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Abstract
Epidemic propagation on networks represents an important departure from traditional
mass-action models. However, the high-dimensionality of the exact models poses a
challenge to both mathematical analysis and parameter inference. By using mean-
field models, such as the pairwise model (PWM), the high-dimensionality becomes
tractable. While such models have been used extensively for model analysis, there
is limited work in the context of statistical inference. In this paper, we explore the
extent to which the PWMwith the susceptible-infected-recovered (SIR) epidemic can
be used to infer disease- and network-related parameters. Data from an epidemics can
be loosely categorised as being population level, e.g., daily new cases, or individual
level, e.g., recovery times. To understand if and how network inference is influenced
by the type of data, we employed the widely-used MLE approach for population-level
data and dynamical survival analysis (DSA) for individual-level data. For scenarios in
which there is no model mismatch, such as when data are generated via simulations,
both methods perform well despite strong dependence between parameters. In con-
trast, for real-world data, such as foot-and-mouth, H1N1 and COVID19, whereas the
DSA method appears fairly robust to potential model mismatch and produces param-
eter estimates that are epidemiologically plausible, our results with the MLE method
revealed several issues pertaining to parameter unidentifiability and a lack of robust-
ness to exact knowledge about key quantities such as population size and/or proportion
of under reporting. Taken together, however, our findings suggest that network-based
mean-field models can be used to formulate approximate likelihoods which, coupled
with an efficient inference scheme, make it possible to not only learn about the param-
eters of the disease dynamics but also that of the underlying network.
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1 Introduction

Exact mathematical models for describing the spread of epidemics on networks are
often insoluble or intractable for large networks (Pellis et al. 2015; Kiss et al. 2017).
‘Mean-field’models provide a solution by introducing approximations and focusing on
quantities at the population level, such as the expectation of the number of infected or
susceptible individuals, or the number of direct connections between two such groups
(Pastor-Satorras et al. 2015). Many mean-field models exist to describe the dynamics
of epidemic processes on networks. They usually take the form of a system of ODEs
describing these processes (Kiss et al. 2016). Such models typically involve applying
a ‘closure’ to exact models. Closures rely on assumptions about the underlying contact
network and/or even the dynamics (usually simplifying ones), and these assumptions
bring the complexity of a given system to manageable levels (Sherborne et al. 2018;
Cui et al. 2022).

Modelling epidemics on networks using mean-field approximations is a well stud-
ied and active area of research (Porter and Gleeson 2016; Akian et al. 2020). In
both theoretical and applied settings, it is used for parameter estimation, prediction
and informing intervention or policy making [3], as recently demonstrated during
the COVID-19 global pandemic (Gerlagh 2020). However, there is a lack of under-
standing as to how such models operate in combination with the explicit inclusion of
contact structures via networks, especially when placed in the context of statistical
parameter inference. As such an investigation is warranted into whether current meth-
ods could be improved upon, or otherwise better informed, by incorporating models
of epidemics on networks and by including structured population-level information
and/or assumptions.

As previously mentioned, existing mean-field models are characterised by varying
levels of complexity based on the assumptions used to close the exact system. This
often requires making a statement about the links in the network, e.g., the number
of edges that form [SI] (susceptible-infected) pairs, or [ISI] (infected-susceptible-
infected) triples. For example, contact homogeneity—that is, a fixed number of links
between each node in the network—is a common assumption (Keeling 1999; Kiss
et al. 2017). In this work, we use the ‘pairwise’ mean-field model, closed at the level
of triples. Pairwise models are based on a bottom-up approach starting at node-level
and building towards links and thereafter triples. This makes them very intuitive and
the ‘go-to choice’ inmany different areas.Moreover, pairwisemodels extend naturally
to networks with heterogeneous degrees, weighted networks or even more complex
epidemic dynamics.

The aim of this paper is to investigate to what extent this model can be used for
inference purposes, and more specifically, for gaining insights about both the value of
the parameters of the disease dynamics and that of the contact network, thus expanding
the current body of work in the field (a review of which can be found in Paré and Beck
(2020)).
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In Sect. 2, we outline the principle of epidemics on networks as stochastic processes
before detailing the pairwise system of ODEs constituting the so-called mean-field
SIR model. Section3 describes simulated data—namely, the output from the forward
model with noise and Gillespie simulations, which we used to benchmark the perfor-
mance of our inference schemes—as well as three real-world datasets: (i) the 2001
UK foot-and-mouth disease outbreak, (ii) The A(H1N1) outbreak inWashington State
University (WSU) campus at Pullman, and (iii) the third wave of COVID-19 in India.
Section4 details the two inference schemes we considered, namely, maximum like-
lihood estimation and dynamical survival analysis. Section5 presents a comparative
analysis of these two schemes, both when ground-truth data is available (simulated
data) and when it is not (real-world datasets). An interpretation of these results is
provided in Sect. 6, along with potential new research directions.

2 Model

2.1 Epidemics on Networks as a Stochastic Process

The starting point is the modelling of population contact structures as a network of
nodes connected by links which represent possible routes of disease transmission. The
network can be represented by an adjacency matrix G = (gi j )i, j=1,2,...,N , where N
is the number of nodes and the entries, gi j , are either zero, if nodes i and j are not
connected, or one otherwise. The adjacency matrix is symmetric and all elements on
the main diagonal are zero, i.e., no self-loops are allowed. In this paper, we will focus
on regular or homogeneous networks where each node has exactly n links.

When modelled as a continuous-time Markov Chain, a stochastic susceptible-
infected-recovered (SIR) epidemic on a network results in a state space of size 3N

since each of the N nodes can be independently S, I or R, and each state, that is, a
labelled network, needs an equation (Kiss et al. 2016). This of course makes the model
intractable both theoretically and numerically, even at modest values of N . Of course,
Gillespie (1976) simulations can help deal with the problem and enable us to produce

Fig. 1 Prevalence based on Gillespie simulations. Thin lines/cloud in grey are the outcome of ∼ 100
individual realisations (10 networks with 10 realisations each) of an SIR stochastic epidemic on regular
networks (n = 6), with their average plotted in thick red lines. Epidemics are started with I0 = 100 (left
panel) and I0 = 250 infectious nodes chosen at random (middle and right panels) and only epidemics that
reach 2I0 are kept and averaged over. The numerical solution of the corresponding pairwise model is plotted
as a continuous black line. All networks have N = 10000 nodes and the recovery rate is γ = 1. From left
to right, τ takes value 0.3, 0.4 and 0.5, respectively (Color figure online)
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true stochastic paths of the process, see Fig. 1 for example. This is based on the simple
principle that in the Markovian framework, infection and recovery are independent
Poisson process with rate τ and γ . τ is the per-link rate of infection and is the rate at
which the I (infected) node in an I-S link infects the S (susceptible) node. This process
is network-dependent. All infected nodes recover independently of the network and
of each other at rate γ .

One way to move beyond simulations while dealing with the challenges of
intractable high-dimensional models is to use mean-field models that focus on some
expected quantity from the exact system, such as the expected number of infected
nodes or the expected number of pairs of various types (e.g., S-S and S-I). One widely
used model is the pairwise model (Kiss et al. 2016) which is briefly described below.

2.2 Pairwise Model as an Approximation of Epidemics on Networks

In essence, the pairwise model focuses on a hierarchical construction where the
expected number of nodes in state A at time t , [A](t), depends on the expected num-
ber of pairs of various types (e.g., [AB]) and these, in turn, depend on triples such as
[ABC]. Here, the counting is done in all possible directions, meaning that [SS] pairs
are counted twice and [SI ] = [I S]. With this in mind, the pairwise model becomes

[Ṡ] = −τ [SI ]; [ İ ] = τ [SI ] − γ [I ]; [Ṙ] = γ [I ], (1)

[Ṡ I ] = −(τ + γ )[SI ] + τ([SSI ] − [I S I ]); [ṠS] = −2τ [SSI ]. (2)

This system is not self-contained as pairs depend on triples and equations for these are
needed. This, however, would lead to an explosion in system size as triples will then
depend on quadruples connected in ways different from the simple line graphs over
four nodes. To tackle this dependency on higher-order moments, the triples in Eq. (2)
are closed using the following relation,

[ASB] = κ
[AS][SB]

[S] , (3)

where A, B ∈ {A, B}. Applying this closure leads to

[Ṡ] = −τ [SI ], (4)

[ İ ] = τ [SI ] − γ [I ], (5)

[Ṙ] = γ [I ], (6)

[Ṡ I ] = −(τ + γ )[SI ] + τκ
[SI ]([SS] − [SI ])

[S] , (7)

[ṠS] = −2τκ
[SS][SI ]

[S] , (8)

which is now a self-contained system.As it turns out, see Fig. (1), this low-dimensional
mean-field model is exact in the asymptotic limit of N → ∞, and the numerical solu-
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tion of the PW model is indistinguishable from the average of stochastic realisations.
We note that there are necessary and sufficient conditions which guarantee that the PW
model is exact in the limit of large network sizes. In particular, it is true for networks
with Binomial (with Regular being a special case of Binomial), Poisson and Negative
Binomial degree distributions (Kiss et al. 2023; KhudaBukhsh et al. 2022). In the
present setup, we will use κ = (n − 1)/n which corresponds to a regular network
where each node has degree n. For networks with Poisson degree distribution κ = 1,
while for negative binomial with NegBin(r , p) we have κ = (r + 1)/r . In all cases,
the average degree is also needed in defining the initial conditions of the PW system.
While we have chosen the closure corresponding to Regular networks, our approach
can be extended to the other cases and this is detailed further in the Discussion section.

For a chosen set of parameters (n, τ, γ ) and initial conditions, the system above
can be numerically integrated, furnishing us with [I ](t) for example. Using that R0 =
τ(n−1)
τ+γ

, the closed pairwise equations can be re-parameterised to include R0 explicitly.
Keeping in mind that κ = (n − 1)/n, the re-parameterised system now reads

[Ṡ] = − γ R0

(n − 1) − R0
[SI ], (9)

[ İ ] = + γ R0

(n − 1) − R0
[SI ] − γ [I ], (10)

[Ṙ] = +γ [I ], (11)

[Ṡ I ] = −
(

γ R0

(n − 1) − R0
+ γ

)
[SI ] + κ

γ R0

(n − 1) − R0

[SI ]([SS] − [SI ])
[S] , (12)

[ṠS] = −2κ
γ R0

(n − 1) − R0

[SS][SI ]
[S] . (13)

3 Data

Typically, real-world data for inference comes as daily counts of some quantity of
interest (e.g., daily new cases or daily deaths) at discrete time steps, that is

(y, t) = {(y1, t1), . . . , (ynobs , tnobs )}, (14)

where (y1, . . . , yn) ∈ {0, . . . N } and (t1, . . . , tnobs ) ∈ {0, T } with (0 ≤ t1 < t2 <

· · · < tnobs ≤ T ) are the counts and times respectively. However, we also consider
data at the individual-level such as recovery and/or infection times, see Eqs. (19)–(21)
In this paper, data for inference is either simulated or taken directly from real-world
epidemics. Full details are given below.
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3.1 Data: PWMOutput with Noise

Since the mean-field model is an approximation of the true stochastic process, we
start by simulating data directly from the mean-field model and with varying levels of
noise dispersion added in order to assess the ability of the inference schemes to recover
the expected parameters, i.e., those used to generate the data (before noise). Since we
mainly fit to daily reported cases, we first solve the PWmodel numerically with a given
set of parameters and compute the daily new cases on day i , ([S](i + 1) − [S](i)).
Observations begin on the first day, at the earliest, and the initial conditions of the
PWM are set at t = 0. Noise is introduced using draws from the Negative Binomial
distribution. This is done such that the mean of the distribution is given by the model
and the variance is controlled by the experimenter. For the Negative Binomial, and
given a daily new cases count, yd , from the truemodel without noise, we draw a sample
from

X ∼ NegBin

(
m(k) = 1

k
, p = 1

1 + kyd

)
, (15)

where the mean of this distribution is yd , the variance is given by yd + y2dk with k the
dispersion parameter, and the negative binomial distribution is interpreted as giving
the probability of observing yD failures given m successes, that is

P(X = yd) =
(
yd + m − 1

yd

)
pm(1 − p)yd . (16)

3.2 Data: Stochastic Simulations

Since the real challenge is to fit to stochastic data, in the first instance, we con-
sider simulated data constructed by using the Gillespie algorithm (Gillespie 1976)
for a stochastic SIR epidemic on an explicit network of contacts. The idea behind
the simulation is rather simple. Each node has its own rate, resulting in a rate vector
(ri )i=1,2,...,N . A susceptible node with m infected neighbours will have rate τm and
an infected node will have rate γ . Recovered or removed nodes have rate zero as
they no longer play a role in the dynamics. The time to next event is chosen from an
exponential with rate R = ∑

i ri , and the event itself will be chosen at random from
all possible N -events but proportionally to the values of the rate, e.g., event j will be
chosen with probability r j/R. Typical simulation plots are shown in Fig. (1).

3.3 Data: Real Epidemic Data

In addition to assessing the robustness of the inference schemes on synthetic data
for which ground truth is known, we considered real-world outbreak data from three
different data sets:

1. The 2001 Foot-and-mouth (FMD) disease outbreak in the UK. The 2001 FMD
outbreak in the UK started towards the end of February in 2001 and ended in
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September 2001, impacting more than 2000 farms. Control efforts resulted in the
culling of millions of livestock (Davies 2002), see Fig. 16.

2. The A(H1N1) outbreak inWashington State University (WSU) campus at Pullman,
Washington. In April 2009, there was an outbreak of influenza virus in Veracruz,
Mexico. After this initial outbreak, a new strain of the virus, A(H1N1)pdm09,
started to spread around the world in the autumn. See (Schwartz et al. 2014;
KhudaBukhsh et al. 2020) for more details about this triple reassortment virus,
which spread even among young, healthy adults. As a result, multiple outbreaks
on college campuses were seen, one of which was on the Washington State Uni-
versity (WSU) campus in Pullman, Washington in late August 2009. Within the
space of three months, almost 2300 students came to the campus health centre
with influenza-like illnesses that were treated as influenza A(H1N1) infections.
Figure16 shows the daily new cases starting on 22 August 2009.

3. The thirdwave ofCOVID-19 in India.TheCOVID-19 pandemic has killedmillions
of people across the globe. Here, we consider the third wave in India. Similar to
the other two datasets, we have daily incidence and prevalence of cases, recoveries
and deaths from 15 February 2021 to 31 June 2021 (see Fig. 16).

These datasets were chosen because they are thought to involve substantially differ-
ent link densities, which is ideal since we are aiming to infer the number of links a node
has. In addition, they were previously analysed in the literature (e.g., in KhudaBukhsh
et al. (2020); Di Lauro et al. (2022)), thus providing a good basis for comparison.

4 InferenceMethods

While most inference methods are based on the optimisation of a likelihood function,
the likelihood function itself can be formulated based on different considerations of
the underlying model and data. The most direct method typically focuses on matching
model output and data as closely as possible, i.e., it is an error minimisation process.
More sophisticated methods consider the underlying stochastic model in a more direct
way and involve the timing of events, even if simplifying assumptions may be needed.
To ensure that investigation into the possibility of inferring epidemic and network
parameters using the pairwise model is not affected or biased by the data available
or the inference scheme used, we consider two different methods: (i) the widely-used
MLE-based approach when data comes in the form of daily new cases, and (ii) the
dynamic survival analysis (DSA) inference method where individual-level times of
infection and/or recovery (as opposed to counts) are used. These are detailed below.

4.1 Maximum-Likelihood-Based Approach

In order to fit data produced by the PW model with the likelihood based on the PW
model, we simply test how well the true parameters can be recovered. This scenario
does not require any approximation. When fitting to stochastic data from an exact
epidemic or a real epidemic, however, we are making the assumption that the exact
forward model can be approximated by the PW model.
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In this paper, we use the negative-binomial distribution as likelihood of choice,
because of its flexibility. The distribution models the number of failures given a target
number of successes, m, and the probability of each experiment’s success p. Further-
more, vector � denotes the parameters of the model, e.g. � = (R0, n, γ, k) or other
combinations as required. Setting the parameters in � to some concrete numerical
values allows us to define the parameters of the Negative Binomial distribution at each
time point ti , i = 1, 2, . . . , nobs , where data was observed, these are:

m(k) = 1

k
, p�(ti ) = 1

1 + ky�(ti )
, (17)

with k > 0 being the dispersion parameter, which we also attempt to infer. For clarity,
y�(ti ) is obtained by solving the PW model with concrete values of the parameters
in � and then finding quantities of interest at the desired times, such as daily new
cases at time ti . In this case, the distribution at time ti has mean y�(ti ) and variance
y�(ti ) + y�(ti )2k. This yields the following likelihood

LNegBin(�|(t, y)) =
N∏
i=0

(
yi (ti ) + m − 1

yi (ti )

)
p�(ti )

m(1 − p�(ti ))
yi , (18)

where yi (ti ) is the data at time point ti , or simply yi as introduced in Sect. 3, across
all observations. Using LNegBin effectively decouples the mean and the variance of
the distribution describing the data. This is expected to be sufficient to capture the
variability of the data resulting from either natural stochasticity or variability due to
how data was collected.

Parameter estimation was performed by minimising the negative log-likelihood
(nLL thereafter) using the widely used direct search Nelder-Mead method. Because
this technique can converge to non-stationary points (but see also Sect. 5.2 regard-
ing the implications of unidentifiability), for each estimation process, multiple initial
conditions (15) were used. To avoid biasing the search, initial conditions were drawn
using Latin hypercube sampling, maximising the minimum distance between points.
Because Latin hypercube sampling cannot prevent inappropriate parameter settings,
initial conditions were only accepted if the ratio τ/γ was not too large. Specifically,
we enforced that the denominator in the expression of τ , i.e., n − 1− R0, was greater
or equal than 1.5 (chosen empirically). On average, 10 out of 15 initial conditions
survived.

4.2 Dynamical Survival Analysis

The statistical methodology Dynamical survival analysis (DSA) has recently been
developed in a series of papers (KhudaBukhsh et al. 2020; Di Lauro et al. 2022;
Vossler et al. 2022; KhudaBukhsh et al. 2023) to address some of the shortcomings of
traditional inferencemethods used in infectious diseases epidemiology. In essence, the
method combines classical dynamical systems theorywith tools fromsurvival analysis.
The crux of the methodology lies in interpreting the law of large numbers ODEs
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(representing population proportions in the continuous time Markov chain model) as
describing probability distributions of transfer times, such as time to infection, time
to recovery. Such a change in perspective allows one to use population-level mean-
field ODEs to describe the dynamics of scaled compartment sizes as well as to write
a likelihood function for individual-level trajectories based on transfer times, which
may be censored, truncated or even aggregated.

To apply the DSA methodology, let us first define [D] = [SI ]/[S], which satisfies

˙[D] = τ(1 − κ)[D]2 +
(
κnτ [S](2κ−1) − τ − γ

)
[D],

with initial condition [D](0) = nρ and [S](0) = 1, where, as before, κ = (n − 1)/n
and [S] satisfies the pairwise mean-field equation with [S](0) = 1 and [I ](0) = ρ.
The reason we normalize the system so that [S](0) = 1 will be clear when we describe
the DSA likelihood. Now, dividing the above equation by ˙[S] = −τ [S][D], solving
for [D] in terms of [S] with initial condition [S](0) = 1 and then putting the solution
back in ˙[S] = −τ [S][D], we get

− ˙[S] = nτ
(
1 − [S]κ) [S]κ + γ + τ

1 − κ
[S]

(
1 − [S]κ−1

)
+ nτρ[S]κ ,

with initial condition [S](0) = 1. In essence, DSA interprets the susceptible curve as
an improper survival function for the time to infection of a randomly chosen initially
susceptible individual. That is, [S](t) = P(TI > t), where the random variable TI
describes the time to infection. This interpretation is exact (asymptotically in the limit
of a large population of the continuous time Markov chain model) and is justified by
means of a Sellke construction argument, see (KhudaBukhsh et al. 2023, 2020; Di
Lauro et al. 2022). In order to interpret [S](t) as a survival function following the
Sellke construction (Andersson and Britton 2000), we set [S](0) = 1. This survival
function is improper because limt→∞[S](t) = P(TI = ∞) > 0. However, we can
transform it into a proper survival function by conditioning it on a final observation
time T ∈ (0,∞). We define the probability density function hT on [0, T ] as follows:

hT (t) = − [Ṡ](t)
(1 − [S](T ))

.

Given a random sample of infection times t1, t2, . . . , tn , the likelihood contribution of
the infection times is given by

�I (κ, τ, γ, ρ | t1, t2, . . . , tn) =
n∏

i=1

hT (ti ). (19)

Note that DSA does not require knowledge of removal times. However, if individual
recovery or removal times are known, they may be used to enhance the quality of
inference. The likelihood contribution of a random sample of individual recovery
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times t ′1, t ′2, . . . , t ′m is given by

�R(κ, τ, γ, ρ | t ′1, t ′2, . . . , t ′m) =
m∏
i=1

rT (t ′i ), (20)

where

rT (t) =
∫ t
0 hT (u)γ e−γ (t−u)du∫ T

0

∫ t
0 hT (u)γ e−γ (t−u)dudt

is the density of the individual recovery times. The density rT is a convolution of two
densities: hT for the time of infection and the density of an exponential distribution
with rate γ corresponding to the infectious period. In practice, it is convenient to
differentiate the density rT (t) with respect to t and then solve a system of ODEs.

Finally, the DSA likelihood function based on a random sample of infection times
t1, t2, . . . , tn and a random sample of recovery times t ′1, t ′2, . . . , t ′m is given by

�(κ, τ, γ, ρ | t1, t2, . . . , tn; t ′1, t ′2, . . . , t ′m)

= �I (κ, τ, γ, ρ | t1, t2, . . . , tn)�R(κ, τ, γ, ρ | t ′1, t ′2, . . . , t ′m). (21)

Note that the likelihood function in (21) is exact when the underlying population size in
the continuous time Markov chain model grows to infinity. For practical convenience
(and as with the MLE-based approach), we work with the loglikelihood function,
i.e., the logarithm of the likelihood function, rather than the likelihood function. It
is, of course, possible to maximise the DSA likelihood function � in Eq. (21) to get
point estimates of the parameter set (κ, τ, γ, ρ). Such a procedure would then be
called a maximum likelihood approach and the difference between the two inference
schemes discussed here would simply be that they maximise two different likelihood
functions. An alternative way to perform parameter inference using DSA is to adopt
a semi-Bayesian approach via a Laplace approximation to the posterior. In this paper,
we adopted a fully Bayesian approach. Specifically, we draw posterior samples of
(κ, τ, γ, ρ) using a Hamiltonian Monte Carlo (HMC) scheme implemented in the
Stan programming language (Stan Development Team 2023; Gabry and Cešnovar
2023) interfaced with R.

Some of the datasets used in this paper (see relevant sections) provide daily new
infection cases, rather than infection and/or recovery times. As mentioned earlier, the
DSA methodology does not require knowledge of removal times. When these are not
available, one can simply work with the likelihood function �I (or the corresponding
loglikelihood) in Eq. (19). Infection times, in turn, can be constructed from daily
new cases as follows: If we observe 10 new cases on day t , then we simply draw 10
random samples from a uniform distribution over [t − 0.5, t + 0.5]. By repeating this
procedure for all days for which daily new case counts are available and combining the
individual infection times (samples from the uniform distributions), we can transform
the original count data into data on infection times. A random sample of those infection
times can then be fed into the likelihood function �I in Eq. (19). In datasets in which
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daily recoveries are available, we can construct individual recovery times in a similar
fashion: If we observe 5 recoveries on day t , we draw a random sample of size 5 from
a uniform distribution over [t − 0.5, t + 0.5]. We repeat this procedure for all days for
which we have daily number of recoveries available, and then combine the individual
recovery times. A random sample of this data on individual recovery times is then fed
into the likelihood function �R in Eq. (20).

5 Results

In this section, we present numerical results, first using synthetic data and then real
epidemic datasets. Whereas for the Gillespie data, we provide results using both the
MLE andDSA approaches, for the data produced by the PWmodelwith noise, we only
provide results using the MLE approach. This is because the DSA method is based on
the law of large numbers limit of the true continuous-timeMarkov chain model, which
we simulate using the Gillespie’s algorithm (KhudaBukhsh et al. 2020; Di Lauro et al.
2022). That is, the DSA likelihood function is the true likelihood function (for the
infection and recovery times) in the limit. One could, if desired, still apply the DSA
method on the PWmodel output with noise. However, it would be artificial as there is
no natural survival perspective in the data generation process of the PW model with
noise, unlike the stochastic model where the DSA likelihood function is justified by
the Sellke construction.

5.1 ML-Based Inference Using Data Produced by the PWModel

As a very first step toward assessing the ability of the inference scheme to recover the
expected parameters, we first fitted the PW model (see Eqs. (9)–(13) to daily cases
data generated by the PW model and contaminated by some noise, whose dispersion
was manipulated as will be described. Here, the values used to initialise the direct
search Nelder-Mead method (see Sect. 4) for parameters R0, k, n and γ were taken
from [0.2, 10], [0.00001, 0.05], [3, 20] and [0.001, 0.1] respectively.

The top rowof Fig. 2 shows the histograms of parameters obtainedwhenfittingM =
1000 realisations, i.e. solving Eqs. (9)–(13) with true [R0, n, γ, I0] = [2, 6, 1/14, 1]
and N = 10000. Here, noise was simulated according to Eq. (15) using k = 0.0005
(i.e., very low dispersion). These results confirm that the mean values are close to
the true parameters, which is expected because the value of k is very small. For
the avoidance of any confusion, we stress that in these histograms, each data point
corresponds to the single-point estimate obtained for one of theM = 1000 realisations
and therefore these histograms should not be construed as posteriors.

To illustrate the sensitivity of the estimation process to the value of the dispersion
parameter,we repeated thefitting processwhen considering5 levels of dispersion, from
0.0005 to 0.01. As shown by the bottom left panel in Fig. 2, as the dispersion level
increases, so does the range of inferred R0 values. Nevertheless, the mean estimated
value remains close to the true value in all cases.
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Fig. 2 Inferring [R0, n, γ, k] based on M = 103 data realisations generated using [R0, n, γ, k] =
[2, 6, 1/14, 5 × 10−4] with N = 104, I0 = 1. Dashed lines indicate the true values of the parame-
ters. Expected values were [1.999, 6.005, 0.0714, 0.00061], respectively. Numerical results for the various
MLEs are provided in Table 1 (Color figure online)

Likewise, we found the inference process to be robust to the choice of time horizon
(full epidemic tmax = 150, partial epidemic including the peak tmax = 80, epidemic
up to the peak tmax = 70, partial epidemic not including peak tmax = 60). As shown
by the bottom right panel in Fig. 2, as the time horizon reduces, the range of inferred
R0 values increases but the average remains close to the true value. Importantly, whilst
the inclusion of the peak does narrow the range of inferred values, it is not necessary
for the inference process to correctly recover the expected value of R0.

5.2 Identifiability

As Fig. 3 shows, the inferred values of τ and n describe a hyperbola-like curve
which indicates a clear identifiability problem; that is the values of τ and n cannot be
disentangled. However, we make two important remarks. First, it is possible to char-
acterise this hyperbola analytically. Second, the values of τ and n combine favourably
into the expression of R0 whose inferred values are well behaved, see bottom panels
in Fig. 2.

To formally characterise the hyperbola, we rely on quantities that can be derived
analytically from the PW model. These are the leading eigenvalue (or growth rate
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Fig. 3 Scatter plots of the parameter estimates on the n, τ plane with the two practical unidentifiability
curves calculated as per Eqs. 22 (dotted line), and 23 (dashed line). The star denotes the true values, i.e., true
n and calculated value of τ given true values of R0 and n. Main panel: scatter plot when the full epidemic
is used for inference. Inset: scatter plot when the time horizon does not include the peak, i.e., tmax = 60.
Note that an arbitrary cut-off of n < 500 was used for clarity of the plot (Color figure online)

under some transformation) and the final epidemic size. These are given below in
terms of τ as a function of n.

τ = λ∗
L + γ ∗

n − 2
, (22)

τ = γ
s∗∞1/n − s∗∞2/n

s∗∞2/n − s∗∞
, (23)

where λ∗
L and s∗∞ = S∗∞/N are obtained by setting all parameters to some desired

values, (n, τ, γ ) = (n∗, τ ∗, γ ∗); note that often R0 instead of τ is given, with knowing
the value of either being sufficient to have a well-defined system. The growth rate
follows from the linear stability analysis of the pairwise model at the disease-free
equilibrium, while the implicit formula for the final epidemic size can be found in
Kiss et al. (2017) and is used here with initial conditions corresponding to the disease-
free steady state.

5.3 ML-Based Inference Using Data from Exact Stochastic Simulations

Five hundred Gillespie realisations were generated using parameters [R0, n, γ, I0] =
[2, 6, 1/7, 1] and N = 10000. Of these 500 realisations, M = 370 realisations did
not die out. Figure4 shows the histograms of the parameters estimated from fitting
those realisations. Unlike with noisy realisations of the ODE, we also subjected I0 to
the inference process. Results (not shown) obtained when assuming I0 = 1 during
estimation revealed that the inclusion of I0 in the estimation process was key to being
able to account for the stochasticity in the onset of the epidemic, or more precisely, the
time elapsed before the growth becomes exponential. For the purpose of initialising
Latin hypercube sampling, values were taken in [0.01, 10]. This particular choice has
no bearing on our findings (results not shown). The mean of the estimated I0 was
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Fig. 4 Inferring [I0, R0, n, γ, k] based on M = 370 data realisations generated using [I0, R0, n, γ ] =
[1, 2, 6, 1/7]with N = 104. Dashed lines indicate the true values of the parameters. Mean estimated values
were [1.355, 2.029, 6.522, 0.141, 0.0071], respectively. The MLE is provided in Table 1 and compared
with the median from the DSA approach in Sect. 5.4 (Color figure online)

found to be 1.355, i.e., close to the expected 1; however, it showed a broad distribution
of values, ranging from 0.012 to 5.534.

Comparing these histograms to those shown in Fig. 2, we find that whilst the mean
estimated values do not significantly differ, the variance in estimation is, not surpris-
ingly, substantially larger. To quantify thismore precisely, we calculated themean (and
standard deviation) of the confidence intervals on R0 over all M = 370 realisations.
Specifically, we determined the nominal 99% profile likelihood confidence interval
widths for R0 as described inKing et al. (2015). Confidence intervals are 0.534±0.203
compared to 0.498 ± 0.071 when fitting the ODE realisations with noise (dispersion
level k = 0.0005). These results are representative of those obtained when calculating
confidence intervals for the other parameters (not shown).

5.4 Inference Based on DSA

Before describing the results of DSA on the synthetic data, we highlight that, unlike
the MLE-based approach which either assumes or infers both population size and
initial number of infected individuals (see also Sect. 5.5.1), DSA inherently assumes
an infinite population size (for both susceptible and infected individuals). Therefore,
we do not infer the initial number of infected individuals. However, the ratio of initially
infected to susceptible individuals, the parameter ρ, can be meaningfully inferred. In
fact, having observed a finite number of infections in a given observation window
[0, T ],DSA is also able to infer an effective population sizeusing the discount estimator
(KhudaBukhsh et al. 2020; Di Lauro et al. 2022):

nT = kT
1 − [S](T )

, (24)
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Fig. 5 Posterior distributions of (τ, R0, n, γ, ρ, nT ) using the DSA method on the synthetic data. The red
triangles indicate the true values of the parameter. The means and the medians of the posterior distribu-
tions are (0.0994, 1.992, 5.997, 0.144, 0.0002, 10049) and (0.0989, 1.989, 5.891, 0.144, 0.0002, 10047),
respectively (Color figure online)

where kT is the number of infections observed by time T > 0. It should be noted that
estimates of the effective population size depend on the observation time T , and could
be substantially different from the true population size when applying the method
to a real epidemic. Nevertheless, as evidenced by the posterior distributions of the
parameters (τ, R0, n, γ, ρ, nT ) shown in Fig. 5, for this synthetic dataset, the method
is able to infer the parameters well. The posterior distributions are unimodal, centred
around the true values of the parameters. Here, at first random samples of individual
infection and recovery times (of size 5000 each) were constructed from the count
dataset (one single trajectory of the Gillespie simulation) by drawing samples from
appropriate uniform distributions (see Sect. 4.2). These random samples were then fed
into the HMC scheme using four parallel Markov chains. Uninformative, flat priors
were used except for domains (0.5, 10) for R0, (0.03, 0.3) for γ , (0, 0.3) for ρ and an
upper bound of 12 on n. The posterior distributions are not affected by the choice of
those ranges on the prior distribution. For the sake of completeness, we have provided
additional results in Appendix Awhen no ranges are imposed on the prior distribution.

For this dataset, the parameter values by both approaches are comparable, see
Table 1. However, it is important to note that the twomethods adopt two quite different
likelihood constructions.Whilst theMLE-based approach relies on counts and the size
of the population to construct the likelihood function, the DSA likelihood function
only requires a random sample of infection times (and recovery times, if available). In
other words, DSA identifies the probability laws of individual transfer times (infection
and recovery times). These are often, even if censored, or truncated, more reliable and
easily observed or derived statistical data than counts. For instance, evenwhenwe have
partially observed count data on daily new infections, one can create a random sample
of infection times (possibly censored/truncated). Even when the entire population is
not monitored and only a set of randomly chosen individuals are followed through
time and their transfer times are noted, the DSA methodology is still applicable. This

123



6 Page 16 of 32 I. Z. Kiss et al.

advantage of DSA is particularly important whenwe fit the PWmodel to real epidemic
data, which we do in the next section.

5.5 Inference from Real-World Data

5.5.1 System Size and the MLE Approach

In deploying the MLE approach to the above data, we used our knowledge of the
true value of N . With real-world datasets, however, such information is typically not
available. Whilst this is not an issue for DSA since it can infer an effective system
size, it is for the MLE-based approach particularly in light of the unidentifiability
issue discussed in Sect. 5.2. In what follows, we infer the value of N along with
the other parameters, accepting that the increase in dimensionality of the parameter
space will likely exacerbates unidentifiability. Here, we investigate the robustness of
the inference process when inferring known parameters on the stochastic realisations
presented in Sect. 5.3. The data presented in Fig. 6 result from the 289 out of a possible
370 realisationswho satisfied the following conditions: (a) goodfit (as quantified by the
ratio 1.2 to the smallest likelihood value 217.25 obtained over the 370 realisations)—
this excluded 66 estimates, (b) reasonable n (i.e., n < 500 arbitrarily—this excluded
13 estimates) and (c) reasonable γ (i.e., γ < 1—this excluded a further 2 estimates—
interestingly those estimates had very large N , specifically 26038.74 and 30168.98 but
still showed very low nLL (244.02 and 228.3 respectively). The median values for the
6 parameters were: I0 = 1.256792, R0 = 2.11, n = 8.84, γ = 0.129, k = 0.00002
and N = 9877.83. These values are reasonably close to the theoretical values (I0 = 1,
R0 = 2, n = 6, γ = 0.14 and N = 10000) which is encouraging. In particular, the
percentage error in N is under 1.5%′ (For reference, the percentage error for DSA on
a random sample of the same data is in the order of 0.01%). Nevertheless, as shown
by Fig. 6, there is substantial variance in the estimates including significantly higher
values of both N and R0 (e.g., 70 estimates have R0 > 4) despite excellent fits.

To illustrate this point, we plotted the estimates on the (τ, n) plane (see Fig. 7) and
confirmed that they conform to the unidentifiability curve previously identified. The
inset shows two stochastic realisations and the correspondingfitswith onefit producing
an estimate for the degree n close to the true value (6) and one producing an estimate
magnitudes of order larger (275). As shown by the Figure (as well as the likelihood
values), the fits are equally excellent. Inferred parameters for the datawith the expected
degree were: I0 = 2.38, R0 = 2.18, n = 6.05, γ = 0.111 and N = 9689.76, i.e.,
close to the ground truth data. In contrast, the inferred parameters for the data with the
large degree were: I0 = 0.24, R0 = 10.56, n = 274.92, γ = 0.024 and N = 9281.53.

5.5.2 FMD Data

Whereas DSA is Bayesian in nature and returns a posterior, the MLE approach only
provides a single point estimate. When only one realisation of the process is available
(as in the case of empirical data), the identifiability issue discussed in Sect. 5.2 has sig-
nificant practical implications for the interpretation of the results of the MLE process.
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Fig. 6 Inferring distributions for [I0, R0, n, γ, k, N ] for the stochastic realisations. The ground truth param-
eter values (R0, n, γ and N ) are denoted by vertical dashed lines. Data shown correspond to 289 out of the
370 stochastic realisations (see detail in text) (Color figure online)

Fig. 7 Main panel: scatter plot of the parameter estimates on the n, τ plane with the two unidentifiability
curves calculated as per Eqs. 22 (dotted line), and 23 (dashed line). The star denotes the true values, i.e.,
true n and calculated value of τ given true values of R0 and n. Only those estimates who did not provide a
good fit, as per the criterion above) were excluded, resulting in 304 surviving estimates. Inset: empirical data
and fit for two stochastic realisations corresponding to the triangles in the main panel with two significantly
different inferred degree n (see detail in text) (Color figure online)

Figure 3 showed that when consideringmultiple realisations produced using the same
parameters, theMLE estimates could be found widely distributed along the theoretical
unidentifiability curves. To understand the numerical origin of this dispersion, we con-
sidered a single realisation and systematically investigated the likelihood landscape
around the MLE estimate using a grid search. When using synthetic data with little
noise (i.e., the data used to produce Fig. 3), we observe the presence of multiple local
minima, relatively near to the known theoretical parameters and densely sampling the
unidentifiability curve (not shown). In the presence of noise (e.g., shorter horizon) or
when using empirical data, however, these minima manifest as isolated pockets over
the full span of the unidentifiability curves in the high-dimensional parameter space.
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Fig. 8 Surface plots of the likelihood landscape for the FMD data (single realisation) obtained at 3 values of
the degree parameter (10, 100 and 200) using a fine grid search (steps of 0.01 for R0 and 0.0005 for γ ). The
nLL for the MLE (across all 100 initial conditions) was just under 129. The red and green contours denote
levels 129 and 132 respectively and illustrate (a) the ‘flatness’ of the landscape around the unidentifiability
curve for all values of n as well as (b) the fact that identical nLL values can be observed at vastly different
values of the degree parameter (from 10 to 200) (Color figure online)

Figure 8 illustrates this when considering the FMD dataset. Here, the same contour
levels (set at, and very close to, the nLL corresponding to the MLE) are shown for
3 different degrees (10, 100 and 200) and demonstrate the presence of multiple local
minimawith the same nLL at vastly different degrees. In addition to forbidding the use
of gradient-based methods, this type of landscape will trap most optimisation meth-
ods and will inevitably result in implausible parameters (e.g., extreme degree or R0
values).

For this reason, in the following 3 sections, we repeated the estimation process
multiple times (100) using different initial conditions and provided histograms of the
estimated values, after excluding those whose nLLwas significantly different from the
best nLL over all initial conditions (The number of estimates excluded for each dataset
will be reported but will highlight the frequency with which the search algorithm can
get stuck in very sub-optimal local minima). Although these histograms appear similar
to the histograms summarising MLE estimates over multiple realisations when those
are available, e.g., Fig. 2, they are fundamentally different in so far as they merely
illustrate the diversity of parameter estimates that can be obtained within a single
realisation. For the purpose of comparing MLE and DSA results, we always used the
MLE, that is, the single point estimate with the smallest likelihood across all initial
conditions, regardless of whether that estimate was away from themean ormode of the
’distribution’.We also stress that, due to unidentifiability and rounding errors, theMLE
parameters are not necessarily those closest to the theoretical parameters. Indeed, in
many cases, some of the estimates were found to be closer to the (expected) parameters
than the MLE estimate. In summary, these histograms should not be interpreted as
posteriors. Although possibly confusing, we have included them because we believe
that they are useful to highlight the numerical challenges posed by the likelihood
profile (particularly when a large number of parameters are considered) and by this
approach in general.

Histograms of inferred parameters for the FMD dataset using the MLE approach
are shown in Fig. 9. 11 out of 100 estimates were excluded because of an anomalous
outcome of the inference process. The estimates with the lowest nLL are I0 = 10.54,
R0 = 2.58, n = 153.67, γ = 0.0723, k = 0.010, and N = 1817.2. There is quite
a bit of dispersion around the parameters, with fairly fat tails. For example, whilst
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Fig. 9 Inferred [I0, R0, n, γ, k, N ] parameters when repeating the ML estimation process on the FMD
data 100 times with different initial conditions for the parameter search algorithm. The MLE is provided
in Table 2 and compared with the median from the DSA approach in Sect. 5.5.5. Five estimates for which
n > 100 (154, 156, 279, 294 and 368) were excluded from the figure (but not the statistics) for improved
readability of the histogram (Color figure online)

the median for R0 (2.71, see Table 2) is relatively close to the best estimate, we also
observe some fairly large values (in fact 10 out of 100 estimateswere excluded because
of R0 > 10). The best and median estimate for N was 1817 and 1747 respectively.
This number is very likely implausible as many more than 2000 farms will have
been involved in the epidemic, but see DSA results below. Likewise the inferred
average degree seems far overinflated. The value of γ � 0.07 implies 14 days for the
infection period. Note that previous studies, see (Di Lauro et al. 2022) for example,
have reported a mean of 10.2 days. Importantly, the fits are good with all (accepted)
estimates showing a very narrow range of nLL values (from 233.03 to 248.67 with
a mean of 236.31 and a std of 4.06). This once again provides evidence of the fact
that the MLE approach ascribes a likelihood to the trajectory produced by the inferred
parameters rather than to the parameters themselves.

The posterior distributions obtained by DSAmethod on the FMD dataset are shown
in Fig. 10. It is important to note that, unlike with the MLE approach, these results
were obtained when using an informative prior, an exponential distribution with mean
10.2 days, for the γ parameter following on the analysis in Di Lauro et al. (2022).
The posterior distributions are unimodal. The mean estimates are consistent with
previously reported values, for example in Di Lauro et al. (2022). Interestingly, and
as with the MLE approach, the estimated effective population size is less than 2000.
This is not to be confused with the number of farms, however (see brief explanation
in Sect. 5.5.5). For the sake of completeness, we have also provided additional DSA
results in Appendix A where informative priors are not used.

5.5.3 H1N1-N18234 Data

The A(H1N1) dataset presents an interesting challenge as it has a long persistent tail
with visible stochastic effects. We therefore present two sets of results: one where we
infer parameters on the full dataset (i.e., including the tail) and one when we restrict to
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Fig. 10 Posterior distributions of (τ, R0, n, γ, ρ, nT ) using DSA on the FMD dataset. The red triangles
indicate the means of the posterior distributions. The means and medians of the posterior distribu-
tions are (0.0266, 2.095, 9.659, 0.0859, 0.0079, 1901) and (0.0233, 2.054, 9.982, 0.0737, 0.0078, 1819),
respectively (Color figure online)

T = 42. Figure11 shows the results of the MLE-based approach for both scenarios.
As clearly evidenced by the bottom right panel of Fig. 16, when the full horizon is
considered, the fits are poor, the noisy tail seemingly obfuscating the true trajectory
of the epidemic. Not surprisingly, the parameter estimates appear meaningless and
highly variables from one round of inference to the other despite similar nLL. When
restricting to T = 42, the fits are good and the parameter estimates are slightly better
behaved albeit with not unimodal andwith implausibly large n considering the inferred
population size N . In fact, only 51 out of 100 parameter estimates survived once we
excluded 3 estimates for being poor fits, 13 for excessive values of R0 (> 10) and
33 estimates for excessive value of γ > 1. Interestingly, we note the high value of k
inferred in both scenarios, with MLE correctly recognising the high dispersion of the
counts.

When deploying DSA, once again, a prior was used for γ (γ −1 = 5.5) based on
published literature (see Schwartz et al. 2014; KhudaBukhsh et al. 2020). Figures12
and 13 show the posterior distributions of the parameters (τ, R0, n, ρ, nT ) based
on the full and partial data respectively. As with the MLE-based approach, when
fitting to the full data, the DSA fit is poor, and in fact, very similar to that of the MLE
approach (see bottom right panel of Fig. 16). When removing the noisy tail of the data,
the quality of inference improves significantly with both MLE and DSA producing
near identical fits (bottom left panel of Fig. 16). However, unlike with FMD dataset,
the inferred parameters are quite different although interestingly the ML-estimated
population size and the DSA effective size are very similar (see Table 2). For the
sake of completeness, we have provided additional DSA results in Appendix A where
uninformative priors are used.
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Fig. 11 Inferred [I0, R0, n, γ, k, N ] parameters when repeating the ML estimation process on the H1N1
data (with horizon restricted to 42, top panel and full data, bottom panel) 100 times with different initial
conditions for the parameter search algorithm. The MLE is provided in Table 2 (Color figure online)

5.5.4 COVID-19 in India

Figure 14 shows the histograms of the estimates obtained by the ML-based approach
on the final dataset. Here, unlike with the previous dataset, there was high consistency
between estimates over the 100 rounds with no exclusions needed. Curiously, this
homogeneity of results is associated with an apparent mismatch between the fitted
model and the data, as shown by the top right panel in Fig. 16.

As in the synthetic data study, random samples of individual infection and recov-
ery times (of size 5000 each) were constructed from the count dataset. These random
samples were then fed into the HMC scheme using four parallel Markov chains.
Uninformative, flat priors were used. The posterior distributions of the parameters
(τ, R0, n, γ, ρ, nT ) using theDSAmethod are shown in Fig. 15. The estimated param-
eters correspond to probability distributions that have similar measures of central
tendency as those reported in an earlier analysis of the data in Di Lauro et al. (2022).

Interestingly, for both methods, the majority of the probability mass in the (pos-
terior) distribution for the degree (n) is concentrated around small values, indicating
a low contact pattern. This is in agreement with various non-pharmaceutical inter-
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Fig. 12 Posterior distributions of (τ, R0, n, ρ, nT ) using DSA on the full A(H1N1) outbreak data. The
means and the medians of the posterior distributions are (0.0373, 0.9880, 8.369, 0.0255, 10146) and
(0.0269, 0.9892, 8.665, 0.0264, 9286), respectively (Color figure online)

Fig. 13 Posterior distributions of (τ, R0, n, ρ, nT ) using DSA on the A(H1N1) outbreak data
restricted to time horizon T = 42.The means and medians of the posterior distributions are
(0.0437, 1.843, 10.650, 0.0189, 2179) and (0.0418, 1.845, 10.908, 0.0189, 2177), respectively (Color fig-
ure online)

ventions such as lockdowns that were put in place to reduce the spread of the virus.
Finally, both ML-estimated population size and DSA effective size are in the same
order of magnitude.

5.5.5 Comparison Across Real-World Datasets

Figure 16 shows the data for all three real-world outbreaks together with fits produced
when taking the best parameter estimates using theML-based approach and themedian
values of the posteriors produced by DSA. Whilst our investigation of the COVID-19
dataset supports a like-for-like comparison between inference schemes, there are dif-
ferences in the way the analyses of the FMD and the A(H1N1) datasets were carried
out. Specifically, whereas no prior was involved in the MLE-based approach, infor-
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Fig. 14 Inferred [I0, R0, n, γ, k, N ] parameters when repeating the ML estimation process on the COVID-
19 dataset 100 times with different initial conditions for the parameter search algorithm. The MLE is
provided in Table 2 (Color figure online)

Fig. 15 Posterior distributions of (τ, R0, n, γ, ρ, nT ) using the DSAmethod on the COVID-19 dataset. The
means and the medians of the posterior distributions are (0.3745, 1.168, 2.522, 0.0963, 0.0002, 23139638)
and (0.3401, 1.164, 2.493, 0.0961, 0.0002, 23101076), respectively (Color figure online)

mative priors (based on published literature) were used for the Hamiltonian Monte
Carlo scheme for DSA. This reflects an important and fundamental difference between
MLE-based approach and DSA methodology (here implemented via a Hamiltonian
Monte Carlo scheme), namely that the latter follows a Bayesian route. It should be
noted, however, that the effect of the choice of priors should vanish in the limit of a large
number of data points, as suggested by the additional DSA results with uninformative
priors provided in Appendix A.

With this in mind, we can make several observations:

• In general, the fit to the real data is good except in two cases. In the COVID-19
data, despite relatively similar parameters between methods, the DSA fit appears
to capture the trend of the data a lot better than theMLE fit where a clear mismatch
is being observed. The scenario in which the full H1N1 epidemic is subjected to
inference highlights the challenge of highly variable, potentially noisy, data, as
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well as the impact of the observation period. In particular, as shown by the bottom
two panels of Fig. 16, the longer observation window allows the long and noisy
tail of the epidemic to dominate, with both approaches missing the rise and fall in
the daily new cases.

• Table 1 and 2 only provide one single point estimate for the MLE approach even
though the process was repeated a number of times to try to mitigate the impact
of unidentifiability. Whilst this estimate is the ‘true’ MLE estimate (in the sense
of being the one with maximum likelihood over all estimates of all rounds), it is
worth remembering (as discussed in Sect. 5.5.2 and also shown by the histograms
provided) that this estimate was not necessarily close to the median over the 100
rounds of estimation. In many cases, we observed a large difference betweenMLE
and median. This is, once again, a manifestation of the unidentifiability problem
whereby vastly different values of the mean-degree can result in likelihoods very
close, or equal, to the best one (i.e., with the same quality of fit). Interestingly, we
note that, in general (a few estimates were excluded as per the text), the impact of
unidentifiability did not affect R0 as much as other parameters.

• The estimates for I0 and population size, N , are relatively similar across both
inference approaches, except for A(H1N1) when the full dataset is considered and
COVID-19. For the A(H1N1) outbreak, the MLE method appears to overestimate
N by a large margin. Note that Washington State University campus is located in a
relatively small townwith a student population of size around 18000 and a resident
population of size around 9000 (KhudaBukhsh et al. 2020). For the COVID-19
wave in India, theDSAmedian estimate of 5204 for I0 appears smaller than the true
count of 11592 new cases on 16 February 2021, whereas the MLE method seems
to overestimate it (33130). It should be noted that the effective population size is a
by-product of the DSAmethod (see Sect. 5.4). Strictly speaking, the parameters I0
and N are far less meaningful in DSA than inMLEwhich requires them. However,
keeping track of the DSA estimates nT of the effective population sizes at times
T is valuable in that it gives us a sense of the possible size of the epidemic and
therefore, could be used for monitoring an ongoing epidemic (KhudaBukhsh et al.
2023).

• Although a strict comparison between the posteriors obtained by DSA and the his-
tograms obtained by repeating the ML estimation process is meaningless (since
these histograms are not posteriors), it is nevertheless interesting to note that when
comparing them for the FMDdata, we find the range of average degree obtained by
DSA to be much better behaved than that obtained byMLEwith mean and median
being close and with a numerical value that seems more realistic. This observation
holds for all datasets with DSA producing more realistic estimates. Unidentifia-
bility aside, this is ultimately linked to the fundamental difference between how
the likelihoods in the MLE and DSA approach are formulated. Whilst the MLE
method simply minimises the mismatch between model trajectory and data, the
DSA likelihood captures the underlying probability laws of individual infection
and recovery times. More specifically, it models the underlying survival func-
tion through the [S](t) curve parameterized by (n, τ, γ, ρ) (and implicitly, by the
observation time T ).
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Fig. 16 Illustration of the real-world outbreak data (top-left—2001 FMD outbreak in the UK, top-right—
third wave of COVID-19 in India, bottom panels—H1N1 outbreak with short (left) and long horizon (right))
together with output from the pairwise model with point estimates from MLE (values with best likelihood)
and DSA (median values). All parameter values are given in Table 2 (Color figure online)

Table 1 Medians of the inferred parameters for the synthetic datasets considered in this study when using
both the MLE approach and the DSA approach. Estimates for I0 and N (when estimated, shown as dash if
not estimated) were rounded to the nearest integer for readability. Estimates of k below 1e − 4 appear as
0.0000

I0 R0 n γ k N

PW with k = 5e−4 (MLE) – 2.00 5.95 0.0714 0.0002 –

PW with k = 1e−3 (MLE) – 1.99 5.96 0.0718 0.0006 –

PW with k = 5e−3 (MLE) – 2.00 5.93 0.0713 0.0046 –

PW with k = 1e−2 (MLE) – 2.00 6.00 0.0718 0.0093 –

PW with k = 5e−2 (MLE) – 2.00 5.99 0.0715 0.0480 –

PW with Tmax = 150 (MLE) – 2.00 5.95 0.0714 0.0002 –

PW with Tmax = 80 (MLE) – 1.99 5.92 0.0712 0.0000 –

PW with Tmax = 70 (MLE) – 2.00 6.04 0.0707 0.0000 –

PW with Tmax = 60 (MLE) – 2.00 5.86 0.0697 0.0000 –

Gillespie with Tmax = 100 (MLE) 1 2.02 6.10 0.1420 0.0002 –

Gillespie with Tmax = 100 (MLE) 1 2.11 8.84 0.1290 0.0000 9878

Gillespie with Tmax = 100 (DSA) 2 1.99 5.89 0.1442 – 10047

The median estimates for full set of relevant parameters for the DSA method are also mentioned in the
caption of Fig. 5
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6 Discussion

In this paper, we have investigated the ability of a network-based mean-field model,
i.e., the pairwise model, to infer not only disease parameters but also some of the
underlying network. Outbreak data encapsulate the interplay between contact network
and epidemic spreading. However, daily new cases or other data incorporate network
information only implicitly. Hence, it is interesting to investigate whether from such
data one can learn about the underlying contact network. Several challenges arise; for
example, an epidemicwith a small transmission rate on a dense networkmay look very
similar to an epidemic with a large transmission rate spreading on a sparser network.
Hence, it is not a given that outbreak data hold a specific enough signature of the
contact network. In fact, our investigation revealed an anti correlation between the
value of the transmission rate and the density of the network. Regardless, the estimate
of both parameters peaked at around the desired values, especially when ground truth
was known.

While the pairwise model used in the paper assumes that the network is regular
and only accounts for the number of links each node has, it is possible to relax this
seemingly restrictive assumption. In KhudaBukhsh et al. (2023), DSA was used for
an SIR epidemic on a configuration model network with Poisson degree distribu-
tion. Recently, it has been shown (Kiss et al. 2023) that the pairwise model remains
exact for networks with binomial, Poisson or negative binomial degree distribution;
see also (KhudaBukhsh et al. 2022, Corollary 1, Section 5.2) where a similar result
was derived for a susceptible-infected (SI) process on configuration model random
graphs. The difference in the degree distributions manifests itself in the PW model
via the type of closure one uses. For example, if the underlying network has a Poisson
degree distribution, then κ is simply set to κ = 1, and the parameter of the Poisson
distribution, and hence, the network enters the PW model via the initial conditions. A
similar modification is possible for networks where the degree distribution is negative
binomial thus separating mean from variance. These all offer extensions and improve-
ments above and beyond what the PW model was able to capture about the network.
Moreover, employing the edge-based compartmental model, another network-based
mean-field model, which uses the probability generating function of corresponding to
the degree distribution of the network makes it possible to aim for learning the degree
distribution of the underlying network.

The crucial advantage of the DSA methodology is the change in perspective about
the mean-field ordinary differential equations. In the DSA approach, we view the
ODEs as descriptions of probability laws of individual times of infection and recov-
ery, as opposed to their traditional interpretations as limiting proportions or scaled
sizes of compartments. By doing so, we are able to directly model the underlying sur-
vival functions corresponding to the individual times of infection and recovery, and
thereby, bring to bear the entire toolkit of survival analysis for the purpose of param-
eter inference. Even though the DSA methodology has now been applied to several
compartmental models, both Markovian and non-Markovian, both under mass-action
and network-based contact patterns, the law of large numbers-based DSA methodol-
ogy needs further improvement to adjust for stochastic effects when applied to finite
(often small) populations.
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A Additional DSA Results

In the analysis of the FMD and the AH1N1 datasets using the dynamical survival
analysis, we used informative priors so that the results could be directly compared
against the analyses of the same datasets previously published in the literature. In this
section,we present the results of dynamic survival analysis of the FMDand theAH1N1
datasets (interfacing with Stan using CmdStanR (Gabry and Cešnovar 2023)) when
informative priors are not used except for an upper bound of 12 on the parameter n
(chosen arbitrarily). This is because when n is large, κ = (n−1)/n ≈ 1 (and 1−κ ≈ 0
in the denominator of the differential equation for [S], which can cause numerical
instability and lead to slow mixing of the Hamiltonian Monte Carlo) suggesting the
use of a Poisson distribution in the configuration model instead. If desired, the case of
large n should be handled by taking a limit κ → 1 of the differential equation for [S]
and then applying DSA with the limit, as done in KhudaBukhsh et al. (2023). In this
paper, we do not pursue this additional complication.

The purpose of this presentation is to show the impact of the informative priors used
in earlier analysis. The use of informative priors is not essential for the application of
DSA. However, we do note that it is usually recommended to use informative priors
when reliable information on the parameters are available.

A.1 FMDData

The mean and the median estimates of (τ, R0, n, γ, ρ, nT ) obtained when uninfor-
mative priors are used are (0.027, 2.06, 9.38, 0.093, 0.0073, 1943), and (0.023, 1.99,
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Fig. 17 Posterior distributions of (τ, R0, n, γ, ρ, nT ) using DSA with uninformative priors on the FMD
dataset. The red triangles indicate the means of the posterior distributions (Color figure online)

Fig. 18 Posterior distributions of (τ, R0, n, γ, ρ, nT ) using DSA on the full A(H1N1) outbreak data.
The means and the medians of the posterior distributions are (0.008, 1.66, 10.4, 0.04, 0.261, 2572) and
(0.008, 1.65, 10.8, 0.039, 0.247, 2545), respectively. There is noticeable difference between these estimates
and the means (0.0373, 0.9880, 8.369, 0.0255, 10146) andmedians (0.0269, 0.9892, 8.665, 0.0264, 9286)
of (τ, R0, n, ρ, nT ) using DSA on the full A(H1N1) outbreak data with informative priors (Color figure
online)

10.2, 0.080, 0.0074, 1848) respectively. They are comparable to the means (0.0266,
2.095, 9.659, 0.0859, 0.0079, 1901) and the medians (0.0233, 2.054, 9.982, 0.0737,
0.0078, 1819) of the posterior distributions of (τ, R0, n, γ, ρ, nT ) when informative
priors are used. Please see Fig. 17 for the posterior distributions of the parameters,
which are unimodal. The HMC chains reported convergence.

A.2 AH1N1 Data

Next, we present the results of analysis of the AH1N1 dataset using DSAmethod with
uninformative priors. As done in main body of the paper, we will present two sets of
results. At first, we show results when the entire dataset is considered. See Fig. 18.
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Fig. 19 Posterior distributions of (τ, R0, n, γ, ρ, nT ) using DSA on the A(H1N1) outbreak
data restricted to time horizon T = 42.The means and medians of the posterior distribu-
tions are (0.034, 2.15, 11.1, 0.13, 0.025, 2041) and (0.0341, 2.11, 10.1, 0.127, 0.025, 2027), respec-
tively. They are comparable to the means (0.0437, 1.843, 10.650, 0.0189, 2179) and medians
(0.0418, 1.845, 10.908, 0.0189, 2177) of (τ, R0, n, ρ, nT ) obtained when informative priors are used
(Color figure online)

Fig. 20 Posterior distributions of (τ, R0, n, γ, ρ, nT ) using the DSAmethod on the synthetic data. The red
triangles indicate the true values of the parameter (Color figure online)

Next, we will present results when data for only the first 43 days are considered. See
Fig. 19. In case of the smaller dataset, the results are comparable to those obtained
earlier when an informative prior was used. As before, when the full dataset is used,
the method performs much worse than when only the first 43 days are considered.
When the full dataset is used, the estimates of the effective population size are much
smaller than the corresponding estimates under an informative prior, again suggesting
poorer inference quality in the presence of tail noise.
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A.3 Synthetic Data Based on Gillespie Simulation

In the analysis of the synthetic data, we used flat, uninformative priors except for
shorter domains of (0.5, 10) for R0, (0.03, 0.3) for γ , (0, 0.3) for ρ and an upper
bound of 12 on n. Here, we present DSA results based on flat priors on the whole
region of validity for the parameters (i.e., [0,∞) for R0, [1,∞) for n, [0,∞)

for γ , and [0, 1] for ρ) and show that such choices do not affect the quality of
posterior inference. The means and the medians of the posterior distributions of
the parameters (τ, R0, n, γ, ρ, nT ) are (0.109, 1.95, 5.62, 0.144, 0.0002, 10050) and
(0.108, 1.94, 5.55, 0.144, 0.0002, 10047), respectively. See Fig. 20. Note that the pos-
terior distributions are similar to those obtained earlier when flat priors over shorter
intervals were used.
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