA and increases its spatial
resolution. FBA is widely used because it has low parameter requirements yet provides
flexibility for investigation. For example, one can use thermodynamics principles and
gene expression data to constrain reaction fluxes and directionwhen kinetic parameters
are lacking at the genome scale, or test various hypotheses by changing the objective
function (Blazier and Papin 2012; Machado and Herrgard 2014; Raman and Chandra
2009).We recommend similar use of ourmethod. In the absence of data about diffusion
coefficients and concentrations, spatial information and measurements of factors that
affect diffusivity can be used to constrain diffusion fluxes, to gain insight into the
system.

Currently, our method is implemented to represent regular two-dimensional shapes.
We have demonstrated the use of this method on two simple toy reaction networks
in single-compartment cells. Future extensions could include capabilities to repre-
sent more complex cell shapes and organelles, as well as in three dimensions. At
present, each cell region or groups of neighbouring regions can effectively be a dis-
tinct sub-cellular compartment or organelle, but all movements of metabolites in and
out of a region are treated as diffusion. To represent membrane-bound organelles, extra
features are needed to identify cell regions located at the boundary of an organelle,
and treat metabolite movements between these regions and neighbouring regions that
are not part of the organelle as cross-membrane (active/passive) transport reactions.
Additional functions could facilitate the representation of organelle-specific reaction
networks. These features will enable us to simulate more realistic cells and reaction
networks, so that we can explore how spatiotemporal organisation of sub-cellular
structure affects metabolism and cell behaviour such as growth.
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Appendix A

The following details how our Python API converts a cell-scale representation of
metabolic network into a regional-scale representation (see Algorithms 1–5):
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1. Create a two-dimensional I × J grid, where I (cell width) and J (cell length) are
defined by the user;

2. Create in every cell region a metabolite object for each intracellular metabolite.
For metabolites in the extracellular compartment, only one object per metabolite
will be created. The user has to provide input of metabolites as two separate lists;
one for intracellular and another for extracellular metabolites;

3. Create in every cell region a reaction object for each intracellular biochemical reac-
tion. For reactions in the extracellular compartment including exchange reactions,
only one object per reaction will be created. Again, the user has to provide the two
groups of reactions separately;

4. Create an objective function that sums over all cell regions, the variable(s) which
represents the flux(es) of a user-specified intracellular reaction(s), e.g. the biomass
reaction;

5. Create in every boundary cell region a reaction object that represents the transport of
each intracellular metabolite to/from the extracellular compartment. Boundary cell
regions are the regions located in the outermost layer of the cell, i.e. the boundary
between cell and the extracellular compartment. For this step, the user has to provide
the list of intracellular metabolites that are transported to/from the extracellular
compartment, and the list of import/export reactions;

6. For each cell region:

(a) identify its neighbouring regions;
(b) for each neighbouring region, create a reaction object for every intracellular

metabolite to represent diffusion from own region to the neighbouring region;

7. For each reaction object, set the bounds of its flux variable based on user input. If
no bounds are specified for a reaction, its flux variable will be left unbounded.

Once the above metabolite and reaction objects have been created and their properties
defined, the COBRApy package will automatically formulate the corresponding linear
programming problem.

Algorithm 1 Create cell regions
Input: Cell width, I

Cell length, J
Output: Array of cell regions, K
create empty array K
for i = 0, . . . , I − 1 do

for j = 0, . . . , J − 1 do
create cell region k
K (i, j) ⇐ k

end for
end for
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Algorithm 2 Create regional metabolites
Input: Array of cell regions, K

List of intracellular metabolites, Mintra
List of extracellular metabolites, Mextra

Output: Lists of metabolites M
create empty list M
for m ∈ Mintra do

for k ∈ K do
create and add metabolite mk to M

end for
end for
for m ∈ Mextra do

create and add metabolite m to M
end for

Algorithm 3 Create regional reactions
Input: Array of cell regions, K

List of intracellular reactions, Rintra
List of extracellular reactions, Rextra
Objective reaction, robj
List of import/export reactions, Rtrans

Output: Lists of reactions R
create empty list R
for r ∈ Rintra do

for k ∈ K do
create and add reaction rk to R

end for
end for
for r ∈ Rextra do

create and add reaction r to R
end for
for r ∈ R do

if r is robj then
set weight of r in objective function to 1

else
set weight of r in objective function to 0

end if
end for
identify the set of boundary cell regions B
for k ∈ B do

for r ∈ Rtrans do
create and add reaction rk to R

end for
end for

Appendix B

To simulate different enzyme distribution patterns, we provide additional functions in
the API that do the following:

1. Calculate the concentration of a user-specified enzyme in each cell region based on
the cellular concentration and distribution pattern provided by users. The function
provides the option of distributing enzymes in the cell uniformly, on a positive
gradient (increasing concentration from the boundary to the centre of the cell), on a
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Algorithm 4 Add metabolite diffusion to list of reactions
Input: Array of cell regions, K

List of reactions, R
List of intracellular metabolites, Mintra

Output: Metabolite diffusion objects dm
for k ∈ K do

identify the set of neighbouring regions N
for n ∈ N do

for m ∈ Mintra do
create and add diffusion dmk→n to R

end for
end for

end for

Algorithm 5 Set reaction bounds
Input: List of all reactions, R

User-defined bounds
Output: Constrained regional-scale model
for r ∈ R do

if r has user-defined bounds then
lr ⇐ user-defined lower bound
ur ⇐ user-defined upper bound

else
lr ⇐ −∞
ur ⇐ ∞

end if
end for

negative gradient, or randomly. Expected user inputs to determine the distribution
pattern include whether the distribution is random, if distributing to all cell regions
or only the outermost layer, the gradient parameter and an optional seed for the
random number generator (see Algorithm 6);

2. Calculate the upper bound of each regional flux variable for the reaction catalysed
by the enzyme, based on the regional concentration calculated above and a user-
specified kcat value.
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Algorithm 6 Distribute enzyme
Input: Boolean; if distribution is random

Boolean; if distributing to all cell regions
Gradient parameter, p
Array of cell regions, K
Cellular concentration of enzyme, [E]

Output: Enzyme concentration in each cell region, [E]k
create empty array KE
if distributing to all cell regions then

KE ⇐ K
else

KE ⇐ cell regions in outermost layer
end if
if distribution is random then

for k ∈ KE do
nk ⇐ random number

end for
else

if p is 0 then � uniform distribution
for k ∈ KE do

nk ⇐ 1
end for

else
group cell regions into layers L
if p > 0 then � positive gradient

order L from outermost layer to cell centre
else if p < 0 then � negative gradient

order L from cell centre to outermost layer
end if
for k ∈ L(0) do

nk ⇐ 1
end for
for l = 1, . . . , count(L) − 1 do

for k ∈ L(l) do
nk ⇐ l+ | p |

end for
end for

end if
end if
for k ∈ KE do

[E]k ⇐ nk∑
k∈KE

nk
[E]

end for
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