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Abstract
Both the rod and cone photoreceptors, along with the retinal pigment epithelium have
been experimentally and mathematically shown to work interdependently to maintain
vision. Further, the theoredoxin-like rod-derived cone viability factor (RdCVF) and its
long form (RdCVFL) have proven to increase photoreceptor survival in experimental
results. Aerobic glycolysis is the primary source of energy production for photore-
ceptors and RdCVF accelerates the intake of glucose into the cones. RdCVFL helps
mitigate the negative effects of reactive oxidative species and has shown promise in
slowing the death of cones in mouse studies. However, this potential treatment and
its effects have never been studied in mathematical models. In this work, we examine
an optimal control with the treatment of RdCVFL. We mathematically illustrate the
potential this treatment might have for treating degenerative retinal diseases such as
retinitis pigmentosa, as well as compare this to the results of an updated control model
with RdCVF.
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1 Introduction

1.1 Background of Retinitis Pigmentosa and RdCVFL

Vision impairment is a serious problem that affects at least 2.2 billion people world-
wide. Cataracts and glaucoma are the two most common causes of blindness in the
world because developing countries rarely have access to the medical treatments
needed to stop their progression and vision damage (Steinmetz et al. 2021). In con-
trast, the biggest contributors to vision loss in developed countries with no cure are due
to photoreceptor degeneration, such as in age-related macular degeneration (AMD),
untreated retinal detachment, and retinitis pigmentosa (RP) (Steinmetz et al. 2021).
While a lot is known about these maladies, they still remain uncurable. The leading
cause of inherited retinal degeneration that can cause complete loss of vision is RP,
which affects about 1 in 4000 people (Besharse and Bok 2011; Shintani et al. 2009).
RP is a heterogenous group of diseases characterized by rod photoreceptor death due to
one of many different genetic mutations in the rods followed by the death of otherwise
healthy cones. The evolving belief among experimentalists is that a combination of
starvation and hyperoxia lead to this secondary cone death (Kanan et al. 2022; Léveil-
lard and Sahel 2017; Petit et al. 2018). Recent experimental work has shown that the
rod-derived cone viability factor (RdCVF), which is exclusively produced by the rods,
increases glucose uptake by the cones; its long form (RdCVFL), produced by both
rods and cones, has been shown to reduce photoreceptor degeneration by protecting
against oxidative stress (Aït-Ali et al. 2015; Byrne et al. 2015; Elachouri et al. 2015;
Léveillard et al. 2004). Thus, RdCVF and RdCVFL together provide a concrete link
between starvation and hyperoxia once the rods have degenerated (Byrne et al. 2015;
Elachouri et al. 2015; Léveillard and Sahel 2017). Mathematical work has confirmed
the respective roles of RdCVF and RdCVFL as well (Aparicio et al. 2022; Camacho
and Wirkus 2013; Camacho et al. 2014, 2016, ?, 2019, 2021; Dobreva et al. 2022;
Wifvat et al. 2021).

Both RdCVF and RdCVFL are encoded in the cDNA Nucleoredoxin-like (Nxnl1)
gene (Chalmel et al. 2007; Léveillard et al. 2004). RdCVFL is a member of the thiore-
doxin family and includes a C-terminal extension that confers enzymatic activities
(Brennan et al. 2010; Funato and Miki 2007) whereas RdCVF is truncated and has no
enzymatic activity (Chalmel et al. 2007). However RdCVF is necessary to stabilize
GLUT1 in the plasma membrane of photoreceptors, by binding to basigin-1 (Bsg1),
in order to enhance glucose uptake (Aït-Ali et al. 2015). Thioredoxin is an important
regulator of cellular redox homeostasis, which catalyzes the reduction of disulfide
bonds and in humans it has been implicated in a wide variety of intracellular and
extracellular redox regulations (Matsuo and Kimura-Yoshida 2013).

The rods produce the thioredoxin enzymatic protein RdCVFL as well as the trophic
factor RdCVF through a process called alternative splicing. Cones on the other hand,
only produce RdCVFL (Aït-Ali et al. 2015; Byrne et al. 2015). Therefore, both cones
and rods express the RdCVFL protein and it is also helpful to both types of pho-
toreceptor in protecting them from photo-oxidative damage (such as the oxidation of
polyunsaturated fatty acids). In mice studies, it has been shown that RdCVFL reduces

123



Optimal Control with RdCVFL for Degenerating Photoreceptors Page 3 of 28 29

the effects of photoreceptor degeneration (Byrne et al. 2015). Just like any other protein
from the thioredoxin family, the thiol oxidoreductase activity of RdCVFL depends on
how high or reduced its oxidized status is. The thioredoxin reductases step in to reduce
RdCVFL whenever it becomes oxidized (Léveillard et al. 2017). Usually produced
from glucose in the pentose phosphate pathway, nicotinamide adenine dinucleotide
phosphate (NADPH) is the cofactor of these reductases and thus most likely RdCVF
provides a reducing power to RdCVFL (Dobreva et al. 2023; Léveillard et al. 2017).
With a retinal disease such as RP, if the rods die then RdCVF is lost, which contributes
to the secondary wave of cone death. It is speculated that part of the reason for the
secondary cone death could be a result of oxidative damage due to the loss of RdCVFL
from the rods (Elachouri et al. 2015) and thus it is necessary to study both RdCVF
and RdCVFL to enhance our understanding of possible therapies that may prevent
secondary cone deaths. However the first step towards investigating the joint effect of
RdCVFL and RdCVF is to investigate the effects of each separately.

According to Mei et al. (2016), RdCVF is secreted by rods and protects cones by
stimulating aerobic glycolysis when it interacts with glucose transporter 1 (GLUT1)
and a complex containing basigin-1. The role ofNxnl1 is studied in cones in this paper.
Because RdCVFL is encoded by the Nxnl1 gene, we consider Nxnl1 to be a proxy
for RdCVFL and thus the absence of RdCVFL is represented by the Nxnl1-/- mouse
(a “knockout" mouse created to not have the Nxnl1 gene (Elachouri et al. 2015)).
The studies with mice confirm that damage produced by oxidative stress in cones
can be reduced through the administration of RdCVFL to mice that have the genetic
abnormality of a deletion of the Nxnl1 gene (Elachouri et al. 2015). Further, RdCVFL
is also shown to have cell-autonomous protection since cell viability is reduced when
the RdCVFL expression is silenced in a cone-enriched culture (Elachouri et al. 2015).
Thus both RdCVF and RdCVFL protect the cones in different ways and are each
important and can both be incorporated into a treatment or therapy for RP.

RdCVFL protects rod and cone photoreceptors against photo-oxidative stress and
damage as shown in mice studies (Byrne et al. 2015; Elachouri et al. 2015). The rd10
mice are models of RP (e.g., see Phillips et al. 2010) and it is shown that RdCVFL
reduces the oxidation of polyunsaturated fatty acids caused by the degeneration of
photoreceptors (Byrne et al. 2015). Since RdCVFL includes a thioredoxin fold and
RdCVF does not (however, it contains the thioredoxic catalytic site sequence CXXC),
RdCVF has no thiol oxidoreductase activity (Léveillard et al. 2017). It is shown in
Mei et al. (2016) that cones protect themselves against oxidative stress during aging
as they produce RdCVFL. It has further been shown in mouse studies (Elachouri et al.
2015) and previous mathematical work (Wifvat et al. 2021) that RdCVFL can slow the
death of cones by mitigating the negative effects of reactive oxidative species (ROS)
(Clérin et al. 2011). Knowing how RdCVF and RdCVFL both interact with the cones
sheds light on RP and suggests the potential for a double-therapeutic approach involv-
ing administration of both RdCVF and RdCVFL. Since potential theraputic effects
of RdCVF have been studied previously, in this work, we will study the individual
treatment with RdCVFL.

It has been experimentally shown previously by Mei et al. (2016), that RdCVFL
causes a rescue effect for the cones. It has also been shown that RdCVFL is not
expressed in the retinal pigment epithelium (RPE) of the rd1 mouse (Mei et al. 2016;
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Léveillard and Sahel 2017, another mouse model of RP) but it is expressed in the
photoreceptors of the eye. In lab studies with mice and a control group, RdCVFL was
shown to reduce the damage done to cones by as much as 63% (Elachouri et al. 2015).
The RdCVFL was subretinally injected after rods had degenerated and then the cone
function was recorded. It was found that RdCVFL was able to protect cones from the
secondary wave of death after rods had died by asmuch as 47% (Elachouri et al. 2015).
One hypothesis of how this works is that after the rods die off and thus RdCVF is no
longer being expressed, there is then less RdCVFL and a higher amount of oxidative
stress which causes the cones to die (Léveillard and Sahel 2010). Thus, this protein
shows a lot of promise for protecting cones even after rods have died, such as in later
stages of RP.

A previous mathematical model looked at the administration of RdCVF and used
optimal control theory to obtain the same rescue effect that was observed experimen-
tally (Camacho et al. 2014). To the knowledge of the authors, this was the first use
of optimal control utilizing treatment to try to prevent photoreceptor degeneration;
a subsequent paper incorporating a different treatment via mesencephalic astrocyte-
derived neurotrophic factor (MANF) again incorporated optimal control to reproduce
the observed experimental data (Camacho et al. 2020). Optimal control has been used
in a wide range of applications in mechanical engineering, economics, and a range of
other disciplines (see, e.g., Athans and Falb 2013; Bryson 1975; Kirk 2004; Pontrya-
gin 1987). In recent decades, optimal control in biological applications has become
increasingly utilized (Lenhart and Workman 2007). Some applications to biological
problems have included drug administration in chemotherapy, treatment strategies in
epidemics, and population harvesting models to name a few (see, e.g., Lenhart and
Workman (2007)).

This will be the first mathematical model of photoreceptors that includes opti-
mal control treatment with RdCVFL to counteract photoreceptor degeneration. This
information can potentially be used for developing treatments for trials. With optimal
control, we maximize the amount of photoreceptors while minimizing the toxicity due
to the potential treatments, to find the optimal amount of potential treatment for main-
taining vision. Specifically, it is important to understand how the presence of RdCVFL
impacts the cones and rods so that if a patient has a disease that affects their vision,
potential treatments including RdCVFL can be used to help the patient maintain their
night or peripheral vision as well as their central vision.

2 ODEModel with RdCVFL Control and Derivations

The results presented in this manuscript build from the system of equations modeling
the ecosystem of the rod cells, cone cells, and retinal pigmented epithelium (RPE):

dRn

dt
= aRnT

︸ ︷︷ ︸

renewal
associated
metabolism

− μn
︸︷︷︸

shedding
associated
metabolism

·
(

Rn

B1 + δr Rn

)

︸ ︷︷ ︸

RdCVFL protection
against oxidative stress

(1)
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Table 1 Parameter descriptions and units; also, see Wifvat et al. (2021)

Parameter Description Units

an Renewal and assoc. metabolism of rod OS mediated by T 1
daymM

βn Removal rate of nutrients from T by R 1
day (rod OS)

γ Removal rate of nutrients from T by C 1
day (cone OS)

� Total inflow rate into the T 1
day

κ Limiting capacity of trophic factors 1
daymM

μn Metabolism assoc. w. energy cons & shedding of R mM
day

μc Metabolism assoc. w. energy cons & shedding of C mM
day

Kmg Substrate concentration that gives half Vmax mM

B1 Quantification of reactive oxygen species for R mM

B2 Quantification of reactive oxygen species for C mM

Vmax Limiting value of the transport rate of glucose mM
day

δn Per cell conc. of RdCVF synthesized by R mM
rod OS

δr Per cell conc. of RdCVFL expressed by R helps R mM
rod OS

δc Per cell conc. of RdCVFL expressed by C helps C mM
cone OS

ν2 Conversion factor 1
mM2

p Rate of glucose uptake in C in absence of RdCVF mM
day

The RdCVFL parameters, δc and δr , are nonnegative; all other parameters are positive

dC

dt
= ν2

(

Vmax(δn Rn)
2

K 2
mg + (δn Rn)2

+ p

)

CT

︸ ︷︷ ︸

renewal associated metabolism, including
increase in glucose uptake due to RdCVF

− μc
︸︷︷︸

shedding
associated
metabolism

·
(

C

B2 + δcC

)

︸ ︷︷ ︸

RdCVFL protection
against oxidative stress

(2)

dT

dt
= T (� − κT )

︸ ︷︷ ︸

carrying capacity of
nutrient pool & glucose,
mediated by the RPE

− T (βn Rn + γC)
︸ ︷︷ ︸

net removal of nutrients
& glucose from trophic
pool by photoreceptors

(3)

which was analyzed in Wifvat et al. (2021); Rn is the cumulative proportion of full
length rod outer segments (OS), C is the cumulative proportion of full length cone
outer segments, and T is the nutrients, including glucose, and other trophic factors
mediated by the RPE. The parameters and their meanings are listed in Table 1 (Wifvat
et al. 2021).

We now introduce a control function to the model (1)–(3) to study the effects that
RdCVFL treatment has on its equilibrium solutions. The system of equations modified
to include the control u ∈ [0, 1] has effectiveness of treatment parameters σ1 and σ2
where the value for σ1 is 192, which is δr Rn0 rounded to the nearest whole number,
and σ2 is 234, δcC0 rounded to the nearest whole number where Rn0 and C0 are the
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initial cumulative portion of full length of rod and cone outer segments, respectively.

dRn

dt
= RnTan − μn

(

Rn

B1 + uσ1

)

(4)

dC

dt
= ν2

(

Vmax(δn Rn)
2

K 2
mg + (δn Rn)2

+ p

)

CT − μc

(

C

B2 + uσ2

)

(5)

dT

dt
= T (� − κT − βn Rn − γC). (6)

This system can be defined as the following for the rest of the paper,

ẋ = f (x, u), (7)

for convenience, with x = (Rn,C, T ). The treatment that administers RdCVFL is
incorporated into the system in the second term of (4) and (5) as u, the control function
of time t . This treatment is in the form of a subretinal injection of an adeno-associated
virus (AAV) vector. Upon the injection of the AAV, the pumping mechanisms of the
RPE cause the gradual and complete absorption of the fluid (Martin et al. 2002).

Standard methods in optimal control do not apply due to the nonlinear manner
in which the control appears in the system. We thus linearize the system in order to
show existence of a control for the linear system and then compare with the nonlinear
results. Here the variables and parameters Rn , C , B1 and B2 are rearranged, only in
the terms that include the control u, to set up the equations to be linearized in the next
step:

dRn

dt
= RnTan − μn

Rn

B1

(

1

1 + σ1
B1
u

)

(8)

dC

dt
= ν2

(

Vmax(δn Rn)
2

K 2
mg + (δn Rn)2

+ p

)

CT − μc
C

B2

(

1

1 + σ2
B2
u

)

(9)

dT

dt
= T (� − κT − βn Rn − γC). (10)

The linearization (first order Taylor’s approximation about u = 0) is

dRn

dt
= RnTan − μn

Rn

B1

(

1 − σ1

B1
u

)

(11)

dC

dt
= ν2

(

Vmax(δn Rn)
2

K 2
mg + (δn Rn)2

+ p

)

CT − μc
C

B2

(

1 − σ2

B2
u

)

(12)

dT

dt
= T (� − κT − βn Rn − γC). (13)
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Fig. 1 (Color figure online) a Left panel: the plots of F(u) and F̃(u). Observe that these are practically
indistinguishable at this scale. Right panel: Zoomed in plots of F(u) and F̃(u)

This system can be defined as the following for the rest of the paper:

ẋ = fl(x, u), (14)

for convenience, with x = (Rn,C, T ).
Further, we will compare the control terms of the nonlinear (4)–(6) and linearized

(11)–(13) models:

F(u) =
⎧

⎨

⎩

μn

(

Rn
B1+uσ1

)

μc

(

C
B2+uσ2

) (15)

F̃(u) =
⎧

⎨

⎩

μn
Rn
B1

(

1 − σ1
B1
u
)

μc
C
B2

(

1 − σ2
B2
u
) (16)

Most of the standard general theorems for the existence of optimal controls such
as Filippov (1962), Neustadt (1963) and Fleming and Rishel (1975) require the set of
velocities, in this case F([umin, umax]), to be convex.

In our system (4)–(6), the controls enter nonlinearly, which is themost accurate bio-
logical model; however, we cannot ensure existence of optimal controls. Fortunately,
due to the magnitude of the parameters σi

Bi
for i = 1, 2 and the size of the control u,

the linearization F̃(u) of F(u) about 0 is extremely close to the original system; see
Fig. 1. Note that the linearization F̃(u) about umin+umax

2 would be even closer. However
for easier readability, we choose to use the linearization about 0, which is already very
close.

Because the rods and cones are an order of magnitude apart in healthy conditions
with rods to cones 30:1 in mice and 20:1 in humans, we do not use the Euclidean
distance but instead report the errors for rods and cones separately. These distances
are less than 10% error and less than 1% error respectively (Table 2). Because the
control terms are of the form A

B+Cu , the derivatives don’t change sign between umin
and umax and so the maximum distance is at the endpoints. This shows that the control
found for the nonlinear system must be very similar to the optimal control that exists.
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Table 2 Percent error for Rn
and C for F(u) and F̃(u)

Rn C

F(umin) 7.77e5 2.31e4

F̃(umin) 7.30e5 2.17e4

% Error 6.09% 6.29%

F(umax) 9.433e5 2.814e4

F̃(umax) 9.425e5 2.812e4

% Error 0.075% 0.078%

Percent error is taken separately for rods and cones, because in healthy
conditions, they are an order of magnitude apart. Percent errors are
taken at the endpoints; see Fig. 1a, b

And, in the results that follow, it is shown that the optimal control for the linearized
system is indeed very similar.

3 Optimal Control

3.1 Objective Functional

Next the objective functional is defined for both the nonlinear (4)–(6) and linearized
(11)–(13) control models. This optimal control problem is formulated to take into
account the administration of RdCVFL to the cones because of the fact that the sec-
ondary death of cones is a result of being exposed to oxidative stress and the inclusion
of RdCVFL protects from that stress.While using the cumulative portion of full length
of cone outer segments, to maximize cone longevity the objective functional also takes
care to minimize the dosage of RdCVFL to the cones. The control is denoted by the
function u : [0, t f ] → [0, 1] and is a representation of the percentage of RdCVFL
which is administered to assist in cone survival over the time period [0, t f ]. This opti-
mal control problem will be compared to experimental results from Elachouri et al.
(2015) and thus the dosage u will be considered as being administered over the course
of ten days. The objective functional is defined as

I (u) =
∫ t f

0

(ε

2
(u(t))2 − (α1Rn + α2C)

)

dt (17)

where the importance of minimizing u is represented as the weight ε and the set of
controls is defined as

U = {u|u is measurable, umin ≤ u(t) ≤ umax, t ∈ [0, t f ]} (18)

and this set is closed. The set U is an interval, and hence it is convex. Note that
umin = 0, umax = 0.9 to allow for flexibility in efficiency.
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3.2 Existence of Unique Global Solutions for the Nonlinear System

Theorem 1 For every fixed measurable control u : [0, t f ] �→ [umin, umax] and every
initial condition (Rn0,C0, T0) in �̄ = {(R,C, T ) : R ≥ 0,C ≥ 0, T ≥ 0}, the system
defined in (4)–(6) has a locally unique and bounded solution defined on [0, t f ].
Proof By hypothesis, the controls are bounded and measurable functions of time t .
For every fixed (Rn,C, T ) and fixed control u(·), the right hand side f is a measurable
function of time, as a composition of a measurable function and a continuous function
in the “good” order (Royden and Fitzpatrick 1988). For each fixed t , the vector field
f (·, u(t)) is a rational function of (Rn,C, T ) without any singularities in the closed
first octant, and hence is locally Lipschitz continuous on this set. Using the bound-
edness of the controls, one can show analogously to Theorem 6 (see “Appendix A”)
that solutions for this u stay bounded and are thus defined for all positive times t less
than or equal to t f . The calculations are the same, except in (39), the term δr Rn is
replaced with umaxσ1, and δcC is replaced with umaxσ2. By the Carathéodory theorem
(Coddington and Levinson 1955 Theorem 1.1), there exists a unique solution on the
interval [0, t f ] for this control u. ��

3.3 Existence of Unique Global Solutions for the Linearized System

Theorem 2 For every fixed measurable control u : [0, t f ] �→ [umin, umax] and every
initial condition (Rn0,C0, T0) in �̄ = {(R,C, T ) : R ≥ 0,C ≥ 0, T ≥ 0}, the system
defined in (11)–(13) has a locally unique and bounded solution defined on [0, t f ].
Proof By hypothesis, the controls are bounded andmeasurable functions of time t . For
every fixed (Rn,C, T ) and fixed control u(·), the right hand side fl is a measurable
function of time. For each fixed t , the vector field fl(·, u(t)) is a rational function of
(Rn,C, T ) without any singularities in the closed first octant, and hence is locally
Lipschitz continuous on this set. Using the boundedness of the controls, one can show
analogously to Theorem 6 that solutions for this u stay bounded and are thus defined
for all positive times t less than or equal to t f . The calculations are the same, except

in (39) the term Rn
B1+δr Rn

is replaced with Rn
B1

(

1 − σ1
B1
u
)

, and C
B2+δcC

is replaced

with C
B2

(

1 − σ2
B2
u
)

. By the Carathéodory theorem (Coddington and Levinson 1955

Theorem 1.1), there exists a unique solution on the interval [0, t f ] for this control u.
��

3.4 Existence of Optimal Control for the Linearized System

Because most standard general theorems for the existence of optimal controls require
the set of velocities to be convex, we only show the existence of optimal controls for
the system (11)–(13) where the controls enter linearly.

Wewill verify that the optimal control problem (11)–(13) togetherwith the objective
functional (17) satisfies the conditions of Theorem 2.2 from Lenhart and Workman
(2007) for the basic problem (1.2) (p. 7 of the same reference). To keep this manuscript
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self-contained, we paraphrase the statement of that theorem using our terminology and
notation, such as noting that the dynamics and cost functional do not explicitly depend
on time.

The following theorem refers to the problem of minimizing a cost functional (equa-
tion (1.2) in Lenhart and Workman (2007)) J (u) = ∫ t1

0 �(x(t), u(t)) dt subject to
x ′(t) = f (x(t), u(t)), x(0) = x0 with f and � continuously differentiable.

Theorem 3 (Lenhart and Workman, paraphrased and customized) Let the set of con-
trols be Lebesgue measurable on 0 ≤ t ≤ t1 with values in R. Suppose that f (x, u) is
convex in u, and there exists constants C4 and C1, C2, C3 > 0, and β > 1 such that
for all t ∈ [0, t1], and all x, x1, u ∈ R

(i) f (x, u) = α(x) + β(x)u,

(ii) | f (x, u)| ≤ C1(1 + |x | + |u|),
(iii) | f (x1, u) − f (x, u)| ≤ C2(|x1 − x |)(1 + |u|), and
(iv) |�(x, u)| ≥ C3|u|β − C4.

(19)

Then there exists an optimal control u∗ minimizing J (u) with J (u∗) finite.

To verify that this theorem applies to our system, first note that with Corollary 1 and
Remark 1 in the appendix, we may restrict our considerations to a compact, forward
invariant simplex S′ in the first octant. On this set, the dynamics f (x, u) is affine in
the control u and rational in the state x = (R,C, T ) and without singularities in the
first quadrant, and thus (i) and (ii) are satisfied. Since f is continuously differentiable
it is Lipschitz continuous on the compact set S′ with Lipschitz constant independent
of the control, and thus (iii) is satisfied. The Lagrangian in the functional (17) clearly
is of the form (iv) with β = 2 and with finite C4 since the term (α1Rn +α2C) is linear
in the state variables and thus bounded on the domain S′ of interest.

3.5 Optimality Conditions

There are first-order necessary optimality conditionswhichmust bemet for the optimal
control problem that will be outlined in this section. The optimal control problem,
subject to the nonlinear state equations (4)–(6) with objective functional I (u) must
meet the following conditions in order for the optimal control u∗(t) to be characterized.

The previous equations will be rewritten as the following maximization problem
for convenience:

max
u

J (u) subject to ẋ = f (x, u) (20)

where

J (u) = −I (u) =
∫ t f

0

(

α1Rn + α2C − ε

2
u2

)

dt . (21)
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Thus an optimal control u∗ must be as follows:

J (u∗) = max
u∈U J (u) subject to ẋ = f (x, u∗). (22)

Then continuing to Pontryagin’s Maximum Principle, the Hamiltonian is first
defined:

H(x, λ, u) = α1Rn + α2C − ε

2
u2 + λT f (x, u) (23)

where next, λ is defined as the vector of adjoint variables, which are represented as
λ ≡ λ(t) = (λ1(t), λ2(t), λ3(t))T . Then we let H ≡ H(x, λ, u) and λi ≡ λi (t) with
i = 1, . . . , 3 for convenience.
Nonlinear System

Even though an optimal control is not guaranteed to exist, we proceed with the
standard technique for finding one and then compare with the linear version. The
optimal control that we find given the standard procedure will be referred to as the
putative optimal control.

Using the nonlinear system (4)–(6) and the objective function, the Hamiltonian is
defined as follows:

H = α1Rn + α2C − ε

2
u2

+ λ1

(

RnTan − μn

(

Rn

B1 + uσ1

))

+ λ2

(

ν2

(

Vmax(δn Rn)
2

K 2
mg + (δn Rn)2

+ p

)

CT − μc

(

C

B2 + uσ2

)
)

+ λ3 (T (� − kT − βn Rn − γC))

(24)

Theorem 4 Pontryagin’s Maximum Principle: If u* and x∗ = (R∗
n ,C

∗, T ∗) are
optimal for problem (22) then there exist absolutely continuous and piecewise dif-
ferentiable adjoint functions λi : [0, t f ] → R for i = 1, 2, 3, 4 such that

∂λ1

∂t
= − ∂H

∂Rn
(x∗, u∗) = −α1 − λ1

(

T ∗an − μn

B1 + uσ1

)

+ λ3βnT
∗

− λ2

(

ν2

(

2K 2
mgVmaxδ

2
n R

∗
n

(K 2
mg + (δn R∗

n)
2)2

)

C∗T ∗
) (25)

∂λ2

∂t
= −∂H

∂C
(x∗, u∗) = −α2 + λ3γ T

∗

− λ2

(

ν2

(

Vmax(δn R∗
n)

2

K 2
mg + (δn R∗

n)
2 + p

)

T ∗ − μc

B2 + uσ2

) (26)
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∂λ3

∂t
= −∂H

∂T
(x∗, u∗) = −λ1R

∗
nan − λ3(� − 2κT ∗ − βn R

∗
n − γC∗)

− λ2

(

ν2

(

Vmax(δn R∗
n)

2

K 2
mg + (δn R∗

n)
2 + p

)

C∗
)

.

(27)

The costate λ satisfies the transversality conditions being

λi (t f ) = 0, for i = 1, . . . , 3.

For all t ∈ [t0, t f ], the optimal control u∗(t) maximizes the Hamiltonian, i.e.
∀ u ∈ [umin, umax], H(x∗(t), λ(t), u∗(t)) ≥ H(x∗(t), λ(t), u).

Linearized System
For the linearized system (11)–(13), the Hamiltonian is defined as follows:

H = α1Rn + α2C − ε

2
u2

+ λ1

(

RnTan − μn
Rn

B1

(

1 − σ1

B1
u

))

+ λ2

(

ν2

(

Vmax(δn Rn)
2

K 2
mg + (δn Rn)2

+ p

)

CT − μc
C

B2

(

1 − σ2

B2
u

)
)

+ λ3 (T (� − kT − βn Rn − γC))

(28)

Theorem 5 Pontryagin’s Maximum Principle: If u* and x∗ = (R∗
n ,C

∗, T ∗) are
optimal for problem (22) then there exist absolutely continuous and piecewise dif-
ferentiable adjoint functions λi : [0, t f ] → R for i = 1, 2, 3, 4 such that

∂λ1

∂t
= − ∂H

∂Rn
(x∗, u∗) = −α1 − λ1

(

T ∗an − μn

B1

(

1 − σ1u

B1

))

+ λ3βnT
∗

− λ2

(

ν2

(

2K 2
mgVmaxδ

2
n R

∗
n

(K 2
mg + (δn R∗

n)
2)2

)

C∗T ∗
) (29)

∂λ2

∂t
= −∂H

∂C
(x∗, u∗) = −α2 + λ3γ T

∗

− λ2

(

ν2

(

Vmax(δn R∗
n)

2

K 2
mg + (δn R∗

n)
2 + p

)

T ∗ − μc

B2

(

1 − σ2u

B2

)
) (30)

∂λ3

∂t
= −∂H

∂T
(x∗, u∗) = −λ1R

∗
nan − λ3(� − 2κT ∗ − βn R

∗
n − γC∗)

− λ2

(

ν2

(

Vmax(δn R∗
n)

2

K 2
mg + (δn R∗

n)
2 + p

)

C∗
)

.

(31)

The costate λ satisfies the transversality conditions being

λi (t f ) = 0, for i = 1, . . . , 3.
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For all t ∈ [t0, t f ], the optimal control u∗(t) maximizes the Hamiltonian, i.e.
∀ u ∈ [umin, umax], H(x∗(t), λ(t), u∗(t)) ≥ H(x∗(t), λ(t), u).

3.6 Description of the DiscretizedVariables

In this section an approximate solution to the system of equations (4)–(6), x , is
described. The following nodes describe how the time interval [0, t f ] is discretized
into N subintervals that are equally spaced with

h = ti+1 − ti , for i = 0, . . . , N − 1,

and

0 = t0 < t1 < · · · < tN = t f . (32)

Next, the discretized vector x at time tk is defined as

xk = (Rn(tk),C(tk), T (tk))
T .

It follows similarly that for k = 0, . . . , N , uk = u(tk) and for all time steps
tk with k = 0, 1, 2, . . . N , all discretized values are contained in the vector u =
[u0, u1, u2, . . . , uN ].

Next, an approximation to the solution of the system of equations (4)–(6) for the
state variable x is calculated given initial conditions x0 ∈ R3 with initial u over the
time interval [0, t f ], by implementing the fourth-order Runge–Kutta method forward
in time with k = 0, . . . , N . The forward Runge–Kutta method is as follows:

k1 = f (tk, xk, uk)
k2 = f

(

tk + h

2
, xk + h

2
k1, 1

2
(uk + uk+1)

)

k3 = f
(

tk + h

2
, xk + h

2
k2, 1

2
(uk + uk+1)

)

k4 = f
(

tk+1, xk + k3, uk+1

)

xk+1 = xk + h

6

(k1 + 2k2 + 2k3 + k4
)

.

It is important to note that there are several different ways to approximate the value
of uk in calculating k2 and k3. In this algorithm, we replace uk with the average,
1
2 (uk + uk+1), because this has been shown to be sufficient (Lenhart and Workman
2007).

Next, the Runge–Kutta method is implemented backward in time to numerically
solve the adjoint system and compute the solution λ. The definitions of h and dis-
cretization of the time variable t ∈ [0, t f ] remains the same as stated previously.
Define the adjoint vector λk ∈ R

3, for which the values of the adjoint variables at
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each discrete time tk are the components, as λk = (λ1(tk), λ2(tk), λ3(tk))T . The initial
iterate is set to λN = 0 in order to enforce the transversality condition. Then, the
backward solve Runge-Kutta method is as follows for k = N , N − 1, . . . , 1:

k1 = g
(

tk, λk, xk, uk
)

k2 = g
(

tk − h

2
, λk − h

2
k1, 1

2
(xk + xk−1),

1

2
(uk + uk−1)

)

k3 = g
(

tk − h

2
, λk − h

2
k2, 1

2
(xk + xk−1),

1

2
(uk + uk−1)

)

k4 = g
(

tk−1, λk − k3, xk−1, uk−1

)

λk−1 = λk − h

6

(k1 + 2k2 + 2k3 + k4
)

.

3.7 Updating the Control Variable

Nonlinear System
Next, the characterization of the optimal control is derived using Pontryagin’sMax-

imum Principle. By this principle, the Hamiltonian must satisfy

∂H

∂u
= 0 = −εu + λ1μnσ1Rn

(B1 + uσ1)2
+ λ2μcσ2C

(B2 + uσ2)2
(33)

at optimality. Rearranging gives

εu = λ1μnσ1Rn

(B1 + uσ1)2
+ λ2μcσ2C

(B2 + uσ2)2
, (34)

where we observe that since all the parameters in (34) are positive, there will be only
one intersection of εu with the right-hand-side, and this intersection will occur in the
first quadrant. However, solving for u, and only taking the unique real root of (33),
the analytic solution is too cumbersome to enter into MATLAB, and so it is solved for
using a root finding method. Then, u becomes the average of the new value u and the
old value for u, for each time step k.

Then, a new vector of control variables, u = [u0, u1, u2, . . . , uN ], is formed to test
convergence once all the values over the discretized time interval [0, t f ] have been
calculated.
Linearized System

Now for the linearized system the characterization of the optimal control is derived
using Pontryagin’sMaximumPrinciple. For this system, the Hamiltonianmust satisfy

∂H

∂u
= 0 = −εu + λ1μnσ1Rn

B2
1

+ λ2μcσ2C

B2
2

(35)

at optimality.
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Solving for u, we get

u = λ2μcCσ2B2
1 + λ1μn Rnσ1B2

2

B2
1 B

2
2ε

. (36)

Then, u becomes the average of the new value u and the old value for u, for each
time step k. After that, a new vector of control variables, u = [u0, u1, u2, . . . , uN ], is
formed to test convergence once all the values over the discretized time interval [0, t f ]
have been calculated. We observe that Taylor expanding the nonlinear terms in the
characterization of u for the nonlinear equations and keeping linear terms, (33), gives
the exact same characterization as (36).

3.8 The Forward-Backward SweepMethod (FBSM)

3.8.1 FBSM Algorithm

The numerical approximation of the optimality condition can be summarized by the
following algorithm (Lenhart and Workman 2007). Assume that the initial condition
is given as x(t0), over the uniformly discretized time interval [0, t f ] with mesh size h
and stopping criteria given by δ.

1. Initialize u = 0.
2. Approximate solution x to (ODE) forward in time t over time interval [0, t f ] using

u and x(t0).
3. Approximate solution λ to (ADJ) backward in time t over [0, t f ] using u, x(t0) and

λ(t f ) = 0.
4. Update u using the characterization formula, equation (34) for the nonlinear system

or (36) for the linear system.
5. Test for convergence. If convergence is not met, return to 2. and repeat steps 2–5

using the updated values for u and x(t0).
Each single iteration is defined as each single completion of steps 2–5. When

approximating solutions numerically for optimal control problems, this algorithm is
the standard procedure; however, it has limitations (Lenhart and Workman 2007). It
is also important to note that the solutions do not always converge following FBSM
(McAsey et al. 2012). General assumptions under which this algorithm converges
are defined in McAsey et al. (2012), and the authors also analyze an example of an
optimal control problem for which there is a known analytical solution (Lenhart and
Workman 2007), yet for which after 1000 iterations there is still no convergence. The
magnitude of the coefficient of a term in the objective functional to the length of the
time interval is what this nonconvergence is attributed to by the authors. Figure2 shows
the convergence for nonlinear and linearized models.

3.8.2 Stopping Criteria for the FBSM

The following discretization of u ≡ u(t) ∈ R
N+1 over the discretization of time

[0, t f ] holds the estimated values for the Forward-Backward Sweep Method (FBSM)
for each current iteration:
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u = (u(t0), u(t1), u(t2), . . . , u(t f )).

It follows that the estimated values of u from the previous iteration of FBSM is
defined as uold ∈ R

N+1. See, for example, Lenhart and Workman (2007).
Once the estimated values of u are calculated at each iteration, a stopping criteria

must be met for FBSM using relative errors for the control, state variables, and adjoint
variables. This implementation is now demonstrated using a given tolerance δ and the
values for the control u as an example that covers the other variables listed in general.
The relative error δ is now defined in terms of the control u and the �1 vector norm:

||u − uold ||
||u|| ≤ δ,

which can be rewritten as the following in order to take into account the fact that the
control variable may have the value 0:

δ||u|| − ||u − uold || ≥ 0. (37)

Next, β1 is defined following the work done by Lenhart and Workman (2007):

β1 = δ||u|| − ||u − uold ||.

Now, for each current iteration of the FBSM method, the relative errors for
each of the state variables can be rewritten. The state variables defined as X =
( X1, X2, X3)

T ∈ R
3×(N+1). These relative errors which are obtained from the current

iteration are given in the matrix:

X =
⎛

⎝

X1
X2
X3

⎞

⎠ =
⎛

⎝

x1(t0) x1(t1) x1(t2) · · · x1(t f )
x2(t0) x2(t1) x2(t2) · · · x2(t f )
x3(t0) x3(t1) x3(t2) · · · x3(t f )

⎞

⎠

For each previous iteration of FBSM, the estimated state variables are also stored,
in a matrix that is constructed in the same fashion as X . This matrix is defined as
Xold ∈ R

3×(N+1) with the difference being that the i th row is denoted by Xoldi
instead of Xi . This i th row is defined as follows for both of these matrices:

βi+1 = δ|| Xi || − || Xi − Xoldi ||, i = 1, . . . , 3.

Next, the adjoint variables, defined as λi , i = 1, . . . , 3, must be taken into consid-
eration and the process must be repeated for them. The estimated values of adjoint
variables are similarly calculated using the current iteration of FBSM, which are then
stored in the matrix � = (�1,�2,�3)

T ∈ R
4×(N+1). Once again, �old ∈ R

3×(N+1)

is a matrix created using the previously estimated values of FBSM from the last iter-
ation, and it follows that

βi+1 = δ||�i || − ||�i − �oldi ||, i = 4, . . . , 6.
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Fig. 2 Plots of the control iterates for the RdCVFL control models with ε = 7e5. a Plot of the control
estimates for the nonlinear model with control (4)–(6). Recall that for this case, we do not have proof of
existence of optimal control. However, for the sake of comparison and biological relevance, we follow the
same methods to find u∗, which we call the putative optimal control in this instance. The putative optimal
control u∗ is depicted by the bold line. Observe that the control iterates converge to u∗, which is achieved
in 12 iterations. b Plot of the control estimates for the linearized model with control (11)–(13). In this case,
we do have a mathematical proof of existence for the optimal control. The optimal control u∗ is depicted
by the bold line. Observe that the control iterates converge to u∗, which is achieved in 12 iterations

Then, the following is obtained:

{β1, β2, . . . , β7}.

Next, for the stopping criteria to bemet in order to obtain convergence, the following
must hold:

min{β1, β2, . . . , β7} > 0,

and if this inequality holds, then convergence has been obtained and the process is
halted. If the stopping criteria has not been met, then the process is repeated with an
additional run through the FBSM method.

4 Numerical Results of Control Applied to Rods and Cones with
RdCVFL

Our nonlinear model (4)–(6) is based on the experimental results from Elachouri
et al. (2015) for the Nxnl1-/- mouse. While we don’t have a mathematical proof
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Table 3 Parameters for E5 stability; the estimated parameters result in E5 stability at a reasonable level;
see Wifvat et al. (2021)

Variable Value Units Citation

an 1.25e−06 1
day mM Estimated

βn 2.0e−07 1
day (rod OS) Estimated

γ 5.0e−5 1
day (cone OS) Estimated

� 430.0 1
day Estimated

κ 5.0e−3 1
day mM Estimated

μn 106.0 mM
day Estimated

μc 135.0 mM
day Estimated

Km 19 mM Carruthers (2016)

B1 1000 mM Estimated

B2 1200 mM Estimated

Vmax 1728 mM
day Carruthers (2016)

δn 6.5e−5 mM Léveillard et al. (2004)

δr 1.0e−6 mM Estimated

δc 1.0e−4 mM Estimated

ν2 7.65e−10 1
mM2 Estimated

p 1.0e−3 mM
day Estimated

for existence of the optimal control, this experiment shows a decrease in rods and
cones over the course of 10 days, with long term behavior approaching E2, where
all the rods and cones have died off while the nutrients remain. Table 3 gives the
parameter values that fit the data and give E5 stable, with B1, B2, δr and δc from
(1)–(3) having altered values to reflect the case of mice that do not have RdCVFL and
have experienced light damage, where we consider Nxnl1 to be a proxy for RdCVFL
(Table 4). The α-values are relative weights compared with each other and, in our
case, chosen to match the experimental data of the degeneration of Rn and C . The
values for α were chosen to be α1 = 1 and α2 = 1.2 to show the weights of con-
trol for rods and cones, respectively. Recall that the values for σ1 is 192, which is
δr Rn0 rounded to the nearest whole number, and σ2 is 234, δcC0 rounded to the
nearest whole number. The lack of RdCVFL is illustrated by the δr and δc values
being set equal to zero, and the light damage is reflected in the lowered values of
B1 and B2. The numerical results show that with an ε value of 7.0e5 in (21), the
numerical results agree with the experimental data; see Fig. 3. This shows that the pro-
gression of retinal diseases such as RP may be slowed using treatments that involve
RdCVFL.

With the linearized control model (11)–(13), and using the same values for all the
parameters and initial conditions, there is a higher saving rate but adjusting ε to be
1.8E+6, the savings rate is similar to the results of the nonlinear version.
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Table 4 Parameters changed for
-/- LD; the estimated parameters
give agreement with the
degeneration observed in
Elachouri et al. (2015)

Variable Value Units Citation

B1 700 mM Estimated

B2 840 mM Estimated

δr 0 mM Elachouri et al. (2015)

δc 0 mM Elachouri et al. (2015)

Fig. 3 (Color figure online) The results of decay of both cones and rods, for the nonlinear RdCVFL control
model (4)–(6). The initial conditions are Rn = 6.4e6,C = 1.8e5, T = 8e4, over the course of 10 days
(reflected by the experimental results of Elachouri et al. (2015) for the Nxnl1-/- mouse, presented in the top
panel), without control compared to the results of adding control to the rods and cones. The data points at
time t = 10 for the rods and cones are from experimental results of Elachouri et al. (2015)
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Fig. 4 (Color figure online) The results of decay of both cones and rods, for the nonlinear RdCVFL control
model (4)–(6). The initial conditions are Rn = 0.5e6,C = 1.8e5, T = 8e4, a smaller value of the Rn initial
condition only, over the course of 10 days (reflected by the experimental results of Elachouri et al. (2015)
for the Nxnl1-/- mouse), without control compared to the results of adding control to the rods and cones.
Note that no experimental results are available for treatment with RdCVFL for these initial conditions (so
there are no data points at t = 10 as there were in Fig. 3)

5 Sensitivity Analysis

Next in order to see more clearly how the addition of the control impacts the rest of
the model and the other parameters in the model, a sensitivity analysis is performed.
The PRCC method is used in order to do a global sensitivity analysis and see which
parameters have the strongest effects, and understand how variation in the parameter
values affects the outcomes of our biological system. We first analyze the model with-
out control (1)–(3), the nonlinear RdCVFL control model (4)–(6) and the linearized
RdCVFL control model (11)–(13). Using the initial conditions presented in the con-
trol results in Fig. 3, Rn = 6.4e6,C = 1.8e5, T = 8e4, we see from Fig. 5a–d the
difference between the photoreceptor PRCC values without control (a)–(b), and with
control (c)–(d). When there is not a control added to the model, the initial values of
the state variables for rods and cones are important. However, when there is control
added, these initial values are no longer significant. Notice that with or without con-
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trol, the values B1 and B2 are significant. These parameters are correlated to the ROS,
which RdCVFL has been experimentally shown to counteract. Similarly, the amount
of RdCVFL present also affects shedding rates, which are represented by μn and μc,
which also show strong significance. Notice also that the quantities

DT = �

κ
, Dn = μn

an
(38)

are also significant, because the related parameters �, κ , μn and an are all significant
as well. These quantities are important because they have been shown in previous
mathematical work (Camacho et al. 2016, ?) to be key ratios that determine the stability
of the equilibria. This shows that even in the case where RdCVFL is not present, key
factors relating to energy uptake and the metabolic processes which are affected by
RdCVFL are still significant.

For the initial values Rn = 0.5e6,C = 1.8e5, T = 8e4, which are the initial
conditions in the control model shown in Fig. 4, all of the PRCC plots are the same for
both the nonlinear model without control (1)–(3), the nonlinear control model (4)–(6)
and the linearized control model (11)–(13) except for four cases which are shown in
Fig. 6. Only for the cones, we can see that several parameters are nowmore significant.
For cones in the nonlinear model without control (1)–(3), the initial value of the rods
is now significant, along with a, δn , μn , Km and B1. Then for the nonlinear control
model, the new significant parameters are a, δn , Km and B1. For the linearized control
model, when ε = 7e5, which is the same ε that’s used for the nonlinear control model,
the newly significant parameters are a, δn , μn and Km . Finally, when we use the ε

value that is needed to get similar results from the linear control model as the nonlinear
control model, ε = 1.8e6, we see the same significant parameters as for the previous
ε value, except now B1 is also significant as well. Additionally, the PRCC plots were
also tested at the initial values Rn = 3.6e6,C = 1.8e5, T = 8e4 and the results were
the same as for the first initial values Rn = 6.4e6,C = 1.8e5, T = 8e4 for both the
rods and the cones.

6 Conclusion

This is the first mathematical optimal control model of a light damaged retina and
the potential effects of RdCVFL treatment. The RdCVFL control terms are non-
linear for biological accuracy but this results in the standard general theorems for
existence of optimal controls failing to apply. We show the close agreement of the
original model with the linearization of the control terms in the model and prove
existence of an optimal control for the linearized model in Sect. 2. Because of this
close agreement, we proceed under the assumption that a numerical optimal con-
trol obtained algorithmically and numerically may accurately represent an optimal
control of the nonlinear system. The parameters are fit to real world experimental
data for Nxnl1-/- mice, and the results show a savings rate for rods and cones that
agrees with experiemental data. Similar results are obtained with the linear system
by choosing a different ε. We conclude that with the presence of RdCVFL added to
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Fig. 5 (Color figure online) a, b PRCC plots taken at 10 days for rods and cones, respectively, for the
-/- mouse with LD for the model without control (1)–(3). The parameters are in Table 3 except the four
changed parameters in Table 4. The c, d PRCC plots taken at 10 days for rods and cones, respectively, for
the -/- mouse under the same conditions except now with nonlinear RdCVFL control u added (4)–(6). The
difference is that the initial population of the state variable is no longer significant. Note that this is for the
nonlinear model (4)–(6) with initial conditions Rn = 6.4e6,C = 1.8e5, T = 8e4. See Fig.3 for the control
plot. The linearized control model (11)–(13) has the same qualitative results as shown in (c, d)

the model of a diseased retina without any naturally occurring RdCVFL, the pho-
toreceptor death is greatly reduced. In fact, it is potentially possible to retain the
same amount of vision as a healthy eye, which is reflected in the control model
reaching the same population levels as the experimental data of the nondiseased eye.
This is an optimistic result for the further study of RdCVFL treatment in human
trials.

Further, a global sensitivity and uncertainty analysis was performed to understand
what the affect is of each input on the variability of the output of the model. This
analysis of the control model was compared to themodel without control to understand
the differences which occur when control is added to the model. Without control, the
PRCC plots show the significant parameters that affect the model output the most.
These are the initial values R(0),C(0), the shedding rates and cell metabolismμn, μc,
as well as other uptake and renewal factors such as a, � and κ . The only difference
when this analysis is performed on the optimal control model, is that the initial values
R(0),C(0) are no longer significant. All models showed similar qualitative results
for the listed initial conditions, meaning that it is especially important to look into
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Fig. 6 a–d PRCC plots taken at 10 days for cones, for the -/- mouse with LD and initial conditions
Rn = 0.5e6,C = 1.8e5, T = 8e4. The a is for the nonlinear model without control (1)–(3) and b is for the
nonlinear control model (4)–(6). The c, d the PRCC plots for the linearized model with control (11)–(13)
where c has the same ε value as the nonlinear model, ε = 7e5 and d has ε = 1.8e6. We observe that the
qualitative results of the nonlinear and linearized models, b, d respectively, are similar and note that we
considered 0.4 to be the value for statistical significance in the PRCC plots

these significant parameters. These results show that the potential RdCVFL treatment
may still be able to take effect and help save the remaining photoreceptor population,
even with a small initial population of photoreceptors. This is important because
many individuals who suffer from RP do not attain a diagnosis or treatment until
the disease has already progressed and affected their vision somewhat. Thus it is
hopeful that for all patients, there can still be some saving effect for what vision is
left.

Based on both the optimal control and the sensitivity and uncertainty analysis,
RdCVFL is shown to be an important factor for the survival of photoreceptor popu-
lations. In retinas that do not have RdCVFL being produced, a treatment involving
RdCVFLmay be able to help patients retain vision and slow the progression of the dis-
ease. Based on the sensitivity and uncertainty results, this type of potential treatment
shows promise for helping at any stage of such retinal diseases. Overall, RdCVFL has
been shown to be an important factor in helping the retinas maintain photoreceptor
survival and may potentially help patients retain vision.
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A Positivity and Boundedness of Solutions

A.1 Existence of Unique Global Solutions for the Systemwithout Control

Theorem 6 There exist locally unique solutions to the initial value problems of the
system of equations defined in (1)–(3) for (R(0) = Rn0 , C(0) = C0, T (0) = T0) in
R
3 where Rn0 �= −B1

δr
and C0 �= −B2

δc
. The coordinate planes and hence the positive

octant � = {(R,C, T ) : R > 0,C > 0, T > 0} are invariant under the local flow.
Moreover, all solutions starting in �̄ = {(R,C, T ) : R ≥ 0,C ≥ 0, T ≥ 0} are
bounded forward in time and hence are defined for [0,∞).

Proof The right-hand side of the system (1)–(3) are rational functions of Rn,C and
T and are continuously differentiable and locally Lipschitz continuous. Thus, by the
Picard Lindelöf theorem (Coddington and Levinson 1955 Theorem 3.1), these initial
value problems have local unique solutions. Clearly, if Rn = 0, then Ṙn = 0, and
so on. Thus solutions starting on the coordinate planes stay on the coordinate planes.
Hence, by uniqueness, solutions cannot cross the coordinate planes and the positive
open and closed octants � and �̄ are invariant. Note that because all parameters are
non-negative and �̄ includes non-negative values, the conditions Rn0 �= −B1

δr
and

C0 �= −B2
δc

hold. To show that solutions in �̄ stay bounded for all positive times,
consider the following.

Let h, j, n, and q be defined as the following:

h := max{an, ν2(Vmax + p)}
n := min

{ μn

B1
,

μc

B2

}

j := min{β, γ }
q := � + n

2κ

Note that h, j, n, and q are all positive since the parameters in the respective
definitions are positive. Let W = R + C + ( hj )T . Then, W ≥ 0, and we have the
following equations:

dW

dt
= dR

dt
+ dC

dt
+

(

h

j

)

dT

dt
,
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which turns into the following after substituting the equation definitions:

= RTan − μn

(

R

B1 + δr R

)

+ ν2

(

Vmax(δn R)2

K 2
mg + (δn R)2

+ p

)

CT − μc

(

C

B2 + δcC

)

+
(

h

j

)

T (� − κT − βR − γC).

Then, expanding and rearranging the terms, we get:

≤ an RT +
(

ν2
Vmax(δn R)2

K 2
mg + (δn R)2

+ ν2 p

)

CT − μn

(

R

B1 + δr R

)

− μc

(

C

B2 + δcC

)

−β

(

h

j

)

RT − γ

(

h

j

)

CT +
(

h

j

)

T (� − κT ).

Note that

Vmax(δn R)2

K 2
mg + (δn R)2

≤ Vmax,
R

B1 + δr R
≤ 1

B1
R, and

C

B2 + δcC
≤ 1

B2
C . (39)

Then, we have the following inequality:

dW

dt
≤ an RT + ν2 (Vmax + p)CT − μn

(

1

B1

)

R − μc

(

1

B2

)

C

−β

(

h

j

)

RT − γ

(

h

j

)

CT +
(

h

j

)

T (� − κT ).

Then, substituting h, n, j and q as defined previously, we get the following:

dW

dt
≤ hRT + hCT − nR − nC − j

(

h

j

)

RT − j

(

h

j

)

CT +
(

h

j

)

T (� − κT )

Which reduces to:

dW

dt
= −n(R + C) +

(

h

j

)

T (� − κT )

Finally, substituting back W = R + C + ( hj )T , this turns into:

dW

dt
= −n(W −

(

h

j

)

T ) +
(

h

j

)

T (� − κT )

= −nW +
(

h

j

)

T +
(

h

j

)

T (� − κT )

≤ −nW + q. (40)
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Then, dW
dt ≤ −nW + q, and we get

W (t) ≤ q

n
+

(

W (0) − q

n

)

e−nt . (41)

Therefore, W is bounded along solutions for positive times starting in �̄. Thus,
Rn,C and T are also bounded on �̄ for positive times. Since � is invariant, and
solutions starting in �̄ stay bounded for positive times, the solutions exist for all
positive times. ��

As a direct consequence of (40) we have the following corollary which we will use
when arguing the existence of optimal controls.

Corollary 1 Using the notation and parameters as in Theorem 6, the compact simplex

S′ =
{

(R,C, T ) ∈ [0,∞]3 : W = R + C +
(

h

j

)

T ≤ q

n
+ 1

}

(42)

is positively forward invariant under the flow of the system (1)–(3).

Proof From equation (40) it immediately follows that if W >
q
n then dW

dt < 0. ��
Remark 1 The statements of Theorem 6 and Corollary 1 remain true if the system
(1)–(3) is replaced by the system (4)–(6), or by system (11)–(13). Indeed, in the proof
of Theorem 6 above, the second and third estimates in the inequalities (39) remain
valid upon replacing δr R ≥ 0 and δcC ≥ 0 by σ1u ≥ 0 and σ2u ≥ 0, respectively.
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