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Abstract
In some patients with myeloproliferative neoplasms (MPN), two genetic mutations
are often found: JAK2 V617F and one in the TET2 gene. Whether one mutation is
present influences how the other subsequent mutation will affect the regulation of gene
expression. In other words, when a patient carries both mutations, the order of when
they first arose has been shown to influence disease progression and prognosis. We
propose a nonlinear ordinary differential equation, the Moran process, and Markov
chain models to explain the non-additive and non-commutative mutation effects on
recent clinical observations of gene expression patterns, proportions of cells with
different mutations, and ages at diagnosis of MPN. Combined, these observations
are used to shape our modeling framework. Our key proposal is that bistability in
gene expression provides a natural explanation for many observed order-of-mutation
effects. We also propose potential experimental measurements that can be used to
confirm or refute predictions of our models.
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1 Introduction

Although the timing and probability of multiple random mutations in the context of
cancer have beenwell-studiedwithin the classic “two-hit” (Knudsen 1971) and “multi-
hit” (Armitage and Doll 2004; Bozic et al. 2010; Chou and Wang 2015) stochastic
models, these constructs do not distinguish the order in which different mutations are
acquired within an individual. While a multi-hit model has recently been extended to
enumerate mutations according to order of appearance in colorectal cancer (KRAS,
APC and TP53) (Li et al. 2023) and to compute probabilities of specific mutation
trajectories, it does not address gene interactions or the mechanisms behind order-of-
mutation effects. However, recent data derived from patients with myeloproliferative
neoplasm (MPN), a cancer of the bonemarrow (Ortmann et al. 2015), showunexpected
and complex effects ofmutation order on gene expression, cell populations, and patient
prognosis. These observations hint at richer downstreammechanisms.We shall address
these puzzles with models and analyses that provide insight into the mechanisms
surrounding mutation trajectories in MPN.

Two common mutations arise in MPN: JAK2 V617F (henceforth abbreviated as
JAK2) and TET2. Thesemutations are known to have different effects on cell behavior
(Levine and Gilliland 2007; Delhommeau et al. 2009; Klampfl et al. 2013; Nangalia
et al. 2013). JAK2, the Janus kinase 2, mediates cytokine signaling to control blood
cell proliferation, while the “downstream” TET2 protein catalyzes oxidation of 5-
methylcytosine, thereby epigenetically influencing expression of other genes. It has
been shown in vitro that JAK2 mutations confer a competitive growth advantage in
some myeloid cells (Baik et al. 2021). Similarly, TET2 mutations affect expression
of target genes, leading to hematologic malignancies (Chiba 2017). This genetic dis-
regulation is thought to indirectly increase cancer cell proliferation through a change
in phenotyptic switching rates (Morinishi et al. 2020). Overall, once the JAK2 or
TET2 mutation appears in certain myeloid cells, these cells effectively have higher
proliferation rates than myeloid cells without such mutations. This growth advantage
is modest and might take years to manifest itself as an increased proportion of cells
carrying these mutations. Thus, it is common to find cells in a patient with different
numbers of mutation types. Moreover, in certain patients with both JAK2 and TET2
mutations, it is possible to infer which mutation appears first.

Ortmann et al. (2015) reported that differentmutational patterns (including the order
of mutations) in hematopoietic cells and progenitor cells are related to differences in
gene expression patterns, clonal evolution, and even macroscopic properties. Specif-
ically, a mutation can differentially regulate gene expression by different amounts
depending on whether another type of mutation preceded it. Therefore, the change in
gene expression level when one mutation appears cannot simply be added. We call
such phenomena “non-additivity.” Additionally, patients in which the JAK2mutation
appears before the TET2 mutation have different gene expression levels, percentages
of cells with only one mutation, and ages at diagnosis than patients in which the TET2
mutation appears before the JAK2 mutation. This observation implies that the order
of the first appearance of these two mutations matters. We describe such phenomena
as “non-commutative.”
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In this paper, we develop a conceptual framework based on simple dynamical and
statistical models that can explain the clinically observed features associated with
MPN. By hypothesizing that MPN qualitatively follows our proposed dynamics, our
analysis can provide predictions that can be tested. Moreover, our nonlinear physical
models are sufficiently simple and general enough that they can be used to model other
cancers (Li et al. 2023) and other processes such as cellular adaptation (Brooks et al.
2011).

Before delving into our modeling and analysis, we first summarize in the next sec-
tion the key clinical observations and measurements (modeling constraints) reported
by Ortmann et al. (Ortmann et al. 2015). In Sect. 3, we build nonlinear ordinary differ-
ential equation (ODE)models that will serve as building blocks to explain the observed
non-additivity andnon-commutivity of gene expression levels under differentmutation
states. Variants of our model are then adapted to specific observations in the subse-
quent subsections. The known experimental features are consistent with our models.
To explain the observations regarding clonal evolution and ages at diagnosis, we pro-
pose in Sect. 4 three different mechanisms and study them using a generalized Moran
process. We conclude with some discussion in Sect. 5, including a comparison with
previously proposed models, which are further detailed in Appendix A. Appendix B
provides an alternative, but related Markov chain model to explain non-commutative
effects of mutations on gene expression.

2 Clinical Observations on the Effects Mutation Order

For patients exhibiting cells with both JAK2 and TET2 mutations, one might ask:
Which mutation occurred first in the patient? If we find cells with only JAK2 muta-
tions, cells with both JAK2 and TET2 mutations, but no cells with only the TET2
mutation, then the JAK2 mutation must have appeared in the patient before the TET2
mutation. Such patients are classified as JAK2-first. Patients in which we find doubly
mutated cells and TET2-only cells but not JAK2-only cells are classified as TET2-
first. If a patient carries JAK2-only cells, TET2-only cells, and JAK2-TET2 cells, then
both JAK2 and TET2 mutations occurred independently in wild-type cells and more
information, such as other associated mutations or tagging that resolves subpopula-
tions, is needed to infer their temporal order of appearance. Such patients were not
considered by Ortmann et al. (2015). For more complex samples that contain cells
with multiple types of mutations, one can use different algorithms to determine the
probabilities of different orders of mutations from sequencing data (De Bie et al. 2018;
Pellegrina and Vandin 2022; Ramazzotti et al. 2019; Khakabimamaghani et al. 2019;
Gao et al. 2022). However, patients with ambiguous cell populations (JAK2-only cells,
TET2-only cells, and JAK2-TET2 cells) were not considered byOrtmann et al. (2015).

Besides inferring the order of mutations, Ortmann et al. (2015) also measured
bulk gene expression levels fromMPN-patient-derived populations of cells containing
different sets of mutations. Their observations are summarized in Table 1 in which x∗
denotes the steady state expression level of gene X in a cell and the subscripts define
mutation status of the cell. A majority of the data are the measured cellular expression
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Table 1 Definition of stationary gene expression levels x∗ for cells with different mutation patterns

w/o JAK2 mutation with JAK2 mutation

w/o TET2 mutation x∗
O x∗

J

with TET2 mutation x∗
T x∗

JT (JAK2-first) x∗
TJ (TET2-first)

values x∗ of a number of genes under different mutation states. We enumerate the
main observations below:
(1) Some genes are up-regulated (or down-regulated) by a JAK2 mutation only if the
TET2 mutation is not present. If the TET2 mutation is also present, the expression of
these genes is not affected. Quantitatively, these observationsmean x∗

T = x∗
TJ, x

∗
O > x∗

J
or x∗

O < x∗
J for the corresponding genes.

(2)Other genes are up-regulated (or down-regulated) by JAK2mutations only if TET2
mutations are also present, but they are not affected if the TET2mutation is not present.
For these cases, x∗

O = x∗
J , x

∗
J > x∗

TJ or x
∗
J < x∗

TJ.
(3) Ten genes (AURKB, FHOD1, HTRA2, IDH2, MCM2, MCM4, MCM5, TK1,
UQCRC1, WDR34) are up-regulated in cells with JAK2 mutations if TET2 mutations
are not present, but they are down-regulated by JAK2 mutations if TET2 mutations
are present. This scenario corresponds to x∗

O < x∗
J , x

∗
T > x∗

TJ.
(4)Different orders of appearances of JAK2andTET2mutations seem to have different
effects on other genes so that x∗

JT �= x∗
TJ. These conclusions are inferred from other

indirect evidence (e.g., JAK2-first cells are more sensitive to ruxolitinib than TET2-
first cells (Ortmann et al. 2015)).
Observations (1–3) can be regarded as non-additivity since the effect of JAK2 muta-
tion differs with or without TET2 mutation. In other words, x∗

J − x∗
O �= x∗

TJ − x∗
T.

Observation (4) represents non-commutativity since exchanging the order of acquir-
ing different mutations can lead to different expression levels or cell states (Levine
et al. 2019). Mathematically, x∗

O + (x∗
J − x∗

O)+ (x∗
JT − x∗

J ) = x∗
JT �= x∗

TJ = x∗
O + (x∗

T −
x∗
O)+(x∗

TJ−x∗
T). In fact, if the gene expression levels are additivewith respect tomulti-

ple mutations, namely x∗
J −x∗

O = x∗
TJ−x∗

T and x
∗
T−x∗

O = x∗
JT−x∗

J , then thesemultiple
mutations are also commutative with respect to order: x∗

JT = x∗
J + x∗

T − x∗
O = x∗

TJ.
Therefore, non-commutativity is a special case of non-additivity. At the cell and patient
level, Ortmann et al. (2015) also report two observations specifically related to non-
commutativity.
(5) In TET2-first patients, the percentage of cells with just one mutation (TET2) is
significantly higher than the percentage of JAK2-only cells in JAK2-first patients.
(6)At diagnosis, JAK2-first patients are significantly younger than TET2-first patients.

Ortmann et al. (2015) also report other observations such as differences in MPN
classification and risk of thrombosis between JAK2-first andTET2-first patients. These
are implicitly covered by observations (1–6), particularly (4), and we do not explicitly
discuss them here.
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3 Models for Non-additivity and Non-commutativity in Gene
Expression

In this section, we propose the theoretical building blocks that provide mechanistic
explanations for observations (1, 2, 3, 4), emphasizing the non-additive and non-
commutative properties of the mutations on gene expression.

3.1 Mathematical Background

First, consider simple ordinary differential equation (ODE)models for gene expression
and regulation. For gene X with expression level x(t), the simplest model dx/dt =
λ − γ x considers only synthesis and degradation with constant rates λ, γ , and a
stationary state x∗ = λ/γ . If other genes (mutations) regulate the expression of X,
we can allow the synthesis rate λ to depend on other factors, which may include the
activation state of genes Y and Z. For example, we might write a deterministic model
for the expression level x(t) as

dx(t)

dt
= λ0 + λY1Y + λZ1Z − γ x . (1)

Here, we havemodeled the synthesis rate λ = λ0+λY1Y+λZ1Z as a Boolean control
operator by using a discrete indicator function where 1Y = 1 if Y (gene activity or
product) is present, 1Y = 0 otherwise, and λY is a constant regulation amplitude
of gene Y on the expression of gene X. A similar term with amplitude λZ arises for
mutation Z. After 1Y or 1Z changes (e.g., one gene mutates), the expression level of
X will eventually return to a new equilibrium. Therefore, in this section, we consider
only the stationary state x∗.

The linear (in x)ODE inEq. 1 cannot explain observations (1–4) since the regulation
effects of different genes (mutations) would be additive and commutative. Regardless
of the status of other genes and mutations, the presence or absence of either mutation
always has the same effect. In order to generate nonadditive or noncommutative effects,
one needs to at minimum incorporate a nonlinear or “gene regulatory” term. Consider
the general form

dx(t)

dt
= λ + f (x) − x, (2)

where for simplicity we have normalized time so that the intrinsic degradation rate
γ ≡ 1 and λ is the dimensionless synthesis rate that may still depend on the presence
of mutations of other genes (thus being “tuned” by mutations). The nonlinear term
f (x) represents the autoregulation of X (Wang and He 2023). While many possible
forms for f (x) may be inferred from measurements or otherwise approximated or
modeled, particularly common and useful are Hill functions of the form xn/(xn+Cn).
Although mathematical models have yet to be developed specifically for JAK2 and
TET2 expression dynamics, many related models of gene expression that use very
similar nonlinear self-regulation terms of the Hill type have been developed (Mackey
et al. 2016;Dresch et al. 2013). Specifically,mathematicalmodels that reflectmeasured
expression dynamics associatedwith the JAK2-STATpathwayhave includednonlinear
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Fig. 1 a A dimensionless autoregulation interaction and decay term f (x) − x (blue curve). Zeros of the
right-hand side of Eq. 2 for different values of the production control parameter λ (0,2,4) are indicated. bBy
writing the right-hand side of Eq. 2 as a gradient−∂xU (x), we can define the associated potentialU (x). As
λ changes, the potential develops minima at different values of x . c The potential-minimizing equilibrium
values of expression levels of gene X, x∗, are plotted against λ showing two stable branches: a low-value
one and a high-value one (solid blue curves). The dashed blue curve traces out the unstable branch. Gene
expression that is non-additive and non-commutative in mutations that change λ is a natural consequence of
the dynamics proposed in this model. Suppose the system starts in the low-x∗ branch (open circle) and the
mutation order is such that λ = 2 → λ = 3 → λ = 2 and λ = 2 → λ = 1 → λ = 2, with both scenarios
ending at λ = 2. If λ is first increased (shown by the green arrows) and then decreased (red arrows), the
system arrives at the high-x∗ branch (black dot). However, if λ is first decreased then increased, the system
remains in the low-x∗ branch (Color figure online)

terms of the Hill form (Lee et al. 2021). For TET2, a model that includes its action
on DNA methylation gives rise to a Hill-type nonlinear term for TET2 expression
(Chen et al. 2021). Such a saturating f (x), along with an appropriate decay term −x ,
leads to a form of λ + f (x) − x that may exhibit up to three zeros, depending on the
constant value of λ. Thus, following the spirit of these related models, we will choose
an f (x) − x that follows a similar nonmonotonic shape (decreasing, increasing, then
decreasing with respect to x):

f (x) = −(x − 2)3 + 2(x − 2). (3)

We choose this simple form because f (x)−x has the same qualitative features that can
lead to three explicit roots (and bistability), allowing for a simpler, concrete analysis.
Figure 1a shows f (x) − x as well as its values that would balance certain values of
λ to make dx(t)/dt = 0. The corresponding potentials U (x) are shown in Fig. 1b for
λ = 0, 2, 4. The fixed points (stationary states) of Eq. 2 are plotted in Fig. 1c as a
function of λ and show the high- and low-expression level branches.

For this nondimensionalized model, when λ < 1.6, there is one stable, low-value
fixed point near x∗ � 0.8. If λ > 2.4, there is one stable fixed point near x∗ � 3.2
that defines the stable high-value branch. At intermediate values 1.6 < λ < 2.4, both
values of x∗ (high and low) are locally stable and are connected by an unstable middle
branch of fixed points (dashed curve).

When we start from λ < 1.6, the system resides only on the low expression level
branch. If λ is then increased to 1.6 < λ < 2.4, even though there are two stable
branches, the system remains in the low-x∗ branch. When we further increase λ until
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λ > 2.4, the stable low-x∗ branch and the unstablemiddle branch collide and disappear
(saddle-node bifurcation) and the system jumps to the stable high-x∗ branch. If we start
with λ > 2.4, the system is in the high-level branch. Decreasing λ to 1.6 < λ < 2.4,
the system will stay in the stable high-level branch until λ < 1.6, at which point
the stable high-level branch and the unstable intermediate-value branch collide and
disappear, and the system jumps to the low-x∗ branch. In this model, when we change
the parameter λ along different trajectories, the final stationary state can differ even
though all trajectories λ(t) arrive at the same final values within 1.6 < λ < 2.4. For
example, if the value of λ is evolved according to λ = 2 → λ = 1 → λ = 2, the final
state is x∗ = 1, but if λ follows the trajectory λ = 2 → λ = 3 → λ = 2, the final
state is the high-value one at x∗ = 3.

Now consider a model in which the source of X is controlled by genes Y and Z
through λ = λ0+λY1Y+λZ1Z. Genes Y and Z can qualitatively affect the stationary
state values of expression of X, x∗, if including their presence (or absence) induces λ

to cross the thresholds at 1.6 and 2.4. This model structure means that different orders
of mutations (changes in Y and Z) can give rise to different stationary states and lead
to non-additive and non-commutative effects on X.

An additional important ingredient must be noted. Models such as Eqs. 2 and 3 are
typically applied to gene expression within a single cell. Even though mutations can
also change the regulation function f (x), we have focussed only on how they change
λ. The bistability of this system implies that mutations or different combinations of
mutations can drive the system from one branch to another. However, under normal
conditions, individual cells do not acquire mutations which typically arise during
DNA replication as part of cell proliferation. At birth, one daughter cell can acquire a
new mutation with some probability. Therefore, the effects of mutations on λ can be
cumulative only if the values of λ are transmitted across lineages. In other words, the
epigenetic state of a mother cell that supports a certain value of λ must be inherited
by the daughter cells, which may then acquire a new mutation that further changes
λ. This epigenetic inheritance operates across the eukaryotic cell cycle (Probst et al.
2009) and is mechanistically motivated by e.g., factors that copy methylation patterns
across complementary DNA strands during replication (Vandiver et al. 2016). Given
this reasonable assumption, we now use the mathematical structure given in Eq. 2 to
explore the different behaviors of various measured genes and to explain observations
(1, 2, 3, 4). Note that we just need Eq. 2 to be nonlinear (to generate non-additivity)
and to exhibit bistability (to induce non-commutativity).

3.2 TET2-Gated Regulation in a JAK2Mutation Background [Observations (1, 2)]

We consider different variants of Eq. 2 to explain why some genes follow x∗
O �= x∗

J ,
but others obey x∗

T = x∗
TJ (and vice versa). In the following, “J” will indicate the JAK2

mutation while “T” will denote the TET2 mutation. In this application, Y and Z are
identified as target genes regulated by J and T. Thus, we can simplify the expression
rate λ in Eq. 2 to, e.g., λ = 0.5 + 1J + 1T. With no mutation, λ = λ0 = 0.5, and the
system is in the low-expression state x∗

O ≈ 0.6. Consider a scenario in which 1T = 0,
1J = 1, i.e., the JAK2 mutation is present but not the TET2 mutation (or vice versa).
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Fig. 2 a A schematic of the model λ = 0.5 + 1J + 1T that yields x∗
O = x∗

J and x∗
T < x∗

TJ. “J −→ X”
indicates that the presence of a J mutation up-regulates expression of X. In this particular model, we have
x∗
O ≈ 0.6, x∗

J ≈ 0.8, x∗
T ≈ 0.8, and x∗

TJ ≈ 3.2. b Schematic of the model λ = 3.5−1J −1T which yields
x∗
O = x∗

J but x∗
T > x∗

TJ. “J,T−−�X” indicates that JAK2 and TET2 mutations both down-regulate X. Here,
we have x∗

O ≈ 3.4, x∗
J ≈ 3.2, x∗

T ≈ 3.2, x∗
TJ ≈ 0.8. c The production rate model λ = 1.5+1J−1T captures

x∗
O < x∗

J , x
∗
T = x∗

TJ. Here, we have x
∗
O ≈ 0.8, x∗

J ≈ 3.2, x∗
T ≈ 0.6, x∗

TJ ≈ 0.8. d λ = 2.5−1J+1T explains
x∗
O > x∗

J but maintains x∗
T = x∗

TJ. As before, the symbols “−→” and “−−�” represent up-regulation and
down-regulation, respectively. This scenario yields x∗

O ≈ 3.2, x∗
J ≈ 0.8, x∗

T ≈ 3.4, x∗
TJ ≈ 3.2. The distances

of the lower and upper thresholds to the value of λ0 are indicated for all cases

Then, λ = 1.5 and the system is in the low-x∗ state x∗
J ≈ 0.8 (also, x∗

T ≈ 0.8). If both
JAK2 and TET2 mutations are present, then 1T = 1J = 1, λ = 2.5, and the system
is in the high-x∗ state x∗

TJ ≈ 3.2. We have x∗
O ≈ x∗

J but x∗
T < x∗

TJ. Therefore, in this
case, JAK2 mutation up-regulates X only if the TET2 mutation is present. See Fig. 2a
for an illustration of this scenario.

Now, assume the regulated production rate takes the form λ = 3.5 − 1J − 1T. If
1T = 0 (no TET2mutation), then λ = 3.5 and a JAK2mutation itself does not affect X
expression much (x∗

J ≈ 3.2, x∗
O ≈ 3.4). If 1T = 1, then a JAK2mutation (changing 1J

from 0 to 1) will alter the x-production rate to λ = 1.5 which is sufficient to decrease
the steady state expression level from x∗

T ≈ 3.2 to x∗
TJ ≈ 0.8. While x∗

O ≈ x∗
J ,

x∗
T > x∗

TJ. Thus, the JAK2 mutation down-regulates expression of X only if the TET2
mutation is present. See Fig. 2b for a schematic of this scenario.

Now, if λ = 1.5+1J−1T, then if the T is absent (no TET2mutation), the presence
of J (a JAK2 mutation) up-regulates X since x∗

O ≈ 0.8, x∗
J ≈ 3.2. In the presence of

T, J does not affect X expression much since x∗
T ≈ 0.6, x∗

TJ ≈ 0.8. This regulation
model is depicted in Fig. 2c.

Finally, consider a gene expression rate governed by λ = 2.5−1J +1T, as shown
in Fig. 2d. If T is not present, then J down-regulates X since x∗

O ≈ 3.2, x∗
J ≈ 0.8. In

the presence of T, J does not affect X expression much since x∗
T ≈ 3.4, x∗

TJ ≈ 3.2.

3.3 TET2Mutation Inverts Expression Under a JAK2Mutationbackground
[Observation (3)]

To explain observation (3) that O → J and T → TJ have opposite effects, we need
a more complicated variant of Eq. 2. Consider a gene Y whose expression level y is
described by

dy

dt
= λ + f (y) − y, (4)

123



Order-of-Mutation Effects on Cancer Progression… Page 9 of 28 32

Fig. 3 a Schematic of a model that explains x∗
O < x∗

J but x∗
T > x∗

TJ. In this model, the steady-state
expression levels of Y are y∗

O ≈ 0.8, y∗
J ≈ 3.2, y∗

T ≈ 0.6, y∗
TJ ≈ 0.8. The basal value of x = 1, while

the different stationary expression levels of X are x∗
O ≈ 1.8, x∗

J ≈ 3.2, x∗
T ≈ 1.6, x∗

TJ ≈ 0.8. b The gene
regulatory network that explains x∗

O < x∗
J but x∗

T > x∗
TJ for a number of genes. Solid line indicates a

verified regulation while the dashed line denotes a hypothesized regulatory interaction

in which λ = 1.5 + 1J − 1T and f (y) = −(y − 2)3 + 2(y − 2). This setup gives
rise to y∗

O ≈ 0.8, y∗
T ≈ 0.6, y∗

TJ ≈ 0.8, and y∗
J ≈ 3.2. Now, consider a gene X whose

expression level follows the linear dynamics

dx

dt
= 1 − 1J + y − x, (5)

where X has a basal synthesis and decay rate of 1. A JAK2 mutation can directly
down-regulate X expression with strength 1, while expression of Y can up-regulate
that of X with strength proportional to its expression level y. Figure 3a shows the
key regulation processes in this model. Without JAK2 and TET2 mutations, λ = 1.5,
which is under the lower threshold of λ = 1.6. In this case, Y is in its low-expression
state y∗

O ≈ 0.8 and X is only weakly affected by Y, with a stationary expression level
x∗
O ≈ 1.8. With J but not T, λ = 2.5, which is above the upper threshold 2.4. In this
case, Y is in its high-value state y∗

J ≈ 3.2. Now, X expression is affected by both J and
Y (strongly), taking on the value x∗

J ≈ 3.2. With T but not J, λ = 0.5, below the lower
threshold of 1.6. In this case, Y is in its low-value state y∗

T ≈ 0.6 and X expression,
x∗
T ≈ 1.6, is only weakly affected by Y expression.
In the presence of both JAK2 and TET2 mutations, λ = 1.5, under the lower

threshold of 1.6. In this case, Y is in its low-value state y∗
TJ ≈ 0.8 and X is affected

weakly byY expression and by the JAK2mutation, with x∗
TJ ≈ 0.8. Therefore, without

a TET2 mutation, a JAK2 mutation up-regulates X expression (from x∗
O ≈ 1.8 to

x∗
J ≈ 3.2); with the TET2 mutation, a JAK2 mutation down-regulates X expression
from x∗

T ≈ 1.6 to x∗
TJ ≈ 0.8.

To explain observation (3), the proposed model (Eqs. 4 and 5) introduces an extra
gene Y in order to explain x∗

O < x∗
J and x∗

T > x∗
TJ. Potential candidates for Y are

revealed by the structure of our proposed model, allowing it to describe gene expres-
sion levels measured to date as long as five interactions/regulatory dependences are
satisfied:

(i) In MPN, the expression of PRMT5 is higher in cells with the JAK2 V617F
mutation (Pastore et al. 2020).
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(ii) PRMT5 inhibition reduces the expression of E2F1. Thus, PRMT5 up-regulates
E2F1 (Pastore et al. 2020).

(iii) The expression of E2F1 induces all genes of the endogenous MCM family
(Ohtani et al. 1999). E2F1 is a transcriptional activator ofAURKB (Yu et al. 2017)
that can up-regulate AURKB and MCM5 expression (Reyes et al. 2018). Over-
expressing E2F1 alone results in the up-regulation ofMCM5 and TK1 (Koushyar
et al. 2017). In sum, E2F1 up-regulates AURKB, MCM2, MCM4, MCM5, and
TK1.

(iv) A JAK2 mutation can weakly but directly down-regulate AURKB, MCM2,
MCM4, MCM5, and TK1.

(v) A mutated TET2 gene can down-regulate E2F1 directly, or indirectly through
PRMT5. This down-regulation cancels out the up-regulation JAK2 → PRMT5
→ E2F1. This means E2F1 (and possibly PRMT5) expression satisfies y∗

J > y∗
JT

and y∗
O > y∗

T.

As referenced, effects (i)–(iii) have been directly experimentally verified, while mech-
anisms (iv) and (v) are assumptions that provide consistency between our model and
observations; thus, (iv) and (v) can also be considered predictions of our simple mod-
eling approach.

Ortmann et al. (2015) reported ten genes that follow x∗
O < x∗

J but also
x∗
T > x∗

TJ: AURKB, FHOD1, HTRA2, IDH2, MCM2, MCM4, MCM5, TK1,
UQCRC1, and WDR34. Our model can explain five of them (AURKB, MCM2,
MCM4, MCM5, TK1) with the same pathway JAK2 → PRMT5 → E2F1 →
AURKB/MCM2/MCM4/MCM5/TK1, while the role of Y can be played by E2F1
and/or PRMT5.

Figure 3b shows a simple gene regulatory network that is consistent with the
observations. In patients without a TET2 mutation, the JAK2 mutation can up-
regulate PRMT5 and E2F1, which in turn up-regulate AURKB, MCM2, MCM4,
MCM5, and TK1; this strong indirect up-regulation of JAK2 → PRMT5 → E2F1
→ AURKB/MCM2/MCM4/MCM5/TK1 can cover the weak direct down-regulation
JAK2 � AURKB/MCM2/MCM4/MCM5/TK1, and the overall effect is x∗

O < x∗
J . In

the presence of the TET2 mutation, the up-regulation JAK2 → PRMT5 → E2F1 is
covered by the down-regulation TET2 � PRMT5/E2F1; therefore, PRMT5 and E2F1
are locked to low levels so that the only effective regulation of JAK2 is the down-
regulation JAK2 � AURKB/MCM2/MCM4/MCM5/TK1.

Interpreting the observation using our simple model suggests two properties: the
JAK2 mutation weakly but directly down-regulates certain genes (AURKB, MCM2,
MCM4,MCM5, and TK1); E2F1 (and possibly PRMT5) expression satisfies y∗

J > y∗
JT

and y∗
O > y∗

T. In principle, the first hypothesis can be experimentally verified by
introducing a JAK2 mutation after knockdown or knockout of PRMT5 or E2F1 and
observing decreased AURKB, MCM2, MCM4, MCM5, and TK1 expression. The
prediction that E2F1 expression satisfies y∗

J > y∗
JT and y∗

O > y∗
T can be tested by com-

paring its expression level in cells with and without the TET2 mutation. Lower levels
of E2F1 (and possibly PRMT5) in cells with a TET2 mutation would be consistent
with our the network shown in Fig. 3b.
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Fig. 4 a A schematic of the model λ = 2 + 1J − 1T in Eq. 2 which explains x∗
TJ < x∗

JT. If the effects
of JAK2 and TET2 mutations towards the input λ are together greater than 0.4 (i.e., with JAK2 but not
TET2), the system is forced to be on the high-x∗ branch; if the contribution to λ input JAK2 and TET2
is smaller than −0.4 (i.e., with TET2 but not JAK2), the system ends up on the low-value branch. b) The
model λ = 2 − 1J + 1T can yield x∗

JT < x∗
TJ. If the contribution from JAK2 and TET2 mutations to λ is

greater than 0.4 (i.e., with TET2 but not JAK2), the system is forced onto the high-x∗ branch; if the JAK2
and TET2 contributions to the input λ is smaller than −0.4 (i.e., with JAK2 but not TET2), the system is
forced onto the low-x∗ branch

The pathway JAK2 → PRMT5 → E2F1 → · · · is but one possibility. There is
also evidence for the role of p53 in observation (3). JAK2 V617F negatively regulates
p53 stabilization (Nakatake et al. 2012), while p53 can regulate AURKB and MCM5
(Reyes et al. 2018). The complete gene regulatory network should be determined using
certain inferencemethods based on gene expression data (Wang andWang 2022; Bocci
et al. 2022).

3.4 Different Orders of Mutation Yield Different Expression Levels [Observation
(4)]

To explain observation (4) that TJ and JT have different effects, namely x∗
TJ �= x∗

JT,
consider Eq. 2 with λ = 2 + 1J − 1T. With J but not T, λ = 3 and X lies in its only
high-value stationary state x∗

J ≈ 3.3; if T appears after J, then λ = 2, and X remains
in its high-value branch with stationary level x∗

JT = 3. If the TET2 mutation arises
without a JAK2 mutation, λ = 1 and the steady-state expression of X is x∗

T ≈ 0.7;
if J appears after T, then λ = 2 and X expression remains in its low-value branch
with stationary value x∗

TJ = 1. See Fig. 1 for a more detailed description. For MPN
patients, if the order is JT, the final X expression is high (x∗

JT = 3); if the order is TJ,
the final X expression level is low (x∗

TJ = 1). See Fig. 4a for an illustration of this
model explaining x∗

JT > x∗
TJ.

To explain x∗
JT < x∗

TJ, consider Eq. 2 with λ = 2 − 1J + 1T. If the mutation order
is JT, the final X expression level is low (x∗

JT = 1); if the order is TJ, the final X
expression level is high (x∗

TJ = 3). This regulation control mechanism is illustrated in
Fig. 4b.

4 Models for Non-commutativity in Cell Population and Diagnosis
Age

It was also observed that the age at diagnosis and the populations of cancer cells depend
on the order of the two mutations experienced by the patient. Clinically, the mutations
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are non-commutative in their effects on prognosis. In this section, we build models to
explain these observations (5, 6). Since these observations pertain to cell populations
and timing, these models can be constructed independently of the nonlinear gene
expression models developed in Sect. 3.

4.1 Different Mechanisms for Explaining Observations (5, 6)

For observations (5, 6), the cell population and age are measured at the time of diag-
nosis. However, it is difficult to know the time interval between acquiring the second
mutation and diagnosis or tomodel the disease progression during this time. Therefore,
we analyze observations (5, 6) focussing on the time at which the first double-mutation
cell (cells with both JAK2 and TET2 mutations) first appears. Timing of the double
mutation event is easier to model since the time interval between the first double
mutation in a patient and clinical diagnosis is difficult to estimate. In order to address
observations (5, 6) theoretically, we must redefine them in terms of the time at which
both mutations first appear:
(5’) For TET2-first patients, at the time when the first TET2-JAK2 cell appears, the
percentage of TET2-only cells is significantly higher than the percentage of JAK2-only
cells at the time when the first JAK2-TET2 cell appears in JAK2-first patients.
(6’) For JAK2-first patients, the time at which the first JAK2-TET2 cell appears is
significantly earlier than the time at which the first TET2-JAK2 cell appears for TET2-
first patients.

To explain observations (5’) and (6’), we explore three mechanistic scenarios
defined by different relative rates of proliferation of the different cell types.We demon-
strate via simulations that each of these three scenarios can reproduce observations
(5’) and (6’).
(A) Ortmann et al. (2015) propose that cells with a JAK2 mutation have only a mild
proliferation advantage while cells with a TET2 mutation (whether JAK2 is present
or not) have a more significant proliferation advantage. The model by Teimouri and
Kolomeisky (2021) is relevant to this mechanism in that they assume different pro-
liferation rates between JAK2-only mutated cells and TET2-only mutated cells, but
assume equal proliferation rates for JT and TJ cells; however, they also incorporate a
number of assumptions that are not satisfied in this system.
(B) Since different mutations generally appear with different rates (Lynch 2010), we
propose a mechanism in which acquiring additional JAK2 and TET2 mutations occur
at different rates. Thus, they will carry different mutation probabilities.
(C)We also explore a cooperative mutation mechanism: cells with the JAK2 mutation
carry a higher mutation rate for TET2 mutation. In other words, an existing JAK2
mutation induces an additional TET2 mutation.

4.2 GeneralizedMoran Process

To mathematically model how mechanisms (A), (B), and (C) can give rise to observa-
tions (5’) and (6’), we consider a generalized discrete-time Moran model (Fudenberg
et al. 2004; Quan and Wang 2011), shown in Fig. 5, for cell populations that include
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Fig. 5 A schematic of the steps in our Moran process. In one time step, one cell (wild-type) is chosen for
removal (red-dashed circle), while another (J) is chosen for replication (green-dashed circle), during which
one daughter may acquire a mutation. In this example, a J cell divides into a J cell and a double-mutant JT
cell, thus defining the end point of our simulation. Thus, the absorbing states of this stochastic process is
defined by the presence of a single JT or TJ cell (Color figure online)

mutations. Unlike branching processes (Jiang et al. 2017), the total number of cells is
fixed in Moran processes, which is a reasonable approximation for stable hematopoi-
etic stem cell populations. By fixing the total cell populations, we can also more easily
assess relative cell populations of different mutation types. A continuous-time Moran
model can also be straightforwardly constructed and analyzed. Such a Moran process
for cells that can acquire two possible mutations has been discussed by Teimouri et al.
(2022), but in their model, the two mutations are treated symmetrically, and mutations
appear independently after cell division. A related two-mutation branching process
has been used to express the first time of acquiring a double-mutation cell, but did not
distinguish the order of mutation acquisition (Chou and Wang 2015).

We will assume that cells can exist in five states: non-mutant (wild-type, denoted
by suffix O), JAK2-only (denoted by suffix J), TET2-only (denoted by suffix T),
JAK2-TET2 (JAK2 appears before TET2, denoted by suffix JT), and TET2-JAK2
(JAK2 appears after TET2, denoted by suffix TJ). The state space of this process is
indicated by the numbers of cells (nO, nJ, nT, nJT, nTJ) in each state. To describe the
dynamics of this process, for cells in different states, we need the birth rate coeffi-
cients (bO, bJ, bT, bJT, bTJ), death rate coefficients (dO, dJ, dT, dJT, dTJ), andmutation
probabilities mO→J, mO→T, mJ→JT, and mT→TJ.

At each time step, one cell is chosen (weighted by the death coefficient of its
type) for removal. For example, the probability of choosing a TET2-only cell to die
is nTdT/(

∑
i ni di ), i ∈ {O, J, T, JT, TJ}. Simultaneously, another cell is randomly

(weighted by its birth coefficient) picked for division. For example, the probability of
choosing a JAK2-only cell for division is nJbJ/(

∑
i ni bi ) i ∈ {O, J, T, JT, TJ}. After

division, one daughter cell will remain in the same state as the mother cell, while
the other may acquire an extra mutation with some probability. A wild-type daughter
cell can obtain a JAK2 mutation or TET2 mutation with probability mO→J or mO→T;
a JAK2-only daughter cell can obtain a TET2 mutation with probability mJ→JT; a
TET2-only daughter cell can obtain a JAK2 mutation with probability mT→TJ. After
each elimination-replication-mutation step, the total population

∑
i ni = n remains

unchanged.
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We can explicitly calculate the transition probabilities of this process. At each time
point, the probability that a wild-type cell is chosen for elimination is

P[(nO, nJ, nT, nJT, nTJ) → (nO − 1, nJ, nT, nJT, nTJ)]
= nOdO

nOdO + nJdJ + nTdT + nJTdJT + nTJdTJ
.

(6a)

The probability of selecting other cell types for death are similarly defined. The prob-
ability of producing an extra wild-type cell is

P[(nO, nJ, nT, nJT, nTJ) → (nO + 1, nJ, nT, nJT, nTJ)]
= nObO(1 − mO→J − mO→T)

nObO + nJbJ + nTbT + nJTbJT + nTJbTJ
.

(6b)

Similarly, the probabilities of generating additional cells of other cell types are

P[(nO, nJ, nT, nJT, nTJ) → (nO, nJ + 1, nT, nJT, nTJ)]
= nObOmO→J

nObO + nJbJ + nTbT + nJTbJT + nTJbTJ

+ nJbJ(1 − mJ→JT)

nObO + nJbJ + nTbT + nJTbJT + nTJbTJ
,

(6c)

P[(nO, nJ, nT, nJT, nTJ) → (nO, nJ, nT + 1, nJT, nTJ)]
= nObOmO→T

nObO + nJbJ + nTbT + nJTbJT + nTJbTJ

+ nTbT(1 − mT→TJ)

nObO + nJbJ + nTbT + nJTbJT + nTJbTJ
,

(6d)

P[(nO, nJ, nT, nJT, nTJ) → (nO, nJ, nT, nJT + 1, nTJ)]
= nJbJmJ→JT

nObO + nJbJ + nTbT + nJTbJT + nTJbTJ

+ nJTbJT
nObO + nJbJ + nTbT + nJTbJT + nTJbTJ

,

(6e)

and
P[(nO, nJ, nT, nJT, nTJ) → (nO, nJ, nT, nJT, nTJ + 1)]

= nTbTmT→TJ

nObO + nJbJ + nTbT + nJTbJT + nTJbTJ

+ nTJbTJ
nObO + nJbJ + nTbT + nJTbJT + nTJbTJ

.

(6f)

Note that there are two processes that increase the number of cells with at least one
mutation: replication of the cell and a less-mutated mother cell producing a daughter
that acquires the necessary mutation.

The three mechanistic regimes we will explore can be described as bT > bJ
for Mechanism (A), mO→T = mJ→JT > mT→TJ = mO→J for Mechanism (B),
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Table 2 A generalizedMoran process is simulated to explore the three different mechanistic scenarios, (A),
(B), and (C), with corresponding relative birth coefficients b and mutation probabilities m listed

bO bJ bT bJT bTJ mO→J mO→T mJ→JT mT→TJ

Mechanism (A) 1 2 4 4 4 0.1 0.1 0.1 0.1

Mechanism (B) 1 2 2 2 2 0.1 0.2 0.2 0.1

Mechanism (C) 1 2 2 2 2 0.1 0.1 0.2 0.1

Death coefficients are equal and set to di = 1. The mutation probability is the probability that one daughter
acquires a mutation at birth

and mJ→JT > mO→T for Mechanism (C). Examples of birth rate coefficients
(bO, bJ, bT, bJT, bTJ) and mutation probabilities (mO→J,mO→T,mJ→JT,mT→TJ)

associated with scenarios (A), (B), and (C) are given in Table 2. Here, and in our
subsequent analyses and without loss of generality, we assume a common value for
all death coefficients dO = dJ = dT = dJT = dTJ = 1.

These weights and probabilities will be used in our Moran model to describe the
evolution of cellular mutation-state subpopulations. Conceptually, we use this Moran
process to study observations (5’, 6’) at the time that the first double-mutation cell
appears, the process is stopped once nJT = 1 or nTJ = 1. At this point, if both nJ > 0
and nT > 0, the order of mutation cannot be inferred and the trajectory is not counted.
If nJT = 1 and nT = 0, we record the corresponding nJ and the current time point T .
This mechanism reflects a JAK2-first patient. If nTJ = 1 and nJ = 0, we record the
corresponding nT and the current time point T . This mechanism reflects a TET2-first
patient.

4.3 Numerical Computation

The Moran model can be easily simulated via Monte Carlo methods using the exact
transition probabilities Eq. 6(a-f). However, if we assume a not-too-large population,
we can also use Eqs. 6(a-f) to compute the probabilities of each configuration of the
system after each replacement event. For all three scenarios listed in Table 2, we
assume an initial population nO = 100, nJ = nT = nJT = nTJ = 0 so that the
total population is n = nO + nJ + nT = 100 up until the round at which the first
double-mutation cell arises, nJT = 1 or nTJ = 1. For our n = 100 system, we need
to update probabilities over only (1 + 100) × 100/2 = 5050 configurations (defined
by the numbers of JAK2-only or TET2-only cells). We stop the probability updating
provided the probability S(t) that no double-mutation cell has appeared up to time step
t reaches S(t) < 10−8 and t > 400. From this conditional survival probability, we
find the conditional times to the first appearance of both mutations and the associated
number of cells. The expected number of single-mutation cells thus has absolute error
no larger than nS(t) ≈ 10−6, where n = 100 is the total cell number. By excluding
all ending configurations that contain JAK2-only and TET2-only cells, we compute
the statistics at the double-mutation end-state.

From our computed state probabilities, we can construct relevant quantities such
as expectation values and variances. For example, to address observation (5’), we can
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construct and compare E[nJ | nJT = 1, nT = 0] and E[nT | nTJ = 1, nJ = 0], while
to investigate observation (6’), we compute E[T | nJT = 1, nT = 0] and E[T | nTJ =
1, nJ = 0] and compare their values. Table 3 shows that the expected values of cell
populations and mean stopping times are different for JAK2-first cell populations and
TET2-first populations. The associated conditional quantiles are listed as [. . .] and their
expectations and standard deviations (in parentheses).We see that all threemechanistic
scenarios can reproduce observations (5’, 6’). However, biologically, it is natural to
assume that JAK2 and TET2 have appreciably different mutation rates (Mechanism
(B)). Since mechanisms (A) and (C) require more supporting evidence, we propose
that the scenario associated with (B) is sufficient to explain the observations.

Our results were derived for a system size of n = 100 cells. Table 3 shows that for
all three scenarios, differences in the expected numbers and the mean times to double
mutation are consistent with observations (5’, 6’). However, the standard deviations
indicate appreciable variability and overlap between JAK2-first and TET2-first distri-
butions. Therefore, an appreciable number of observations are required to resolve the
differences in numbers and first passage times. For the variance of these quantities
in this specific calculation (system size n = 100), we can estimate the number of
samples in each scenario (mechanism (A), (B), or (C) and JAK2-first or TET2-first
patient) that would pass a t-test for detecting a difference in cell numbers or times
T . For p=0.01, we find that Mechanisms (A) and (C) require a few hundred samples,
while Mechanism (B) can be resolved with about dozen samples.

Interestingly, although these results depend on the fixed total population n (for
which we used n = 100), we find that the mean and variances are relatively insensitive
to system size n, with mean numbers nJ, nT and times T both modestly decrease with
increasing system size n, provided n � 40 − 50. The expected values asymptote to
values somewhat lower than those given in Table 3 as n → ∞, but they all retain the
same relative order, explaining observations (5’, 6’).

5 Discussion and Conclusions

In this paper, we consider two genetic mutations in MPN: JAK2 and TET2. The
effect of one mutation depends on whether the other mutation is present. When both
the mutations are present, the order of their appearance also affects gene expression.
For MPN, the order of the JAK2 V617F and DNMT3A mutations can also affect
cellular proliferation (Nangalia et al. 2015). TheTET2 andDNMT3Amutations confer
epigenetic changes in transcription that are passed on to daughter cells, thus providing
a mechanism of “memory” required for bi/multistability and ultimately an order-of-
mutation effect. Dependence of cell populations on the order ofmutation also appear in
other types of cancer. For example, in adrenocortical carcinomas, if the Ras mutation
appears before the p53 mutation, the tumor will be malignant and metastatic, but if
the p53 mutation appears before the Ras mutation, the tumor will be benign (Herbet
et al. 2012). Similar observations can be found in other contexts (Levine et al. 2019;
Turajlic et al. 2018; Caravagna et al. 2018).

We constructed several sub-models to explain the mutational patterns and fea-
tures observed in MPN, specifically addressing observations recorded to date for the
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JAK2/TET2 mutation pair. In Sect. 3.3, we describe experimental evidence that par-
tially verifies our model. Our models also naturally give rise to predictions that can
be tested experimentally. For example, if PRMT5 or E2F1 is knocked out or knocked
down, a subsequent JAK2mutation is predicted to decrease the expression of AURKB,
MCM2, MCM4, MCM5, and TK1. Moreover, the expression levels of E2F1 and
PRMT5 in cells with a TET2 mutation is predicted to be lower than in cells without
the TET2 mutation. Table 4 below summarizes our analysis in terms of the observa-
tions it addresses and relative to previous studies. A more detailed outline of these
previous investigations is given in Appendix A.

Although we have developed a mathematical framework consistent with all obser-
vations to date, there are other possible processes that can lead to the rich set of
observations discussed. Potential interactions with the adaptive immune system may
inhibit cancer progression (Mellman et al. 2011; Altrock et al. 2015). Cancer may
also inhibit the proliferation of white blood cells (Hamanishi et al. 2007), which can
lead to multistability in mathematical models of immune response to cancer (Gar-
cia et al. 2020; Li and Levine 2017; Vithanage et al. 2021). Since certain mutations
can help cancer cells escape the immune system (Hanahan and Weinberg 2011), it is
possible that the order of mutations affects cancer cell populations indirectly by inter-
fering with the immune system. Finally, cancer cells can also affect and be affected by
their microenvironments and other cells (through e.g., epigenetically driven “microen-
vironment feedback”). These nonlinear interactions have been modeled can lead to
nonlinear dynamics in relative populations of different cancer cell types (different
epigenetic or mutational states) (Smart et al. 2021). Further developing models that
incorporate immune and indirect cell-cell interactions could potentially lead to non-
additivity and non-commutivity of mutation order in both gene expression and cell
population dynamics. Formulating such mathematical frameworks, especially those
coupling intracellular state dynamics to epigenetic memory in proliferating cell pop-
ulations will be the subject of future investigation.
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A Previous Models and Comparisons

Here, we summarize the previousmodels for such clinical observations (Ortmann et al.
2015; Swanton 2015;Roquet et al. 2016;Kent andGreen 2017;Ascolani andLiò 2019;
Clarke et al. 2019; Talarmain et al. 2022; Talarmain 2021;Mazaya et al. 2020; Teimouri
and Kolomeisky 2021) and compare them with our proposed conceptual framework.

Ortmann et al. (2015) assume that TET2 mutation can significantly increase the
proliferation rate of cancer stem cells, while JAK2 mutation only has a weak growth
advantage. Therefore, for TET2-first patients, TET2-only cells first spread, and TET2-
JAK2 cells (which do not have a significant growth advantage over TET2-only cells) do
not dominate. For JAK2-first patients, JAK2-only cells do not spread that much, while
JAK2-TET2cells (after they appear) can dominate. Therefore, TET2-first patients have
a much higher percentage of cells with only one mutation, consistent with observation
(5). In Sect. 4, we also discuss that these assumptions are consistent with observation
(6). See also the interpretation by Swanton (2015).

Kent and Green (2017) propose two explanations for observation (4).
(i) Both JAK2 and TET2 mutations can participate in epigenetic regulation (Dawson
et al. 2009; Ito et al. 2010; Shih et al. 2012), but the regulation mechanism might be
incompatible. For example, the first mutation might lead to the occlusion of certain
genomic regions, so that the second mutation cannot regulate genes in those regions.
This mechanism would lead to x∗

JT = x∗
J �= x∗

T = x∗
TJ, which is not consistent with

other observations.
(ii) For either JAK2-first or TET2-first patients, before the appearance of the second
mutation, different first mutations might lead to different cell types and abundances,
leading to different microenvironments inwhich doublemutant cells that subsequently
arise find themselves. This indirect effect can also shape disease progression.
Although these concepts explain the non-commutative order-of-mutation effects
(observation (4)), they invoke hypothetical mechanisms that lack experimental evi-
dence.

In a related study, Roquet et al. (2016) consider the effect of recombinases (i.e.,
genetic recombination enzymes) on gene sequences. When applying different recom-
binases to gene sequences, their order of application can lead to different results. For
example, consider a gene sequence 12312 and two recombinases A, and B. Suppose A
deletes genes between the “1s”, and B inverts genes between the two “2s” (if there are
not two “2s”, B does nothing). If the DNA is exposed to A before B, the gene sequence
becomes

12312
A−→ 112

B−→ 112.

If A is added after B, the gene sequence becomes

12312
B−→ 12132

A−→ 1132.

Although this system describes rearrangements and not specific mutations, it nonethe-
less provides a possible mechanism for observation (4). These mathematical operators
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are not commutative but are not connected to genetic mutations highlighted in cancer
progression.

Ascolani and Liò (2019) constructed a complex cellular automatamodel to describe
cancer metastasis. They assume that different mutations lead to different proliferation
and/or apoptosis rates. This assumption, as was invoked by Ortmann et al., can explain
observation (5). However, although Ascolani and Liò also take into account how
differentorders of differentmutations can affect proliferation and apoptosis differently,
they did not explicitly apply their model to the observations associated with different
orders of JAK2 and TET2 mutations in the MPN system.

Clarke et al. (2019) model the gene regulatory network as a generalized boolean
network that evolves under certain rules and exhibits fixed points and/or limit cycles
for gene expression levels. Each mutation fully activates or inhibits one gene (the
expression level is fixed, similar to the do-operator used in causal inference (Benfer-
hat and Smaoui 2007)), thus changing the fixed points and/or limit cycles. Certain
combinations of mutations lead to higher proliferation rates or apoptosis rates, mak-
ing these mutation patterns more likely or less likely, respectively. There might be
multiple fixed points and/or limit cycles, and different orders of mutations might lead
to different final states of gene expression. Different sequences of perturbations lead-
ing to different states have been hypothesized for different physiological dynamics,
including neuroendocrine stress response (Kim et al. 2018; Cheng et al. 2021). This
type of model can be used to explain observations (4) and (5).

Talarmain et al. (2022); Talarmain (2021) apply the model in Clarke et al. (2019)
paper to the JAK2/TET2 mutation order problem to explain observation (4). They
find a concrete generalized boolean network of gene expression. Mutations can affect
the dynamics of this network. When there is no mutation or just one mutation, the
system has one stable fixed point. When both JAK2 and TET2 mutations are present,
the system has two stable fixed points. Different orders of mutations lead to different
fixed points. The Talarmain et al. model invokes a third, downstream gene HOXA9
which is directly affected by different orders of JAK2 and TET2 mutations, which
then affects many other downstream genes.

Mazaya et al. (2020) use a Boolean network to model the effect of mutations. The
model dynamics and the explanation of observation (4) are similar to that of Clarke
et al.’s model. Mazaya et al. further analyze this model to study when the network is
more sensitive to different orders of mutations.

Clarke et al. (2019), Talarmain et al. (2022); Talarmain (2021), and Mazaya et al.
(2020) all use (generalized) Boolean networks with a discrete state space and artifi-
cially chosen parameters to explain observation (4).

Finally, Teimouri and Kolomeisky (2021) use a random walk model to study the
acquisition of two mutations. The first stage is a random walk on 0, 1, . . . , n, rep-
resenting the number of cells with the first mutation. The first stage starts at 0, and
finishes when reaching n, meaning that all n cells have the first mutation. The process
terminates if reaching 0 again before reaching n. The second stage is a random walk
on n, n + 1, . . . , 2n, representing the number of cells with the second mutation plus
n. The second stage starts at n, and finishes when reaching 2n, meaning that all cells
have both mutations. If the process reaches 2n, they count the total time and take the
expectation. Teimouri and Kolomeisky (2021) prove that if the first mutation has a
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higher fitness than the secondmutation, then the tumor formation probability is higher,
but the time for tumor formation is longer. This framework can directly explain obser-
vation (6) but the second mutation can appear if and only if the first mutation rapidly
expands in the cell population. Because they assume that for all cells arriving at the
final two-mutation state is conditioned on no extinction once a mutation appears, they
underestimate the predicted time to reach the final state.

Our suite of mathematical models are compared to these previously proposed con-
cepts in Table 4. Our models provide better coverage of the observed phenomena and
can be concatenated for amore complete picture ofMPNprogression.We now provide
an overview of our more complete analysis, filling in some mechanistic explanations
of observations (1–6).

Observations (1) and (2), the up-regulation of certain genes depending on the
presence and absence of certain mutations, form a common “logic gate” in which
expression levels can be changed if and only if both conditions are met. Our simple
nonlinear ODEmodels not only explain observations (1, 2) but are also building blocks
for a model to explain observation (3), for which no model has thus far been proposed.
In explaining (3), we find two candidates for a hidden factor. Some regulatory terms in
our model have been verified experimentally, and we propose experiments to examine
other regulatory relationships. Finally, our nonlinear, bistable ODE models provide
an inherently natural framework for non-commutative order-of-mutation effects on
gene expression (observation (4)), while conforming to all other observations and
physiological postulates.

To study observations (5, 6), we consider a generalized Moran process, which is a
more realisticmodel for describing the population dynamics of hematopoietic stemand
progenitor cells. We find that three different parameter limits, describing three distinct
biological mechanisms (including that proposed by Teimouri and Kolomeisky) can
reproduce observations (5, 6) separately.

B Markov ChainModel for Observation (4)

In the nonlinear ODE models developed for observation (4) (for example, λ = 2 +
1J − 1T), a cell with no mutation and a cell with both mutations reside on the same
gene expression landscape. Since gene expression at the single-cell level is essentially
stochastic, we can also build an ad hoc Markov chain model in which the landscape
of gene expression changes with the appearance of each mutation.

In a single cell, the expression level (protein or mRNA count) of gene X is a non-
negative integer random variable X . Here, we shall assume X is sufficiently abundant
that we can approximate all distributions and rates by functions continuous in x but
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that can be defined only at integer values. We first define the distribution of rates

A1(x, c1, μ1, σ1) = c1
√
2πσ 2

1

e
− (x−μ1+1)2

2σ21 , B1(x, c2, μ2, σ2) = c2
√
2πσ 2

2

e
− (x−μ2+1)2

2σ22 ,

A2(x, c1, μ1, σ1) = c1
√
2πσ 2

1

e
− (x−μ1)2

2σ21 , B2(x, c2, μ2, σ2) = c2
√
2πσ 2

2

e
− (x−μ2)2

2σ22 .

(7)
X follows a continuous-time Markov chain on 0, 1, 2, . . . where the transition rate
from x to x + 1 is defined as rx→x+1 = A1(x) + B1(x), and the transition rate from
x + 1 to x is defined as rx+1→x = A2(x) + B2(x). Since this Markov chain has no
cycles, a detailed balance condition is satisfied Wang and Qian (2020) and we can
directly compute the equilibrium probability distribution P(X = x) from the detailed
balance condition

P(X = x)rx→x+1 = P(X = x + 1)rx+1→x . (8)

The μ1, μ2 parameters determine the peaks of the rates while c1, c2 determine the
relative magnitude of the peaks of the rates. The equilibrium probabilities P(X = x)
from Eq. 8 shows that the probability accumulates around mean values μ1 and μ2,
while the ratios of the heights at each peak are defined by c1/c2.

In all cases, we setμ1 = 1000, μ2 = 2000. If the JAK2 mutation is not present, we
set c1 = 1/τ and σ1 = 400/τ in A1(x, c1, μ1, σ1) and A2(x, c1, μ1, σ1); otherwise,
when the JAK2 mutation is present, we set c1 = 5/τ and σ1 = 80. Similarly, if
TET2 mutation is not present, we set c2 = 1/τ and σ2 = 400 in B1(x, c2, μ2, σ2) and
B2(x, c2, μ2, σ2); otherwise, when the TET2mutation is present, we set c2 = 5/τ and
σ2 = 80. In this scenario, a JAK2mutationmakes themRNA count more concentrated
near x = 1000 (The peak near 1000 is higher and sharper), while a TET2 mutation
sharpens themRNAcount around x = 2000.When bothmutations arise, the two peaks
have the same height but are both sharper than the peaks ofwild-type expression.While
the timescales for a mutation to occur are not modeled in this process, after mutation,
the relaxation of intracellular gene dynamics, to their new steady states occur with
rates c1 and c2 defined in terms of the typical intracellular gene dynamics timescale
τ , on the order of seconds to minutes.

The probabilities are plotted in Fig. 6. If no mutation is present, the stationary
distribution is rather flat with two low peaks near x = 1000 and x = 2000, as shown
in (a). If only the JAK2 mutation is present, the stationary distribution is mostly
concentrated in a sharp peak near x = 1000, with a small flat probability peak near
x = 2000 develops after ∼ 105τ ∼ month, as depicted in (b). If the TET2 mutation
appears after the JAK2 mutation, the small flat probability peak near x = 2000 first
sharpens to amore localized peak near x = 2000 (d); only after an extremely long time
(e.g., 108τ ∼ lifetime), the heights of two peaks near x = 1000 and x = 2000 equalize,
as shown in (f). If only the TET2mutation is present, the stationary distribution shown
in (c) is mostly concentrated in a sharp peak near x = 2000, with a small nearly flat
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Fig. 6 The probability distribution over gene expression levels x under the different enumerated scenarios
described by the Markov chain model in Appendix B. a The stationary distribution when no mutation is
present. b The distribution of x in cells with only a JAK2 mutation. c The stationary distribution when only
TET2 mutation is present. d The temporary (but long-lived) distribution when a TET2 mutation appears on
a lineage with an existing JAK2 mutation. e Long-lived probability distribution of X if the JAK2 mutation
appears on a background of existing TET2 mutations. f The final distribution when both JAK2 and TET2
mutations are present (regardless of order)

probability mound near x = 1000. If the JAK2mutation then appears, the small broad
probability peak near x = 1000 first shrinks on a fast timescale (∼ 105τ ∼ month) to
a sharper peak near x = 1000 (e); only after an extremely long time, the heights of two
peaks near x = 1000 and x = 2000 again equilibrate to the common double-mutation
steady state shown in (f). Thus, when considering finite times, this model yields an
apparent order-of-mutation affect ((d) vs. (e)).

We can also define a potential at X = x as the negative logarithm of the station-
ary distribution: U (x) = − logP(X = x). Figure 7 shows the potential function
U (x) corresponding to different temporal configurations of mutations. If no mutation
is present, the potential has two shallow wells near x = 1000 and x = 2000. The
expression level can easily move between these two wells, as shown in Fig. 7a. Fig-
ure 7b depicts the case in which only the JAK2 mutation is present for which there
is a deep well near x = 1000 and a shallow well near x = 2000. Here, it is easy to
jump from the shallow well into the deep well, but not the other way around. Thus,
this system is most likely to have expression level x = 1000. If the TET2 mutation
appeared after the JAK2 mutation (Fig. 7d), the system will first stay in the deep well
near x = 1000. Since both wells are deep, there is very little probability flux from one
well to another and the probability distribution relaxes very slowly (potentially longer
than a lifespan) towards final equipartition. If only the TET2 mutation is present, the

123



Order-of-Mutation Effects on Cancer Progression… Page 25 of 28 32

Fig. 7 The effective potential function U (x) of gene expression levels x for different scenarios within the
Markov chain model. a The potential function in the absence of mutations. The system can switch between
the shallow wells near x = 1000 and x = 2000. b U (x) when only the JAK2 mutation is present. The
system is confined to the deep well near x = 1000. c U (x) when only the TET2 mutation is present. The
system is confined to the deep well near the higher expression level x = 2000. d The potential function of X
gene expression if the TET2 mutation appeared after the JAK2 mutation. Since the system was previously
confined in the well near x = 1000, it will retain this lower level of expression for a long time, potentially
over a typical lifetime. e U (x) for a cell which acquired the JAK2 mutation from a mother cell which
already had the TET2 mutation. Since the system was previously confined in the well near x = 2000, its
gene expression will stay high for a long time. Theoretically, in the (unrealistically) long time limit, the
probability densities in both cases d and e will equipartition itself symmetrically across the two equally
deep wells

system is likely to stay in the deep well near x = 2000, indicated in Fig. 7c. Finally,
if the JAK2 mutations appear after TET2 mutations, the system will reside in the well
near x = 2000 (see Fig. 7e) before very slowly becoming equally distributed between
x ≈ 1000 and x ≈ 2000.

In this model, different orders of mutations (JT and TJ) lead to the same final
stationary distribution (Fig. 6f). However, different histories lead to concentration of
probabilities to different wells (Fig. 6d, e) on finite timescales. If this mesoscopic
timescale is comparable to the life span of human being, then the final stationary
distribution is de facto inaccessible. This simple probabilistic model can also explain
the difference in gene expression levels between patients with different orders of
mutations.
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