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Abstract
Estrogen receptor positive breast cancer is frequently treated with anti-hormonal treat-
ment such as aromatase inhibitors (AI). Interestingly, a high bodymass index has been
shown to have a negative impact on AI efficacy, most likely due to disturbances in
steroidmetabolism and adipokine production. Here, we propose amathematicalmodel
based on a system of ordinary differential equations to investigate the effect of high-fat
diet on tumor growth. We inform the model with data frommouse experiments, where
the animals are fed with high-fat or control (normal) diet. By incorporating AI treat-
ment with drug resistance into the model and by solving optimal control problems we
found differential responses for control and high-fat diet. To the best of our knowledge,
this is the first attempt to model optimal anti-hormonal treatment for breast cancer in
the presence of drug resistance. Our results underline the importance of considering
high-fat diet and obesity as factors influencing clinical outcomes during anti-hormonal
therapies in breast cancer patients.

Keywords Optimal control · Differential equations · Estrogen receptor positive
breast cancer · Aromatase inhibitors · Drug resistance · High-fat diet

1 Introduction

Lifestyle factors such as age at menarche andmenopause, bodymass index, child birth
and breast feeding, as well as genetic disposition, among others, are well-established
breast cancer risk factors (Wu et al. 2016; Neuhouser et al. 2015). However, much
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less is known about the role lifestyle factors play on breast cancer treatment response.
Anti-hormonal treatment for estrogen receptor (ER) positive breast cancer constitutes
a puzzling case in obese patients that requiresmore quantitative investigation. Approx-
imately 75% of all breast tumors express ER, and most women with these tumors will
receive anti-hormonal therapy (Clark et al. 1984). ER in breast cancer cells is activated
by estrogen and it promotes cell proliferation and tumor growth (Johnston andDowsett
2003). Anti-hormonal treatment with Aromatase Inhibitors (AI) decreases estrogen
levelswhile anti-estrogen’s block directly the action of steroids at the estrogen receptor
(Pearson et al. 1982). Interestingly, high BodyMass Index (BMI) and adiposity have a
negative impact on AI efficacy (Folkerd et al. 2012; Ioannides et al. 2014; Jiralerspong
and Goodwin 2016; Bahrami et al. 2021; Wang et al. 2015; Gelsomino et al. 2020;
Goodwin and Pritchard 2010; Lønning et al. 2014; Sendur et al. 2012). While the
puzzle of the optimal anti-hormonal therapy in postmenopausal obese women is still
unfinished, good monitoring of the suppression of estrogen levels with valid methods
may guide treatment decisions during treatment with aromatase inhibitors (Bordeleau
et al. 2010; Ligibel et al. 2012).

An additional layer of complexity arises from the fact that ER-positive breast can-
cer cells may be resistant to anti-hormonal treatments. Resistance can arise due to
multiple mechanisms that are not completely understood (Daldorff et al. 2017; Ma
et al. 2015). Tumor cells can adapt to AI therapy after exposure for certain time (adap-
tive resistance), for instance due to the upregulation of ER expression or activation of
alternative pathways conferring the cells survival and proliferative capacity. Instead,
de novo or pre-existing resistance refers to the presence of estrogen independent cells
before therapy. For instance, cells carrying specific mutations of the ER that con-
fer constitutive ligand-idependent activity (Jeselsohn et al. 2015), which might lead
to clonal selection under anti-hormonal treatment. The current paradigm consist of
administering high AI doses to both obese and non obese patients, but this may not be
the best strategy to avoid or delay drug resistance.

The aforementioned issues are difficult to quantify in preclinical and clinical settings
and can benefit from more formal approaches. Here, we propose a new mathematical
model, based on a system of ordinary differential equations (ODEs), to model the
concentration of estrogen in the cancer tissue, which takes into account the local
interplay between the tumor and fat tissues. We inform the model with data from
mouse experiments that investigate the effect of obesity in breast cancer using two
groups of mice, fed with control diet (CD) or with high-fat diet (HFD). Then, we
incorporate AI therapy into the calibrated models, including de novo and adaptive
resistance. To determine optimal therapeutic interventions in the CD and HFD cases,
we formulate an optimal control problem (OCP) with the goal of minimizing the total
tumor volume and the total amount of treatment that is used. We also compare the
obtained optimal schedules with constant and alternating treatments.

Mathematical modeling of breast cancer dynamics under treatment have gained
interest for long time (Norton and Simon 1977; Enderling et al. 2006, 2007; Frieboes
et al. 2009; Roe-Dale et al. 2011; Yankeelov et al. 2013; Lai et al. 2018; Jarrett et al.
2019; Lai et al. 2019, 2022). However, modeling of AI treatment in ER-positive breast
cancer has received less attention so far. For example, an ODEmodel was proposed to
understand pathway dynamics of ER-positive MCF-7 breast cancer cells under com-
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bination of Cdk4/6 inhibition and anti-hormonal therapies, including AI treatment (He
et al. 2020). Similarly, Chen et al. proposed a mathematical model based on a system
of ODEs to understand resistance to AI treatment driven by a shift from estrogen to
growth factor receptors (Chen et al. 2013). In another study that uses stochastic differ-
ential equations and statistical physics techniques, the transitions under AI treatment
between three different estrogen sensitive phenotypes were considered (Chen et al.
2014). To explain the dual effect of estrogen inducing both growth and regression
of hormone-dependent breast cancer (referred as estrogen paradox), Ouifki and Oke
proposed an ODE model and determined conditions to eliminate cancer recurrence
for long-term treatment based on stability analysis (Ouifki and Oke 2022). Cancer
treatment scheduling optimization by means of OCPs has received considerable atten-
tion (Schättler and Ledzewicz 2015; Jarrett et al. 2020; Akman Yıldız et al. 2018a, b).
For instance, OCPs were proposed to optimise treatment schedules of chemotherapies
(De Pillis and Radunskaya 2001; Panetta and Fister 2003; Ledzewicz and Schättler
2022), angiogenic inhibitors (Ledzewicz and Schättler 2007), cytotoxic and antian-
giogenic therapies (Colli et al. 2021), immunotherapy via a dendritic cell vaccine
(Castiglione and Piccoli 2007) and combination therapies (Ledzewicz and Schättler
2012; Sharp et al. 2020). In addition, resistance to chemotherapy (Costa et al. 1992;
Carrere 2017) or combination of chemotherapy with ketogenic diet (Oke et al. 2018)
were also studied using OCPs. Another recent study investigated the optimal combi-
nation of doxorubicin and HER2 targeting drug trastuzumab, for a murine model of
human HER2 positive breast cancer (Lima et al. 2022). To the best of our knowledge,
the present work is the first modeling study to account for anti-hormonal treatment
using AIs in the presence of drug resistance in an optimal control framework.

The paper is organized as follows: In the following Sect. 2, we formulate the
dynamical model, prove some basic properties and we proceed with model calibra-
tion. Section 3 is dedicated to the model extension for AI treatment and resistance.
In Sect. 4, we formulate the OCP and derive the optimality system. Then, we pro-
ceed with results in Sect. 5 to compare various relevant scenarios for anti-hormonal
treatment. We conclude by discussing the main conclusions, limitations and future
directions.

2 Mathematical Model Development and Calibration

In this section, we develop a basic ODEmodel for the interaction of ER-positive breast
tumor cells, estrogen and fat for the postmenopausal situation, and demonstrate some
useful mathematical properties of its solution. Ourmodel can describe the contribution
of fat intake differences to estrogen and tumor growth over time.We have been inspired
by the mice experiment conducted by Hillers et al. (2018) comparing tumor growth
in CD and HFD mice, and we use the data obtained in that study to bring our model
closer to reality. We proceed by describing the experiments and available data that
inspired our model. We then present model equations and the assumptions they are
based on. Then, we discuss mathematical properties of the model. Lastly, we explain
the details of the model calibration.
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2.1 Experimental Data

Hillers et al. investigated the influence of obesity on breast tumor size and stromal
cells within the mammary adipose tissue (Hillers et al. 2018). We use data from that
study that utilized breast cancer cell line EO771 derived from a spontaneousmammary
adenocarcinoma from a C57Bl/6 mouse. EO771 cells are considered to be a model
of luminal B breast cancer subtype and are known to respond to anti-estrogens (Le
Naour et al. 2020). Specifically, mice were fed with CD (10% kcal from fat, Test Diet
58Y1) or HFD diet (60% kcal from fat, Test Diet 58Y2). A total of 1 × 106 EO771
tumor cells were mixed with 2.5 × 105 adipocytes taken from CD or HFD mice.
After pelleting this mixture of cancer and fat cells, it was injected bilaterally into the
inguinal mammary glands of 8-week-old female mice fed with CD. In total, we have
the data of eleven mice, five where the fat cells come from mice fed with CD and six
where fat cells come from mice fed with HFD. For each tumor independently, tumor
volumes were measured at days 10, 13 and 15, as depicted in the study (Hillers et al.
2018, Fig. 2B). In addition, the number of adipocytes at day 15 was quantified, see
Hillers et al. (2018, Fig. S2F), and we use it to estimate the amount of fat in the tumor
tissue. Details are provided in the Supplementary Material. Mice were euthanized
when tumor reached the humane endpoint of 15mm in diameter. In summary, we
obtained the initial conditions and six independent measures of tumor volume at three
time points (days 10, 13 and 15) for each condition (CD andHFD), and two data points
for fat volume at day 15, one for each condition (CD and HFD).

2.2 Model Development

In order to quantify the effect that the fat-induced production of estrogen has on tumor
growth, wemodel the temporal dynamics of tumor volume T := T (t) (mm3), estrogen
concentration E := E(t) (pg/g) and fat volume F := F(t) (mm3) in the tumor tissue
at time t (days). The model is based on the following six assumptions:

1. Tumor volume follows logistic growth (Benzekry et al. 2014).
2. Tumor growth rate depends on the estrogen level (Le Naour et al. 2020).
3. Fatty tissue is the major source of estrogen in the tumor (Simpson 2003). Circu-

lating estrogen concentrations are proportional to adipose mass in postmenopausal
women (Marchand et al. 2018), so we assume that estrogen is produced by fat at a
constant rate.

4. Estrogen is washed out from the tumor tissue at a constant rate (Deshpande et al.
1967).

5. Tumor cells use fat as an energy resource (Hoy et al. 2017; Wang et al. 2017).
6. While mice are fed CD for 15 days, there is no growth source for fat volume.

Therefore, diet-based difference in fat volume (CD vs HFD) are accounted for
simply due to the amount of fat volume at day 0.

7. In the experiments that we model, most implanted adipocytes survive. Cancer cells
are known to produce growth factors and cytokines that support the survival of
adipocytes. Therefore, we did not include fat decrease due to adipocyte death.
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Fig. 1 a Modelled interactions between the volume of tumor cells, T , fat volume, F , and estrogen con-
centration, E , in Eq. (2.1). Tumor volume grows as a consequence of cancer cell proliferation, which is
triggered by estrogen. Estrogen is produced by fat and it is washed out. Tumor cells consume fat as energy
resource. b Modelled interactions between the volume of resistant cells, R, volume of sensitive cells, S,
fat volume, F , and estrogen concentration, E , in Eq. (3.1). The volume of both sensitive and resistant cells
grows as a consequence of cell proliferation. While the growth of sensitive cells is triggered by estrogen,
that of resistance cells is estrogen independent. Sensitive cells can die under the influence of estrogen or
can adapt to low estrogen levels and become resistant. Both sensitive and resistant cells consume fat. Fat
volume can change size as a consequence of diet. Estrogen is produced by fat but this production is inhibited
by AIs. Estrogen is also naturally washed out. In both diagrams, the lines ending with an arrow represent
positive feedback whereas the lines ending with a bar denotes negative feedback

A flow diagram depicting the interactions between model variables T , E and F is
presented in Fig. 1a.

Consequently, we propose the following system of ODEs:

dT

dt
︸︷︷︸

change in tumor volume

=

proli f eration rate triggered by estrogen
︷ ︸︸ ︷

k1E

a1 + E
T

(

1 − m1T
)

︸ ︷︷ ︸

logistic growth term

,

(2.1a)

dE

dt
︸︷︷︸

change in estrogen concentration

= r F
︸︷︷︸

estrogen production

− μE
︸︷︷︸

wash out

, (2.1b)

dF

dt
︸︷︷︸

change in f at volume

= −αT F
︸ ︷︷ ︸

energy consumption

,
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T (0) = T0, E(0) = E0, F(0) = F0. (2.1c)

The parameters k1, a1,m1, r , μ, α and initial conditions T0, E0 and F0 are all non-
negative real numbers. Equation (2.1a) represents the tumor logistic growth, where the
growth rate is assumed to follow Michaelis-Menten kinetics, g(E) = k1E

a1+E . Param-
eter k1 is the maximum growth rate for high estrogen levels and a1 is the estrogen
concentration at which the growth rate is half-maximum. Parameter m1 is the inverse
carrying capacity of the tumor. Equation (2.1b) models the change in estrogen con-
centration when it is produced by fat at a rate r and washed out from the tumor tissue
at a rate μ. The last equation (2.1c) accounts for fat consumption by tumor cells at a
rate α. The values of these parameters are not known and will be estimated from data.

2.3 Model Properties

Next we prove that the solution to model (2.1) exists, it is unique, non-negative and
bounded. These properties will be used later.

Proposition 1 Equation (2.1) with non-negative initial conditions has a unique solu-
tion that is non-negative and bounded from above for all t ≥ 0.

Proof As the right-hand side of the model (2.1) and their partial derivatives are con-
tinuous on R × R

3, it follows from the Cauchy-Lipschitz theorem that the existence
and uniqueness of the solution are guaranteed (Schatzman 2002, Ch.15).

To prove that the solution to Eq. (2.1) is non-negative for all t ≥ 0, we use the
method of separation of variables. Firstly, Eq. (2.1c) leads to

F(t) = F(0) exp

(

−
∫ t

0
αT (s) ds

)

≥ 0. (2.2)

Since F and r are non-negative, we can rewrite Eq. (2.1b) as

dE

dt
≥ −μE . (2.3)

Thus, E ≥ 0. Finally, Eq. (2.1a) leads to

T (t) = T (0) exp

(∫ t

0

k1E(s)

a1 + E(s)
(1 − m1T (s)) ds

)

≥ 0. (2.4)

Therefore, T ≥ 0, E ≥ 0 and F ≥ 0 for all t ≥ 0.
To prove that the solution to Eq. (2.1) is bounded from above, we observe from

Eq. (2.1a) that

dT

dt
≤ k1T

(

1 − m1T
)

. (2.5)
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Then,

lim
t→∞ supm1T (t) ≤ 1

m1
. (2.6)

Since dF
dt ≤ 0, F stays constant at F0 or decreases. Then, F(t) ≤ F0. Finally, Eq. (2.1b)

leads to

dE

dt
≤ r F0 − μE, (2.7)

and

lim
t→∞ sup E(t) ≤ r F0

μ
. (2.8)

Thus, the solution is bounded from above. ��

2.4 Model Calibration

In this section, we make use of the experimental data described in Sect. 2.1 to inform
our basic model. Direct measures of model parameters are not available in this experi-
mental setup, and we do not have enough data to do formal statistical inference for all
parameters. The main argument we used to fix some parameters was identifiability of
the remaining free parameters. To that goal, we decided to fix three of them to reason-
able values and made extra assumptions to fix the initial estrogen concentration and
fat volume. We then use the available data to calibrate the rest of the parameters for
which we lack any information and show that the problem is practically identifiable
by using profile likelihood (Kreutz et al. 2012).

The initial amount of fat in the tumor tissue was measured only at day 15. For
simplicity, we assume that the level of fat under CD stays constant and it has not
changed since the beginning of the experiment (see Hillers et al. 2018, Fig. S2F). We
acknowledge this is a limitation and an initial fat measurement would have made our
results more solid. As estrogen ismainly produced by fat, we also assume that estrogen
concentration is proportional to fat volume at baseline. Indeed, estrogen concentration
in mice under different, but comparable, conditions was measured between 150 and
1500 pg/g (Yue et al. 1999, Fig. 2). For estrogen concentration in ourmodel to liewithin
those measures, we assume that the ratio of estrogen concentration to fat volume is
around 3.4.

We then find reasonable values for parameters m1 and μ. We obtain the half-life of
estrogen in breast tumor tissue fromDeshpande et al. (1967), t1/2=2.8 h. Therefore,μ,
that represents thewashout rate of estrogen from tumor tissue, can be computed asμ =
ln(2)/t1/2 = 0.25 h−1 = 5.94 day−1. In the experiments, mice were euthanized after
the tumor reached 15mm in diameter, corresponding to a volume of approximately
1767mm3 assuming a spherical tumor. We simply set m1 = 1/2000 mm−3 equally
for CD and HFD as a larger value than the highest tumor volume in the data set.
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Table 1 Values of the parameters in the Eq. (2.1)

Parameter Description Units Value

m1 Inverse carrying capacity of tumor mm−3 1/2000 (assumed)

μ Estrogen washout rate day−1 5.94, Deshpande et al. (1967)

k1 Tumor growth rate day−1 0.55 (calibrated)

a1 Half maximum estrogen threshold pg/g 43 (calibrated)

r Estrogen production rate pg/g mm−3 day−1 20 (assumed)

α Fat consumption rate day−1 mm−3 1.7e−06 (calibrated)

T0 Initial tumor volume mm3 1, Hillers et al. (2018)

E0 Initial estrogen concentration pg/g 170, CD (estimated)

1200, HFD (estimated)

F0 Initial fat volume mm3 50, CD (assumed)

360, HFD (assumed)

Fixing m1 and μ still did not solve the non-identifiability problem, but we discovered
that fixing r in addition solved this issue. Parameter r is fixed as 20 pg/g mm−3

day−1 based on the assumption that estrogen is at the steady-state in the beginning
of the experiment which leads to E = r F

μ
. Estrogen concentration roughly satisfies

150 ≤ E = r F
μ

≤ 1500 (Yue et al. 1999, Fig. 2). By multiplying both sides of
this inequality by μ = 5.94, we reach 891 ≤ r F ≤ 8910. We divide both sides
by FCD(0) = 50 and FHFD(0) = 360 separately, that results in two inequalities
17.82 ≤ r ≤ 178.2 and 2.475 ≤ r ≤ 24.75. The intersection of these inequalities
gives a range for the parameter r which is 17.82 ≤ r ≤ 24.75. Therefore, we simply
choose r = 20.

Weperformmodel calibration andprofile likelihood calculations inData2Dynamics
(Raue et al. 2015, 2013). We fixed the lower and upper bounds for the parameters as
10−7 and 104 in the optimization problem, respectively. Based on themethod of profile
likelihood (Kreutz et al. 2012), our model is practically identifiable (See. 7). We list
the obtained parameter values in Table 1. We perform sensitivity analysis for all the
parameters in Supplementary Material..

Figure 2 shows the simulation results for CD (left panel) and HFD (right panel)
obtained with the parameters in Table 1. The y left-axes correspond to tumor or fat
volume, whereas the y right-axes denote the estrogen level. Data points with error bars
for tumor and fat volume are marked with red circles and black crosses, respectively.
We observe that simulation results for tumor and fat volume agree well with the data,
whereas estrogen level stayswithin a biologicallymeaningful interval.We observe that
the initial estrogen level and fat volume are higher for HFD than CD (see, Table 1).
Temporal evolution of estrogen level and fat volume is similar for both diet types,
since fat is assumed as the source of estrogen production. Indeed, tumor associated
with HFD increases faster than for the other, due to more estrogen release from HFD
fat volume.

Original model (2.1) expresses the changing dynamics of tumor volume, estrogen
level and amount of fat in case of no treatment and simulation results agree well with
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Fig. 2 Simulation results of the Eq. (2.1) for CD (left) and HFD (right) with the data points. Left axis
corresponds to tumor size T (t) and fat volume F(t), right axis denotes estrogen concentration E(t) over
time t (color figure online)

the available data. The next step is to extend this model to account for AI treatment by
considering sensitive and resistant tumor subpopulations. In this way we will be able
to study drug resistance to endocrine therapy for ER-positive breast cancer.

3 Model Extension for Resistance to Aromatase Inhibitor Treatment

Aromatase inhibitors, despite of being an effective treatment choice for ER-positive
breast cancer, may suffer from drug resistance (Chumsri et al. 2011;Ma et al. 2015). To
investigate different treatment schedules, including constant, alternating and optimal
anti-hormonal treatment, we consider tumor heterogeneity in terms of sensitive and
resistant subpopulations under the following assumptions:

1. Breast cancer cells are either sensitive or resistant to estrogen deprivation with AIs.
In reality, there could be more than two tumor subpopulations, since development
of resistance is considered as a progressive mechanism and cells may shift form
one stage to another over time (Normanno et al. 2005). For simplicity, we assume
that there are only two tumor subpopulations, called sensitive and resistant.

2. Both sensitive and resistant populations follow logistic growth (Benzekry et al.
2014).

3. Growth of sensitive cells is triggered by estrogen (Doisneau-Sixou et al. 2003).
4. Sensitive cells die under low estrogen concentrations (Doisneau-Sixou et al. 2003).
5. Sensitive cells adapt to low estrogen levels and become resistant cells (Chen et al.

2013, 2014).
6. Resistant cells do not die under low estrogen concentrations (Chen et al. 2013,

2014).
7. Fat volume follows logistic growth (Ku-Carrillo et al. 2016).
8. Both sensitive and resistant cells consume fat as energy resource (Ku-Carrillo et al.

2016).

Consequently, Eq. (2.1) is extended with the sensitive cell population S := S(t)
(mm3) and the resistant cell population R := R(t) (mm3) in the tumor tissue at time
t (days):
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dS

dt
︸︷︷︸

change in sensi tive cell population

= k1E

a1 + E
S
(

1 − m1(S + ηR)
)

︸ ︷︷ ︸

logistic growth term

− cal2
al2 + El

S

︸ ︷︷ ︸

death term

− cal3
al3 + El

S

︸ ︷︷ ︸

adaptation term

,

(3.1a)

dR

dt
︸︷︷︸

change in resistant cell population

= k3R
(

1 − m1(S + ηR)
)

︸ ︷︷ ︸

logistic growth term

+ cal3
al3 + El

S

︸ ︷︷ ︸

adaptation term

, (3.1b)

dE

dt
︸︷︷︸

change in estrogen concentration

= pr F
︸︷︷︸

estrogen production

− μE
︸︷︷︸

wash out

, (3.1c)

dF

dt
︸︷︷︸

change in f at volume

= k2F(1 − m2F)
︸ ︷︷ ︸

logistic growth term

− α(S + R)F
︸ ︷︷ ︸

energy consumption

,

S(0) = S0, R(0) = R0, E(0) = E0, F(0) = F0, (3.1d)

with the non-negative initial conditions S0, R0, E0 and F0. Equation (3.1a) expresses
the logistic growth of sensitive cells over time together with death and adaptation
terms. Parameter m1 is the inverse of maximum tumor size and η is the competition
parameter scaling inhibition of sensitive cells’ growth by resistant cells. Sensitive cells
die if estrogen level is smaller than a2 while they adapt to estrogen level below a3
and become resistant. Parameter c is the maximum death rate and l denotes Hill’s
coefficient. Equation (3.1b) models evolution of resistant cells with the growth rate
k3. Equation (3.1c) stands for dynamics of estrogen level where the parameter p,
0 < p ≤ 1, reduces the effect r to p · r due to aromatase inhibitors. Equation (3.1d)
models the change in fat volume with logistic growth so that effect of fat growth to
anti-hormonal treatment could be investigated. Parameters k2 and m2 are the growth
rate of fat and inverse carrying capacity of fat, respectively. The carrying capacity
could model how the body is prone to accumulate fat depending on the life style or
other metabolic conditions. In addition, both sensitive and resistant cells consume fat
as energy resource at the rate α. A diagram depicting the interactions between the
extended model variables S, R, E and F is presented in Fig. 1b.

We assume that the parameters that we calibrated in the basic model are not affected
by the treatment and we use them in the extended model. As we do not have data under
treatment, we explore the effect that new parameters have by testing different values.

3.1 Model Properties

Proposition 2 Equation (3.1) with non-negative initial conditions has a unique solu-
tion that is non-negative and bounded from above for all t ≥ 0.

Proof Existence and uniqueness of the solution is standard and analogous to Proposi-
tion 1. Thus, we prove here that the solution to Eq. (3.1) is non-negative and bounded
from above for t ≥ 0. Similar to Theorem 1, we can prove that E, F ≥ 0 for t ≥ 0 by
the variation of constants formula. For Eq. (3.1a), we have
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S(t) = S(0) exp

{ ∫ t

0

(

k1E(s)

a1 + E(s)

(

1 − m1(S(s) + ηR(s))

)

− cal2
al2 + El(s)

− cal3
al3 + El(s)

)}

≥ 0. (3.2)

Since S ≥ 0 for t ≥ 0, Eq. (3.1b) can be written as

dR

dt
≥ k3R

(

1 − m1(S(s) + ηR(s))
)

. (3.3)

Then, we get

R(t) ≥ R(0) exp
{

∫ t

0
k3

(

1 − m1(S(s) + ηR(s))
)

ds
}

≥ 0. (3.4)

We can prove that F and E are bounded from above similar to Theorem 1. On the
other hand, using Eq. (3.1a)-(3.1b), we obtain the sum

dS

dt
+ η

dR

dt
≤ k1E

a1 + E
︸ ︷︷ ︸

≤k1

S
(

1 − m1(S(s) + ηR(s))
)

+ ηk3R
(

1 − m1(S(s) + ηR(s))
)

≤ (k1S + ηk3R)
(

1 − m1(S(s) + ηR(s))
)

≤ max{k1, k3}(S + ηR)
(

1 − m1(S(s) + ηR(s))
)

. (3.5)

Thus,

lim
t→∞ sup(S(t) + ηR(t)) ≤ 1/m1. (3.6)

Since S and R are non-negative, it means that S and R are bounded above. Then, we
complete the proof. ��

3.2 Treatment Modelling

We will investigate differences between constant, intermittent and optimal anti-
hormonal treatment. Constant treatment is implemented through the parameter 0 ≤
p ≤ 1 in Eq. 3.1. The value p = 1 corresponds to no estrogen deprivation treatment
and smaller values of p models AI treatment with inhibition of estrogen production.

Alternating treatment refers to a pre-scheduled treatment scenario with uI := uI (t)
and it is implemented by modifying Eq. (3.1c) to

dE

dt
= (1 − uI )r F − μE, (3.7a)
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where

uI =
{

ub, where 0 ≤ ub < 1, if treatment is applied,

0, else,
(3.7b)

In the next section, an OCP is constructed to investigate the optimal value of p as a
time-dependent function, and results obtained with the optimal endocrine therapy are
compared with the constant and alternating treatment.

4 Optimal Control Problem for Anti-Hormonal Treatment

We aim to investigate optimal AI treatment schedules that minimize the total number
of cancer cells together with the pharmaceutical intervention over a prespecified time
interval [ttr , t f ]. We do not include an equation representing the drug as often done
for optimal chemotherapy scheduling in the literature (see, for example, de Pillis et al.
2008; Sharma andSamanta 2016). Instead,wemodel the effect ofAI treatment through
a continuous control function u := u(t). AIs act by lowering the estrogen production,
so we replace the parameter p in Eq. (3.1c) by the function 1 − u.

We formulate the OCP as follows: minimize the cost functional

J (u) =
∫ t f

ttr
(ωS S + ωR R + ωu

2
u2) dt, (4.1)

subject to

dS

dt
= k1E

a1 + E
S
(

1 − m1(S + ηR)
)

− cal2
al2 + El

S − cal3
al3 + El

S, (4.2a)

dR

dt
= k3R

(

1 − m1(S + ηR)
)

+ cal3
al3 + El

S, (4.2b)

dE

dt
= (1 − u)r F − μE, (4.2c)

dF

dt
= k2F(1 − m2F) − α(S + R)F,

S(0) = S0, R(0) = R0, E(0) = E0, F(0) = F0, (4.2d)

where,

U = {u | u is measurable, ua ≤ u ≤ ub, for all t ∈ [ttr , t f ], ttr ≥ 0, t f > 0}.
(4.3)

Our aim is to find an optimal control u∗ such that J (u∗) = minu∈U J (u).
We note that constructions of linear or quadratic cost functional in the control func-

tion u results in not only biologically but also mathematically different interpretations.
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While quadratic OCPs have a single extremum and result in continuous controls, linear
OCPs result in bang-bang controls and mathematical analysis becomes more compli-
cated due to singular or bang-bang controls that result in non-differentiable solutions
curves.We refer readers to the following studies for a detailed comparison (Ledzewicz
et al. 2004; Sharp et al. 2019; Ledzewicz and Schättler 2020). In addition, the param-
eters ωS , ωR and ωu in Eq. (4.1) can be set to balance the size of the different terms.

In the present case, inclusion of the term u2 in the Eq. (4.1) is justified by the
treatment side effects. Side effects of AI include from hot flushes to cardiovascular
events, vaginal bleeding and bone loss (Osborne and Tripathy 2005; Cuzick 2005;
Hadji 2010). Our quadratic choice reflects the fact that the increase in side effects is
negligible for small amounts of therapy and that side effects increase as function of u,
rather than increasing at a constant rate as in the linear control.

Theorem 1 There exists an optimal control u∗ with a corresponding solution
(S∗, R∗, E∗, F∗) to the model (4.2) with non-negative initial conditions that mini-
mizes (4.1) over U .

Proof The proof is based on several steps according to the study of Fleming and
Rishel (1975, Corollary 4.1). Firstly, we observe that the coefficients in Eq. (4.2)
and its solution are bounded on a finite time interval, so the admissible control set
U and the corresponding solution with initial conditions are non-empty (Lukes 1982,
Thm 9.2.1.). Secondly, the admissible control set U is closed and convex. In addition,
the right-hand side of the system (4.2), namely 
f (t, 
X , u) with 
X = (S, R, E, F)T ,
is continuous, since the system has positive parameters and the non-negative solution
by Proposition 2. Indeed, it is bounded above by a linear combination of the bounded
control and the state as

| 
f (t, 
X , u) | =
∣

∣

∣

⎛

⎜

⎜

⎜

⎜

⎝

k1E
a1+E S

(

1 − m1(S + ηR)
)

− cal2
al2+El S − cal3

al3+El S

k3R
(

1 − m1(S + ηR)
)

+ cal3
al3+El S

(1 − u)r F − μE
k2F(1 − m2F) − α(S + R)F

⎞

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

≤ |

⎛

⎜

⎜

⎝

k1 0 0 0
0 k3 0 0
0 0 −μ r
0 0 0 k2

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

S
R
E
F

⎞

⎟

⎟

⎠

| + |

⎛

⎜

⎜

⎝

0
0
r
m2

u
0

⎞

⎟

⎟

⎠

|

≤ C(| 
X | + | u |), (4.4)

due to bounded solution (by Proposition 2) and positive parameters in the model for
some positive constant C . On the third line, we use the relation

(1 − u)r F − μE ≤ (1 + u)r F − μE ≤ r F − μE + r

m2
u. (4.5)

123



42 Page 14 of 33 T. Akman et al.

The integrand of the objective functional is convex on U due to the quadratic term.
Indeed, it is bounded as

ωS S + ωR R + ωu

2
u2 ≥ ωu

2
u2 ≥ −Ĉ + ωu

2
u2, (4.6)

with some positive constant Ĉ . Thus, we can conclude that an optimal control u∗
exists. ��
Theorem 2 Given an optimal control u∗ and solution to the system (4.2) for (4.1),
there exist adjoint variables λi := λi (t) for 1 ≤ i ≤ 4 such that

dλ1

dt
= −wS − λ1

{

k1E

a1 + E

(

1 − m1(2S + ηR)
)

− cal2
al2 + El

− cal3
al3 + El

}

+ λ2

{

m1k3R + cal3
al3 + El

}

+ λ4αF, (4.7a)

dλ2

dt
= −wR + λ1

{

k1m1ηES

(a1 + E)

}

− λ2

{

k3
(

1 − m1(S + 2ηR)
)}

+ λ4αF, (4.7b)

dλ3

dt
= −λ1

{

S
(

1 − m1(S(s) + ηR(s))
) k1a1

(a1 + E)2
+

( cal2
(al2 + El)2

+ cal3
(al3 + El)2

)

l El−1S

}

+ λ2

{

cal3
(al3 + El)2

l El−1S

}

+ λ3μ, (4.7c)

dλ4

dt
= −λ3(1 − u∗)r − λ4(k2 − 2k2m2F − α(S + R)), (4.7d)

with

λi (t f ) = 0, 1 ≤ i ≤ 4. (4.7e)

Furthermore, u∗ can be represented by

u∗ = min
(

ub,max
(

ua,
r Fλ3

ωu

))

. (4.8)

Proof Following references (de Pillis et al. 2008; Burden et al. 2004), the Lagrangian
is constructed as

L = H + ξ1(t)(u − ua) − ξ2(t)(ub − u), (4.9)

where the Hamiltonian H is defined as

H(S, R, E, F, λ1, λ2, λ3, λ4, u)

:= (wS S + wR R + ωu

2
u2)
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+ λ1

( k1E

a1 + E
S
(

1 − m1(S + ηR)
)

− cal2
al2 + El

S − cal3
al3 + El

S
)

+ λ2

(

k3R
(

1 − m1(S + ηR)
)

+ cal3
al3 + El

S
)

+ λ3

(

(1 − u)r F − μE
)

+ λ4

(

k2F(1 − m2F) − α(S + R)F
)

, (4.10)

and ξi (t) ≥ 0 are penalty multipliers such that

ξ1(t)(u − ua) = 0, ξ2(t)(ub − u) = 0 at u∗. (4.11)

From the Pontryagin’s Maximum Principle, we can derive the adjoint equations
by obtaining partial derivative of the model (3.1) with respect to S, R, E and F ,
respectively. Indeed, we get

dλ1

dt
= −∂L

∂S
,

dλ2

dt
= − ∂L

∂R
,

dλ3

dt
= − ∂L

∂E
,

dλ4

dt
= − ∂L

∂F
, (4.12)

with λi (t f ) = 0, i = 1, . . . , 4.
To obtain an expression of the control, we differentiate theHamiltonianwith respect

to u as

∂H
∂u

= ωuu − r Fλ3, (4.13)

and project it onto the admissible set of controls. ��

4.1 Implementation of the Optimal Control Problem

Third-generation AIs (anastrozole, letrozole and exemestane) reduce whole-body aro-
matisation by >90% [summarised in ref. Geisler and Lønning (2005)]. However,
limited local estrogen production in tissue compartments cannot be totally ruled out.
Also, it is possible that some cells could locally produce some estrogen under treat-
ment (Sasano et al. 2009; Geisler 2003). Therefore, we assume that the maximum
drug dose does not eliminate the total estrogen in the vicinity of tumor. This could
be done simply by setting a threshold value on the control function. We use ua = 0
and ub = 0.99, where ua corresponds to the case of no treatment and ub refers to the
strongest possible treatment.

The optimality system consisting of the state equation (4.2), the adjoint equation
(4.7) and the optimality condition (4.8) form a nonlinear system of equations, so we
obtain the numerical solution via forward-backward sweep (FBS) method (Lenhart
andWorkman 2007). As explained by Lenhart andWorkman (2007), the FBS method
requires initiation of a feasible control function to solve the state equation forward
in time. Then, the adjoint equation is solved backward in time and the optimality
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condition is updated at each iteration until the stopping criterion is satisfied. Here,
the idea is to find a feasible optimal control iteratively. The update strategy of the
control could be done in different ways such as taking average of the current (ucur )
and previous control (u pre) or their convex combination (Lenhart andWorkman 2007).
Here, we apply the approach "greedy" convex combination studied by Vatcheva et al.
(2021, Sect. 3) to cover a large range of control combinations during optimization
and avoid stagnation. "greedy" convex combination refers to expressing the control
as us = (1 − s)u pre + sucur where s ∈ (0, 1) is selected in such a way that the
smallest value of J (us) is achieved in that iteration. The parameter s is not fixed as
opposed to the averaging or convex combination, it may vary in each iteration instead.
The stopping criterion in this paper is based on the relative error of the current and
previous state, adjoint and control functions. The program is terminatedwhen a relative
error less than 10−5 is achieved.

Simulations in this study were performed using MATLAB® R2022 (MATLAB
2022). We used ode15s solver to obtain the numerical solution of the differential
equations and fmincon function in the model calibration step. All data and code are
available (see data and code availability part for the details).

5 Simulation Results

We focus in simulations of the extendedmodel (3.1) that explore the effect of threshold
values a2 and a3. These two values correspond to the estrogen concentrations below
which cancer cells die or become resistant, respectively. Thus, simulation scenarios
using different threshold values represent treatment in hypothetical tumors with dif-
ferential sensitivities and rates of resistance to the local estrogen availability. For each
case, we simulate three different treatment types: constant treatment, alternating treat-
ment and optimal anti-hormonal treatment. We use the parameter values which are
common in both the first and the extended model. For the others, we either fix their
values or explore their impact in simulations. We list all parameter values in Table 2.

For constant treatment, the parameter p is chosen from the set {1, 0.025, 0.0125,
0.01, 0.001}. For alternating treatment, we set ub = 0.99. Treatment is started on the
date corresponding to the earliest time point t := ttr at which S+ηR < 1

4m1
so that the

tumor reaches a detectable size. The final simulation time is fixed as t f = 25 to obtain
a unique optimal control [see (Fister et al. 1998, Sect. 4), for detailed discussion].

We choose the weight coefficients ωS, ωR, ωu in the cost functional as one or
hundred to model different penalization strategies. For instance, values ωS, ωR > ωu

refers to penalization of tumor cells more than treatment cost.

5.1 Scenario I with a2 = 20 pg/g, a3 = 1 pg/g, k3 = k1
2

5.1.1 Scenario Ia: Adaptive resistance with R0 = 0

We first explore a scenario without preexisting resistance, where initially all cells are
assumed to be sensitive to treatment and no resistant cells exist. Instead, endocrine
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Table 2 Values of the parameters in the Model (4.1)–(4.2)

Parameter Description Units Value

k1 Growth rate of sensitive cells day−1 0.55 (calibrated)

μ Estrogen washout rate day−1 5.94, Deshpande et al. (1967)

η Population competition intensity – 1 (assumed)

m1 Inverse carrying capacity of
tumor

mm−3 1/2000 (assumed)

c Death rate day−1 1 (assumed)

l Hill’s coefficient – 10 (assumed)

a1 Half maximum estrogen
threshold

pg/g 43 (calibrated)

a2 Estrogen threshold for sensitive
cells to die

pg/g Varies

a3 Estrogen threshold for conversion
to resistant

pg/g Varies

k3 Growth rate of resistant cells day−1 Varies

p Effect of treatment – Varies

k2 Fat growth rate day−1 0.05 (assumed)

m2 Inverse carrying capacity of fat mm−3 0.0027111

r Estrogen production rate pg/g mm−3 day−1 20 (assumed)

α Fat consumption rate day−1 mm−3 1.7e−06 (calibrated)

t f Final time Days 25

ua Minimum treatment – 0

ub Maximum treatment – 0.99

ωS , ωR , ωu Positive weight coefficients – 12

1See appendix for computational details
2unless otherwise stated

resistance may arise due to adaptation to low estrogen levels. Tumor cells may die
if estrogen level is below a2 = 20 pg/g and they may become resistant if estrogen
concentration falls below a3 = 1 pg/g. Proliferation rate of the sensitive cells is
assumed to be equal to half of the growth rate of sensitive cells.

In Fig. 3, we show response to constant treatment by displaying the change in tumor
size for different values of p. The solid line corresponds to the case where no treatment
is applied, i.e., p = 1 and tumor reaches to the carrying capacity as time passes. We
mark in the figures the time point at which treatment is started with a dashed vertical
line and we observe that treatment is started earlier for HFD than CD. We observe
that anti-hormonal treatment results in eradication of tumor for the values p = 0.0125
and 0.01 for both CD and HFD, whereas the case p = 0.025 does not lead to tumor
eradication for HFD. In case of a drug inhibiting estrogen production 99.9%, i.e.,
p = 0.001, drug resistance is observed.

Next, we proceed with alternating treatment. We simulate two different schedules
with long and short treatment phases in Fig. 4. The solid curve refers to the tumor size
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Fig. 3 Scenario Ia: Sum of the sensitive S and resistant R tumor subpopulations over time t for the constant
treatment with different values of p associated with CD (left) and HFD (right). We mark the time point at
which treatment is started with a dashed vertical line (color figure online)

Fig. 4 Scenario Ia: Left axis refers to the sum of the sensitive S and resistant R tumor subpopulations over
time t for alternating treatment with a–b shorter phases (one day), c–d longer phases (two days) associated
with CD (left) and HFD (right); right axis refers to treatment schedule. The dotted and solid curves refer
to the tumor size with and without treatment, respectively. We mark the time point at which treatment is
started with a dashed vertical line (color figure online)
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Fig. 5 Scenario Ia: Sum of the sensitive S and resistant R tumor subpopulations over time t for the optimal
treatment with different values of p associated with CD (left) and HFD (right). The solid curve refers to the
tumor size without treatment. We mark the time point at which treatment is started with a dashed vertical
line (color figure online)

Fig. 6 Scenario Ia: Optimal control function u over time t for three different combinations of weight
coefficients ωR , ωS , ωU . Dashed and dash-dotted curves refer to the optimal treatment schedules for CD
andHFD, respectively. Solid line denotes themaximum treatment.Wemark the timepoint atwhich treatment
is started with dashed and dash-dotted vertical lines for CD and HFD, respectively (color figure online)

without treatment. For CD, alternating treatment with shorter phases causes tumor
volume to stay within a range. Instead for HFD, tumor size grows over time with
respect to the baseline tumor volume. On the other hand, treatment with longer phases
leads to tumor reduction for CD, while it stays within a range for HFD.

In case of optimal treatment scheduling, we observe in Fig. 5 that the tumors are
eradicated for both CD and HFD (solid line for no treatment, dashed line for optimal
treatment with ωR = ωS = ωU = 1). For comparison, optimal control functions u(t)
are shown in Fig. 6 for different values of the weight constants. The caseωR, ωS > ωU

leads in both CD and HFD to maximum treatment for almost the entire studied period,
whereas treatment could be stopped earlier ifωR, ωS < ωU . In otherwords, penalizing
tumor cells more than treatment results in longer treatment. There is no big difference
between control functions in terms of diet, except for a slightly larger duration of
treatment for HFD. To observe the effect of treatment in more detail, we present in
Fig. 7 the dynamics of all variables in the case ωR = ωS = ωU = 1. In this example,
optimal treatmentmaintains the estrogen level between a3 and a2, so sensitive cells die,
but no resistance occurs. This happens in spite of an increasing fat volume. Therefore,
optimal treatment results in successful elimination of tumor without causing drug
resistance.
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Fig. 7 Scenario Ia: Dynamics of model variables S, R, E and F over time t associated with CD (1st row)
and HFD (2nd row). The solid curve refers to the tumor size without treatment, dotted curve corresponds
to results for optimal treatment (color figure online)

Fig. 8 Scenario Ib: Sum of the sensitive S and resistant R tumor subpopulations over time t for the constant
treatment with different values of p associated with CD (left) and HFD (right). We mark the time point at
which treatment is started with a dashed vertical line (color figure online)

5.1.2 Scenario Ib: De novo resistance with R0 = 0.25

Next we investigate the influence of a preexisting resistant sub-population on the
success of constant, alternating and optimal anti-hormonal treatment schedules. In
this case, endocrine resistance arise by clonal selection of cells that are endocrine
independent for some reasons. In Fig. 8 we show response to constant treatment by
displaying the change in tumor size for different values of p. We observe that constant
treatment is unsuccessful to eliminate the tumor.

We plot the change of tumor size over time for short and long alternating treatment
phases in Fig. 9 where 75% of the cells are sensitive and 25% are resistant at the
beginning of the simulation. For shorter drug holidays, tumor size increases compared
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Fig. 9 Scenario Ib: Left axis refers to the sum of the sensitive S and resistant R tumor subpopulations over
time t for alternating treatment with a–b shorter phases (one day), c–d longer phases (two days) associated
with CD (left) and HFD (right); right axis refers to treatment schedule. The dotted and solid curves refer
to the tumor size with and without treatment, respectively. We mark the time point at which treatment is
started with a dashed vertical line (color figure online)

to the initial tumor size. For longer on-off periods, the tumor volume remains within
a bounded range for both CD and HFD but the oscillations between remission and
growth are bigger in the HFD case. Moreover, the final tumor volume is larger for both
cases in comparison with the case of no preexisting resistance showed in Fig. 4.

We plot the results obtained with optimal treatment in Fig. 10. While treatment
decreases the tumor volume in both CD and HFD cases, resistance cells proliferate
and drug resistance occurs. We present the temporal evolution of the model variables
in detail in Fig. 11. We can see that sensitive cells are killed but resistant cells increase
in size as a result of drug-resistance. Optimal control profiles are similar to the case
of adaptive resistance in Fig. 6, so we do not present it here.

5.2 Scenario II: Adaptive resistance with a2 = 10 pg/g, a3 = 1 pg/g, k3 = k1
2

Here we investigated a situation with no preexisting resistant cells but where the
estrogen thresholds for which the cells die or are converted to resistant are closer
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Fig. 10 Scenario Ib: Sum of the sensitive S and resistant R tumor subpopulations over time t for the optimal
treatment with different values of p associated with CD (left) and HFD (right). The solid curve refers to the
tumor size without treatment. We mark the time point at which treatment is started with a dashed vertical
line (color figure online)

Fig. 11 Scenario Ib: dynamics of model variables S, R, E and F over time t associated with CD (1st row)
and HFD (2nd row). The solid curve refers to the tumor size without treatment, dotted curve corresponds
to results for optimal treatment (color figure online)

than in the previous case. Figure 12 shows the case for constant treatment. All tested
treatment cases, except p = 0.001, result in tumor elimination for CD, but p = 0.01
leads to tumor reduction until day 25 and higher values of p suppresses tumor growth
for HFD. Alternating treatment instead, leads to oscillations in tumor size but with
a decreasing trend for CD, whereas for HFD a sharp increase in tumor population is
observed during drug holidays (see Fig. 13).

The results for optimal treatment shown in Fig. 14 reveal that tumor is eradicated
for CD, similar to Fig. 5. Interestingly, the tumor remains at the end of the treatment
for HFD.

We compare optimal treatment schedules in Fig. 15 for CD and HFD. We note that
treatment must be applied for long time for HFD than CD, while it could be relaxed
earlier for CD. Thus, optimal anti-hormonal treatment gives themost promising results
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Fig. 12 Scenario II: Sum of the sensitive S and resistant R tumor subpopulations over time t for the constant
treatment with different values of p associated with CD (left) and HFD (right). We mark the time point at
which treatment is started with a dashed vertical line (color figure online)

Fig. 13 Scenario II: Left axis refers to the sum of the sensitive S and resistant R tumor subpopulations over
time t for alternating treatment associated with CD (left) and HFD (right); right axis refers to treatment
schedule. The dotte and solid curves refer to the tumor size with and without treatment, respectively. We
mark the time point at which treatment is started with a dashed vertical line (color figure online)

among three different treatment choices in terms of reduction in tumor volume and
time to lessen treatment could also be seen.

5.3 Scenario III: Adaptive resistance with a2 = a3 = 10 pg/g, k3 = k1
4

Finally, we investigate a scenario where death and conversion terms are equivalent,
namely a2 = a3 = 10. We present temporal evolution of all model variables for
constant treatment in Fig. 16. Estrogen level is successfully decreased, but it leads to
drug resistance for CD for all choices of the parameter p. On the other hand, for HFD,
the case p = 0.025 is not strong enough to kill sensitive cells, so resistance cells do not
proliferate. However, other treatment choices result in resistance and treatment fails.
On the other hand, alternating treatment is not a successful strategy (see Fig. 17).

Finally, optimal AI treatment results in drug resistance as seen in Fig. 18. Initial
tumor size reduction is followed by cell proliferation. Even though treatment is stopped
earlier for CD than HFD (see Fig. 19), it is not possible to eliminate resistance due to
equal cell death and conversion terms in the model.
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Fig. 14 Scenario II: Sum of the sensitive S and resistant R tumor subpopulations over time t for the optimal
treatment with different values of p associated with CD (left) and HFD (right). The solid curve refers to the
tumor size without treatment. We mark the time point at which treatment is started with a dashed vertical
line (color figure online)

Fig. 15 Scenario II: Optimal control function u over time t with ωR = ωS = ωU = 1. Dashed and dash-
dotted curves refer to the optimal treatment schedules for CD and HFD, respectively. Solid line denotes
the maximum treatment. We mark the time point at which treatment is started with dashed and dash-dotted
vertical lines for CD and HFD, respectively (color figure online)

A detailed picture of model variables is presented in Fig. 20 and it reveals that
treatment kills sensitive cells due to low estrogen level; but, then resistance occurs.

5.4 Conclusions of the Simulation Results

We compared outcomes for different treatments in a series of hypothetical tumors with
differential sensitivities and rates of resistance to the local estrogen availability. We
observed that in tumors where the difference between estrogen thresholds for cancer
cells to die and to adapt to low estrogen levels is large, then constant treatment with
an appropriate dose or optimal treatment are the best for the case of only adaptive
resistance. However, if the difference between the thresholds is smaller, then optimal
treatments are better, specially in the HFD case. In case of preexisting resistance, if the
difference between thresholds for cancer cells to die and to adapt to low estrogen levels
is large, optimal treatment or constant treatment with appropriate dose gives the best
outcome. When death of cancer cells and their adaptation to level of estrogen occur
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Fig. 16 Scenario III: Dynamics of model variables S, R, E and F over time t associated with CD (1st row)
and HFD (2nd row) (color figure online)

Fig. 17 Scenario III: Left axis refers to the sum of the sensitive S and resistant R tumor subpopulations over
time t for alternating treatment associated with CD (left) and HFD (right); right axis refers to treatment
schedule. The solid line refers to the tumor sizewithout treatment.Wemark the time point at which treatment
is started with a dashed vertical line (color figure online)

at the same threshold value, optimal treatment is best choice. Importantly, treatment
outcome and optimal treatments schedules differ based on diet.

6 Discussion

Given the rising obesity rates around the world, novel strategies are urgently needed
to evaluate and optimise endocrine treatment of breast cancer in women with high
BMI. In this study we focused on modeling the effect that fat-induced production of
estrogen has on tumor growth. While our model is able to capture the trends in the
experimental data for CD and HFD mice, we recognise that other factors associated
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Fig. 18 Scenario III: Sum of the sensitive S and resistant R tumor subpopulations over time t for the optimal
treatment with different values of p associated with CD (left) and HFD (right). The solid curve refers to the
tumor size without treatment. We mark the time point at which treatment is started with a dashed vertical
line (color figure online)

Fig. 19 Scenario III: Optimal control function u over time t with ωR = ωS = ωU = 1. Dashed and dash-
dotted curves refer to the optimal treatment schedules for CD and HFD, respectively. Solid line denotes
the maximum treatment. We mark the time point at which treatment is started with dashed and dash-dotted
vertical lines for CD and HFD, respectively (color figure online)

with the adipose tissue and not considered in our current model, such as inflammatory
cytokines, leptin or insulin, could be influencing tumour growth differently in the CD
and HFD cases. These are subjects that deserve further investigation (Hillers-Ziemer
et al. 2022).

By incorporating AI treatment and resistance in our model, we can simulate treat-
ment outcomes in CD and HFD mice. However, as we do not have data on treatment,
the choice of parameters related to sensitivity and resistant to treatment were made by
explorative simulations. For instance, we assumed cost of resistance in the sense that
the growth rate of resistance cells is smaller than the growth rate of sensitive cells.
Otherwise, rapidly increasing resistant cells would always dominate the tumor. In
addition to this, more than two tumor subpopulations with differential drug-response
to AI could exists. When AI treatment data in these mice are available, it would be
possible to obtain the number of subpopulations, their fractions and their growth rates
trough a novel phenotypic deconvolution method (Köhn-Luque et al. 2023).

Besides constant and alternating treatments, we investigated optimal scheduling
trough OCPs. In this framework, we underline that one of the theoretical challenges is
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Fig. 20 Scenario III: Dynamics of model variables S, R, E and F over time t associated with CD (1st row)
and HFD (2nd row). The solid curve refers to the tumor size without treatment, dotted curve corresponds
to results for optimal treatment (color figure online)

to prove uniqueness of the optimal control on a specific time interval [0, t f ], since the
value of t f cannot be found explicitly, and it is bounded by some constants depending
on the solutions of the state and adjoint equation.We observe that a larger time interval
leads to convergence issues, which is an indication of the uniqueness of the solution
on a smaller time interval. We have also experienced that the more complicated the
ODEmodel used in the OCP constraint is, the smaller the time interval where a unique
solution can be found. Furthermore, uniqueness could be proved using constant tumor
growth rate, but we believe this is not a correct representation of ER-positive tumor
subtype.

Being a breast cancer modeling study with optimal control analysis, Oke et al.
constructed a model of four variables (including normal cells, tumor cells, natural
killer cells and estrogen concentration) with implementation of anti-cancer drugs and
a ketogenic diet (Oke et al. 2018). They modelled the ketogenic diet as a parameter
affecting tumor growth,while anti-cancer drugwasmodeled as an intervention strategy
leading to tumor death, and estrogen concentration to decrease, so that suppression
of immune cell activation was relaxed. In addition, optimal values of the parameters
corresponding to anti-cancer drugs and ketogenic diet were searched to minimize the
total tumor size and estrogen concentration on a prespecified time interval within
a quadratic optimal control setting. The authors noted that activities of cancer cells
are reduced with the introduction of a ketogenic diet and they underlined the risk
of ketoacidosis as a results of too much ketogenic diet. The authors found based on
stability analysis of tumor-free equilibrium point that tumor cells could be eliminated
with treatment and ketogenic diet, if the reproduction number of the system was
reduced to a value less than one. This is in contrast with our simulations, where HFD
does not result in better treatment outcomes. Interestingly, it has been shown that
different fat diets, i.e. based on olive vs corn oil, influence breast tumor growth and

123



42 Page 28 of 33 T. Akman et al.

progression differently (Costa et al. 2004; Solanas et al. 2009), adding complexity to
the challenge of optimizing breast cancer treatment and diet.

Overall, the most striking observations from our simulations are that optimal aro-
matase inhibitor treatment schedules and the corresponding outcomes differ based
on diet, which suggests that low fat diet and other measures to reduce the amount
of fat could be introduced to improve treatment outcomes in obese patients. In our
ongoing studies, we are modeling such patient-specific treatments making use of indi-
vidual level data from the NeoLetExe trial (Bahrami et al. 2019), a neoadjuvant study
exploring the lack of cross-resistance between the aromatase inhibitor letrozole and
the aromatase inactivator exemestane. The effect of switching to a low-fat diet is not
necessarily immediate, because it also depends on the lifestyle and how the body
is prone to accumulate fat. Although our extended model might be able to capture
lifestyle effects different than diet, this remains to be investigated.
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org/10.1007/s11538-023-01253-1.
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