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Abstract
We propose a two stages mosquito egg-larvae model with seasonality as a simplifica-
tion of a four stages one. For the simplified model we characterize the dynamics in
terms of the vectorial reproduction number, R0, obtaining extinction if R0 ≤ 1 and
convergence to a unique positive periodic orbit if R0 > 1. We illustrate each case with
an example, by providing general conditions on the periodic coefficients for its occur-
rence. These examples are further developed using numerical simulations where the
periodic parameters satisfy the conditions obtained. In the R0 > 1 case, real climatic
data is used for inferring the parameter behaviour. For the four stage system, using
alternative oviposition rate functions, we present a result which generalizes others
given for models with delays and even with diffusion to the case in which competition
between the larvae is introduced. The analytical study of our initial four stages system
when R0 ≥ 1 remains open, since we were not able to prove that in this case the
system is dissipative.

Keywords Mosquito life cycle · Systems with seasonality · Periodic attractor ·
Monotone systems · Vectorial reproduction number

B Carlota Rebelo
mcgoncalves@fc.ul.pt

Jesús Bellver-Arnau
jesus.bellver@ceab.csic.es

Alessandro Margheri
amargheri@fc.ul.pt

1 Laboratoire J.-L. Lions, CNRS, Inria, Université de Paris, Sorbonne Université, 75005 Paris,
France

2 Present Address: Centre d’Estudis Avançats de Blanes (CEAB), Consejo Superior de
Investigaciones Científicas (CSIC), Carrer d’Accés a la cala Sant Francesc 14, 17300 Blanes,
Spain

3 Departamento de Matemática and CMAFcIO, Faculdade de Ciências, Universidade de Lisboa,
1749-016 Campo Grande, Lisbon, Portugal

4 Departamento de Matemática and CEMAT-Ciências, Faculdade de Ciências, Universidade de Lisboa,
1749-016 Campo Grande, Lisbon, Portugal

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-023-01238-0&domain=pdf
http://orcid.org/0000-0001-5818-8892


9 Page 2 of 23 J. B. Arnau et al.

Mathematics Subject Classification 34C25 · 34D20 · 92D25

1 Introduction

Mosquitoes are responsible for transmitting numerous diseases.Different genera trans-
mit different pathogens. Anopheles mosquitoes transmit malaria, Aedes mosquitoes
transmit several virus of the family Flaviviridae, such as dengue, Zika, yellow fever
or West Nile fever, and Culex transmit the Japanese encephalitis virus and West Nile
fever (Tolle 2009), to name a few. These diseases have a combined death toll of approx-
imately 700,000 people annually (OrganizationWHO 2022), making the mosquito the
most dangerous animal in the world, and a cause of concern for public health. Due
to this, different vector control strategies have been used in the past while others are
currently being developed: from the use of pesticides and the physical removal of
breeding sites to more sophisticated techniques involving the release of modified vec-
tors, such as the sterile insect technique (Dame et al. 2009; Lees et al. 2015; Bellini
et al. 2013), or the use of the endosymbiotic bacterium Wolbachia (Mousson et al.
2012; O’Neill et al. 2018; Ong 2021; Tantowijoyo et al. 2020). In order to deploy a
successful control strategy of any kind it is crucial to properly understand how season-
ality affects the mosquito life cycle and its dependence on climatic conditions (Cailly
et al. 2012; Gloria-Soria et al. 2022).

Althoughwithminor variations, everymosquito genera goes through the same basic
life cycle (Crans 2004). This life cycle is composed of two clearly distinct phases: an
aquatic phase, as juveniles, and an aerial phase, as adults. The aquatic phase is on its
turn composed of three stages: egg, larval and pupal. Due to the complexity of the topic
and the numerous factors involved, many details about this life cycle remain unknown.
Among the factors influencing in one way or another the development of the mosquito
we find environmental ones, such as temperature, rainfall, humidity, abundance or
lack of nutrients or the photoperiod (daylight length). On the other hand there are
also intrinsic factors to the species such as larval competition (Reiskind and Lounibos
2009; Bara et al. 2015; Alto et al. 2005), hibernation mechanisms such as the diapause
(a dormant state eggs of some mosquito species can enter to face adverse conditions
Denlinger andArmbruster 2014) or the complex hatching rate response to the presence
of larvae in the environment, where both stimulant and inhibitory mechanisms of the
hatching coexist (Edgerly and Marvier 1992; Livdhal and Futterweit 1983).

Nevertheless, most of these factors, as complex as they may be, have something
in common: they vary periodically during the year, and so does mosquito population.
There are plenty ofworks in the literature correlating variations in temperature, usually
temperature and rainfall, with bursts in mosquito population (Honório et al. 2009;
Lana et al. 2018; Ewing et al. 2019; Tran et al. 2013), which in turn, can give rise
to vector-borne disease epidemic outbreaks (Shen et al. 2015; Mukhtar et al. 2019;
Pliego et al. 2017). On top, meta analysis shows that the main factor affecting the
development rate of mosquitoes is temperature, and that other factors should never be
considered to the exclusion of temperature (Couret and Benedict 2014). Temperature
(or alternatively, rainfall in the regions closest to the equator), present a clear periodic
variation throughout the year. Therefore, understanding, even in a simplified setting,
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the behaviour of mosquito population in a system with periodic coefficients can give
some insight of the intricate puzzle of mosquito life cycle. The approach usually
considered for mechanistic models of ODEs is to get some insights by numerical
simulations of the models, calibrated for specific set of parameters (see e.g. Erickson
et al. 2010, Wang et al. 2016, Cailly et al. 2012). Our aim here is rather to obtain
rigorous general qualitative results for the dynamics of such systems, in the spirit of
the ones presented in Abdelrazec and Gumel (2017). Accordingly, the main focus
of this paper will be the study of a seasonal two stages mosquito egg-larvae model
(in the following represented mathematically by variables (E) and (L) respectively),
proposed as a simplification of a four stage model which appears to be less amenable
to mathematical analysis, and whose dynamics we were not able to characterize. More
precisely, we will address the following system

{
E ′ = bE (t)L − dE (t)E − h(t)E,

L ′ = h(t)E − dL(t)L − c(t)L2,
(1)

with fairly general and biologically meaningful assumptions on the T -periodic coef-
ficients, assumed continuous, nonnegative with positive average on [0, T ]. Therefore,
no assumption on the causes or effects of the complex factors affecting the coeffi-
cients is made a priori. System (1) is the T -periodic version of the, analogous, but
autonomous one studied in Strugarek et al. (2019), where the hatching rate depends
on the larvae. That model was derived from the following four stage one, where also
pupae (P) and adults (A) are considered:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
E ′ = βE A − dE E − hE,

L ′ = hE − dL L − cL2 − τL L,

P ′ = τL L − dP P − τP P,

A′ = τP P − dA A,

(2)

here the functions di , i = E, L, P, A, stand for the death rate at each life stage, τi ,
i = L, P , for the transition rate from each life stage to the next, βE is the oviposition
rate of adult mosquitoes, h the hatching rate which in that paper depended on L and
c the strength of the intraspecific competition between the larvae. In system (1), the
parameters that are denoted the same are equivalent to its counterparts in (2), whereas
bE can be seen as an analogous to the oviposition rate of adult mosquitoes, βE , for this
simplified setting. For the sake of convenience, we will also call "oviposition rate" to
bE .

We point that, although the main focus will be on system (1), in our paper we also
improve one of the results presented in Abdelrazec and Gumel (2017) for a four stage
model, allowing intraspecific competition among larvae.

Our paper is organized as follows: in Sect. 2 we analyze the dynamics of system
(1) and prove that if the vectorial reproduction number R0 is less or equal than one,
then eggs and larvae go extinct. Otherwise, there exists a unique periodic orbit which
attracts all the positive solutions of the system.Aswe do not have an explicit expression
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for R0 depending on the coefficients of the system, we determine conditions which
guarantee that R0 > 1 and after we give an example corresponding to R0 ≤ 1.

Section 3 presents some numerical simulations illustrating the aforementioned
examples. For the R0 > 1 case, two scenarios are presented, corresponding to a trop-
ical and a temperate climate respectively. Climatic data (temperature and rainfall),
thermal responses of Ae. Albopictus’ biological traits, obtained from Mordecai et al.
(2017), Jia et al. (2016), and the rainfall-dependent modeling of the carrying capacity
done in Erguler et al. (2016) are incorporated to obtain the periodic parameters used
in the simulations.

In Sect. 4 we address briefly four stage seasonal models of mosquito population.
For the model considered in Abdelrazec and Gumel (2017), which is a T - periodic
variation of system (2) but with an oviposition rate term that saturates, we show that
the characterization of the dynamics in terms of R0 (extinction if R0 ≤ 1, convergence
to a positive T -periodic orbit if R0 > 1) holds also in the case of competition between
larvae. This result generalizes the analogous one contained in the mentioned paper.

Unfortunately, we were not able to obtain a complete result for our original four
stage model, since we could not prove that the system is dissipative when R0 ≥ 1. In
particular the existence of a globally attracting T -periodic orbit for R0 > 1, although
some numerical simulation suggest a positive answer, remains an open problem.

2 Dynamics of System (1)

In this Section we are interested in the dynamics of solutions of system (1)

{
E ′ = bE (t)L − dE (t)E − h(t)E,

L ′ = h(t)E − dL(t)L − c(t)L2,

E ≥ 0, L ≥ 0 (standing for the amount of Eggs and Larvae respectively), where
bE , dE , dL , h and c are continuous and T -periodic functions, bE , dE , dL and h are
nonnegative, but not identically zero, and c is strictly positive. In Strugarek et al. (2019)
an analogous autonomous model for mosquitoes’ eggs and larvae was considered but
in which hatching depended in a nonlinear way on larval density. Here we opted to
assume that hatching does not depend on larval density, but rather that all coefficients
can be seasonally dependent as there is evidence on the impact of seasonality on the
different coefficients of the system. In particular, we will focus on the dependencies
of the parameters on temperature and precipitation, that we take from Mordecai et al.
(2017), Jia et al. (2016), Erguler et al. (2016). Under these conditions, existence and
uniqueness of solutions of associated Cauchy problems is guaranteed. Note that (0, 0)
is an equilibrium of the system and that we have the following result, where the
inequalities on vectors must be interpreted as holding component-wise:

Lemma 2.1 Let (E(t), L(t)) be a solution of system (1) with initial condition
(E(0), L(0)) ≥ 0. Let I := [0, ω) be its maximal right domain of existence. Then
(E(t), L(t)) ≥ 0 for all t ∈ I .
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Proof The statement follows immediately from the sign condition of the vector field
on the boundary of the first quadrant, namely if (E, L) ≥ (0, 0) then E = 0 ⇒ E ′ ≥ 0
and L = 0 ⇒ L ′ ≥ 0. ��

In the following, and for conciseness, we denote with a superscript m (respectively
M) the minimum (respectively the maximum) of the functions in [0, T ].

Now we prove that our system is dissipative.

Lemma 2.2 The solutions of (1) are defined for each t ≥ 0. Moreover, there exists a
K > 0 such that E(t) + L(t) ≤ K for each t sufficiently large.

Proof We have

d

dt
(E + L) = bE (t)L − dE (t)E − dL(t)L − c(t)L2

= −dE (t)(E + L) + (bE (t) + dE (t) − dL(t))L − c(t)L2

≤ −dE (t)(E + L) +UM ,

where UM is the maximum of (bME + dM
E − dmL )L − cmL2 for L ≥ 0.

Now, using Halanay (1966, Theorem 3.1) and recalling that dE is not identically zero,
we can conclude that all the solutions of

y′ = −dE (t)y +UM

converge to a periodic one ȳ. Hence, there exists ε > 0 such that given a solution y(t)
of this equation, there exists t̄ such that for each t ≥ t̄ we have y(t) ≤ max ȳ+ε := K.
By comparison, considering the solution with y(0) = E(0) + L(0), for each t ≥ t̄
we have (E + L)(t) ≤ K. Finally, taking into account the previous lemma all the
solutions are nonnegative and hence all the solutions are bounded in the future and
consequently defined in the future, that is, for each t ≥ 0. ��

From lemmas 2.1 and 2.2 we get the following:

Corollary 2.3 Let (E(t), L(t)) be a solution of system (1) with initial condition
(E(0), L(0)) ≥ 0, (E(0), L(0)) 	= 0. Then (E(T ), L(T )) > 0.

Proof Since the origin (E, L) = (0, 0) is an equilibrium of system (1), by uniqueness
of solution of the initial value problem for such system, under the assumption of
the corollary we have (E(t), L(t)) 	= (0, 0) for all t ∈ [0,+∞). If E(0) > 0 and
L(0) > 0, taking into account the following inequalities

{
E ′ ≥ −dE (t)E − h(t)E

L ′ ≥ −dL(t)L − c(t)L2 (3)

we get that E(t) > 0 and L(t) > 0 for any t ≥ 0, and the thesis follows. If E(0) >

0, L(0) = 0, let

tL = sup{t ∈ [0, T ] : h(τ ) = 0, for all τ ∈ [0, t]}.
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Since h has positive average on [0, T ], it is tL < T . We note that L(t) = 0 on
[0, tL ] and claim that there exists t̂ ∈ (tL , T ) such that L(t̂) > 0. Otherwise, by
contradiction, it should be 0 = L ′(t) = h(t)E(t) on (tL , T ), which is absurd, since
there exists a positive δ such that tL + δ < T and h(t)E(t) > 0 for t ∈ (tL , tL + δ).

Then, by comparison, using the second inequality in (3) and the initial condition
L(t̂) > 0, we get that L(T ) > 0, and the proof for this case is concluded. The case
L(0) > 0, E(0) = 0 is dealt with analogously. ��

From the previous Corollary we conclude that the T -Poincaré map �T :
[0,+∞)2 → [0,+∞)2 of system (1) given by

(E0, L0) → �T (E0, L0) := (E(T ; E0, L0), L(T ; E0, L0)),

where we denote by (E(·; E0, L0), L(·; E0, L0)) the solution of system (1) such that
(E(0; E0, L0), L(0; E0, L0)) = (E0, L0), iswell defined and is a positivemap.More-
over, we recall that, since the vector field associated to system (1) is smooth in the
(E, L) variables, the same property holds for the map �T .

We give now conditions for the extinction of E and L or for the existence of a
globally asymptotically stable periodic solution of the system (1). As in Abdelrazec
and Gumel (2017), we consider the notion of basic reproduction number for periodic
systems R0 (see Bacaër and Guernaoui 2006, Wang and Zhao 2008), which in this
case can be referred as the vectorial reproduction number. This reproduction number
is the spectral radius of the next generation operator of the population.

With this purpose, we consider the linearization of (1) around the origin (0, 0)

{
u′ = bE (t)v − (dE (t) + h(t))u

v′ = h(t)u − dL(t)v

and set (see Wang and Zhao 2008)

F(t) =
[
0 bE (t)
0 0

]
V = (t)

[
dE (t) + h(t) 0

−h(t) dL(t)

]
.

By (Wang and Zhao 2008, Theorem 2.2), the spectral radius ρ(	F−V ) of the
monodromy matrix associated with the previous linear system satisfies

ρ(	F−V ) > 1 iff R0 > 1, ρ(	F−V ) = 1 iff R0 = 1 and ρ(	F−V ) < 1 iff R0 < 1.

Recall that the monodromy matrix of a T - periodic linear system is its fundamental
matrix evaluated at t = T .

Theorem 2.4 We have that

(a) If R0 ≤ 1 then (E(t), L(t)) → (0, 0).
(b) If R0 > 1 then there exists exactly a unique periodic solution (E∗(t), L∗(t))which

is globally asymptotically stable in R2+ \ {(0, 0)}.
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Proof The result follows from Zhao (2017, Theorem 3.1.2) (see also Zhao 2017,
Theorem 2.3.4). In fact if we consider the vector field

G(t, E, L) = (G1(t, E, L),G2(t, E, L))

:= (bE (t)L − (dE (t) + h(t))E, h(t)E − dL(t)L − c(t)L2)

we have that

(i) G1(t, 0, L) ≥ 0 if L ≥ 0 and G2(t, E, 0) ≥ 0 for E ≥ 0 for each t ≥ 0,
(ii) ∂G1

∂L ≥ 0 and ∂G2
∂E ≥ 0,

(iii) G(t, E, L) is strictly subhomogeneous, that is

G(t, αE, αL) ≥ αG(t, E, L) and G(t, αE, αL) 	= αG(t, E, L)

for α ∈ (0, 1) and t ≥ 0, E > 0, L > 0.

Wemention that as stated in Zhao (2017, Page 67), (iii) implies that the Poincaré map
is strictly subhomogeneous. Also by Corollary 2.3 we know that the Poincaré operator
�T (E, L) is positive. In order to prove that �T is also strongly monotone, we start by
observing that the Jacobian matrix of this operator, D�T (E, L), in a point (E0, L0) is
the value at time t = T of the fundamental matrix X(t) of the linearization of system
(1) around (E(t; E0, L0), L(t; E0, L0)), namely, X(t) satisfies

X ′(t) =
[−(dE (t) + h(t)) bE (t)

h(t) −(dL(t) + 2c(t)L(t; E0, L0))

]
X(t), X(0) = I2,

where I2 denotes the identity matrix of order two.
Reasoning as in the proof ofCorollary 2.3, but considering now the initial conditions

(1, 0) and (0, 1), the columns of I2, we obtain that all the elements of D�T (E0, L0),

are positive, for any (E0, L0) ≥ 0 with (E0, L0) 	= (0, 0). Taking into account this
fact we get that if (E1, L1) � (E2, L2) ≥ (0, 0), (Ei , Li ) 	= (0, 0), i = 1, 2, then
�T (E1, L1) > �T (E2, L2), since

�T (E1, L1) − �T (E2, L2)

=
(∫ 1

0
D�T (sE1 + (1 − s)L1, sE2 + (1 − s)L2) ds

)
(E1 − E2, L1 − L2) > 0,

where the vector (E1 − E2, L1 − L2) must be intended as a row vector. Thus, to get
the strong monotonicity condition of the Poincaré operator �T we do not need the
irreducibility condition on the Jacobian of the vector field (E, L) → G(t, E, L), an
assumption that in our setting, in general, does not hold since we allow some of the
time dependent coefficients to be zero (but not identically equal to zero). We conclude
that we can apply Zhao (2017, Theorem 3.1.2) and the result follows. ��

The previous result determines the dynamics of system (1) as a function of R0, but
in general it is not possible to give an explicit expression for this vectorial reproduc-
tion number, which highlights its dependence on the periodic coefficients. Hence, in
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Sects. 2.1 and 2.2, we present two general examples which provide some conditions
on the periodic coefficients which, according to Theorem 2.4, are sufficient to get
respectively, R0 > 1 and R0 ≤ 1. Indeed, in the first example we prove the existence
of a unique globally asymptotically stable T -periodic orbit, in the second we show
that extinction occurs. We point out that, in the case R0 > 1, these conditions are
a generalization of the ones considered for the autonomous case in Strugarek et al.
(2019).

2.1 Example 1: R0 > 1

In what follows, we will assume the following conditions on the coefficients

bE (t∗) = 0 for some t∗ ⇒ dE (t∗) = 0 and dL(t∗) = 0 (4)

h(t∗) = 0 for some t∗ ⇒ bE (t∗) = 0 (5)

sup
t∈T

dL
bE

< inf
t∈T

h

dE + h
where T = {t : bE (t) 	= 0 and h(t) 	= 0} . (6)

It is important to note that if we assume that all the coefficients are positive periodic
functions, we only remain with condition (6) which is analogous to condition (4) in
Strugarek et al. (2019) for the autonomous model.

Now it is useful to extend the system to all the plane. We consider

{
E ′ = bE (t)L − dE (t)E − h(t)E

L ′ = h(t)E − dL(t)L − c(t, L),
(7)

where c(t, L) :=
{
c(t)L2, L ≥ 0
−c(t)L2, L < 0

. This extension is a mathematical construction

that, although meaningless from a biological point of view, will allow us to prove
Proposition 2.5, which does have a biological meaning.

We notice that the extended vector field, which we still denote by G(t, E, L), isC1

(but notC2) in the whole (E, L) plane, and we indicate with DG(t, E, L) its Jacobian
matrix in the (E, L) variables.

In what follows we denote by Qi , i = 1, 2, 3, 4 the closed quadrants in the (E, L)

plane, counted in a counterclockwise sense starting from Q1 := [0,+∞)2, and we
denote by Q◦

i , i = 1, 2, 3, 4, their interior.
Repeating the proof of Lemma 2.2 for initial conditions in Q2 we conclude that

those solutions are defined in the future. Moreover, with this extension we have that
if (E(t), L(t)) is a solution of (7) in Q3, (−E(t),−L(t)) will be a solution of the
same system in Q1 and vice-versa. Analogously for solutions in Q2 and Q4. As a
consequence, the T - Poincaré operator associated to system (7), �T : R2 → R2 is
well defined, and, since it is an extension to the plane of the T -Poincaré operator of
system (1) we still denote it by�T .Due to the aforementioned regularity of the vector
field G, the map �T is C1(R2).
Let us now analyze the dynamics of system (7) around the equilibrium (0, 0).
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Proposition 2.5 Consider system (7) and assume (4), (5) and (6). Then, the origin is
a saddle point. Moreover, the origin is a repellor with respect to the set Q1\{(0, 0)},
and hence R0 > 1.

Proof We will apply Coelho et al. (2021, Lemma 3.3). We have,

DG(t, 0, 0) =
[−dE (t) − h(t) bE (t)

h(t) −dL(t)

]
,

where bE ≥ 0 and h ≥ 0 but not identically zero. Also

∫ T

0
(−dE (t) − h(t) − dL(t)) dt = −

∫ T

0
(dE (t) + h(t) + dL(t)) dt < 0.

Let us prove that there are α1, α2 ∈ R+ and t∗ ∈ [0, T ] as in Coelho et al. (2021,
Lemma 3.3). We consider

B1(t) = α1(−dE (t) − h(t)) + α2h(t)

B2(t) = −α2dL(t) + α1bE (t)

and choose α1 and α2 adequately. From (4) and (5), if for some t̄ we have bE (t̄) = 0
then both dL(t̄) and dE (t̄) are zero and if h(t̄) = 0 then bE (t̄) = 0. We conclude that
if h(t̄) = 0 then for i = 1, 2, Bi (t̄) = 0. In the case bE (t̄) = 0 we have that B2(t̄) = 0
and B1(t̄) ≥ 0 if α2 ≥ α1. Let us now consider the cases in which both bE (t) 	= 0
and h(t) 	= 0, that is when t ∈ T . As (6) is satisfied we have that there exist α1 and
α2 with α2 > α1 such that

dL(t)

bE (t)
<

α1

α2
<

h(t)

dE (t) + h(t)
.

for all t ∈ T . Applying the aforementioned result in Coelho et al. (2021, Lemma
3.3), we conclude that the origin is a saddle point for system (7). In particular, by
the stable manifold theorem for fixed points (see Guckenheimer and Holmes 1983,
Theorem 1.4.2), �T has a one-dimensional stable manifold and a one-dimensional
unstable manifold. These, are tangent at (0, 0), respectively, to the one-dimensional
stable subspace and to the one-dimensional unstable subspace of 	T := D�T (0, 0),
where 	T is the Poincaré operator of the linearization of system (7) in (0, 0).

To prove that the origin is a repellor of system (7) in Q1\{(0, 0)} it is now sufficient
to observe that a half-line of the stable manifold of 	T is contained in Q◦

4, whereas a
half-line of the unstable one is contained Q◦

1. These claims follow directly from the
Perron-Frobenius theorem. In fact, by comparison between the linearized system and
system (7) we get 	T (1, 0) ≥ �T (1, 0) and 	T (0, 1) ≥ �T (0, 1), and by Corollary
2.3 we get �T (1, 0) > 0 and �T (0, 1) > 0. We conclude that the linear map 	T is
positive, and the Perron-Frobenius theorem applies so that the eigenvectors associated
to the dominant eigenvalue are in the first quadrant and the others are not. ��
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2.2 Example 2: R0 ≤ 1

Next, we provide an example showing that if dL is positive when h is zero, in which
case either (4) or (5) do not hold, there may be extinction for system (1). Here,
our aim is not focused on the choice of a realistic set of periodic parameters, but
rather on showing the qualitative behaviour of the system in a case where R0 ≤ 1.
Nevertheless, in a realistic setting, it is reasonable to expect dL > 0 when both h = 0
and bE = 0, contrary to what is assumed in condition (4) and (5) of Example 1. This
should be so, for instance, in case of a diapausingmosquito species duringwinter.More
general conditions guaranteeing extinction as well as their biological consistency for
the egg-larvae model will not be investigated here (but see Remark 2.6 below).

Let b̄E , d̄E , d̄L and h̄ be fixed positive constants such that

d̄L
h̄

<
b̄E

d̄E + h̄
. (8)

We will choose ti ∈ (0, T ), i = 1, . . . , 5, with ti < ti+1.We construct the continuous
coefficients of the system as follows: bE (t) = b̄E , dE (t) = d̄E , h(t) = h̄ on [0, t1] ∪
[t5, T ], bE (t) = dE (t) = h(t) = 0 on [t2, t4] and bE , dE , h are linear on [t1, t2] ∪
[t4, t5]. Finally dL(t) = d̄L on [0, t2]∪[t5, T ], dL(t) = 0 on [t3, t4] and dL is linear on
[t2, t3] ∪ [t4, t5]. So, on (t2, t3) these coefficients are zero except dL . By construction

and if E > b̄E
d̄E+h̄

L on [0, t2)∪(t4, T ] it is Ė ≥ 0 iff E ≤ b̄E
d̄E+h̄

and on [0, t1)∪(t4, T ] it
is L̇ > 0 iff E ≥ d̄L

h̄
.Wewill show that it is possible to choose suitably the times ti and

the period T , in such a way that the linear system corresponding to these coefficients,
that is, system (1) with c(t) = 0 for all t ∈ [0, T ], has positive solutions which go to
zero. By comparison, (1) will have too.

Let us consider {
E ′ = bE (t)L − dE (t)E − h(t)E,

L ′ = h(t)E − dL(t)L,
(9)

and choose

P0 = (E0, L0) ∈ �1 :=
{
(E, L) ∈ Q◦

1 : E >
b̄E

d̄E + h̄
L

}
.

Then, we can fix t1 in such a way that 	t (P0) ∈ �1 for any t ∈ [0, t1]. It follows that
E(t) is strictly decreasing and L(t) is strictly increasing t ∈ [0, t1]. Next, we choose
t2 in such a way that E(t2) < E0 (it is not necessary here that 	t2(P0) ∈ �1).

On [t2, t3] system (9) becomes E ′ = 0, L ′ = −dL(t)L, and we can fix t3 in such
a way that

	t3(P0) ∈ �2 :=
{
(E, L) ∈ �1 : E >

E0

L0
L

}
,

that is 	t3(P0) lies in the interior of the first quadrant, below the ray {λP0 : λ > 0}.
Of course, we have E(t3) = E(t2) < E0. On [t3, t4] all solutions are constant. On
[t4, T ] E(t) is strictly decreasing and L(t) is strictly increasing and we can choose
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t5 in such a way that 	t5(P0) ∈ �2. Finally, since on [t5, T ] there are no positive
equilibria of the corresponding linear autonomous system, we can choose T in such
a way that 	T (P0) = λ	0(P0) = λP0, with 0 < λ < 1. But then Q◦

1 � 	k
T (P0) =

λk P0 → (0, 0) as k → +∞, and the same will hold for Q◦
1 � �k

T (P0) ≤ 	k
T (P0),

(the inequality is to be understood component-wise). Taking into account the Perron-
Frobenius theorem (Smith and Waltman 1995, Theorem A.4), we have that λ is the
dominant eigenvalue of the positive, nonsingular and orientation preserving operator
	T . We conclude that both Floquet multipliers of (0, 0) (thought of as a T -periodic
orbit) are in (0, 1). By comparison with the linearized system, we have that the origin
is globally stable in the first quadrant for system (1).

Remark 2.6 The previous construction can be extended to a more general framework.
One can assume that the coefficients bE (t), dE (t), dL(t), h(t) are positive on [0, t1]∪
[t5, T ], not necessarily constant, replacing (8) with the following:

max[0,t1]∪[t5,T ]
dL(t)

h(t)
< min[0,t1]∪[t5,T ]

bE (t)

dE (t) + h(t)
,

and defining �1 as

�1 :=
{
(E, L) ∈ Q◦

1 : E > max[0,t1]∪[t5,T ]
bE (t)

dE (t) + h(t)
L

}
.

Also, the linearity of the coefficients in the intervals on which they decrease to zero or
increase from zero can be dropped. Finally, instead of choosing suitably the ti given
the coefficients, one could fix the times ti and the period T and investigate if there are
suitable choices of the coefficients which allow to carry out our construction. We will
not pursue this topic here.

Remark 2.7 If we allow dL to be strictly positive on [0, T ], and assume that bME +
dM
E −dmL < 0, then, by the proof of Lemma 2.2, we see that the origin is globally stable

in Q1 for system (1). Hence, we get another instance in which R0 ≤ 1. However, not
only this is not a natural assumption but also in the general setting we are considering
the stress is put on the case in which dL is zero on some intervals. In this case dmL = 0,
and the inequality above does not hold.

3 Numerical Simulations

We devote this section to illustrate numerically the results presented in Sect. 2. The
section will be structured around the two examples previously introduced, one for
R0 > 1 with convergence to a unique limit cycle, and one for R0 ≤ 1 with extinction.

3.1 Example 1: R0 > 1

In order to illustrate the results presented for R0 > 1, we simulate system (1) in two
different scenarios corresponding to tropical and a temperate climate.

123



9 Page 12 of 23 J. B. Arnau et al.

Fig. 1 Average maximum temperature and average precipitation per month in a Tropical region (Brasilia)
and in a temperate region (Valencia). Reference years 1981–2010 in both cases (Color Figure Online)

Since the dynamics of mosquito populations depend highly on the climatic con-
ditions, in regions with different climates they can present very different behaviours.
We show simulations for two rather different scenarios: The first scenario is based on
a tropical area, where temperature is roughly constant throughout the year and there
is a dry season and a wet season, causing oscillations in the mosquito population as
the wet season is more favorable for reproduction. The second one is based on a more
temperate region, with warm summers and cold winters. Mosquito population can
thrive during warm summers as long as rain is also present, while low temperatures
during winters can make adult population of some species disappear completely. In
these cases eggs act as a population reservoir for the next favorable season. With these
simulations we want to stress that, as long as the biological parameters are T -periodic
and satisfy hypothesis (4) to (6), the convergence of solutions to a unique limit cycle,
whichever this may be, is guaranteed by Theorem 2.4.

The periodic nature of the biological parameters comes ultimately from the periodic
nature of the climate. We use monthly averaged climatological data from Brasilia,
Brazil (Source INMET (Meteorologia 2023a)), and Valencia, Spain (Source AEMET
(Meteorología 2023)), see Fig. 1. Interpolating this data, and taking into account the
thermal responses of the biological parameters for Ae. Albopictus found in Jia et al.
(2016), Mordecai et al. (2017), and the modeling of the carrying capacity as a function
of the precipitation done in Erguler et al. (2016), we compute the values of the relevant
mosquito parameters of system (1) as a function of time (See Fig. 2 and Table 1). There
is no consensus onwhether maximum,mean orminimum temperatures should be used
in order to compute the values of the biological parameters for models like (1). Some
works find a similar, and significant, correlation between all of these quantities and
mosquito abundance (Tian et al. 2015, Table 1). We will use maximum temperatures
for all the parameters in this example. Despite systems (2) and (Jia et al. 2016, 5)
not being equal, the relevant temperature-dependent parameters are analogous in both
models, except for the oviposition rate. We take the values of these parameters from
Tables 3 and 5 in that work. The oviposition rate has been computed as bE (t) :=
βE (t) τP (t)

dA(t)
τL (t)

τP (t)+dP (t) , with the thermal response of βE taken from Mordecai et al.
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Fig. 2 Time dependence of parameters in scenarios 1 (left) and 2 (right). Functions have been normalized
to compare purely their periodic behaviours (Color Figure Online)

Fig. 3 Evolution of the egg and larva population in the first scenario plotted against time (left) and its
evolution in the phase space (right) (Color Figure Online)

(2017). The resulting periodical parameters, of period T = 365 days, are plotted in
Fig. 2.

Scenario 1. In this scenario, based on a tropical climate, the maximum tem-
perature remains fairly constant throughout the year, varying from 25 ◦C in June
to 28.4 ◦C in September. Meanwhile, precipitation varies drastically from the dry
season (May–September, with a minimum in June of 4.9mm) to the wet season
(October–April, with a maximum in December of 241.5mm). In this case, the min-
imum of the oviposition and hatching rates, roughly coincide with the maximum
of the larval competition, meanwhile, when the oviposition and hatching rates are
at their maximum, the larval competition is close to its minimum. This causes big
oscillations between the maximum and the minimum values in the egg and larva pop-
ulation (more than ±85% of the mean value), as we can observe in the left graph of
Fig. 3. Hypothesis (4) to (6) are satisfied since all parameters are strictly positive and
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Fig. 4 Evolution of the egg and larva population in the second scenario plotted against time (left) and its
evolution in the phase space (right) (Color Figure Online)

supt∈[0,T ]
dL (t)
bE (t) ≈ 0.00014 < 0.89 ≈ inf t∈[0,T ] h(t)

dE (t)+h(t) , thus, as proven in Theo-
rem 2.4, we observe the convergence to the unique limit cycle in the right graph of
Fig. 3.

Scenario 2. In this scenario, based on a temperate climate, maximum temperatures
oscillate more during the year, ranging from 16.4 ◦C in January to 30.2 ◦C in August.
Rainfall is scarse during summer (June–August, with a minimum of 7.8mm in July)
and abundant in the end of the summer and in autumn (September–December, with a
maximum in October of 77mm). In this setting, warm temperatures and some amount
of rainfall at the beginning of the summer cause a first peak in the population. This peak
is followed by a valley in August due to a combination of too much heat and too little
rainfall. On the other hand, in September and October, heavy rainfall combined with
the fact that temperatures are still warm causes a much bigger spike in the population
(see the left graph of Fig. 4). Hypothesis (4) to (6) are once again satisfied. In this
case supt∈[0,T ]

dL (t)
bE (t) ≈ 0.0028 < 0.74 ≈ inf t∈[0,T ] h(t)

dE (t)+h(t) and all parameters are
strictly positive for all t ∈ [0, T ]. The convergence to the unique limit cycle can be
visualized in the right graph of Fig. 4.

Convergence to the unique limit cycle. To illustrate better this central property
of the population’s dynamics in case R0 > 1, in Fig. 5 we plot the phase space of
solutions to system (1) in both scenarios for five different initial conditions distributed
around the unique limit cycle.

3.2 Example 2: R0 ≤ 1

Here, we illustrate the other behaviour that system (1) can exhibit: extinction. To do
this, we follow the steps of the construction carried out in the Example 2 described in
Sect. 2.2.

In Fig. 6 we observe how, as previously shown, egg population remains constant in
(t2+kT , t3+kT ), k ∈ N, and decreases abruptly in [kT , t2+kT ]∪[t4+kT , (k+1)T ],
giving rise to a spike in the larva population. Next, the larva population decreases
exponentially in (t2 + kT , t3 + kT ), where dL is the only positive parameter, in such
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Fig. 5 Phase space of solutions to system (1) for different initial conditions in scenarios 1 (left) and 2 (right)
(Color Figure Online)

Fig. 6 Solution of the linear version of system (1), system (9), in the Example 2 setting plotted against time
(left). Phase space of the solution (right) (Color Figure Online)

Table 2 Values of the parameters and relevant time stamps in the Example 2 simulations

Parameter b̄E d̄E d̄L h̄ t1 t2 t3 t4 t5 T

Value 0.1 0.05 0.02 0.3 2 15 180 199 199.6 200

a way that L((k + 1)T ) < L(kT ). As explained, with this choice of parameters
(E(kT ), L(kT )) = (λk E(0), λk L(0)), with 0 < λ < 1, therefore ever smaller oscil-
lations occur with each period, and thus the solution tends towards the origin. We plot
six full periods. The effects of each step described in Sect. 2.2 can be seen clearly in the
plot of the phase space, which corresponds to the right graph in Fig. 6. In this graph,

the dotted black lines correspond to L = L0
E0

E (the lower one) and L = d̄E+h̄
b̄E

E (the
upper one). By comparison, system (1), with the same parameters except for c > 0,
will also go to extinction. The values of the parameters and of the relevant times ti ,
i = 1, . . . , 5 and T are shown in Table 2.
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4 Four-StageModel and Open Problems

It remains open the question of whether the nonautonomous T -periodic version of
system (2) admits periodic solutions and, in case they exist, what is their stability. In
Abdelrazec and Gumel (2017), system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
E ′ = B(t, A)A − dE (t)E − h(t)E,

L ′ = h(t)E − dL(t)L − c(t)L2 − τL(t)L,

P ′ = τL(t)L − dP (t)P − τP (t)P,

A′ = στP (t)P − dA(t)A,

(10)

was considered both in the autonomous and the nonautonomous cases and a very
complete analysis was done for the autonomous case. In that work, σ represents the
proportion of new adult mosquitoes which are females and A stands for the total
number of adult mosquito females. The oviposition function, B(t, A), was given by
one of the following expressions

⎧⎨
⎩
B(t, A) = BL(t, A) = b(t)

(
1 − A

K

)
, A ∈ [0, K );

B(t, A) = BS(t, A) = b(t)

1+
(

A
K

)n , n > 0,

where K represents the so called carrying capacity of the environment, in other words,
the maximum amount of female mosquitoes that the environment can sustain. In what
concerns the nonautonomous model, the existence of a unique coexistence solution
was proved only assuming no intraspecific competition for the larvae c(t).

In this work, we will consider just the oviposition function BS with n = 1, namely

BS(t, A) = b(t)

1 + A
K

, (11)

with b(t) continuous, T− periodic and strictly positive on [0, T ].
For the remaining coefficients in (10), we assume that they are continuous, T -

periodic, nonnegative and, with the possible exception of c, have positive integral in
[0, T ]. In other words, now one can have c(t) = 0 for all t ∈ [0, T ], contrary to
what was considered for system (1). This assumption was used in Sect. 1 to prove
the dissipativity of the system (1) and the strict subhomogeneity of the corresponding
vector field. Here the dissipativity can be obtained under other assumptions on the
remaining coefficients, and the subhomogeneity is given by BS . As a consequence,
we can include in our setting the case in which there is no intraspecific competition
for the larvae. Moreover, we assume that the function

M(t) := min{dE (t), dL(t), dP (t), dA(t)} (12)

has positive average on [0, T ].
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Finally, we denote by F = (F1, F2, F3, F4) the vector field associated with system
(10) and denote by DF(t, E, L, P, A) its Jacobianmatrix with respect to the variables
(E, L, P, A).

Below, using again Zhao (2017, Theorem 3.1.2), we will obtain a result analogous
to Theorem (2.4) for system (10) with the oviposition rate (11) but allowing nonzero
intraspecific competition, so generalizing the corresponding results in Abdelrazec and
Gumel (2017).

As far as we know, the case in which c is not zero remains open for BL and BS with
n > 1.

First of all, we state a lemma, analogous to Lemma 2.1, whose proof is also
analogous and follows immediately from the property:
if x = (x1, x2, x3, x4) := (E, L, P, A) ≥ 0, then xi = 0 ⇒ Fi (t, x) ≥ 0, i =
1, 2, 3, 4, for each t ≥ 0.

Lemma 4.1 Let (E(t), L(t), P(t), A(t)) be a solution of system (10) with initial con-
dition (E(0), L(0), P(0), A(0)) ≥ 0. Let I := [0, ω) be its maximal right domain of
existence. Then, (E(t), L(t), P(t), A(t)) ≥ 0 for all t ∈ I .

In Abdelrazec and Gumel (2017, Theorem 2.1) it is stated that solutions of (10)
with nonnegative initial conditions are bounded. We give a sketch of the proof of this
result for completeness.

Lemma 4.2 Solutions of (10) are defined for each t ≥ 0. Moreover, there exists a
K̃ > 0 such that E(t) + L(t) + P(t) + A(t) ≤ K̃ for each t sufficiently large.

Proof The proof is analogous to the one of Lemma 2.2. We have

d

dt
(E + L + P + A) ≤ B(t, A)A − M(t)(E + L + P + A)

≤ KbM − M(t)(E + L + P + A)

where, as previously, bM is the maximum of b(t). Then, taking into account (12), our
claim is obtained as in Lemma 2.2. ��

Now we are able to prove that solutions with nonnegative initial condition will be
positive at 3T .

Corollary 4.3 Let (E(t), L(t), P(t), A(t)) be a solution of system (10) with initial
condition (E(0), L(0), P(0), A(0)) ≥ 0. Then, if the the initial condition is not the
origin, (E(3T ), L(3T ), P(3T ), A(3T )) > 0.

Proof The proof follows the steps of the proof of Lemma 2.1 and hence we only give
a sketch. If one of the components of the initial condition is positive for some t̄ , that
component remains positive for all t ≥ t̄ . Let us assume now, as the extreme case, that
only one of the components of the initial condition is positive, let us say E(0) > 0.
Then, considering the second equation of (10), since h has positive average on [0, T ]
we see that there exists exists t1 ∈ [0, T ) such that L(t) > 0 for each t > t1. We
turn now to the third equation of (10) and argue in a similar manner: since τL(t) has
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positive average on [0, T ] we conclude that there exists t2 ∈ [T , 2T ) such that P(t)
for t > t2. Finally, since τP has positive average on [0, T ], we get that there exists
t3 ∈ [2T , 3T ) such that such that A(t) > 0 for any t > t3. We conclude that the
solution will be positive at time 3T .

The case in which the only nonzero component of the initial condition corresponds
to one of the other stages is proved analogously. Actually, if the unique nonzero
component is one of the others the corresponding solutions will be positive at time
2T . In any case, all the solutions corresponding to one positive initial component will
be positive at time 3T . ��

In what follows we will need a positive operator and hence we will use the 3T -
Poincaré map,P3T , instead of the T -Poincaré map. Of course,P3T = �3

T ,where�T

denotes the T -Poincaré map of system (10).
We define analogously (see Sect. 2 and Abdelrazec and Gumel 2017) the vectorial

reproduction number R3T
0 and recall that R3T

0 = (R0)
3. We can finally obtain the

following result which generalizes (Abdelrazec and Gumel 2017, Theorems 4.2, 4.3).

Theorem 4.4 We have that

(a) If R0 ≤ 1 then for each nonnegative initial condition, the corresponding solution
of (10) (E(t), L(t), P(t), A(t)) → (0, 0, 0, 0).

(b) If R0 > 1 then there exists a unique positive T−periodic solution
(E∗(t), L∗(t), P∗(t), A∗(t)) of (10) which is globally asymptotically stable in
R4+\{(0, 0, 0, 0)}.

Proof The result follows from Zhao (2017, Theorem 3.1.2). We have that property (i)
holds together with the following ones:

(ii) ∂Fi
∂x j

≥ 0 for i 	= j .
(iii) F is strictly subhomogeneous.

Property (ii) is immediate. Property (iii) holds since αBS(t, A) > BS(t, αA) for any
α ∈ (0, 1), t ≥ 0, A > 0. Moreover, by Corollary 4.3 we know that P3T is positive.
To see that P3T is also strongly positive we proceed as in the proof of Theorem 2.4,
arguing analogously as in the proof of Corollary 4.3 to show that its Jacobian matrix
DPT has all positive entries. The difference with the Lemma is that, when E(0) = 0,
to get that E(t) becomes positive we must use the fact that the entry

∂(BS(t, A)A)

∂A
= b(t)(

1 + A
K

)2
of DF(t, E(t), L(t), P(t), A(t)), is positive whenever A(t) > 0 (a property that does
not hold for BS for n > 1). Again, we do not need the irreducibility condition on the
vector field. We conclude that we can apply Wang and Zhao (2008, Theorem 2.2)
and obtain the result for R3

0 instead of R0 (but R0 < 1 if, and only if, R3
0 < 1)

and the existence of a unique 3T -periodic orbit which attracts all the solutions with
nonzero initial condition. Now let Z0 be the initial condition of this periodic orbit.
Then P3T (Z0) = Z0 so that �3

T (�T (Z0)) = �T (Z0) which, since the fixed point
Z0 is a globally asymptotically stable fixed point of �3

T , implies that �T (Z0) = Z0.
Now we conclude that the 3T -periodic orbit is T - periodic and the result follows. ��
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5 Discussion

In this paper we considered the two-stage model with periodic coefficients (1) and we
were able to give a complete description of its dynamics in terms of R0.

An autonomous version of this system in which the hatching rate depends on the
larval density was studied in Strugarek et al. (2019). The autonomous system in Stru-
garek et al. (2019) was obtained from a four stage one using a procedure that, in
our case, should be applied to the seasonal version of system (2). In this work, as a
first step, we addressed just the T -periodic two-stage system. We considered a gen-
eral mathematical framework, which includes biologically meaningful scenarios, in
which some time periodic rates can be zero on some time intervals. We proved that
either system (1) admits a unique limit cycle, and hence a unique oscillatory regime,
if R0 > 1, or there is extinction if R0 ≤ 1. We showed that the oscillatory regime
may occur in both tropical or temperate regions, since in both cases, for a realistic
set of parameters, the periodic coefficients satisfy assumptions (4) to (6) of Theorem
2.4. The numerical simulations show clear qualitative differences in the nature of the
oscillations in the two scenarios. Our analysis also gives some insight into the possible
mechanisms which lead to extinction, showing that extinction may occur if the death
rate dL is positive when the hatching rate h is zero (in which case either (4) or (6) do
not hold).

Inwhat concerns system (2)with seasonality,wewere not able to prove the existence
of a bounded set which attracts all the orbits when R0 ≥ 1 and hence we are neither
able to prove the existence and uniqueness of a globally asymptotically stable T -
periodic positive orbit nor to study the case R0 = 1. In the case R0 > 1, numerical
simulations suggest that the globally asymptotically stable T -periodic positive orbit
exists, but from a theoretical point of view, this remains an open problem. As for the
case R0 < 1, we observe that, the system being monotone, the global asymptotic
stability of the origin may be proved directly, by comparison with the linear system
obtained by neglecting the −c(t)L2 term.

In the case of system (10), we were able to prove the dynamics in terms of R0 in
the case with intraspecific competition among the larvae, generalizing the results in
Abdelrazec and Gumel (2017) in the case of the oviposition function BS with n = 1.

In Liu et al. (2017) a four stage model with delays for the ticks life cycle was
considered but when intraspecific competition between adults is present. Analogous
results were obtained, but the global stability of the periodic orbit was obtained only
when there was no intraspecific competition in the first stages. One year after, inWang
and Zou (2018), an analogous model was addressed but not considering intraspecific
competition, and the solutions can be unbounded. In this case results of persistence
were obtained but not of stability of periodic orbits. In Lv et al. (2021), when intraspe-
cific competition in adults is present, an analogous model with diffusion and delays
was analysed and also in this case the existence of an attracting periodic orbit was
proved but when no intraspecific competition in larvae is considered. Hence the case
when this competition is considered remains an open problem.
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