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Abstract
Phylogenetic networks are an extension of phylogenetic trees that allow for the repre-
sentation of reticulate evolution events. One of the classes of networks that has gained
the attention of the scientific community over the last years is the class of orchard
networks, that generalizes tree-child networks, one of the most studied classes of net-
works. In this paper we focus on the combinatorial and algorithmic problem of the
generation of binary orchard networks, and also of binary tree-child networks. To this
end, we use that these networks are defined as those that can be recovered by reversing
a certain reduction process. Then, we show how to choose a “minimum” reduction
process among all that can be applied to a network, and hence we get a unique rep-
resentation of the network that, in fact, can be given in terms of sequences of pairs
of integers, whose length is related to the number of leaves and reticulations of the
network. Therefore, the generation of networks is reduced to the generation of such
sequences of pairs. Our main result is a recursive method for the efficient generation
of all minimum sequences, and hence of all orchard (or tree-child) networks with a
given number of leaves and reticulations. An implementation in C of the algorithms
described in this paper, along with some computational experiments, can be down-
loaded from the public repository https://github.com/gerardet46/OrchardGenerator.
Using this implementation, we have computed the number of binary orchard networks
with at most 6 leaves and 8 reticulations.
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1 Introduction

For decades, phylogenetic trees have been the model used to represent the branching
pattern for the evolution of a set of Operational Taxonomic Units (OTUs for short).
From the 1980s onward, it became evident that phylogenetic networks were a more
accurate framework, with the potential to cover more complex evolutionary scenarios
such as hybridizations, recombinations, or lateral gene transfers.

In the broadest sense, phylogenetic networks are directed acyclic graphs whose
leaves are labelled by the organisms under study. This general definition, while
allowing a wide range of biological processes to be considered, lacks mathemati-
cal tractability. For this reason, some other constraints must be considered, resulting
in a wide variety of classes of phylogenetic networks (see Kong et al. 2022 for a recent
review, or Steel 2016, Chapter 10). In this work we focus on the class of orchard net-
works (Erdős et al. 2019) (also called cherry-picking networks Janssen andMurakami
2021) and tree-child networks (Cardona et al. 2009), a subclass of the first and one of
the most explored classes of networks.

Orchard networks are networks that can be reduced to a trivial network by iteratively
identifying and reducing certain substructures (namely, cherries and reticulated cher-
ries) involving two leaves. Orchard networks are one of those classes of networks with
biological significance (according to Kong et al. 2022) because they can be viewed as
a backbone tree with additional “horizontal” arcs (see van Iersel et al. 2022 for more
details).

One of the relevant problems in the study of phylogenetic networks is that of their
sequential generation; that is, obtaining a method to generate them in an efficient and
unique way. Generation of phylogenetic networks is useful, for example, for testing
the performance of methods in phylogenetics and for testing hypotheses about the
evolutionary relationships among organisms by the comparison of different network
topologies.

Up to our knowledge, there exist two previous works on the generation of orchard
networks. First, the generator of LGT networks introduced in (Pons et al. 2019) can
be adapted to generate orchard networks, simply by forgetting the distinction between
principal and secondary arcs ending in reticulations. Second, in (Janssen and Liu
2021), the authors present an extension of the beta-splitting tree generator (Aldous
1996) that adds reticulations to generated trees in various ways; one of them, called
n-type reticulations, produces orchard networks. It should be noted that none of these
two methods generates the networks in an unique way, and in particular they cannot
be used to attack the problem of its counting. The situation for tree-child networks
is slightly better, since there are previous works on the enumeration (Fuchs et al.
2021; Pons and Batle 2021) and generation (Cardona et al. 2019; Cardona and Zhang
2020) of this kind of networks, but much less efficiently than the method given here
(see Sect. 8); finally, there exist results on the asymptotic behavior of the number of
tree-child networks (Fuchs et al. 2021).

In this paper, we shall focus on the problem of the effective and injective gen-
eration of binary orchard and tree-child phylogenetic networks; that is, no pair of
generated networks will be the same (technically, isomorphic), and we can promptly
get many networks with the number of leaves and reticulations that we want. Our
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method of generation is based on the construction of sequences of pairs of integers
that encode orchard (and, in particular, tree-child) networks as introduced in (Janssen
and Murakami 2021). However, there are different sequences that generate the same
network, so that we choose among them a minimum one that uniquely represents it.
Hence, our strategy to generate orchard (and tree-child) networks is based on the
generation of those minimum sequences.

The paper is organized as follows. In Sect. 2 we give basic definitions used through-
out the manuscript. In Sect. 3 we define orchard networks and how they can be reduced
by means of reducible pairs sequences. In Sect. 4 we show that we can choose a mini-
mum (in a sense to be defined) reducible pairs sequence in order to uniquely identify
an orchard network up to isomorphism. Section5 shows how the reduction of a pair
can be reverted by means of augmentations, and in Sect. 6 it is used to describe how
to recover an orchard network by reversing the whole reduction process, and how
this process, together with the uniqueness of the minimum reducible pairs sequence,
allows us to generate orchard networks injectively. In Sect. 7 we adapt our methods to
generate tree-child networks, which constitute a relevant subclass of orchard networks.
In Sect. 8 we present the implementation we have made of the methods contained in
this paper and exhibit some computational experiments we have performed, including
the computation of the number of binary orchard networks with up to 6 leaves and
8 reticulations. Finally, Sect. 9 contains the conclusions of the manuscript and some
possible directions of future work.

2 Preliminaries

Throughout the paper, for any positive integer n, we denote by [n] the set {1, . . . , n}.
The graphs N = (V , A) we shall work with are directed and acyclic. Given two

nodes u, v ∈ V , if there is an arc with tail u and head v (or from u to v), we denote it
as uv. In that case, u is a parent of v and v is a child of u.

Given a node u ∈ V , indeg u (resp. outdeg u) denotes the number of arcs whose
head (resp. tail) is u. We say that u is elementary if indeg u = outdeg u = 1, and its
suppression consists in removing it (together with its incident arcs) and connecting its
single parent to its single child.

Given a set X of taxa, a (rooted binary) phylogenetic network, or simply a network,
on X , is a directed acyclic graph (V , A)without parallel arcs such that any node u ∈ V
is either:

(i) a root, with indeg u = 0, outdeg u = 1 (and there can only be one root), or
(ii) a leaf, with indeg u = 1, outdeg u = 0, or
(iii) a tree node, with indeg u = 1, outdeg u = 2, or
(iv) a reticulation, with indeg u = 2, outdeg u = 1,

together with a fixed bijection between X and the set of leaves.
We shall hereafter identify the set X of taxa and the set of leaves, and we shall

always assume that X is formed by positive integers, and hence X ⊆ [n] for some n.
Two networks N and N ′ are isomorphic, in symbols N ∼= N ′, if there exists a

bijection φ between the respective set of nodes that reflects and preserves the arcs
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(that is, uv is an arc in N if, and only if, φ(u)φ(v) is an arc in N ′), which is the
identity on the leaves (that is, if l is a leaf, φ(l) = l). Hereafter, we shall simply say
that two networks are equal if they are isomorphic.

In case that X = {l}, for some l ∈ [n], we define the trivial network on {l}, and
denote it by Il , as the network that has two nodes, the root and the leaf l, connected
by an arc.

3 Orchard Networks

Let N = (V , A) be a network on X ⊆ [n] and let (i, j) ∈ X × X with i �= j . Also,
denote by pi , p j the parents of the leaves i and j in N , respectively. We call (i, j)
a cherry if pi = p j , and we call it a reticulated-cherry if pi is a reticulation, p j is
a tree node, and p j is one of the parents of pi . In either case (i, j) is a cherry or a
reticulated-cherry, we say that (i, j) is a reducible pair in N . In order to identify which
kind of reducible pair is (i, j) in N , we will define its character as χN (i, j) = C if it
is a cherry and χN (i, j) = R if it is a reticulated-cherry. Notice that the conditions of
being a cherry and a reticulated-cherry are clearly incompatible, which implies that
χN is well defined. If the network is clear from the context, we will simply write
χ(i, j). To ease notations, if a pair (i, j) has character χ = χN (i, j), we shall write
the annotated pair as (i, j)χ .

Given a network N , we shall denote by RP(N ) the set of reducible pairs of N , by
χN the mapping RP(N ) → {C, R} that gives the character of the reducible pairs, and
by ARP(N ) the set of annotated reducible pairs of N .

If (i, j) ∈ RP(N ), the reduction of (i, j) in N , denoted by N (i, j), is the result of:

• If χ(i, j) = C, then remove the leaf i (and its incoming arc) and suppress pi ,
which is now an elementary node.

• If χ(i, j) = R, then remove the arc p j pi and then suppress pi and p j , which are
now elementary nodes.

Given a sequence of pairs of integers S = (s1, . . . , sk) which, for brevity, we will
write as S = s1 . . . sk , with st = (it , jt ) and it , jt ∈ [n], of length k ≥ 1, we say that
S is a reducible pairs sequence in N if:

• s1 is reducible in N .
• For every t ∈ {2, . . . , k}, st is reducible in (. . . (Ns1)s2 . . .)st−1 .

In such a case, we shall define the reduction of N with respect to S as (. . . (Ns1)s2 . . .)sk

and it will be denoted by NS .
Moreover, we say that S is complete if NS = Il for some l ∈ X and, in case one

such complete sequence exists, we call N an orchard network (Erdős et al. 2019;
Janssen andMurakami 2021). We shall also consider the trivial networks Il as orchard
networks, corresponding to the case when the sequence S is empty. Notice that trivial
networks are the only orchard networks that have a single leaf.

The fundamental result that allows one to classify orchard networks using com-
plete reducible pairs sequences is the following, which is adapted from (Janssen and
Murakami 2021, Corollary 1).
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1 2 3 4

N

1 2 3 4 1 2 3 4 2 3 4 2 4 4

I4

Fig. 1 An orchard network N and the set of intermediate networks obtained by (cherry or reticulated-
cherry) reductions until reaching NS = I4, the reduction of N with respect to the complete sequence
S = (3, 1)(3, 2)(1, 2)(3, 4)(2, 4). For instance, the second network is N (3,1), the result of the reduction of
(the reticulated-cherry) (3, 1) in N

Theorem 1 Let S be a complete reducible pairs sequence for two orchard networks
N and N ′. Then, N ∼= N ′.

Notice, however, that the complete reducible pairs sequence for an orchard net-
work is not unique. For instance, Fig. 1 shows an orchard network N together
with the networks that are obtained by application of the reductions in the
sequence S = (3, 1)(3, 2)(1, 2)(3, 4)(2, 4), but it is easy to check that S′ =
(3, 1)(3, 4)(2, 3)(1, 3)(3, 4) is another complete reducible pairs sequence for N .

4 Minimum Reducible Pairs Sequences

As observed before, there may exist different complete reducible pairs sequences for
a given orchard network. Our goal in this section is to define a unique representative
among all sequences giving the same network.

Let (i, j), (i ′, j ′) be two pairs of different integers. We say that (i, j) ≤ (i ′, j ′) if
i < i ′ or i = i ′ and j ≤ j ′. If (i, j) ≤ (i ′, j ′) and (i, j) �= (i ′, j ′), we simply write
(i, j) < (i ′, j ′).

Given two sequences of pairs of integers of the same length, S = s1 . . . sk and S′ =
s′
1 . . . s′

k , we say that S < S′ if, for some l ∈ [k]we have that s1 = s′
1, . . . , sl−1 = s′

l−1
and sl < s′

l .
It is easy to check that the relations just defined are total orders (on pairs and

sequences of pairs of fixed length, respectively).
Given a non trivial orchard network N , consider the set RP(N ) of reducible pairs

of N . We define the minimum reducible pair of N , MRP(N ), as the minimum (with
respect to the ordering just defined) pair in RP(N ). Also, we denote by CRS(N ) the
set of complete reducible pairs sequences of N , and we define the minimum com-
plete reducible pairs sequence of N , MCRS(N ), as the minimum (with respect to the
ordering just defined) of CRS(N ).

Following the example of the two complete reducible pairs sequences S =
(3, 1)(3, 2)(1, 2)(3, 4)(2, 4) and S′ = (3, 1)(3, 4)(2, 3)(1, 3)(3, 4) for the orchard
network N depicted in Fig. 1, notice that since (3, 2) < (3, 4) then S < S′. In fact, it
can be checked that MCRS(N ) = S.
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Notice that all the complete reducible pairs sequences of a given orchard network
have the same length, since this length is equal to |X | + r − 1, where r is the number
of reticulations of N . We show that the two minimums just defined are related.

Proposition 2 Let N be a non trivial orchard network. Then, the first pair inMCRS(N )

isMRP(N ).

Proof Let s be the first pair in S = MCRS(N ) and s′ = MRP(N ). Obviously, s ∈
RP(N ) and, from the definition of MRP(N ), it follows that s′ ≤ s. Due to (Erdős et al.
2019, Proposition 4.1), the sequence with the single pair s′ can be extended to give
a complete sequence S′ ∈ CRS(N ). Since the minimum complete sequence is S, we
have that S ≤ S′, and hence s ≤ s′. Therefore, s = s′ and the result is proved. 
�

WedefineS(X , r) as the set whose elements are the sequencesMCRS(N ) for every
orchard network N over X with exactly r reticulations.

Proposition 3 There is a bijection between S(X , r) and the set of orchard networks
over X with exactly r reticulations.

Proof The result follows from Theorem 1 and the unicity of MCRS(N ). 
�

5 Augmentation of Networks

In this section, we present an augmentation construction, which is the inverse of the
reduction defined before, and show how we can determine the ARP of the obtained
network from that of the original network.

Throughout this section we consider that N is a network on X ⊆ [n] and (i, j) ∈
[n] × [n] is a pair of integers with i �= j and j ∈ X .

We define the augmentation of (i, j) in N , denoted by (i, j)N , as the result of:

• if i /∈ X , create a new (leaf) node i , subdivide the arc ending in j creating an
elementary node p j , and add the arc p j i .

• if i ∈ X , subdivide both arcs ending in i and j creating elementary nodes pi and
p j , and add an arc p j pi .

Similarly as in the reduction case, we shall define the augmentation of an orchard
network N (which could be a trivial network Il )with respect to a sequence S = s1 . . . sk
as s1( . . . (sk−1(sk N ))) and it will be denoted by SN .

Notice that (i, j) is a cherry in (i, j)N , in symbols χ(i, j) = C, when i /∈ X , and
(i, j) is a reticulated cherry in (i, j)N , in symbols χ(i, j) = R, when i ∈ X . Then,
the augmenting operation is the inverse of the reduction operation, in the sense that
(i, j)(

N (i, j)
) ∼= N . This leads to present an alternative definition for orchard networks

as those that can be obtained by an augmentation of a trivial network Il .
Note also that if N = S Il (for some l ∈ [n]), then necessarily the last pair in S must

be (i, l) (for some i ∈ [n]). Hence, l is determined by S and can be omitted from Il .
Therefore, from now on we will simply write N = S I .

We describe now how one can compute ARP((i, j)N ) from ARP(N ). That is, we
show how the cherries and reticulated cherries of N ′ = (i, j)N can be found from the
knowledge of those of N . Some remarks are due.
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Fig. 2 Support picture for the
case x = i and y �= j . In the
left, (x, y) is a cherry in N . In
the right, (x, y) is a reticulated
cherry in N . The dashed arrow
indicates the added arc to
transform N into N ′ by the
augmentation operation. Arcs
whose tips are not explicitly
drawn go from top to bottom

j x = i y

p

j x = i y

p

1. It is clear that the augmentation is a local operation; more precisely, a cherry (resp.
reticulated cherry) in N that is disjoint from (i, j) keeps being a cherry (resp.
reticulated cherry) in N ′.

2. One only needs to check if the augmentation operation makes that some reducible
pair disappears or changes its character (passes from cherry to reticulated cherry
or viceversa), and if some new reducible pair appears. As for this last case, notice
that the only reducible pair that can appear is (i, j).

Hence, we shall take any pair (x, y) and decide if it is a reducible pair in N ′ (that
is, whether or not (x, y) ∈ RP(N ′)) and, in such a case, if either (x, y)C ∈ ARP(N ′)
or (x, y)R ∈ ARP(N ′) (equivalently, the value of χN ′(x, y)):

• Case {x, y} = {i, j}:
– Case i /∈ X : Both (i, j) and ( j, i) are cherries in N ′ and hence (i, j)C, ( j, i)C ∈
ARP(N ′).

– Case i ∈ X : Now (i, j) is a reticulated cherry and hence (i, j)R ∈ ARP(N ′),
but ( j, i) /∈ RP(N ′).

Note that from now on we can restrict ourselves to pairs (x, y) in RP(N ), since no
other new pairs can appear.

• Case {x, y} ∩ {i, j} = ∅: From the local character of augmentation, (x, y) ∈
RP(N ′) and χN ′(x, y) = χN (x, y).

• Case x = i, y �= j (see Fig. 2): If (x, y) is a cherry in N , say that p is their
common parent, then in N ′ the arc pi = px is split introducing a node which
will be a reticulation; hence, (x, y) is a reticulated cherry in N ′. If (x, y) is a
reticulated cherry in N , then the parent of y will no longer be a grandparent of
x = i in N ′ (since the arc leading to i is split in two). In brief, (x, y)R ∈ ARP(N ′)
if (x, y)C ∈ ARP(N ), and (x, y) /∈ RP(N ′) otherwise.

• Case x �= j, y = i (see Fig. 3): The same argument as in the previous case gives
that if (x, y) is a cherry in N , then (y, x) (notice the transposition) is a reticulated
cherry in N ′ (and hence (x, y) /∈ RP(N ′)). Note that, if (x, y) is a cherry of N ,
so is (y, x), and hence the fact that (y, x)R belongs to ARP(N ′) will be covered
by the application to the previous case applied to (y, x). As before, if (x, y) is a
reticulated cherry of N , then it is no longer reducible in N ′. Therefore, in either
case we have that (x, y) /∈ RP(N ′).

123



10 Page 8 of 18 G. Cardona et al.

Fig. 3 Support picture for the
case x �= j and y = i

x y = i j

p

x y = i j

p

Fig. 4 Support picture for the
case x �= i and y = j

x y = j i

p

x y = j i

p

• Case x �= i, y = j (see Fig. 4): Let py = pj be the arc leading to y = j ; this arc
is split in N ′ by introducing a node that will be a tree node; this implies that (x, y)
will no longer be reducible in N ′ and hence (x, y) /∈ RP(N ′).

• Case x = j, y �= i : The same argument as in the previous case, taking now the
arc leading to x = j implies that (x, y) /∈ RP(N ′).
We can summarize these computations in the following result.

Theorem 4 Let N be an orchard network on X ⊆ [n], and (i, j) ∈ [n] × [n] a pair
with i �= j and j ∈ X. Consider the set of pairs (x, y) ∈ [n] × [n] such that one of
the following conditions hold:

1. (x, y) ∈ RP(N ), and {x, y} ∩ {i, j} = ∅,
2. (x, y) ∈ RP(N ), i = x, j �= y, and χ(x, y) = C,
3. (x, y) = (i, j),
4. (x, y) = ( j, i), and i /∈ X.

Annotate these pairs with the character χ ′(x, y) given, in each case, by:

1. χ ′(x, y) = χ(x, y),
2. χ ′(x, y) = R,
3. χ ′(x, y) = C if i /∈ X, and χ ′(x, y) = R if i ∈ X,
4. χ ′(x, y) = C.

Denote by (i, j)ARP(N ) the set of annotated pairs that is obtained by application of
the procedure above. Then, (i, j)ARP(N ) = ARP((i, j)N ).

As a result of the last theorem, in order to compute the set of annotated reducible
pairs of the augmentation of a network, it is enough to traverse the annotated reducible
pairs of the network.
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The next proposition shows that, given S = MCRS(N ), it can be checked if
(i, j)S = MCRS

(
(i, j)N

)
using only the information in ARP(N ), without the need

for knowing N itself.

Proposition 5 Let S = MCRS(N ). Then, (i, j)S = MCRS
(

(i, j)N
)
if and only if

(i, j) = MRP
(

(i, j)N
)
.

Proof It is a direct consequence of Proposition 2. 
�

6 Augmentation Sequences and Generation of Orchard Networks

The goal of this section is to present an algorithm to generate the set of orchard
networks over a set [n] with exactly r reticulations. Thanks to Proposition 3, this is
equivalent to computing S([n], r). Our strategy is to build these sequences starting
with sequences of length one and, step by step, finding all possible pairs that can be
prepended in order to get the sequences in S([n], r).

Let S = s1 . . . sk be a sequence of pairs of integers, say st = (it , jt ) where t =
1, . . . , k. We call the support of S the set Supp(S) = {i1, j1, . . . , ik, jk}. For every
t = 1, . . . , k, we denote by St the suffix st . . . sk . We say that a sequence S as above is
an augmentation sequence if for each t = 1, . . . , k − 1, we have that jt ∈ Supp(St+1)

and it �= jt . We remark that, although the formulation is not exactly the same, what
we call augmentation sequences corresponds to cherry-picking sequences in (Janssen
and Murakami 2021, Definition 6).

It is clear that given an augmentation sequence S, we can consider the orchard net-
work N = S I , and also that S will be a complete reducible pairs sequence for N . From
now on, all properties that can be defined for networks (taxa, number of reticulations,
…) will be defined for augmentation sequences by applying them on the network
that the sequence generates. For instance, we can define MRP(S) := MRP(S I ) and
MCRS(S) := MCRS(S I ). Note also that some of the properties can be found with-
out having to construct the network itself. For instance, the number of reticulations of
S = (i1, j1) . . . (ik, jk), which by definition is the number of reticulations of S I can be
found counting for how many indices t = 1, . . . , k − 1 we have that it ∈ Supp(St+1).
Also, using Theorem 4 recursively, we can compute ARP(S).

We shall say that an augmentation sequence S is aminimum augmentation sequence
if S = MCRS(N ) for some network N . It is clear that it happens exactly when
S = MCRS(S), and recall that MCRS(S) = MCRS(S I ). This provides an alternative
definition for S(X , r) as the set of augmentation sequences that are stable under
application of MCRS, with support X and with r reticulations.

These notations allow us to translate many properties that have been stated in terms
of orchard networks into the language of sequences. For instance, Propositions 2 and 5
can be rewritten as follows.

Proposition 6 Let S be a minimum augmentation sequence. Then:

1. The first pair in S isMRP(S).
2. Given a pair (i, j)with j ∈ Supp(S), (i, j)S is aminimumaugmentation sequence

if, and only if, (i, j) = MRP((i, j)S).
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We give now two results that characterize the suffixes of minimum augmentation
sequences and, in particular, show that the last pair in such a sequence has a well
determined form.

Lemma 7 Let S = s1 . . . sk be a minimum augmentation sequence. Then, every suffix
St = st . . . sk (t = 1, . . . , k) is a minimum augmentation sequence.

Proof It is clear that St ∈ CRS(St ). If there existed some S′
t ∈ CRS(St ) with S′

t < St ,
then the concatenation S′ = s1 . . . st−1S′

t would be strictly smaller than S and also
S′ ∈ CRS(S), against the minimality of S. 
�
Proposition 8 Let (i, j) be the last pair in a minimum augmentation sequence S ∈
S([n], r). Then, j = n.

Proof WriteMCRS(N ) as S = (i1, j1) . . . (ik, jk), where (ik, jk) = (i, j) and assume
that j �= n.

Suppose first that i = n and j < n. From Lemma 7, (n, j) is a minimum complete
reduction sequence (of the cherry (n, j) I ), but in this case ( j, n) is also a complete
reduction sequence, and ( j, n) < (n, j), leading to a contradiction.

Now, we can assume that i, j < n. Let t < k be such that (it , jt ) is the last pair
where one of its entries is n (it exists because S ∈ S([n], r), and hence n ∈ Supp(S)).
Now, St+1 = (it+1, jt+1) . . . (ik, jk) is a minimum augmentation sequence thanks to
Lemma 7. Since n does not belong to Supp(St+1), but does belong to the support of
St = (it , jt )St+1, we have that it = n and jt < n. Moreover, (n, jt ) is a cherry in
N ′ = St I . Thanks again to Lemma 7, St = (n, jt )St+1 is a minimum augmentation
sequence and, thanks to Proposition 2, (n, jt ) = MRP(N ′). However, since (n, jt )
is a cherry of N ′, then ( jt , n) is also a cherry, and ( jt , n) < (n, jt ), leading to a
contradiction. 
�

For every m ∈ {1, . . . , n − 1} we define the set

Sm([n], r) = {S̃ | S̃ ∈ S([n], r) and S̃ ends in (m, n)}.

A direct consequence of Proposition 8 is the following result, that states that the
computation of S([n], r) is reduced to the computation of the subsets Sm([n], r).
Proposition 9 S([n], r) = ⊔n−1

m=1 Sm([n], r).
We know, from Proposition 8, the form of the last pair in a minimum augmenta-

tion sequence. It is also clear that any such pair (m, n) is a minimum augmentation
sequence. Our next result shows how minimum augmentation sequences can be
extended by prepending pairs of integers in order to generate other minimum
augmentation sequences.

Proposition 10 Let S′ = (i, j)S be an augmentation sequence. Then, S′ is a minimum
augmentation sequence if, and only if, S is a minimum augmentation sequence and
(i, j) = MRP((i, j)S). In such a case, say that S ∈ S(X , r) and S′ ∈ S(X ′, r ′). If
i ∈ Supp(X), then r ′ = r + 1 and X ′ = X; otherwise, r ′ = r and X ′ = X ∪ {i}.
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Proof The non-trivial parts of the statement follow from Proposition 6. 
�
Using these results, is easy to give an algorithm that generates all the orchard

networks over a set [n] of taxa and with a given number r of reticulations. Indeed, it is
enough to generate, for each positive integer m < n, the set Sm([n], r), and the latter
can be generated using Algorithm 1.

Algorithm 1 Computation of Sm([n], r)
1: Start with the sequence S = (m, n), of length 1, with support X = {m, n}, and whose set of annotated

reducible pairs is ARP = ARP(S) = {(m, n)C, (n,m)C}.
2: Recursively, given a sequence of pairs S, with support X , and given also the set ARP = ARP(S), find

all possible pairs (i, j) such that (i, j) = MRP((i, j)S). For each such (i, j), consider the extended
sequence S′ = (i, j)Swith support X ′ = S∪{i} andwith set of annotated reducible pairsARP′ = sARP.

3: If X = [n] and the length of the obtained sequence is |S| = n + r − 1, then yield the sequence S.

Theorem 11 The set of sequences yielded by the Algorithm 1 is S([n], r).
Proof Let S be a sequence yielded by the algorithm. The condition that S has support
[n] and has r reticulations is guaranteed by the condition in step 3 of the algorithm. The
condition that S is a minimum augmentation sequence follows by applying recursively
Proposition 10, thanks to the condition in step 2, and with the starting condition in
step 1 being justified by Proposition 9.

Conversely, if S = s1 . . . sk ∈ S([n], r), then sk = (m, n) for some m (thanks
to Proposition 9), and it will be considered in step 1. At each step, considering the
suffix St = st · · · sk in step 2, the pair st−1 will fulfill the conditions (thanks to
Proposition 10), and hence St−1 = st−1st . . . sk will be considered in the next iteration.
Finally, in step 3, the sequence S will be yielded. 
�

Some remarks are due:

1. The set sARP in step 2 can be computed using Theorem 4, and it can be done in
linear time with respect to the length of S. Also, if the pairs in ARP are stored
increasingly ordered with respect to the lexicographic ordering, then the computa-
tion of sARP can be performed so that sARP keeps being ordered and, in particular,
its minimum element can be found in constant time.

2. Another advantage of storing the pairs in ARP ordered is that, in order to determine
if (i, j) = MRP((i, j)S), one does not need to compute the whole set (i, j)ARP.
Indeed, in the process of building (i, j)ARP, at most three pairs in ARP can dis-
appear, and hence one only needs to take the first four elements in ARP, decide
which of them belong to (i, j)ARP, and test if (i, j) is smaller than each of those.

3. Given a minimum augmentation sequence S, it is possible that it can not be
extended to another minimum augmentation sequence (i, j)S if we want to
keep the number of reticulations. For instance, if we consider the sequence
S = (1, 2)(2, 4) ∈ S2({1, 2, 4}, 0), the only possible extensions that keep the
number of reticulations are obtained by prepending one of the pairs (3, 1), (3, 2)
or (3, 4); however, none of these sequences is minimum, as can be easily checked
in each case.
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4. The search of extensions can be pruned. For instance, if at a given stage, the
sequence S has r reticulations, the only pairs (i, j) that have to be considered are
those with i /∈ Supp(S), since otherwise the number of reticulations would be
greater than r .

5. Also in the case that we are adding a cherry (that is, when i /∈ Supp(S)) we can
restrict ourselves to the case that i < j , since otherwise ( j, i)would be a reducible
pair in (i, j)S I , and since ( j, i) < (i, j), it is impossible that (i, j) = MRP((i, j)S).

6. The algorithmcanbe easilymodified, so that instead of generating all the sequences
with exactly r reticulations, it generates all sequences with at most r reticulations.

7 Generation of Tree-Child Networks

A network is tree-child if every node that is not a leaf has a child that is a tree
node (Cardona et al. 2009). For brevity, we shall simply say that each interior node
has a tree child.

The same algorithmwe have described to generate orchard networks can be adapted
to generate all tree-child networks over [n], by adding some conditions to ensure that
the generated sequences correspond to tree-child networks.

First, we need to decide when the reductions and augmentations defined in the
previous sections produce tree-child networks.

We start with the following result, adapted from (Bordewich and Semple 2016,
Lemma 4.1), that states that reductions of tree-child networks are tree-child networks.

Lemma 12 Let N be a tree-child network. Then, N is an orchard network and, if
(i, j) ∈ RP(N ), then N (i, j) is also a tree-child network.

In order to decide whether or not an augmentation of a tree-child network is tree-
child, we need to introduce new terminology. Let N be a network over X ⊆ [n]. Then,
we define the state σN (i) of i ∈ [n] as follows:
• if i /∈ X , then σN (i) = N;
• otherwise, if the parent of i is a reticulation, then σN (i) = P;
• otherwise, if the sibling of i is a reticulation, then σN (i) = S;
• otherwise, σN (i) = T.

If the network is clear from the context we shall simply write σ(i) instead of σN (i).
Then, σN : [n] → {N, P, S, T} is a mapping that gives the state of each i ∈ [n] in N .
We also define the state of a network N as σ(N ) = (σN (1), . . . , σN (n)). Finally, if S
is an augmentation sequence, we shall denote σ(S) = σ(S I ).

The following result gives the conditions under which an augmentation produces a
tree-child network.

Theorem 13 Let N be an orchard network. Then, (i, j)N is a tree-child network if, and
only if, N is tree-child and σN (i) ∈ {N, T}.
Proof Let N ′ = (i, j)N . From Lemma 12 we know that if N ′ is tree-child, N is also
tree-child.
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Now, suppose that σN (i) = P. Then, i is a leaf in N and its parent pi is a reticulation.
When applying the augmentation (i, j), the arc pi i is split introducing a new node
v that shall become a reticulation. Then, in N ′, the only child of pi is v, which is a
reticulation. Therefore, N ′ is not tree-child.

Similarly, suppose that σN (i) = S. Then, i is a leaf in N , its parent pi is a tree node
and its sibling si is a reticulation. Again, in the process of applying the augmentation
(i, j), the arc pi i is subdivided introducing a new reticulation v. Thus, the children of
pi in N ′ are v and si , both reticulations, so N ′ is not tree-child, against the hypothesis.
Therefore, σN (i) /∈ {P, S}, which is equivalent to σN (i) ∈ {N, T}.

Conversely, assume that N is tree-child. Due to the local nature of the augmentation
processes, the condition that each node (other than a leaf) in N ′ has a tree child
needs only to be tested for the nodes that are adjacent to the leaves involved in the
augmentation.

First, assume that σN (i) = N, and let p j be the parent of j in N . The augmentation
process creates a tree node v in N ′ with children i, j and parent p j . Now, p j keeps
having a tree child (the node v), and the new internal node v has both children that are
tree nodes (the leaves i and j). Hence, the condition of being tree-child is preserved.

Second, assume that σN (i) = T, which implies that i ∈ X and hence the augmen-
tation process creates two elementary nodes: u (a tree node) between j and its parent
p j , and v (a reticulation) between i and its parent pi . Also, since σN (i) = T, we have
that the sibling si of i in N (that is, the child of pi in N different from i) is a tree node.
In N ′, p j has u as a tree child, pi has si , u has j , and v has i . Hence, the condition of
being tree-child is preserved. 
�

We describe now how to compute σ((i, j)N ) from σ(N ). For simplicity, we write
N ′ = (i, j)N , σ = σN and σ ′ = σN ′ , and we will restrict to the cases of interest that
σ(i) ∈ {N, T}.
• Case σ(i) = N. In this case, (i, j) is a cherry in N ′, and therefore σ ′(i) = σ ′( j) =
T. From the local behavior of the augmentation, for any other leaf l in N , its parent
(and its sibling, in case it has one) remains the same. Therefore, we conclude that
σ ′(i) = σ ′( j) = T and σ ′(l) = σ(l) for all l ∈ [n]\{i, j}.

• Case σ(i) = T. In this case, (i, j) is a reticulated cherry in N ′, hence σ ′(i) = P
and σ ′( j) = S. Thanks again to the local behaviour of the augmentation, the state
of a leaf l in N ′ can only differ from its state in N if its parent or sibling change
from being a tree node to a reticulation (or viceversa). Hence, only siblings of i and
j have to be taken into consideration. If j was the sibling of another leaf l in N ,
then l would still have a sibling in N ′ that is a tree node (namely, the parent of j in
N ′) and hence the state of l would not change. If i was the sibling of another leaf l
in N , which can be written as (i, l)C ∈ ARP(N ), then l would change from having
a sibling that is a tree node (the leaf i) to having a sibling that is a reticulation (the
parent of i in N ′). Hence σ(l) = T but σ ′(l) = S.

We can summarize these computations in the following result.

Theorem 14 Let N be a tree-child network over X ⊆ [n] with state function σ . Let
j ∈ X and i ∈ [n], i �= j , with σ(i) ∈ {N, T}. Consider the function (i, j)σ : [n] →
{N, P, S, T} defined as follows:
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• If σ(i) = N,

– (i, j)σ (i) = (i, j)σ ( j) = T,
– (i, j)σ (l) = σ(l) for all l ∈ [n]\{i, j}.

• If σ(i) = T,

– (i, j)σ (i) = P,
– (i, j)σ ( j) = S,

– (i, j)σ (l) =
{
S, if (i, l)C ∈ ARP(N ),

σ (l), otherwise
for all l ∈ [n] \ {i, j}.

Then (i, j)N is a tree-child network over X ∪ {i} with state function (i, j)σ .

We denote by T (X , r) the subset of S(X , r) formed by sequences S such that S I is
a tree-child network. Thanks to Lemma 12, the set T (X , r) is in bijection with the set
of tree-child networks over the set of taxa X and with r reticulations. Also, notice that
T ([n], r) = ⊔n−1

m=1 Tm([n], r),whereTm([n], r)denotes, for everym ∈ {1, . . . , n−1},
the subset ofSm([n], r) formedby sequences S such that S I is tree-child. Finally, notice
that in the case of tree-child networks, the number of reticulations r is bounded by
n − 1 (Cardona et al. 2009, Proposition 1).

Then, we can modify the algorithm that generates all orchard networks over [n]
with r reticulations to generate all tree-child networks over [n] with r reticulations,
provided that r < n.

Indeed, for every positive integer m < n, we can generate the sets Tm([n], r) using
Algorithm 2.

Algorithm 2 Computation of Tm([n], r)
1: Start with the sequence S = (m, n), of length 1, with support X = {m, n}, with set of annotated reducible

pairs ARP = ARP(S) = {(m, n)C, (n,m)C} and with state σ = σ(S) whose entries are all N except the
m-th and n-th entry which are T.

2: Recursively, given a sequence of pairs S (and assuming that S I is tree-child), with support X , and given
also the set ARP = ARP(S) and the state σ = σ(S), find all possible pairs (i, j) such that σ(i) ∈ {N, T}
and (i, j) = MRP((i, j)S). For each such (i, j), consider the extended sequence S′ = (i, j)S with
support X ′ = S ∪ {i}, with set of annotated reducible pairs ARP′ = sARP and with state σ ′ = sσ .

3: If X = [n] and the length of the obtained sequence is |S| = n + r − 1, then yield the sequence S.

Theorem 15 The set of sequences yielded by Algorithm 2 is T ([n], r).
Proof The result follows using the same reasoning as in Theorem 11, using now
Theorem 13 to ensure that the yielded networks are tree-child. 
�

Some remarks follow:

1. The state function σ ′ in step 2. can be computed using Theorem 14, and notice
that the information in ARP is also needed.

2. As in the case of orchard networks, the algorithm can be adapted to yield all
tree-child networks over [n] with at most r reticulations. In particular, since tree-
child networks over [n] have at most n − 1 reticulations (Cardona et al. 2009,
Proposition 1), we can generate all of them.
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3. The algorithm given for generating tree-child networks can be adapted to generate
all stack-free (Semple and Simpson 2018) orchard networks, simply checking if
σ(i) �= P instead of checking if σ(i) ∈ {N, T}.

8 Computational Experiments

The algorithms to generate orchard and tree-child networks described in this paper have
been implemented in C. Source files, documentation and examples are available in the
repository https://github.com/gerardet46/OrchardGenerator. Notice that the output of
the implementation are complete reducible pairs sequences, given as strings, and that
they can be used as input to build and manipulate networks using the Python package
PhyloNetworks (Cardona 2023).

There are some interesting details to comment. First, as we said, the set ARP
is kept ordered, and the cherries (i, j) with i > j are ignored. Taking this
into account, notice that if N is an orchard network on X ⊆ [n], it holds that
|ARP(N )| ≤ 2

3 |X | ≤ 2
3n (and there is always an orchard network such that the

equality holds). Therefore, the set ARP can be implemented as a static array, which
is much faster than a dynamic one. Also, given a sequence S = s1 . . . sk , we store
the set {ARP(sk),ARP(sk−1sk), . . . ,ARP(S)} for faster access when trying different
candidate extensions.

Notice also that the only data needed to store the networks is X , S and ARP (and
σ for tree-child networks), but there is no need to store the network N itself. Also,
the operations involved in the algorithm are very simple, so they could be easily
implemented in C, optimizing the performance.

We have also implemented a random orchard network generator that follows the
same lines of the algorithm to generate all the networks, but choosing a random pair at
each step in order to produce a sequence, instead of trying all the candidates. Notice
however that this generator does not generate networks uniformly. Indeed, even at the
first step, the number of MCRS ending in (n − 1, n) is greater than the number of
those ending in (1, n).

Finally, the algorithm can be parallelized, considering a partition of suffixes and
creating a process for each subset of suffixes, which generates all sequences ending
in a suffix from the corresponding subset.

Using this implementation, we have computed the number of orchard networks for
small number of leaves and reticulations, shown in Table 1. As for the generation of
tree-child networks, it is worth to mention the speed of the computation compared to
previously implemented methods. Indeed, Table 2 shows the time of execution for the
generation of all tree-child networks with n = 5 leaves using the implementations of
the results in this paper compared to those in (Cardona et al. 2019) and (Cardona and
Zhang 2020).
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Table 1 Number of orchard networks with n leaves and r reticulations, for 2 ≤ n ≤ 6 and 0 ≤ r ≤ 8,
together with the total time used to compute these numbers, for each value of n

r\n 2 3 4 5 6

0 1 3 15 105 945

1 2 21 228 2805 39330

2 4 132 2832 57150 1185300

3 8 804 32880 1054200 31481280

4 16 4848 370320 18520320 783492840

5 32 29136 4107648 316583280 18766151280

6 64 174912 45197952 5323207200 438647126400

7 128 1049664 495183360 88589126400 10087314094080

8 256 6298368 5412422400 1464596709120 229383137571840

Time 0.00s 0.02s 5.99s 1693.39s 470828.27s

Table 2 Time needed for the generation of all tree-child networks with n = 5 leaves using different
implementations

Implementation in Python from Cardona and Zhang (2020) 9m19.249s

Implementation in Python from Cardona et al. (2019) 7m23.162s

Implementation in C of the current paper 0m00.056s

9 Conclusions

Phylogenetic networks model evolutionary relationships among organisms and over-
come the limitations of using phylogenetic trees by allowing the representation of
reticulate processes.

In this paper, we have considered the problem of the efficient and injective gen-
eration of all orchard and tree-child networks (with a given number of leaves and
reticulations), two special classes of phylogenetic networks with biological relevance
(Kong et al. 2022). Our method is based on considering sequences of pairs of integers
that characterize those networks (Janssen and Murakami 2021) and finding a subset
of those (called minimum complete reducible pairs sequences) that characterize the
networks injectively.

To this end, we have first shown that such a sequence must end in a pair (m, n),
where n is the desired number of leaves and m < n, and that we can iteratively
extend the sequences by prepending new pairs to generate the sequences that encode
the networks. This method is efficient since there is no need to construct the network
itself in order to check if the candidate sequence effectively corresponds to an orchard
(or tree-child) network.

The implementation of the algorithms described in the paper allows a fast generation
of the sequences (and implicitly of the networks). For example, our implementation
is capable of generating all the sequences corresponding to orchard networks with
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4 leaves and at most 8 reticulations, of which there are about 6 billions of them, in
approximately 6 s.1 For tree-child networks, we have shown that our method is much
faster than other methods previously published and implemented.

There are some natural questions that arise as a possible future work, mainly in
the direction of extending our results to the generation of other classes of phyloge-
netic networks. One of the possible generalizations is removing the binary condition
and generating semi-binary and non-binary (orchard and tree-child) networks. In this
sense, the results in (Janssen andMurakami 2021) could be applied, considering more
possible annotations of pairs, in order to cover the six different reductions that this
paper considers. Another direction could be trying to use other topological conditions
on the networks to be generated. For instance, and as we have commented at the end
of Sect. 7, only a small change in our method is needed in order to generate stack-free
orchard networks. Another potential subclass of networks where our methods could
apply is the class of normal networks (Willson 2010), which is a subclass of tree-child
networks where shortcuts are not allowed (that is, if two nodes are linked by an arc,
then they cannot be connected by another path).
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