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Abstract
Across a broad range of disciplines, agent-based models (ABMs) are increasingly
utilized for replicating, predicting, and understanding complex systems and their
emergent behavior. In the biological and biomedical sciences, researchers employ
ABMs to elucidate complex cellular and molecular interactions across multiple scales
under varying conditions. Data generated at these multiple scales, however, presents
a computational challenge for robust analysis with ABMs. Indeed, calibrating ABMs
remains an open topic of research due to their own high-dimensional parameter spaces.
In response to these challenges, we extend and validate our novel methodology, Sur-
rogate Modeling for Reconstructing Parameter Surfaces (SMoRe ParS), arriving at a
computationally efficient framework for connecting high dimensionalABMparameter
spaces with multidimensional data. Specifically, we modify SMoRe ParS to initially
confine high dimensional ABM parameter spaces using unidimensional data, namely,
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single time-course information of in vitro cancer cell growth assays. Subsequently,
we broaden the scope of our approach to encompass more complex ABMs and con-
strain parameter spaces using multidimensional data. We explore this extension with
in vitro cancer cell inhibition assays involving the chemotherapeutic agent oxali-
platin. For each scenario, we validate and evaluate the effectiveness of our approach
by comparing how well ABM simulations match the experimental data when using
SMoRe ParS-inferred parameters versus parameters inferred by a commonly used
direct method. In so doing, we show that our approach of using an explicitly formu-
lated surrogate model as an interlocutor between the ABM and the experimental data
effectively calibrates the ABMparameter space to multidimensional data. Our method
thus provides a robust and scalable strategy for leveraging multidimensional data to
inform multiscale ABMs and explore the uncertainty in their parameters.

Keywords Agent-based model · Cancer · Model parameterization · Parameter
identifiability · Surrogate model

1 Introduction

Biological experiments typically involve numerous independent, yet potentially
causally correlated variables, measurement modalities, and experimental condi-
tions (Krzywinski andSavig 2013). Thesemultidimensional data sets offer tremendous
potential for advancing our knowledge of the world around us, but they also present
inherent challenges. For example, complex data types are only partially tractable
with current mathematical, statistical, and computational techniques (Argelaguet et al.
2021; Hariri et al. 2019; Rockne et al. 2019; Qiu et al. 2021). Furthermore, available
experimental data are often limited, noisy, coarse-grained, and lack spatial resolution,
exacerbating these challenges.

Of the variety of mathematical and computational modeling approaches that exist
to describe, analyze and interpret complex data, agent-based models (ABMs) have
emerged as a powerful tool for understanding the interconnected molecular, cellular,
and microenvironmental dynamics in health and disease (Norton et al. 2019; Shuaib
et al. 2016; Badham et al. 2018; Rikard et al. 2019;West et al. 2023). ABMs character-
ize populations as individual agents with distinct properties and behaviors, enabling
interactions with their local environment, which includes other agents, to produce
emergent global phenomena. This unique approach allows ABMs to capture both the
interconnectedness and heterogeneity in biological, environmental, and social systems
across multiple time and spatial scales.

To make meaningful, reliable quantitative predictions and to gain mechanistic
insights, ABMs must be integrated with real-world data through model param-
eterization and calibration (Eisenberg and Jain 2017; Byrne 2010; Gatenby and
Maini 2003). However, the inherent stochastic nature and extensive computational
demands involved in simulating large agent populationsmake it challenging to explore
ABM parameter spaces thoroughly. Monte Carlo simulations, genetic algorithms, and
Bayesian methods have all been used to estimate ABM parameters (Broniec 2021;
Calvez and Hutzler 2005; Klank et al. 2018; Lee et al. 2015; Nardini et al. 2021).
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However, these methods suffer from high computational expenses, reliance on prior
knowledge, and limited applicability beyond specific parameter regimes (Nardini et al.
2021; Klank et al. 2018).

New, thoughtfully developed mathematical methods are desperately needed to
calibrate and validate computationally complex models with real-world multidimen-
sional data, which can span different time and/or spatial scales. In this paper, we
validate and extend our new approach, SurrogateModeling for Reconstructing Param-
eter Surfaces (SMoRe ParS) (Jain et al. 2022), which is a first-of-its-kind method
that leverages explicitly formulated surrogate models to bridge the computational
divide between ABMs and experimental data. Surrogate models, also known as meta-
models or response surface models, are a valuable tool for reducing the computational
burden associated with complex models—like ABMs—enabling more efficient anal-
ysis (Alizadeh et al. 2020; Asher et al. 2015; Blanning 1975; Pietzsch et al. 2020).
They are often statistical or machine learning models that serve as a substitute for the
original model to reduce the computational cost of making predictions or conduct-
ing optimization tasks. Engineering and weather forecasting applications commonly
employ surrogate models (see Palar et al. 2019; Schultz et al. 2021 for reviews), and
the use of machine learning algorithms to generate surrogate models that do not have
a closed form is now a favored approach. However, the underlying mechanistic detail
of the phenomena being modeled is not retained with these “black box” surrogate
models.

Our approach uses an explicitly formulated, data-informed, and easy-to-simulate
surrogate model to quantify the relationship between computationally complex model
inputs and surrogate model parameters, and between surrogate model parameters
and real-world data. Acting as a bridge connecting difficult-to-estimate ABM inputs
with noisy real-world data, surrogate model parameters facilitate the calibration and
uncertainty quantification of ABM parameters, directly aligning them with given
experimental data. We have previously demonstrated the potential of our approach
in a limited proof-of-concept (Jain et al. 2022), where we used limited time-course
experimental data to calibrate a small subset of parameters (that is, a low dimensional
parameter space) in an ABM of vascular tumor growth. We now adapt SMoRe ParS
so that it can first constrain high dimensional ABM parameter space using unidi-
mensional (single time-course) data, taking in vitro cancer cell growth assays as our
application of choice. We then extend our method to constrain parameters in a more
complex ABM with multidimensional (multiple time-courses at different biological
scales) data, taking in vitro cancer cell inhibition assays with the chemotherapeutic
compound oxaliplatin as our application of choice. We validate our method for each
case by comparing the match to experimental data of ABM simulations with SMoRe
ParS and directly inferred parameters using several statistical metrics. By doing so,
we demonstrate that explicitly formulated surrogate models, informed by both exper-
imental data and ABM output, enable high dimensional ABM parameter spaces to
be constrained using multidimensional data. Our approach provides a novel, scalable
method for linking ABMs with high-dimensional parameter spaces to multidimen-
sional data.
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2 Methods

In this section, we describe the various computational modeling approaches, mathe-
matical analysis techniques, and experimental data used in this paper. We begin with
a description of the experimental data used to calibrate our models. We then describe
our agent-based model (ABM) formulation followed by an overview of the SMoRe
ParS method. Next, we develop a surrogate model (SM) using ordinary differential
equations, and discuss ABM output generation for calibrating SM parameters. We
then discuss SM parameterization, and parameter uncertainty quantification and iden-
tifiability. Finally, we describe how ABM parameters are inferred using SMoRe ParS
as well as directly. These steps are described in detail in the following subsections.

2.1 Experimental Data

The impact of the chemotherapeutic agent oxaliplatin on the growth of the SNU-
1 human gastric cancer cell line has been previously evaluated through a series of
experiments detailed in Jang et al. (2002). Briefly, cells were cultured in a control
medium for 24h, followed by exposure to either two different constant concentrations
of oxaliplatin (0.75µM and 7.55µM) or no drug (control) for 72h. Viable cell counts
were recorded at five specific time points, resulting in three time-series data sets, for
cell growth and inhibition.Additionally, flowcytometry yielded cell cycle distributions
at each time point for the two treatment time courses. These data are shown in Fig. 1.
We note that total cell numbers were normalized to an initial condition of 100 cells to
enable direct comparison with simulated (ABM) data.

2.2 Agent-BasedModel (ABM) Formulation

Our agent-based model is an extension of a 2D, on-lattice birth-death-migration
model (Bergman and Jackson 2023). At initialization, agents are seeded uniformly
throughout a square microenvironment. The size of the microenvironment is deter-
mined by the carrying capacity KA, a parameter we vary. For a given carrying
capacity, we set the length of the microenvironment as l = �√KA� and the width
as w = �KA/l�, where �·� represents the ceiling function. At discrete time steps,
agents update by advancing through the cell cycle, undergoing apoptosis, or mov-
ing. In simulations with chemotherapy, the drug is applied uniformly in time and
space throughout the simulation. This mimics the experimental conditions in the cell
growth inhibition assays described in the previous subsection. In what follows, an
“open” lattice site within the microenvironment refers to an unoccupied site. Neigh-
boring lattice sites refer to the von Neumann neighborhood, that is, the four nearest
neighbor sites. The ABM algorithm is summarized in a flowchart, shown in Fig-
ure S1 in the Supplementary Information. Key steps of the algorithm are detailed
below.
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Fig. 1 Schematic of using SMoRe ParS to infer ABM input parameters from experimental data via a surro-
gate model. The solid arrows connecting Experimental Data and the Agent-based Model to the Surrogate
Model represent the direction of information flow in the first few steps of SMoRe ParS. Green (control),
yellow (0.75µM oxaliplatin) and red (7.55µM oxaliplatin) colors refer to the experimental dosing regimes
that generated the experimental data. The green total cell count curve in the experimental data box corre-
sponds to the control case, for which the experiments did not collect cell cycle distribution information,
hence the missing curve in the G2/M fraction plot

2.2.1 Progression Through Cell Cycle

Each agent or cell advances through four stages of the cell cycle in order: G1, S, G2,
andMwith transition rates, {ρG1→S, ρS→G2, ρG2→M, ρM→G1}. When a cell advances
from M back to G1, it can proliferate into an open neighboring lattice site, depending
on the extent of contact inhibition on the cell. Specifically, if the number of open
lattice sites is below a threshold, Tcon, the cell returns to G1 without undergoing
mitosis. Otherwise, mitosis occurs and two daughter cells are introduced in the G1
phase.
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2.2.2 Cell-Cycle Arrest

Oxaliplatin is a cell cycle non-specific, platinum-based compound used to treat a vari-
ety of cancer types (Baker 2003). Oxaliplatin interferes with the DNA replication
process by covalently binding to DNA molecules. The formation of DNA cross-links
and adducts causes DNA damage that is recognized at the G1/S or G2/M check-
points (Kastan and Bartek 2004), ultimately leading to cell-cycle arrest.

Following (Eisenberg and Hayashi 2014), the probabilities parrest,i (i =G1, G2)
of arrest during these two transitions are assumed to be increasing and saturating
functions of the administered drug concentration, with half-saturation constant γ1 and
Hill exponent a. Themaximumpossible probability of arrest ri depends on the affected
cell’s current cell-cycle phase (i =G1, G2). That is,

parrest,i = ri
Ca

γ a
1 + Ca

, i = G1,G2 (1)

2.2.3 Apoptosis

The severity and repairability of oxaliplatin-inducedDNAdamage determineswhether
or not arrested cells undergo apoptosis (Alcindor and Beauger 2011; Raymond et al.
2002). However, for simplicity we assume that once arrested, cells will ultimately
undergo cell death with no possibility of recovery. Further, arrested cells neither
advance through the cell cycle nor move. When a cell undergoes apoptosis, it is
removed from the simulation after all other updates have been carried out.

The rate of cell apoptosis papoptosis is assumed to be an increasing and saturating
function of drug concentration, with half-saturation constant γ2, Hill exponent b and
maximum rate of cell death δp (Eq. 2). That is,

papoptosis = δp
Cb

γ b
2 + Cb

(2)

2.2.4 Migration

Cells move to neighboring lattice sites at a constant rate, s. When a cell moves, it
selects randomly from open neighboring lattice sites, remaining stationary if there are
none.

2.3 Surrogate Model for Reconstructing Parameter Surfaces (SMoRe ParS)

We have proposed a first-of-its-kind method (Jain et al. 2022) that leverages explic-
itly formulated surrogate models for linking computationally complex models such
as ABMs and noisy, sparse experimental data (see Fig. 2). Surrogate Modeling for
Reconstructing Parameter Surfaces (SMoRe ParS) is implemented as described below
for a given ABM and experimental data:
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1. Use data to inform surrogate model variables and formulation (e.g., ODE, PDE,
Boolean etc.), and arrive at one or more candidate model(s) (see Sect. 2.4).

2. Select a subset of ABM parameters to constrain from the experimental data and
generateABMoutput for a broad range of values of these parameters (see Sect. 2.5).

3. If necessary, performmodel selection to choose between several potential surrogate
model candidates by testing their ability to fit both the experimental data and the
ABM output.

4. Reconstruct surrogate model parameter surfaces from ABM output by inferring
a quantitative relationship between each of the surrogate model input parameters
and the selected ABM parameters. This is done by quantifying uncertainty when
fitting surrogate model parameters to ABM output that was generated in Step 2
(see Sect. 2.6).

5. Arrive at identifiable combinations of surrogate model input parameters from real-
world data by performing a practical identifiability analysis (see Sect. 2.6).

6. Infer regions of ABM parameter space that correspond to real-world data by over-
laying the ranges of data-derived SM parameters in the previous step onto the
inferred relationship between surrogate model parameters and ABM parameters
found in Step 4. This yields regions of ABM parameter space that correspond to
experimental data (see Sect. 2.7).

For more details on how to implement SMoRe ParS, we refer the reader to Jain et al.
(2022).

2.4 Surrogate Model Formulation

The time-course experimental data taken from Jang et al. (2002) suggests an ordinary
differential equation (ODE) formulation for the surrogate model, with cells compart-
mentalized depending on their stage within the cell cycle.

Control (untreated) surrogate model equations: Governing equations for the num-
bers of cells in G1/S phase (N1S) and G2/M phase (N2M ) are derived as follows. Cells
in G1/S phase of the cell cycle enter G2/M on completion of DNA synthesis at a rate
λ. From G2/M, cells are assumed to undergo cell division at a rate α resulting in two
new daughter cells in the G1/S phase. As cell numbers increase, free space decreases
and cells are more likely to enter quiescence (Norton and Popel 2014). Our model
takes into account this space-limited growth of cells in the following manner. As in
the ABM formulation, cells in G2/M are less likely to divide into two daughter cells if
they experience contact inhibition. Consequently, in our model the rate of producing
two daughter cells decreases from a maximum value of 2α to simply α as the total
number of cells increases, with no division possible when the total number of cells
reach the carrying capacity K of the culture dish. That is, cells unable to divide because
of crowding simply re-enter the G1/S phase. Combining these processes, we arrive at
the following equations governing cell growth in the absence of treatment.

dN1S

dt
= −λN1S + α

(
2 − N1S + N2M

K

)
N2M , (3)
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Fig. 2 Flowchart of the SMoRe ParS algorithm

dN2M

dt
= λN1S − αN2M . (4)

Treatment surrogate model equations:
To simulate the impact of oxaliplatin on cancer cells, we introduce two additional

compartments, A1S and A2M , to the control model, representing cells arrested in G1/S
andG2/M, respectively.Upon administrationof oxaliplatin, cells in theG2/MandG1/S
phases undergo cell-cycle arrest at drug dose-dependent rates. These rates are taken
as increasing and saturating Hill-functions of the administered drug concentration
C , with β2M representing the maximum arrest rate from G2/M and β1S from G1/S.
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Table 1 List of SM parameters

Control parameters Treatment parameters

Parameter Meaning Parameter Meaning

K Carrying capacity β1S Maximum arrest rate from G1/S

λ G1/S → G2/M transition rate β2M Maximum arrest rate from G2/M

α G2/M → G1/S transition rate κβ EC50 of arrest rates

δ Maximum rate of cell apoptosis

κδ EC50 of apoptosis rate

Following Eisenberg and Jain (2017), we assume that the half-saturation constant κβ

and Hill-coefficient m are the same in both cases.
From the arrested state, cells can undergo apoptosis with studies showing a linear

correlation between cell cytotoxicity and the amount of platinum bound to DNA (Sid-
dik 2003). Hence, the rate of cell death from either arrested compartment is assumed to
be an increasing and saturating function of drug concentration, with δ representing the
maximum death rate and κδ the half-saturation constant. As in the ABM formulation,
we do not allow arrested cells to recover to the proliferating pool.

Combining these processes, we arrive at the following equations that govern the
response of cancer cells to treatment with oxaliplatin.

dN1S

dt
= −λN1S + α

(
2 − N

K

)
N2M − β1S

Cm

κm
β + Cm

N1S, (5)

dN2M

dt
= λN1S − αN2M − β2M

Cm

κm
β + Cm

N2M , (6)

d A1S

dt
= β1S

Cm

κm
β + Cm

N1S − δ
C

κδ + C
A1S, (7)

d A2M

dt
= β2M

Cm

κm
β + Cm

N2M − δ
C

κδ + C
A2M , (8)

where N = N1S + N2M + A1S + A2M is the total number of alive cells.
A list of SM parameters included in our analysis for the control and treatment

models is given in Table 1.

2.5 ABM Parameter Space and Output Generation

A list of ABM parameters chosen for implementing SMoRe ParS is given in Table 2.
ABM output was generated on a regular grid in parameter space, as follows. For

the control model, we vary seven parameters choosing three values each (referred to
as ‘low’, ‘medium’ and ‘high’), for a total of 37 parameter vectors. For each parameter
combination, the ABM was simulated six times to get meaningful average behavior.
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Table 2 List of ABM parameters

Control parameters Treatment parameters
Parameter Meaning Parameter Meaning

KA Carrying capacity rG1 Arrest in G1→S transition

Tcon Contact inhibition rG2 Arrest in G2→M transition

s Migration rate γ1 EC50 of both arrest rates

ρG1→S G1 → S transition δp Apoptosis rate of arrested cells

ρS→G2 S → G2 transition γ2 EC50 of apoptosis rate

ρG2→M G2 → M transition

ρM→G1 M → G1 transition

We vary five ABM parameters in the treatment model, once again choosing three
values each, for a total of 35 parameter vectors. Because we have data for only two
non-zero drug concentrations and the Hill function response of cells to oxaliplatin in
Eqs. 1 and 2 has three parameters, we hold the Hill coefficients fixed at a = 1 and
b = 1. For the treatment model, all control parameters were set to the average value of
those accepted from the control study. The ABM was simulated for each of the three
doses represented in this study: control, 0.75 µM, and 7.55 µM. For each of these
3 × 35 conditions, we ran six simulations to get meaningful average behavior.

2.6 Surrogate Model Parameter Calibration, Uncertainty Quantification and
Identifiability

Surrogatemodel parameter valueswere selected to achieve best fits of tumor cell counts
(total number and numbers of cells in G1/S and G2/M) to experimental data as well
as ABM output, employing a weighted least squares approach. This was implemented
in Matlab using the fmincon constrained optimization tool in conjunction with the
built-in ode45 ordinary differential equations solver.

The profile likelihood method described in Venzon and Moolgavkar (1988) was
implemented for inferring uncertainty information for estimated parameters. This
approach involves “profiling” each estimated parameter by fixing it across a range
of values while estimating the remaining parameters for each fixed value. The maxi-
mum likelihood function value for each such parameter value generates a likelihood
profile. Confidence bounds were calculated using likelihood profiles and a specified
threshold, taken here at a 95% confidence level. Additionally, SM parameter profiles
were used to arrive at practically identifiable combinations of estimated parameters
when fitting to experimental data following the approach described in Eisenberg and
Jain (2017).

2.7 ABM Parameterization Using SMoRe ParS

Let S ⊂ R
n be a set of experimental data-informed SM parameter values, where n is

the number of SM parameters being fit. For instance, S could simply be the singleton
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set comprising the best fit values of the SM parameters to data. However, this choice
would not propagate the uncertainty in SM parameters from the experimental data to
the inferred ABM parameter region. Or S could be the set arrived at in the previous
section (Methods Sect. 2.6),which accounts for the uncertainty in SMparameter values
stemming from the noisy and sparse nature of the data. The final step of SMoRe ParS is
implemented as follows to arrive at desired ABM parameters that fit the experimental
data, using the set S as an interlocutor.

For each ABM parameter vector at which ABM output was generated, the 95%
confidence bounds of the SM parameters yield hyperrectangles or orthotopes in SM
parameter space. That is, for a specified SMparameter, each corner of a hyperrectangle
is a point on one of the upper or lower bounding hypersurfaces for that SM parameter,
at that ABMparameter vector. Figure3 shows two such hyperrectangles in 3-D control
SM parameter space (n = 3). A given ABM parameter vector is accepted by SMoRe
ParS if and only if this box has non-empty intersection with the set S.

In the analysis presented here, we construct this set of experimental data-informed
SM parameters in two distinct ways. Let 	 ⊂ R

n be the Cartesian product of the
experimental data-informed 95% confidence intervals for each SM parameter. Fig-
ure3a, b shows these intervals for the 3-D control SM case as dashed, colored lines
on each coordinate axis. Alternatively, let 
 ⊂ R

n be the union of the experimen-
tal data-informed practically identifiable combinations of SM parameters, shown for
the 3-D control SM case as (approximately) coincident colored curves in Fig. 3a, b.
	 and 
 are related in that the projection of each colored path defining 
 onto its
color-matched axis is the corresponding factor in the Cartesian product defining 	.
Both are valid choices for S.

For each ABM parameter vector, we check whether its corresponding 95% con-
fidence hyperrectangle in SM parameter space has non-empty intersection with the
above-defined sets. For instance, for the 3-D control SM case, ABM parameter #0002
is accepted using either 
 (Fig. 3a) or 	 (Fig. 3b), whereas ABM parameter #0012
is accepted using 	 (Fig. 3d) but rejected using 
 (Fig. 3c). Empirically, we see that
ABM parameters accepted using 	 is a superset of those accepted using 
. A param-
eter that is rejected in both frameworks is shown in the Supplementary Figure S2.

Unless otherwise stated, SMoReParS is implemented using
, that is data-informed
practically identifiable combinations of SM parameters.

2.8 ABM Parameter Calibration by Direct Method

Rejection sampling, also called the accept-reject method (Olken and Rotem 1995),
was employed to directly calibrate ABM parameters from the experimental data. This
was implemented as follows. At each ABM parameter vector on the sampled grid, the
mean time series were compared to the experimental data using the same objective
function aswhen comparing the SM to the data. The resultingRSS valueswere ordered
and the lowest RSS values were then accepted with the threshold being set based on
the number accepted by SMoRe ParS.

123



11 Page 12 of 28 D. R. Bergman et al.

Fig. 3 Geometric interpretation for how SMoRe ParS accepts or rejects parameters with (left column, 
)
or without (right column, 	) using practically identifiable parameter combinations. Each row corresponds
to the same single ABM parameter vector: #0002 (top row, accepted by both methods) and #0012 (bottom
row, accepted by 	 only). ABM output at each is used to profile SM parameters, and the 95% confidence
intervals (thick lines on each axis) are used to define a hyperrectangle in SM parameter space (shaded
box in a, c). The light grey top of the box in C signifies that K is not constrained from above for that
ABM parameter vector. The SM parameters are also profiled using the experimental data, and in this case
parameter combinations are observed. The paths of each of these three profiles through 3D parameter space
are shown in red (λ), green (α), and blue (K ) dotted curves in a, c. The projections of these profiles onto
their corresponding axes are shown as dashed lines of the corresponding color. Using practical identifiable
combinations (see Sect. 3.5), SMoRe ParS accepts #0002 (a)–because at least one of these three profiles
passes through the shaded box–and rejects #0012 (c)–because none of the three pass through the shaded
box. Using only the confidence intervals (b, d), that is, using 	, SMoRe ParS additionally accepts #0012
because all three pairs of intervals overlap as shown on the right

3 Results

In this section, we describe the results of our computational study. We begin with
demonstrating how well SMoRe ParS constrains high-dimensional ABM parameter
spaces using uni-dimensional data in the form of cell number time-courses taken from
in vitro cancer cell growth assays. We next constrain a high-dimensional parameter
space in a more complex ABM using multi-dimensional (multiple time-courses at
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Fig. 4 Constraining SM parameters from control arm of experimental data. a SM best fit to experimental
data. b Likelihood profiles of all SM parameters from experimental data. c Exploring parameter combi-
nations of the SM fit to the experimental data. The color of the curve corresponds to the parameter being
profiled

different biological scales) data that describes tumor response to chemotherapy. In
each case, we demonstrate the suitability of our surrogate model choice and show that
SMoRe ParS successfully infers ABM parameter spaces that reproduce the experi-
mental data.

3.1 Unidimensional Experimental Data and the ABMOutput Successfully
Constrain Surrogate Model Parameter Space

Akey early step in the successful implementation of SMoRe ParS is arriving at a surro-
gate model (SM) that is well-suited for the experimental data. Our SM for the control
(no treatment) case (Eqs. 3 and 4) has three free parameters, λ, α and K . Figure4a
shows a comparison between the time courses of experimental control cell count versus
SM-generated output produced using best fit values of λ, α, and K . The SM-generated
output closely match the experimental data, lying within one standard deviation, with
a weighted residual sum of squares (RSS) of 1.9401.We further use profile likelihoods
to calculate 95% confidence bounds for each of the SM parameters from noise in the
experimental data (Fig. 4b), and conclude that the SM parameters are identifiable from
below. Viewing these profiles as paths in SM parameter space, we observe that the
three SM parameters are in a single practically identifiable combination, as evidenced
by overlapping curves shown in Fig. 4c.

Next, we fit the control SM parameters to averaged ABM output generated at
each of the 37 sampled parameter vectors and plot the distributions for each of the
three parameters (Fig. 5a–c). In contrast to when SM parameters were constrained
from experimental data, here we also use ABM-generated cell compartment time
courses in addition to total cell count time courses when fitting SM parameters. The
inferred distributions for λ and α are roughly Gaussian (Fig. 5a, b), suggesting that
these parameters have a well-constrained range of values that effectively encapsulates
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Fig. 5 Fitting the SM to each ABM parameter vector output. a–c Distribution of best fit values of SM
parameter λ (a), α (b), and K (c) to the ABM output. Vertical lines indicates median values. Shaded
area indicates the interquantile range. d Distribution of RSS values from the best fit of the SM to ABM
output at each ABM parameter vector. Orange line indicates the RSS value for the best fit of the SM to
the experimental data. e Sampling of four ABM parameter vectors (rows) and the fit of the SM to ABM-
generated cell counts in the two compartments and ABM-generated total cell count, for a specific choice
of ABM parameters (bold numbers on the left)

the entire ABM output variability. The distribution for K is skewed right with several
outliers at the user-imposed upper bound of 10,000 cells (Fig. 5c). For these outliers,
the value of K has little impact on the quality of fits (data not shown).

In order to evaluate the accuracy of the fits, we plot the RSS values of each of the
SM fits to the ABM output and of SM fit to the data (Fig. 5d). The RSS values of SM
parameters fit to ABM output follow a log-normal distribution (Fig. 5d, purple curve),
and are comparable to the RSS from fitting the SM to experimental data (Fig. 5d,
orange line). Furthermore, we plot illustrative time series for G1/S and G2/M cell
counts of the SM model (in green) and the ABM output (dotted line) with standard
deviation shown in gray (Fig. 5e). The time series trajectories for the SM demonstrate
good fits to the ABM output in both the G1/S and G2/M compartments.

3.2 SMoRe ParS Creates n-Dimensional Hypersurfaces Bounding each SM
Parameter

We use the profile-likelihood method to arrive at 95% confidence bounds for each of
the SM parameters that were fit to (averaged) ABM output generated at each ABM
parameter vector (Fig. 6a). Now, λ and α are typically identifiable, unlike when we
fit these parameters to experimental data (Fig. 4b). This is because we also use G1/S
and G2/M counts when fitting to ABM output, these values not being available in
the control experimental data. For a given SM parameter, its 95% confidence bounds
correspond to discrete points on the upper and lower 95% confidence hypersurfaces
that lie over 7-dimensional ABM parameter space. As an illustration, Fig. 6b shows a
cross section of these surfaces cut parallel to the first two ABMparameter dimensions.
For this region of ABMparameter space, we are 95% confident that the SMparameters
lie in between these hypersurfaces.
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Fig. 6 Constraining SMparameters for eachABMparameter vector. a Profile likelihoods for SMparameters
λ (left column), α (middle column), and K (right column) using ABM output from four ABM parameter
vectors (varied by row). b Cross sections of the 7-dimensional lower (blue) and upper (red) bounding
hypersurfaces cut parallel to the first two ABM parameter dimensions (Color figure online)

3.3 SMoRe ParS Infers ABM Parameter Spaces that Successfully Reproduce the
Experimental Data

Implementing the final step in SMoRe ParS, we arrive at an inferred region of ABM
parameter space that maps to the experimental data. The proportions of each of the
seven ABM parameters that SMoRe ParS accepted in their low, medium, and high
ranges (see Methods Sect. 2.5) are shown in Fig. 7a. Notably, a higher proportion of
medium and high values for the carrying capacity are admitted, while median and low
values are accepted more for the contact inhibition, migration rate, and three of the
four transition rates. For the transition from M to G1, about the same proportion of
low, medium, and high parameter values are accepted.

Next, we evaluate the effectiveness of our method by comparing the experimental
data with the mean ABM output generated using SMoRe ParS-inferred parameter
values (Fig. 7b). The dotted line represents the experimental data, and the dark blue
line represents the mean ABM output, with the light blue shadow representing one
standard deviation. Mean ABM cell count time courses show excellent agreement
with experimental data, suggesting we have successfully identified the desired subset
of ABM parameter space. It is important to note that we did not select these ABM
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Fig. 7 Evaluating SMoRe ParS performance in constraining ABM parameter space. a Proportions of each
of the seven ABM parameters that SMoRe ParS accepted in the low (light blue bars), medium (dark blue
bars), and high (teal bars) ranges. b Comparison of ABM-generated averaged cell count time-course (blue
curve) using SMoRe ParS-inferred parameters versus experimental data (black asterisks and dashed curve).
Shaded region shows ± SD in ABM simulations. c A sampling of individual time-courses generated by
the ABM using accepted (blue curves) versus rejected (red curves) parameters plotted together with the
experimental data (black asterisks and dashed curve).dResidual sumof squares (RSS) distributions obtained
from SMoRe ParS-accepted (blue PDF) and rejected (red PDF) parameters. E Z-scores of individual ABM
simulations, sorted by accepted or rejected, using the experimental mean and standard deviation at those
time points. Y-axis is normalized to a PDF (Color figure online)

parameters by direct comparison with the data, but by using the SM as an interlocutor
and implementing the SMoRe ParS algorithm. A sampling of individual time-courses
of accepted (blue) versus rejected (orange) ABM parameters are shown in Fig. 7c.
The ‘accepted’ curves cluster around the mean of the experimental data, whereas the
‘rejected’ curves are more spread out and form two distinct groupings, one below the
experimental mean and one above it, neither of which match the experimental data.
Overall, this shows that in general, our method is able to constrain ABM parameter
space from given experimental data.

We can evaluate how well SMoRe ParS selects/rejects the correct subsets of ABM
parameters by computing the RSS of the mean trajectory from each ABM parameter
vector. The distributions of these RSS values distinguished by accepted/rejected shows
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Fig. 8 Comparing SMoRe ParS performance to the direct method. a A sampling of individual time-courses
generated by the ABM using SMoRe ParS-accepted (blue curves) versus most likely (maize curves) param-
eters plotted together with the experimental data (black asterisks and dashed curve). b Similar to A but
comparing SMoRe ParS-rejected (red) and least likely (dark blue). c Z-scores of individual ABM simula-
tions, sorted by most likely (maize) and least likely (dark blue), using the experimental mean and standard
deviation at those time points. Y-axis is normalized to a PDF (Color figure online)

a lower median for the accepted distribution and a much longer tail for the rejected
distribution (Fig. 7d). That is, SMoRe ParS is more likely to accept parameters the
better they fit the data. We can further evaluate the contribution of each time point to
this overall RSS score by looking at the z-scores of the cell counts at these time points
(Fig. 7e). At early times, there is little to distinguish between the accepted and rejected
ABM vectors, with both either under-estimating (t = 10h) or mostly over-estimating
(t = 24h) experimental data (see Supplementary Figure S3). As time progresses
(t = 36h and t = 48h), accepted ABM vectors clearly cluster more tightly around a
z-score of 0—the mean of the experimental data—than rejected vectors. By the end
of the simulation (t = 72h) the z-scores of the rejected vectors split into a bimodal
distribution spread out away from the experimental mean, whereas the z-scores of the
accepted vectors are in a unimodal distribution that is closer to the mean.

3.4 SMoRe ParS Yields Comparable Results to the Direct Method

To validate our method for ABM parameterization, we compare how well ABM
simulationsmatch the experimental data when using SMoRe ParS-inferred parameters
versus parameters inferred by direct comparison (see Methods Sect. 2.7). We plot
sample ABM-generated trajectories using SMoRe ParS-accepted parameters (light
blue curves) and those using the ‘most likely parameters’, that is, from the direct
method (yellow curves) (Fig. 8a). Both sets of trajectories are close to the experimental
data mean with SMoRe ParS trajectories showing slightly larger variances at later time
points. We also consider the SMoRe ParS-rejected versus ‘least likely’ parameters
and samplings of their trajectories (Fig. 8b). Both sets can be seen to diverge from the
experimental mean starting at around t = 2 d. For further details on howwe compared
simulated and experimental time series, see Supplementary Information Section S4.
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Fig. 9 Comparing acceptance in SMoRe ParS with and without using practically identifiable parameter
combinations. a Distribution of RSS values accepted using parameter combinations (blue) or not (yellow).
b Distribution of mean trajectories of ABM parameters selected using combinations (blue) or not (yellow).
Shaded area indicates ± SD (Color figure online)

Finally, we evaluate the direct method’s performance in reproducing experimental
data at each time point by looking at the z-scores of the cell counts at these time points
(Fig. 8c). As in the case of SMoRe ParS (Fig. 7e), the z-scores of the least likely vectors
split into a bimodal distribution spread out away from the experimental mean, whereas
the z-scores of the accepted vectors are in a unimodal distribution that is closer to the
mean.

3.5 Using Practical Identifiability Information about SM Parameters Improves
SMoRe ParS’Performance

We conclude our analysis of the control study by evaluating the importance of using
practically identifiable combinations of SM parameters, as informed by experimental
data, in the final step of SMoRe ParS. We accomplish this by first arriving at exper-
imental data-informed SM parameters in two distinct ways, taking 	 ⊂ R

3 be the
Cartesian product of the experimental data-informed 95% confidence intervals for
each SM parameter and 
 ⊂ R

3 be the union of the experimental data-informed
practically identifiable combinations of SM parameters. We next implement SMoRe
ParS to constrain ABM parameter space using these two sets of SM parameters, as
explained in Methods Sect. 2.7. Finally, we compare how well the experimental data
is matched by (averaged) ABM output generated using the two resultant sets of ABM
parameters.

The RSS distributions plotted in Fig. 9a illustrate how well ABM output generated
using each of these parameter spaces matches the experimental data. These distribu-
tions were calculated from the weighted RSS between averaged ABM realizations
and the experimental data. As can be seen, ABM parameters inferred using practical
identifiability of SM parameters tend to have lower RSS values and thus better fits
(blue bars) as compared to ABM parameters inferred simply using 95% confidence
bounds on SM parameters (yellow bars). The rightward shift in RSS values of this
superset of ABM parameters comes from an increased variance at later time points
(Fig. 9b). The variance of cell count curves from the superset parameter profiles (yel-
low lines) is more spread out whereas the variance of the cell count curves from the
more constrained parameter profiles (blue lines) is closer to the mean values. Thus,
SMoRe ParS yields a better constrained ABM parameter set when we account for SM
parameter identifiability properties.
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3.6 Multidimensional Experimental Data and the ABMOutput Successfully
Constrain Surrogate Model Parameter Space in the Treatment Case

Having demonstrated that SMoRe ParS performs well when constraining a high-
dimensional ABM parameter space with simple, unidimensional data, we now test
how well it performs when using multidimensional experimental data. By multidi-
mensional data, we mean data of multiple ‘types’. For instance, time-courses of tumor
volumes in xenograft assays, potentially testing multi-drug/multi-dose anti-cancer
therapy, or time-courses together with end-point data such as a dose-response or sur-
vival curves. Our SM for the treatment case (Eq. 5) has nine free parameters that are
fit to data comprising tumor growth inhibition time-courses for three different drug
doses (0 µM, 0.75 µM, and 7.55µM) and cell cycle distribution time courses for
the two nonzero drug doses. Best fits are plotted together with experimental data in
Fig. 10a. A practical identifiability analysis reveals that the treatment-specific param-
eters α, λ, β1 S, β2M and δ are identifiable in most instances, while the remaining
SM parameters are identifiable from above or below (Fig. 10b). To uncover any hid-
den combination structure between parameters, we plot pairwise relationship curves
between parameters (Fig. 10c). These curves are generated by plotting non-profiled
parameter estimates versus the profiled parameter. Blue/red curves correspond to the
parameter along the x-/y-axis being profiled, respectively. Largely coincident curves
suggest a pairwise combination structure, as is the case for m-β1S , kβ -β1S and kδ-δ.
On the other hand, λ, α and K are a simultaneous combination, with no clear pairwise
combination structure. We remark that only those parameter profiles are shown where
a practically identifiable combination exists.

Next, we fit these treatment parameters from the SM to averaged ABM output
generated at each of the 3×35 sampled parameter vectors (seeMethods Sect. 2.5). The
resulting distributions for the SM parameters λ, α, and K (Fig. 11a) are bell-shaped,
resembling those obtained from the control study (see Fig. 5a–c), suggesting that these
parameters have a well-constrained range of values that effectively encapsulates the
entire ABM output variability. The distributions on the other 6 SM parameters are less
clear-cut, suggesting a higher degree of uncertainty. The RSS values of SM parameters
fit to ABM output follow a log-normal distribution (Fig. 11b), and are smaller than the
RSS from fitting the SM to experimental data (Fig. 11b, orange line). The time series
trajectories for the treatment SM demonstrate good fits to the ABM output for both,
total tumor size, and G2/M fraction across the different dosing strategies (Fig. 11c).
We finally profile each SM parameter using the ABM output at each ABM parameter
vector (see Supplementary Figure S5). The criterion for accepting an ABM parameter
follows the same procedure as outlined in the control case (Sect. 3.5).

3.7 SMoRe ParS Infers High Dimensional ABM Parameter Spaces that Successfully
Reproduce theMultidimensional Experimental Data

We evaluate the effectiveness of our method by comparing the mean ABM output
at the SMoRe ParS-inferred parameter values, with the multidimensional experimen-
tal data (Fig. 12a). As in the control study, ABM generated averaged cell count time
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Fig. 10 Constraining SM parameters from experimental data. a SM best fit to experimental data. b Profiles
of all SM parameters from fitting to experimental data. c Exploring parameter combinations of the SM fit to
the experimental data. In each plot, blue (red) curves correspond to the parameter along the x-axis (y-axis)
being profiled (Color figure online)

courses for the no treatment case (Fig. 12a, first panel) show excellent agreement
with experimental data. For the treatment cases, averaged time-courses generated
using accepted (blue) ABM parameters fit G2/M fractions well, whereas those gen-
erated using rejected (orange) ABM parameters are farther above the experimental
time-courses than the accepted curves (Fig. 12a, rows two and three, second column).
Interestingly, there is little to distinguish total cell count time-courses in the treat-
ment case generated using accepted (blue) or rejected (orange) ABM parameters,
with both curves overestimating the experimental data (Fig. 12a, rows two and three,
first column). Indeed, the rejected parameters time-courses are marginally closer to
the experimental data than the accepted parameters time-courses, although it should
be noted that the experimental data are contained within one standard deviation of the
accepted parameters time-courses.

Overall, SMoRe ParS constrains ABM parameter space successfully even in this
multidimensional data case, as evidenced by the RSS distributions of accepted versus
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Fig. 11 Fitting the SM to each ABM parameter vector output. a Distribution of best fit values of SM
parameters to the ABM output. Vertical line indicates median value. Shaded area indicates the interquantile
range. b Distribution of RSS values from the best fit of the SM to ABM output at each ABM parameter
vector. Orange line indicates the RSS value for the best fit of the SM to the experimental data. c Sampling
of four ABM parameter vectors (rows) and the fit of the SM to the two experimentally measured outputs for
each experimental condition. Dark green curves represent the SM fit. Mean ABM output shown in dashed
black. Shaded area is ± SD of ABM output (Color figure online)
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Fig. 12 Evaluating SMoRe ParS performance in constraining ABMparameter space with multidimensional
data. a Comparison of ABM-generated averaged time series using SMoRe ParS-inferred parameters versus
experimental data (black asterisks and dashed curve). SMoRe ParS-accepted (-rejected) parameters shown
in blue (red). Shaded region shows±SD inABMsimulations.bResidual sumof squares (RSS) distributions
obtained from SMoRe ParS-accepted (blue PDF) and rejected (red PDF) parameters across all experimental
conditions and time series. cBreakdown of contributions to total RSS in b from each experimental condition
and time series. x-axis limits are preserved across all plots (Color figure online)

rejected ABM parameter vectors (Fig. 12b). These distributions were calculated by
summing the weighted RSS between averaged ABM realizations and each distinct
experimental data set. The RSS distribution of the accepted parameters (blue bars)
is clustered near zero with a lower median and shorter tail than that for the rejected
parameters (orange bars).

Individual contributions to the total RSS from fitting each data set are shown in
Fig. 12c. There appears to be little difference between RSS values for the total cell
counts coming from rejected and accepted parameters in the control and 0.75µMdose
cases. For the 7.55 µM dosing schedule, the distribution of rejected RSS values are
slightly shifted left compared to the accepted RSS values (Fig. 12c, bottom left panel).
This corresponds to how close the respective mean cell count time-courses are to the
experimental data (Fig. 12a, bottom left panel). In contrast, RSS values coming from
G2/M fraction time-courses for the rejected parameters are clearly shifted to the right
compared to the accepted parameters (Fig. 12c, right column), demonstrating that the
SMoRe ParS-constrained ABM fits these data well.

As we did for the control case (Fig. 7e), we calculate the z-scores of the ABM
output for both accepted and rejected parameters, comparing count and G2/M frac-
tion across all experimental conditions using the experimental data as the population
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distribution (Fig. 13). Recall, the experimental data did not quantify cell cycle state in
the control arm. For the control data, there is little difference between the accepted
and rejected data across all times (green box). For the first treatment condition, there
is little difference between the accepted and rejected count data on hour 10. Between
hour 24 and 48, the count data starts to look bimodal and by hour 72, there is a clear
bimodal distribution with the rejected count values shifted to the left (yellow box). For
the first treatment condition, the z-scores of the G2/M fraction show a normal distribu-
tion around 0 for the accepted values and a right-skewed distribution for the rejected
values. The skewing to the right for the rejected values increases as the number of
hours increases (yellow box).

Therefore, the accepted values are closer to the mean experimental values than the
rejected values and are thus a better fit. For the second treatment condition, there is
little difference between the accepted and rejected count data on hours 10 through 36.
On hours 48 and 72, the rejected values seem to skew to the right and are slightly left of
center. There is a bimodal distribution with the accepted count values centered around
0 (red box). For the second treatment condition, the z-scores of the G2/M fraction
show a tight normal distribution around 0 for the accepted values and a wider normal
distribution shifted slightly to the right for the rejected values (red box). Therefore, the
accepted values are closer to themean experimental values than the rejected values and
are thus a better fit. We remark that using a different set of control ABM parameters
determined by randomly sampling from the set of accepted parameters from the control
study resulted in similar distributions of z-scores (see Supplementary Figures S6 and
S7).

4 Discussion

The urgent challenges posed by health and environmental crises demand immediate
attention and effective solutions. With the aim of advancing human health and min-
imizing potential harm, data is being generated at an unprecedented scale, and in
multidimensional forms including -omics data, biochemical pathways, web and social
media data and integrated digitized administrative databases, to name a few (Luo et al.
2016). There is a critical need for time- and cost-efficient strategies to analyze and
interpret this data, and agent-based models are increasingly being called upon to gen-
erate reasonable, testable hypotheses from such complex data sets (Castro et al. 2020;
Jain et al. 2022).

In this study, we developed a novel computational framework that constrains
high dimensional ABM parameter space to multidimensional real-world data. This
framework builds on our recently published approach, SurrogateModeling for Recon-
structing Parameter Spaces (SMoRe ParS) (Jain et al. 2022), that leverages explicitly
formulated surrogate models to link ABMs and experimental data. The resultant
method encodes within it uncertainty quantification of ABM parameter values, this
uncertainty stemming from both, stochasticity in ABM simulations, and error/noise
in experimental data. Therefore, SMoRe ParS gives the user a distributional sense of
ABM parameter space as constrained by data.
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Fig. 13 Normalized residuals of ABM output compared to the experimental data across all time points,
experimental conditions, and time series

We began by extending the SMoRe ParS algorithm to constrain a high dimensional
parameter space of an easy-to-simulate ABM, using unidimensional data. ABM out-
put generated using SMoRe ParS-inferred parameters was seen to be in excellent
agreement with the data, demonstrating our method’s accuracy. We next compared the
results of our methodology with those obtained when using ABM input parameters
estimated directly from the experimental data. This is only computationally feasible in
this situation, with an easy-to-simulate ABM.Both sets of ABMoutput yielded similar
degrees of fits to the data, thereby validating our approach. We remark that even in this
easy-to-simulate case, direct estimation of ABM parameters was only possible with
a simple acceptance-rejection algorithm, from a predetermined set of input parameter
values. We did not perform a formal parameter estimation, for example, a gradient
descent method that would require the user to run thousands to millions of ABM sim-
ulations. In contrast, a particular strength of our method, which we demonstrated in
Jain et al. (2022), is that it allows for the exploration of ABM parameter space even at
points that are not directly sampled and at which ABM output was never generated.

Frequently, parameter estimation for predictive models lacks a comprehensive
identifiability analysis (Eisenberg and Jain 2017). Instead uncertainty in estimated
parameters is often assessed using 95% confidence intervals derived from the data,
resulting in independent (ranges of) values for each parameter. This approach over-
looks potential interdependencies among parameters, resulting in disparate parameter
combinations that may not align well with the data. Here, we illustrated this potential
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pitfall by comparing experimental data with ABM output generated using practically
identifiable combinations of surrogate model parameters versus ignoring this identifi-
ability structure. Our results suggest that SMoRe ParS yields best results when using
practical identifiable information on surrogate model parameters contained within the
experimental data.

Scholarly works presenting computationally efficient methods to connect ABMs
with multidimensional data are scarce. Cess and Finley (Cess and Finley 2023) offer
a creative new computational approach that applies neural networks to parameterize
an ABM of tumor growth with spatially resolved imaging data. While their strat-
egy enables a quantitative comparison of tumor images and ABM simulations, it is
computationally expensive. Additionally, incorporating temporal data or data at vary-
ing scales into this method is challenging. Renardy et al. (2020) employ a hybrid
sampling-estimation approach to parameterize their discrete and stochastic network-
based model of the spread of COVID-19. Specifically, they generated ABM output at
500 parameter sets and minimized a cost function to arrive at a ‘best-fit’ parameter set.
However, this approach suffers from the same drawbacks as our aforementioned direct
method for ABM calibration: (1) we are restricted to only those parameter combina-
tions at which ABM output was generated and cannot fine-tune parameters further,
which is especially an issue if the parameter samples were widely spaced to begin
with; and (2) increasing the number of sampled parameter combinations can become
computationally unfeasible in a complex ABM.

Here, we offer a new tool for researchers in need of methods to connect ABMs to
data sets that involve measures of various types or at biological scales that are beyond
the feasibility of ABMs to simulate. Having adapted SMoRe ParS to constrain high
dimensional ABM parameter spaces with unidimensional data, we next customized
it to constrain high dimensional ABM parameter spaces with multidimensional data,
taking examples from tumor cell growth inhibition assays to demonstrate our method.
ABM-generated averaged cell count time courses for the pre-treatment casewere found
to be in excellent agreement with experimental data, as were the averaged time courses
forG2/M fractions in the treatment case,when usingSMoReParS-inferred parameters.
As expected, using rejected parameters yielded poor matches to these data. In contrast,
accepted and rejected parameters matched the experimental cell count time-courses
for the treatment case equally well. For example, the rejected mean of total cell counts
was closer to the data than the accepted mean, but both were still within one standard
deviation of one another, and of the data. Taken together, these results imply that cell
cycle fraction is the distinguishing factor, and SMoRe ParS succeeds in capturing these
mechanistic details. In the context of cancer treatment, such details can matter greatly
since platinum-based drugs such as oxaliplatin are frequently combined with anti-
mitotic drugs such as taxanes in treating solid tumors (Pavlidis and Pentheroudakis
2012). Taxanes are cell-cycle specific and predicting optimal combination dosing
strategies successfully is predicated on knowing cell cycle distributions resulting from
exposure to one or the other drug accurately (Eisenberg and Jain 2017). This example
demonstrates that SMoRe ParS effectively infers high-dimensional ABM parameter
spaces, leading to the accurate reproduction of multidimensional experimental data.

The work presented here is a significant step towards operationalizing SMoRe ParS
for broader use, in more general settings. At the same time, our results suggest several
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avenues for future work as we seek to further improve our method’s performance and
applicability. For instance, we will examine the impact of surrogate model selection
on SMoRe ParS’ performance. A single surrogate model may not fit all ABM output
equally well, as was observed with our treatment model (data not shown). Equally, an
optimal surrogate model may exist that can fit all ABM output within a user-specified
error threshold. However, this prospect might be overlooked due to the present trial-
and-error approach in SMoRe ParS, where each surrogate model improvement is
systematically evaluated. We plan to address these issues by allowing for multiple
surrogate models, potentially arrived at through machine learning techniques such
as equation learning (Nardini et al. 2021) or BINNs (Biologically-informed neural
networks) (Lagergren et al. 2020).

Through the analysis presented here, we also highlight the fact that multidimen-
sional data presents unique, but solvable challenges in general, and for SMoRe ParS
in particular. For example, the individual contributions to the total RSS from fitting
each data set shown in Fig. 12c sum up to the RSS distributions of accepted versus
rejected ABM parameter vectors in Fig. 12b. This raises the question: should individ-
ual contributions to the RSS from fitting each data set be given equal weight or should
data-set specific weights be applied? While machine learning approaches for arriving
at a better surrogate model could potentially improve the overall fit, the answer to this
question will ultimately differ depending on the model application being studied and
the types of data available. Users of SMoRe Pars should decide which data set(s) are
most important based on the specific questions they want to use their model to address.

In conclusion, our work introduces a robust and scalable computational framework,
SMoRe ParS, designed to explore the uncertainty within multidimensional parame-
ter spaces of ABMs representing complex biological phenomena. By enabling the
effective incorporation of noisy and sparse real-world data, this platform extends the
potential of ABMs to unveil hidden and counter-intuitive mechanistic features hidden
in complex data sets. These revelations can have profound implications for predicted
outcomes and planned interventions, accentuating the utility of mathematical model-
ing in advancing our understanding of complex systems.
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