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Abstract
The origin of phenotypic novelty is a perennial question of genetics and evolution.
To date, few studies of biological pattern formation specifically address multi-
generational aspects of inheritance and phenotypic novelty. For quantitative traits
influenced by many segregating alleles, offspring phenotypes are often intermediate
to parental values. In other cases, offspring phenotypes can be transgressive to parental
values. For example, in the model organism Mimulus (monkeyflower), the offspring
of parents with solid-colored petals exhibit novel spotted petal phenotypes. These
patterns are controlled by an activator-inhibitor gene regulatory network with a small
number of loci. Here we develop and analyze a model of hybridization and pattern
formation that accounts for the inheritance of a diploid gene regulatory network com-
posed of either homozygous or heterozygous alleles. We find that the resulting model
of multi-generational Turing-type pattern formation can reproduce transgressive petal
phenotypes similar to those observed in Mimulus. The model gives insight into how
non-patterned parent phenotypes can yield phenotypically transgressive, patterned
offspring, aiding in the development of empirically testable hypotheses.

Keywords Pattern formation · Turing model · Phenotypic novelty · Mimulus ·
Hybridization

1 Introduction

The origin of phenotypic novelty is a persistent question in evolutionary genetics.
In answering this question, evolutionary biologists often focus on intergenerational
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changes over long time scales. However, it is well known that a dramatic amount
of phenotypic variability can arise within a single generation. In plant biology, for
example, breeding divergent varieties produces offspring whose yield is significantly
greater than the yield of either parent, a phenomenon known as heterosis, (i.e., hybrid
vigor). In heterosis, the interaction between alleles from different parents somehow
produces an emergent phenotype. This paper is a theoretical investigation of this source
of phenotypic novelty.

Previous work has demonstrated that crosses between different Mimulus species
with solid-colored petals canproduceF1offspringwith spotted petals (PA×PB → F1).
In particular, crosses of M. luteus var. variegatus (red) with M. cupreus (yellow or
orange) produce F1 hybrids that are yellow with red spots (Fig. 1A, bottom two rows).
The distribution of phenotypes in an F2 population generated from the selfing of F1
hybrid plants (F1 × F1 → F2) yields additional novelty (Cooley and Willis 2009).
We observe a complex distribution of phenotypes with petals having a range of spot
number, size, location, intensity, and color (Fig. 1B). We seek to investigate the expla-
nation for phenotypes changing so dramatically over just two generations. A working
hypothesis must begin with the current understanding of the gene regulatory network
controlling anthocyanin production, the red-purple pigment found inMimulus petals.

In monkeyflowers, the biochemical pathway that produces anthocyanin pigment
is controlled by MYBs, a well-known transcription factor (TF) family (see Stracke
et al. 2001). These include two R2R3-MYB TFs, NEGAN/MYB5 in the nectar guide
and PELAN in the petal lobes, and one R3-MYB TF, red tongue (RTO) (Ding et al.
2020). Two accessory proteins, a basic helix-loop-helix and a WD40 (MlANbHLH1
and MlWD40a, respectively), form a complex with the activator MYBs (called the
MBW complex). The MBW complex has been widely hypothesized to operate as an
activator within a reaction-diffusion mechanism, while the R3-MYB operates as an
inhibitor (Bouyer et al. 2008; Ding et al. 2020; Ishida et al. 2008; Larkin et al. 1996;
Pesch and Hülskamp 2004). Research on various MBW complexes has shown that
the R3-MYBs (the inhibitors) move intercellularly, expanding away from the cells in
which they are synthesized; R2R3-MYBs (the activators) do not (Albert et al. 2014;
Ding et al. 2020; Kurata et al. 2005). These results are consistent with the requirements
for long-range inhibitor and short-range activation in Turing-type pattern formation
(Turing 1990; Meinhardt 2012; Kondo and Miura 2010; Meinhardt 2009).

To confirm that a reaction-diffusion-mediated pattern formationmechanism is plau-
sible in monkeyflowers, researchers performed genetic manipulation on a species
whose wild type always produces spotted nectar guides. These results show that
elimination of activator via NEGAN RNAi knockouts exhibit nectar guides lacking
anthocyanin. Inhibitor was suppressed in homozygous and heterozygous RTOmutants
exhibit, showing very high and intermediate amounts of anthocyanin compared to the
wild type, respectively. Finally, activator was eliminated throughout the flower with
WD40a knockout mutants which resulted in flowers devoid of anthocyanin (Ding et al.
2020).

Based on these empirical results, Ding et al. (2020) hypothesized that a Turing-type
reaction-diffusion mechanismmediatesMimulus petal patterning. They demonstrated
that a simple two-variable (activator and inhibitor) reaction-diffusion system can
mimic experimentally observed phenotypes (e.g., variation of spot size, elimination of
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Fig. 1 Transgressive petal phenotypes in crosses between Mimulus species. A Inbred (i.e., homozygous)
parent flowers with unpatterned petal phenotypes produce reliable patterned phenotypes in F1 hybrids. B
Self-pollination of F1 M. l. variegatus × M. cupreus hybrids yield anthocyanin patterns of varying size,
density, and intensity of spots (Color figure online)

spots). Their phenomenologicalmodel consists of the following two partial differential
equations (PDEs),

∂A

∂t
= DA∇2A + GA

A2 + A0

I + k
−UAA

∂ I

∂t
= DI∇2 I + GI A

2 + I0 −UI I .

(1)

These PDEs account for the diffusion of activator and inhibitor and include nonlinear
reaction terms for three of the four activator-inhibitor interactions typically found in
Turing systems (no auto-inhibition) (Ding et al. 2020).

The Ding et al. model shows that activator-inhibitor reaction-diffusion equations
can mimic the wild-type spotted nectar guide phenotype and experimental perturba-
tions. This work is similar in spirit, but our focus is the appearance of novel (i.e.,
transgressive) patterned phenotypes in F1 hybrids and the variety of patterns found
in the F2 generation. Section2 shows how to model inheritance within the reaction-
diffusion framework, beginning with reaction terms that instantiate a hypothesized
mechanism of transcription factor binding and regulation. This enables the derivation
of a reaction-diffusion system that accounts for diploidy—in particular, the effect of
heterozygosity—on gene regulatory network function and pattern formation. Because
genetic inheritance occurs by propagating parameters across simulated generations,
we refer to our framework for modeling emerging petal patterns in hybridMimulus as
a multi-generational Turing model.
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Fig. 2 Schematic diagram of the activator-inhibitor gene regulatory network (haploid). The horizontal lines
represent two unlinked genetic loci that code for transcription factors: an activator u and an inhibitor v. Filled
circles represent transcription factor binding sites with affinities κuu , κuv , κvu , and κvv . The parameter αu
is the baseline production rate of activator u. The parameter γu is the increase in production rate that is
regulated by the binding of the activator and the inhibitor (magenta curves). Similarly, αv and γv are the
baseline and regulatable production rate of inhibitor v (see Eq.3) (Color figure online)

2 Model Formulation

The biochemical pathway that produces anthocyanin pigment in monkeyflowers
involves activator and inhibitor transcription factor complexes. Our model formu-
lation begins with a system of reaction-diffusion equations for an activator (u) and an
inhibitor (v),

∂u

∂t
= Du∇2u + f (u, v)

∂v

∂t
= Dv∇2v + g(u, v),

(2)

where Du and Dv are diffusion coefficients. The reaction terms, f (u, v) and g(u, v),
are

f (u, v) = αu − βuu + γu

(
κuuu

1 + κuuu + κuvv

)2

g(u, v) = αv − βvv + γv

(
κvuu

1 + κvuu + κvvv

)2

.

(3)

As illustrated in Fig. 2, these expressions represent an idealized gene regulatory net-
work with the following properties. The activator u is produced at the baseline rate,
αu , and degrades at a rate proportional to u (with a first-order rate constant βu). In
addition, the production rate of u may be increased (by as much as γu) through a Hill
function that represents the competitive binding of activator u and inhibitor v to a pair
of TF binding sites. For simplicity, these binding sites are assumed to be identical and
independent. The inhibitor is modeled similarly, using the parameters αv , βv , and γv .

TheHill functions occurring in Eq.3 involve four equilibrium association constants:
κuu , κuv , κvu , and κvv . In each case, the first subscript denotes the TF, u or v, whose
production rate is being regulated; the second subscript denotes the TF that is binding.
For example, κuv is the association constant for the inhibitor (v) binding to a site that
regulates the activator production rate (see Fig. 2).
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Fig. 3 Schematic diagram of the diploid activator-inhibitor gene regulatory network. In essence, the diploid
regulatory network is obtained by duplicating Fig. 2. There are four gene products, i.e., one activator and
one inhibitor allele from each parent. The parental haplotype is distinguished by the presence or absence of
a caret (u and v from parent 1, û and v̂ from parent 2). Filled circles represent transcription factor binding
sites with affinities κu∗, κû∗, κv∗, and κv̂∗ (where ∗ is a placeholder for u, v, û and v̂). Thick and thin curves
indicate an interaction between binding sites and transcription factors that are inherited from the same and
opposite haplotypes, respectively (Color figure online)

2.1 Accounting for Diploidy

The reaction-diffusion system presented above (Eq. 2) represents two genetic loci
(one for activator, one for inhibitor) known to exist on different chromosomes. To
account formulti-generational aspects ofMimulus genetics, it is necessary to duplicate
the model to represent two copies of each locus (one for each haploid genome). The
resulting four-variable reaction-diffusion system takes the form

∂u

∂t
= Du∇2u + f (u, v, û, v̂)

∂v

∂t
= Dv∇2v + g(u, v, û, v̂)

∂ û

∂t
= Dû∇2û + f̂ (u, v, û, v̂)

∂v̂

∂t
= Dv̂∇2v̂ + ĝ(u, v, û, v̂),

(4)

where u and û represent the (possibly distinct) gene products associated with the
activator locus, and similarly for v and v̂ (see Fig. 3). The reaction terms appropriate
for diploid Mimulus are an elaboration of those in Eq.3,

f (u, v, û, v̂) = αu − βuu + γu

(
κuuu + κuû û

1 + κuuu + κuû û + κuvv + κuv̂ v̂

)2

g(u, v, û, v̂) = αv − βvv + γv

(
κvuu + κvû û

1 + κvuu + κvû û + κvvv + κvv̂v̂

)2

f̂ (u, v, û, v̂) = αû − βû û + γû

(
κûuu + κûû û

1 + κûuu + κûû û + κûvv + κûv̂ v̂

)2

ĝ(u, v, û, v̂) = αv̂ − βv̂v̂ + γv̂

(
κv̂uu + κv̂û û

1 + κv̂uu + κv̂û û + κv̂vv + κv̂v̂ v̂

)2

.

(5)
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The parameters α∗, β∗, and γ∗ are the production rate, degradation rate, and maximum
regulation rate of each of the four gene products (the subscript u, û, v, v̂). The four
Hill functions in Eq.5 include sixteen equilibrium association constants κ∗∗. As in
Eq.3, the first subscript of these binding affinities denotes the TF (u, û, v, or v̂) whose
production rate is being regulated. The second subscript denotes which TF is binding
(also u, û, v, or v̂, for a total of 16 parameters). For simplicity, our simulations assume
that the rates of diffusion for both activator and inhibitor are independent of allele type
(Dû = Du , Dv̂ = Dv). Consistent with Turing-type pattern formation, the diffusion
coefficient for the inhibitor is assumed to be greater than activator (Dv > Du).

2.2 Parameter Assignment: Homozygous Parents and Doubly Heterozygous F1
Hybrid

Consider heterozygous F1 offspring from the cross of two parents with distinct alleles
for both activator and inhibitor (PA ×PB → F1). Table 1 shows the assignment of rate
constants (α∗

u , β
∗
u , . . ., γ

∗
v̂
) for the three diploid reaction-diffusion systems (Eq.4) that

model this cross. Superscripts indicate allele type, e.g., αA
u is the baseline production

rate for the activator derived from parent A. The allele type chosen for each param-
eter follows Mendelian inheritance of the diploid genotypes for the activator (UAA,
UAB , and UBB) and inhibitor (VAA, VAB , and VBB). Table 2 shows the inheritance
of the association rate constants (κ∗∗∗∗ ). Here, the interaction between the activator
and inhibitor, each with two potentially different allele types, leads to the 16 possi-
ble values. The first subscript-superscript pair denotes the allele type of the TF (κ A∗

u∗ ,
κB∗
u∗ , κ A∗

v∗ , or κB∗
v∗ ) whose production rate is being regulated. The second subscript-

Table 1 Assignments of rate constants for PA × PB → F1 hybrid
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Table 2 Assignment of binding constants for parents and F1 hybrid

superscript pair denotes the allele type of the TF that is binding (κ∗A∗u , κ∗B∗u , κ∗A∗v , or
κ∗B∗v ). The F1 hybrid model uses all 16 binding constants. Each of the homozygous
parents utilizes 4 binding constants (parent A highlighted pink, parent B highlighted
cyan). That is, eight binding constants are only relevant for heterozygous Mimulus.
Note that although the genotype UBA is not distinguishable from UAB , and similarly
for VBA and VAB , the binding constants κBA∗∗ are distinct from κ AB∗∗ . For example, the
parameter κBA

vv refers to the binding of the allele type A inhibitory transcription fac-
tor to the binding site associated with the regulation of type B inhibitor. The binding
constant κ AB

vv has a different interpretation and need not have the same value as κBA
vv .

Using both Tables 1 and 2 and Eq.4 we derive the reaction-diffusion system for the
heterozygous F1 offspring of the PA × PB → F1 cross:

∂u

∂t
= Du∇2u + αA

u − β A
u u + γ A

u

(
κ AA
uu u + κ AB

uu û

1 + κ AA
uu u + κ AB

uu û + κ AA
uv v + κ AB

uv v̂

)2

∂v

∂t
= Dv∇2v + αA

v − β A
v v + γ A

v

(
κ AA
vu u + κ AB

vu û

1 + κ AA
vu u + κ AB

vu û + κ AA
vv v + κ AB

vv v̂

)2
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∂ û

∂t
= Du∇2û + αB

u − βB
u û + γ B

u

(
κBA
uu u + κBB

uu û

1 + κBA
uu u + κBB

uu û + κBA
uv v + κBB

uv v̂

)2

∂v̂

∂t
= Dv∇2v̂ + αB

v − βB
v v̂ + γ B

v

(
κBA
vu u + κBB

vu û

1 + κBA
vu u + κBB

vu û + κBA
vv v + κBB

vv v̂

)2

. (6)

These equations can be compared and contrasted with the equations for parent A:

∂u

∂t
= Du∇2u + αA

u − β A
u u + γ A

u

(
κ AA
uu u + κ AA

uu û

1 + κ AA
uu u + κ AA

uu û + κ AA
uv v + κ AA

uv v̂

)2

∂v

∂t
= Dv∇2v + αA

v − β A
v v + γ A

v

(
κ AA
vu u + κ AA

vu û

1 + κ AA
vu u + κ AA

vu û + κ AA
vv v + κ AA

vv v̂

)2

∂ û

∂t
= Du∇2û + αA

u − β A
u û + γ A

u

(
κ AA
uu u + κ AA

uu û

1 + κ AA
uu u + κ AA

uu û + κ AA
uv v + κ AA

uv v̂

)2

∂v̂

∂t
= Dv∇2v̂ + αA

v − β A
v v̂ + γ A

v

(
κ AA
vu u + κ AA

vu û

1 + κ AA
vu u + κ AA

vu û + κ AA
vv v + κ AA

vv v̂

)2

.

(7)

Because parent A is homozygous, the equations for u and û are identical, as are
the equations for v and v̂. It is a simple matter to derive an equivalent reaction-
diffusion system with one equation for each distinct gene product. Defining the total
concentration of activator and inhibitor as ū = u + û and v̄ = v + v̂, we arrive at the
equivalent two-variable system,

∂ ū

∂t
= Du∇2ū + 2αA

u − β A
u ū + 2γ A

u

(
κ AA
uu ū

1 + κ AA
uu ū + κ AA

uv v̄

)2

∂v̄

∂t
= Dv∇2v̄ + 2αA

v − β A
v v̄ + 2γ A

v

(
κ AA
vu ū

1 + κ AA
vu ū + κ AA

vv v̄

)2

.

(8)

As expected, the zeroth-order rate constants (α and γ ) are scaled by a factor of 2,
while the first-order rate constants (β) are not. That is, a homozygous diploid model
is equivalent to an appropriately scaled haploid model (compare Eq.8 to Eqs. 2 and
3). The reaction-diffusion system for parent B (also homozygous) is identical to Eq.7
with the replacement of B for A.

2.3 Inheritance of Parameters in a Simulated Population of F2 Hybrids

Hybrids ofM. cupreus andM. l. variegatus show a striking distribution of phenotypes
in the F2 generation (recall Fig. 1). In these experiments, the F2 hybrids are produced
by selfing an F1 flower and growing the progeny (F1 × F1 → F2). In our model,
the distribution of genotypes in the simulated F2 generation is achieved by assigning
parameters in Eq.4 according to the Mendelian logic of the previous section.

Because the F1 hybrid is heterozygous for both activator and inhibitor (UABVAB),
the F2 hybrid population exhibits 9 distinct genotypes, including the doubly homozy-

123



A Multigenerational Turing Model Reproduces Transgressive... Page 9 of 24 120

Table 3 Assignment of rate and binding constants for the F2 hybrid genotype UABVBB

F2 Hybrid

UABVBB

Transcription factor allele

UA UB VB VB

αu ← αA
u αû ← αB

u αv ← αB
v αv̂ ← αB

v

βu ← βA
u βû ← βB

u βv ← βB
v βv̂ ← βB

v

γu ← γA
u γû ← γB

u γv ← γB
v γv̂ ← γB

v

Binding
site
allele

UA κuu ← κAA
uu κuû ← κAB

uu κuv ← κAB
uv κuv̂ ← κAB

uv

UB κûu ← κBA
uu κûû ← κBB

uu κûv ← κBB
uv κûv̂ ← κBB

uv

VB κvu ← κBA
vu κvû ← κBB

vu κvv ← κBB
vv κvv̂ ← κBB

vv

VB κv̂u ← κBA
vu κv̂û ← κBB

vu κv̂v ← κBB
vv κv̂v̂ ← κBB

vv

The highlighted parameters differ from the doubly heterozygous F1 hybrid UABVAB (cf. Tables 1 and 2)

gous parental genotypes UAAVAA and UBBVBB , the doubly heterozygous F1 hybrid
genotype UABVAB , and 6 genotypes that are unique to the F2 generation (UAAVAB ,
UAAVBB , UABVAA, UABVBB , UBBVAB , and UBBVAB). The parental and F1 cases
were described in the previous section. For an example that is unique to the F2 hybrids,
consider theUABVBB genotype, which is homozygous for activator and heterozygous
for inhibitor. Simulations for this genotypeuse the rate andbinding constants inTable 3.

Because this genotype is homozygous for the inhibitor (VBB) but not the activator
(UAB), the corresponding contracted reaction-diffusion system has three equations (u,
û and v̄ = v + v̂):

∂u

∂t
= Du∇2u + αA

u − β A
u u + γ A

u

(
κ AA
uu u + κ AB

uu û

1 + κ AA
uu u + κ AB

uu û + κ AB
uv v̄

)2

∂ û

∂t
= Du∇2û + αB

u − βB
u û + γ B

u

(
κBA
uu u + κBB

uu û

1 + κBA
uu u + κBB

uu û + κBB
uv v̄

)2

∂v̄

∂t
= Dv∇2v̄ + 2αB

v − βB
v v̄ + 2γ B

v

(
κBA
vu u + κBB

vu û

1 + κBA
vu u + κBB

vu û + κBB
vv v̄

)2

.

The reaction-diffusion equations for the remaining genotypes are derived similarly
(see Appendix A).

Note that the parameters used to simulate the doubly heterozygous F1 hybrid
(UABVAB) effectively define a given multi-generational simulation. Each of the other
8 genotypes (two parents, 6 unique F2 genotypes) use a subset of the F1 parameters.
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The F1 genotype equations (Eq.6) use 16 association constants (see, e.g., Table 2).
The doubly homozygous genotypes (UAAVAA,UAAVBB ,UBBVAA, andUBBVBB) use
four of these, while genotypes which are heterozygous at one locus and homozygous
at the other use nine (UAAVAB , UBBVAB , UABVAA, and UABVBB).

2.4 Parameters for Transgressive Hybrid Phenotypes

Recall that aTuring instability for a two-variable activator-inhibitor system (e.g., Eqs. 2
and 3) requires linear stability of the reaction terms, f (u, v) and g(u, v). That is, the
Jacobian defined by

A =
⎛
⎜⎝

∂ f

∂u

∂ f

∂v
∂g

∂u

∂g

∂v

⎞
⎟⎠ =

⎛
⎜⎜⎝

−βu + 2γu(1 + κuvv)κ2
uuu

(1 + κuuu + κuvv)3
− 2γuκ2

uuκuvu2

(1 + κuuu + κuvv)3

2γv(1 + κvvv)κ2
vuu

(1 + κvuu + κvvv)3
− βv − 2γvκ

2
vuκvvu2

(1 + κvuu + κvvv)3

⎞
⎟⎟⎠

(9)

must be stable (both eigenvalues of A(uss, vss) must have negative real part) when
evaluated at the steady state satisfying 0 = f (uss, vss) and 0 = g(uss, vss). We
constrained our simulations to unique steady-state solutions, though the model can
produce systems with three steady states. Additionally, the matrix that arises from
linearizing the full reaction-diffusion system,

A′ = A − k2
(
Du 0
0 Dv

)
, (10)

must be unstable (i.e., at least one eigenvalue has positive real part) for some spatial
frequency k. It can be shown that this requires d = Dv/Du > 1 (see Murray 2001,
chap. 2).

For our model of patterning in diploid Mimulus (Eq. 4), the 4 × 4 Jacobian matrix
is obtained by linearizing the reaction terms (Eq. 5). For compactness, these can be
written as

f = αu − βuu + γu

(
Uu

1 +Uu + Vu

)2

g = αv − βvv + γv

(
Uv

1 +Uv + Vv

)2

f̂ = αû − βû û + γû

(
Uû

1 +Uû + Vû

)2

ĝ = αv̂ − βv̂v̂ + γv̂

(
Uv̂

1 +Uv̂ + Vv̂

)2

(11)

where

Uu = κuuu + κuû û Vu = κuvv + κuv̂ v̂ Uû = κûuu + κûû û Vû = κûvv + κûv̂ v̂

Uv = κvuu + κvû û Vv = κvvv + κvv̂v̂ Uv̂ = κv̂uu + κv̂û û Vv̂ = κv̂vv + κv̂v̂ v̂ .
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The Jacobian takes the form

J =
(
J∗∗ J∗∗̂
J∗̂∗ J∗̂∗̂

)
(12)

with diagonal blocks

J∗∗ =

⎛
⎜⎜⎝

∂ f

∂u

∂ f

∂v
∂g

∂u

∂g

∂v

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−βu + 2γuκuuUu(1 + Vu)

(1 +Uu + Vu)3
−2γuκuvU 2

u

(1 +Uu + Vu)3

2γvκvuUv(1 + Vv)

(1 +Uv + Vv)3
−βv + −2γvκvvU 2

v

(1 +Uv + Vv)3

⎞
⎟⎟⎠

J∗̂∗̂ =

⎛
⎜⎜⎝

∂ f̂

∂ û

∂ f̂

∂v̂
∂ ĝ

∂ û

∂ ĝ

∂v̂

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−βû + 2γûκûûUû(1 + Vû)

(1 +Uû + Vû)3
−2γûκûv̂U

2
û

(1 +Uû + Vû)3

2γv̂κv̂ûUv̂(1 + Vv̂)

(1 +Uv̂ + Vv̂)
3 −βv̂ + −2γv̂κv̂v̂U

2
v̂

(1 +Uv̂ + Vv̂)
3

⎞
⎟⎟⎠ ,

(13)

and off-diagonal blocks

J∗∗̂ =

⎛
⎜⎜⎝

∂ f

∂ û

∂ f

∂v̂
∂g

∂ û

∂g

∂v̂

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
2γuκuûUu(1 + Vu)

(1 +Uu + Vu)3
−2γuκuv̂U

2
u

(1 +Uu + Vu)3

2γvκvûUv(1 + Vv)

(1 +Uv + Vv)3

−2γvκvv̂U
2
v

(1 +Uv + Vv)3

⎞
⎟⎟⎠

J∗̂∗ =

⎛
⎜⎜⎝

∂ f̂

∂u

∂ f̂

∂v
∂ ĝ

∂u

∂ ĝ

∂v

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
2γûκûuUû(1 + Vû)

(1 +Uû + Vû)3
−2γûκûvU

2
û

(1 +Uû + Vû)3

2γv̂κv̂uUv̂(1 + Vv̂)

(1 +Uv̂ + Vv̂)
3

−2γv̂κv̂vU
2
v̂

(1 +Uv̂ + Vv̂)
3

⎞
⎟⎟⎠ .

(14)

In these expressions,Uu,Uv, . . . , Vv̂ are evaluated at the steady state (uss , vss, ûss, v̂ss)
solving 0 = f (uss, vss, ûss, v̂ss), and similarly for g, f̂ , and ĝ (Eq. 11). A valid multi-
generational parameter set (i.e., one resulting in a transgressive F1 phenotype) must
yield three stable Jacobian matrices: J A, J B , and J F1. Additionally, the matrix that
results from linearizing the diploid reaction-diffusion system,

J ′ = J − k2

⎛
⎜⎜⎝
Du 0 0 0
0 Dv 0 0
0 0 Du 0
0 0 0 Dv

⎞
⎟⎟⎠ , (15)

must be unstable for the F1 hybrid, yet stable for both parents.
When Eq.15 is rewritten in terms of the relative diffusion coefficient, d = Dv/Du ,

there exists a critical value of d, denoted d�, above which the matrix J ′ will be
unstable for some spatial frequency k (a Turing bifurcation). Assume without loss
of generality that d A

� ≤ dB
� . In that case, a valid multi-generational parameter set
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has critical diffusion ratios that satisfy dF1
� < d A

� . Choosing d = Du/Dv such that
dF1
� < d < d A

� ≤ dB
� , we obtain a multi-generational parameter set that results in

Turing-stable parents and a Turing-unstable F1 hybrid (see Appendix B for further
discussion).

3 Results

An intriguing observation of the experimental Mimulus system is that inbred (i.e.,
homozygous) parent flowers with unpatterned petal phenotypes produce reliable pat-
terned phenotypes in F1 hybrids (recall Sect. 1). In particular, crosses between solid
colored yellow morph M. cupreus and M. l. variegatus lead to spotted F1 hybrids
(Fig. 1). To see if this phenomenon could be reproduced by our multi-generational
model (Sect. 2), we sought parameter sets that yield this transgressive phenotype. We
require parameters for which Parents A and B are Turing stable, while the F1 hybrid
is Turing unstable, as discussed above.

3.1 Unpatterned Parents Can Produce Patterned Hybrid Offspring

Figure 4A shows a representative simulation in which parents A and B are unpat-
terned while the F1 hybrid is patterned. These simulations are performed using an
alternating-direction implicit Crank-Nicholson-like numerical scheme with no flux
boundary conditions. As a proxy for the concentration of anthocyanin pigment, the
steady-state value of total activator concentration (u + û) is shown in yellow-to-red
pseudo color. The total inhibitor concentration (v + v̂) is not shown because it does
not influence the visual appearance ofMimulus petals, but in these simulations it is in
phase with the activator.

Figure 4B shows the simulated pheonotypes of the F2 generation. The 3 × 3 grid
organizes the results by genotype. The parent and hybrid F1 cases are recapitulated
on the diagonal. As in the Mimulus experimental system, the simulated F2 hybrid
population exhibits a wide variety of phenotypes. For this parameter set, 5 of the 6
phenotypes unique to the F2 generation are patterned (Turing unstable) while 1 is solid
(Turing stable). The patterned phenotypes consist of spotswith different intensity, size,
and wavelength (e.g., spots in UBBVAA and UBBVAB are similar in size, but those in
UBBVAB are lighter and closer together).

Figure 5 shows fourmore simulatedF2hybrid populations derived fromunpatterned
parents whose cross yields a patterned F1 hybrid (each displayed in a 3 × 3 grid akin
to that in Fig. 4B). In three of the four examples (panels B, C, and D), the unique F2
phenotypes include one or more individuals with a pattern distinct from the F1 hybrid.
The number of patterned individuals and variety of patterns among the F2 hybrids can
be low (panel A) or high (panel D) depending on model parameters.
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Fig. 4 Multi-generational simulation of transgressive petal pattern phenotypes. A The diploid reaction-
diffusion model (Eq.4 and Fig. 3) produces unpatterned phenotypes when using homozygous parent
parameters. Using heterozygous parameters corresponding to the cross between unpatterned parents
(PA × PB → F1), the model produces patterned phenotypes in F1 offspring. Yellow-to-red pseudo color
represents the total activator concentration (i.e., low to high, u + û). B Simulated breeding of F1 hybrids
(F1 × F1 → F2) yields various phenotypes, each corresponding to one of nine F2 genotypes (UAAVAA ,
UABVAB , etc.). These diploid genotypes result fromall possible combinations of parent haplotypes (denoted
by subscripts A and B) that are composed of two alleles each for activator (U ) and inhibitor (V ) loci. Note:
the F2 individuals with genotypes UAAVAA , UABVAB , and UBBVBB are identical to parent A, the F1
hybrid, and parent B, respectively. Parameters are as in Table 4 (Color figure online)
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Fig. 5 Four more examples of simulated selfing of transgressive patterned F1 hybrids. A–D are ordered to
show increasing pattern variety of the F2 hybrid populations. A No new patterns arise in the F2 generation.
B One new F2 pattern is similar to the F1 hybrid. C Three new F2 patterns with spots larger and more
intense than the F1 hybrid. D Four new F2 patterns, both labyrinthine and spotted phenotypes with various
wavelengths, spot size, and spot intensity (Color figure online)

3.2 Parents with Identical Unpatterned Phenotypes Can Produce Patterned
Offspring

Themulti-generational Turingmodel produces a transgressive patterned F1 phenotype
and a broad distribution of F2 phenotypes (Sect. 3.1) consistent with the experimental
Mimulus system. Note that the cross betweenM. l. variegatus andM. cupreus (Fig. 1)
involves unpatterned parents that are phenotypically distinct (M. l. variegatus is pink,
M. cupreus is yellow). This is recapitulated in the simulated cross of Fig. 4, in which
Parent A has a high concentration of activator (as doesM. l. variegatus) while Parent
B has a low activator concentration (like yellow M. cupreus).

Figure 5A shows that our model formulation can produce transgressive F1 phe-
notypes even when the unpatterned parents are phenotypically similar (one yellow
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and one light orange). This observation highlights the transgressive nature of the pat-
terned F1 and F2 phenotypes produced by the model. That is, the maxima of spatially
inhomogeneous activator concentration in patterned F1 and F2 individuals can exceed
the spatially homogenous activator concentrations of both unpatterned parents (e.g.,
genotypeUABVAB in Fig. 6A). In some cases, unpatterned F2 individuals exhibit acti-
vator concentration that is more extreme than either parent (e.g., genotype UBBVAA

in Fig. 6C).

3.3 A Possible Mechanism for the Emergence of Transgressive F1 Hybrid
Phenotypes

Figure 5A shows a transgressive F1 hybrid (red spots on yellow background) from a
cross between phenotypically similar unpatterned parents (one yellow and one light
orange). Interestingly, Fig. 6 shows that phenotypically identical unpatterned parents
(UAAVAA and UBBVBB) can also yield patterned F1 hybrid offspring (UABVAB) and
novel patterned F2 phenotypes. We will discuss this limit case in detail because it
suggests one possible mechanism for the emergence of transgressive phenotypes in
hybrid Mimulus.

The parents in Fig. 6 are phenotypically identical (unpatterned yellow) because, in
the parameter set used, the rate constants do not depend on the allele type (αA

u = αB
u ,

β A
u = βB

u , γ A
u = γ B

u , and similarly for v). The eight binding constants used in the
parent simulations (both doubly homozygous genotypes) also do not depend on allele
(κ AA

uu = κBB
uu , κ AA

uv = κBB
uv , κ AA

vu = κBB
vu , κ AA

vv = κBB
vv ). For parameters with this

symmetry, the reaction-diffusion systems representing parent A and B are the same;
consequently, the parent simulations yield identical phenotypes (unpatterned yellow,
see UAAVAA and UBBVBB in Fig. 6). The simulation of the doubly heterozygous F1
hybrid involves these parental parameters as well as eight additional binding constants
chosen to satisfy κ AB

uu = κBA
uu < κ AA

uu = κBB
uu (and similarly for κuv , κvu , and κvv).

This choice is consistent with small structural differences in the transcription factors
from alleles A and B leading to less effective binding to the regulatory side associated
with the alternate allele type.

The central panel of Fig. 6 (UABVAB) shows that a patterned F1 hybrid is possible
under the assumptions made in the previous paragraph. In this simulation, the F2
hybrids include five distinct phenotypes, four of which are patterned. Each of the
three patterned phenotypes that are unique to the F2 population is produced by two
equivalent genotypes (UAAVAB = UBBVAB , UABVAA = UABVBB , UAAVBB =
UBBVAA). Note that these genotype pairs result from swapping one or both of the
homozygous loci (activator UAA ↔ UBB or inhibitor VAA ↔ VBB). For example,
replacing UAA by UBB in UAAVAB gives UBBVAB .

Figure 6 demonstrates that transgressive phenotypes in doubly heterozygous F1
hybrids can emerge when the TFs derived from one parent are less effective at regu-
lating TFs derived from the other parent (with different allele type). For example, the
inequality κBA

vu < κ AA
vu means that the activator of allele type A has lower affinity for

the binding site of inhibitor B than A. We will refer to regulation between identical
and distinct allele types as cis and trans, respectively. In cis regulation, both the tran-
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Fig. 6 Transgressive patterns arising fromphenotypically identical parents.AThe diploid reaction-diffusion
model (Eq.4) can produce transgressive patterns in the F1 generation even when the homozygous parents
have identical unpatterned phenotypes. In the simulated cross (PA×PB → F1), the heterozygous parameter
set is identical to the parents except for trans-interaction binding affinities (e.g., κ AB

uu = κBA
uu < κ AA

uu =
κBB
uu , and similarly for κuv , κvu , and κvv). B The F2 hybrids include five distinct phenotypes, four of which
are patterned (Color figure online)
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scription factor and its regulatory binding site are derived from the same allele type.
In trans regulation, the transcription factor regulates the production of the alternate
allele’s gene product. To explore this mechanism further, observe that the parameter
symmetries of this limit case allow the reaction-diffusion equations for the F1 hybrid
to be contracted.Writing the total concentration of activator and inhibitor as ū = u+ û
and v̄ = v + v̂, Eq. 6 is equivalent to

∂ ū

∂t
= Du∇2ū + 2αu − βuū + 2γu

(
κuu(1 + muu)ū

1 + κuu(1 + muu)ū + κuv(1 + muv)v̄

)2

∂v̄

∂t
= Dv∇2v̄ + 2αv − βvv̄ + 2γv

(
κvu(1 + mvu)ū

1 + κvu(1 + mvu)ū + κvv(1 + mvv)v̄

)2

,

(16)

where the superscripted A and B are dropped because α∗ = αA∗ = αB∗ (similarly
for β and γ ) and κ∗∗ = κ AA∗∗ = κBB∗∗ . In this equation, m∗∗ is the ratio of trans to
cis binding constants, m∗∗ = κ trans∗∗ /κcis∗∗ , where κcis∗∗ = κ AA∗∗ = κBB∗∗ and κ trans∗∗ =
κ AB∗∗ = κBA∗∗ represent affinities within and between parental haplotypes, respectively.
The assumption that trans binding is less effective than cis binding implies that 0 ≤
m∗∗ < 1. Setting m∗∗ = 1 gives equations for the phenotypically identical parents.

Figure 7 summarizes a parameter study for which the only distinction between
parents and F1 hybrid parameters is a decreased trans binding affinity for one of the
four regulatory pathways (κuu , κuv , κvu , or κvv). Figure7A shows that reduction of
the trans efficacy of the activator regulating inhibitor (decreasing mvu) decreases the
critical diffusion ratio d�. This suggests a hypothesis for the emergence of transgressive
phenotypes in an F1 hybrid derived from phenotypically identical parents: a Turing
bifurcationoccurs as a result of a decrease in the inhibitor production rate,κvu(1+mvu).
In the parents, κvu(1 + mvu) = 2κvu , but in the hybrid κvu ≤ κvu(1 + mvu) ≤ 2κvu .
Figure7C shows that a similar result is obtained with a reduction of the trans efficacy
of the inhibitor binding the activatory regulatory site (decreasing muv).

Figure 7 demonstrates that reduction in trans efficacy of inhibitor regulating activa-
tor (muv) or activator regulating inhibitor (mvu) can lead to instability in the F1 hybrid,
but this is not the case for muu or mvv . That is, decreasing muv (or mvu) decreases
d�, but decreasing muu (or mvv) increases d�. These results depend on the parameters
chosen for the phenotypically identical parents (Eq.16 with m∗∗ = 1). Nevertheless,
Fig. 7 is representative of themost common outcomeswe have observed for admissible
parameter sets (i.e., Turing stable parents, Turing unstable hybrid).

4 Discussion

This paper presents a multi-generational Turing model of pattern formation in hybrid
Mimulus. Model development was motivated by experimental observations of petal
phenotypes across three generations: parents, F1, and F2 (Fig. 1). Our model formula-
tion is explicitly diploid, i.e., there is a representation ofmultiple copies of each genetic
loci—two for activator, two for inhibitor (Fig. 3). The model reproduces transgressive
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Fig. 7 Reducing the trans-interaction efficacy affects the critical diffusion ratio d�. The trans efficacy of
transcription factor binding is the ratio of two affinities (muu ,muv ,mvu , andmvv). In A the parametermvu
(horizontal axis) is defined as mvu = κ transvu /κcisvu where κcisuv = κ AA

uv = κBB
uv and κ transuv = κ AB

uv = κBA
uv

represent affinities within and between parental haplotypes, respectively. The critical diffusion coefficient
ratio (d� = Dv/Du , vertical axis) locates a Turing instability (i.e., spotted patterns occur above the blue
curve). Reducing the trans efficacy mvu decreases d�. Reducing the trans efficacies muu (B), muv (C), and
mvv (D) impact d� with different directions and intensities. Parameters as in Fig. 6 (Color figure online)

phenotypes in F1 hybrids between two unpatterned parents, i.e., red × yellow → red
spots on yellow (Fig. 4). Consistent with experiments, simulated selfing of this F1
hybrid often yields a distribution of phenotypes in the F2 hybrid population (Fig. 5).

It is instructive to compare our model with the inheritance of an activator-inhibitor
reaction-diffusion systemmotivated by pattern formation in zebrafish (Miyazawa et al.
2010). This prior work, which is the only other example of a multi-generational Turing
model to be found in the literature, presumes that zebrafish phenotypes are controlled
by a large number of genetic loci. Assuming additive inheritance, model F1 hybrids
use parameter values intermediate to parental values. This approach generated novel
phenotypes in F1 hybrids. However, the F1 hybrid retains no information regarding
the more extreme parental parameter values; it is therefore unable to reproduce a
distribution of phenotypes in an F2 population. In contrast, the multi-generational
model presented here allows for loci to be homozygous or heterozygous for parental
allele type. Simulated selfing of F1 hybrids leads to nine distinct F2 genotypes and a
wide range of phenotypes, consistent with monkeyflower experiments (Fig. 5). This is
the preferred approach for a model of the anthocyanin pathway inMimulus, which is
known to be controlled by a small number of genes.
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Under the model put forth byMiyazawa et al. (2010), offspring phenotype will nec-
essarily be intermediate to parental phenotype. However, it is well documented that
hybridization can lead to offspring phenotype that is more extreme than either parent
(see Hochholdinger and Baldauf 2018; Birchler et al. 2010, for reviews of hybrid vigor
and heterosis). We find that our explicitly diploid model can yield offspring with phe-
notypes more extreme than either parent (Fig. 5A). As a limiting case, we performed
simulations in which parents are phenotypically identical. These simulations suggest
a hypothetical mechanism for the emergence of hybrid phenotypes involving tran-
scription factors whose regulatory binding is weaker between parental alleles versus
within parental alleles. In principle, this hypothesis could be empirically tested using
ChIP-Seq to identify binding sites and relative strengths of binding (see Liang and
Kele 2012, for details).

This paper is a proof of concept that emphasizes a specific biological question,
model formulation, and numerical simulations. Each multi-generational simulation
presented here is, in fact, nine distinct reaction-diffusion systems and solutions and
their numerically calculated steady states. These systems are related to one another
in a complex manner through combinations of parameter assignments that account
for Mendelian inheritance of multiple alleles and gene products. Because there are no
continuously changing (bifurcation) parameters in our representation of inheritance,
it is not clear to us what form a deeper mathematical analysis would take.

Possible mechanisms of pattern formation through inheritance will necessarily
depend on the model equations and parameters used. Although there is experimental
evidence for an activator-inhibitor reaction-diffusion system in Mimulus Ding et al.
(2020), the anthocyanin pathway is known to include two accessory proteins, bHLH
and WD40, and at least two copies of the inhibitor RTO that may bind and sequester
bHLH (Yuan et al. 2014; Ding et al. 2020). In future work, this paper’s approach
to diploidy and inheritance could be used to study patterning mediated by a gene
regulatory network model with different, and more realistic, features.
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Appendix A: Equations and Contractions for F2 Genotypes

In the equations for the diploid F2 population, the four-variable system can be con-
tracted by one equation per instance of homozygosity. For the parent with homozygous
genotypeUAAVAA, the four-variable system (Eq.7) can be contracted to a two-variable
system (Eq.8). The equations used for parent B (UBBVBB) are identical with the
replacement of B for A. In contrast, simulations of the doubly heterozygous F1 hybrid
with genotype UABVAB require all four equations (Eq.6). Six additional genotypes
are unique to the F2 population. The equations for these genotypes (contracted when
possible) are enumerated below.

UABVAA

∂u
∂t = Du∇2u + αA

u − β A
u u + γ A

u

(
κ AA
uu u + κ AB

uu û

1 + κ AA
uu u + κ AB

uu û + κ AA
uv v̄

)2

∂ û
∂t = Du∇2û + αB

u − βB
u û + γ B

u

(
κBA
uu u + κBB

uu û

1 + κBA
uu u + κBB

uu û + κBA
uv v̄

)2

∂v̄
∂t = Dv∇2v̄ + 2αA

v − β A
v v̄ + 2γ A

v

(
κ AA
vu u + κ AB

vu û

1 + κ AA
vu u + κ AB

vu û + κ AA
vv v̄

)2

UBBVAA

∂ ū
∂t = Du∇2ū + 2αB

u − βB
u ū + 2γ B

u

(
κBB
uu ū

1 + κBB
uu ū + κBA

uv v̄

)2

∂v̄
∂t = Dv∇2v̄ + 2αA

v − β A
v v̄ + 2γ A

v

(
κ AB
vu ū

1 + κ AB
vu ū + κ AA

vv v̄

)2

.

UAAVAB

∂ ū
∂t = Du∇2ū + 2αA

u − β A
u ū + 2γ A

u

(
κ AA
uu ū

1 + κ AA
uu ū + κ AA

uv v + κ AB
uv v̂

)2

∂v
∂t = Dv∇2v + αA

v − β A
v v̄ + γ A

v

(
κ AA
vu ū

1 + κ AA
vu ū + κ AA

vv v + κ AB
vv v̂

)2

∂v̂
∂t = Dv∇2v̂ + αB

v − βB
v v̂ + γ B

v

(
κBA
vu ū

1 + κBA
vu ū + κBA

vv v + κBB
vv v̂

)2

UABVBB

∂u
∂t = Du∇2u + αA

u − β A
u u + γ A

u

(
κ AA
uu u + κ AB

uu û

1 + κ AA
uu u + κ AB

uu û + κ AB
uv v̄

)2

∂ û
∂t = Du∇2û + αB

u − βB
u û + γ B

u

(
κBA
uu u + κBB

uu û

1 + κBA
uu u + κBB

uu û + κBB
uv v̄

)2

∂v̄
∂t = Dv∇2v̄ + 2αB

v − βB
v v̄ + 2γ B

v

(
κBA
vu u + κBB

vu û

1 + κBA
vu u + κBB

vu û + κBB
vv v̄

)2
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UBBVAA

∂ ū
∂t = Du∇2ū + 2αB

u − βB
u ū + 2γ B

u

(
κBB
uu ū

1 + κBB
uu ū + κBA

uv v̄

)2

∂v̄
∂t = Dv∇2v̄ + 2αA

v − β A
v v̄ + 2γ A

v

(
κ AB
vu ū

1 + κ AB
vu ū + κ AA

vv v̄

)2

UBBVAB

∂ ū
∂t = Du∇2ū + 2αB

u − βB
u ū + 2γ B

u

(
κBB
uu ū

1 + κBB
uu ū + κBA

uv v + κBB
uv v̂

)2

∂v
∂t = Dv∇2v + αA

v − β A
v v + γ A

v

(
κ AB
vu ū

1 + κ AB
vu ū + κ AA

vv v + κ AB
vv v̂

)2

∂v̂
∂t = Dv∇2v̂ + αB

v − βB
v v̂ + γ B

v

(
κBB
vu ū

1 + κBB
vu ū + κBA

vv v + κBB
vv v̂

)2

Appendix B: Selection of Multi-generational Parameter Sets

The parameters of Figs. 4, 5, and 6 were chosen as follows. First, rate and binding con-
stants needed for an F1 hybrid were selected as independent exponentially distributed
random variables with prescribed means ( ᾱ∗ = 0.001, β̄u = 0.005, β̄v = 0.02,
γ̄u = 0.8, γ̄v = 0.5, κ̄uu = κ̄vv = 1, κ̄uv = κ̄vu = 3). Next, the appropriate sub-
sets of parameters were assigned to parents A and B as outlined in Sect. 2. A random
parameter set was considered admissible if Parents A and B were Turing stable, while
the F1 hybrid is Turing unstable (see Sect. 2.4). Stability of the J and J ′ (Eqs. 12–15)
was ascertained by numerical calculation of eigenvalues. This requires the steady state
of the spatially homogeneous solution for each individual, obtained by numerically
integrating the appropriate ODE system of reaction terms. Finally, we fixed Du and
calculated (using a binary search) the critical values of Dv = dDu for parent A, par-
ent B, and F1 hybrid leading to unstable J ′. If the corresponding critical diffusion
coefficient ratios satisfied dF1

� < d A
� and dF1

� < dB
� , the multi-generational param-

eter was considered admissible, because choosing Dv so that dF1
� < d < d A

� and
dF1
� < d < dB

� yields Turing-stable parents and a Turing-unstable F1 hybrid (i.e., a
transgressive phenotype). Tables 4, 5 and 6 record the dimensionless parameters and
critical values of Figs. 4, 5, and 6. Because the doubly heterozygous F1 hybrid simu-
lation uses every parameter of the multigenerational simulation, it suffices to tabulate
the F1 hybrid parameters. All other genotypes use a subset of these F1 parameters
(recall Sect. 2.2, Tables 1 and 2).

In our simulations, the distance between spots is approximated by the wavelength
ω = 2π/kwhere k is the spatial frequency of the fastest growingmode of the linearized
reaction-diffusion system, i.e., the k thatmaximizes the dispersion relationλ(k2)where
λ is an unstable eigenvalue of J ′ (Eq. 15). The spatial extent of the reaction-diffusion
calculations is 5ω; this is the width and height of each panel of Figs. 4, 5, and 6. Using
micrometers (µm) for space and seconds (s) for time, the units of β∗ and D∗ are
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Table 4 Parameters and critical values for Fig. 4

αA
u = 2.8326 × 10−5 αB

u = 9.5297 × 10−4 αA
v = 2.4107 × 10−4 αB

v = 0.0012

βA
u = 0.0018 βB

u = 0.0049 βA
v = 0.0067 βB

v = 0.0339

γ A
u = 1.1206 γ B

u = 0.8113 γ A
v = 0.0849 γ B

v = 0.3052

κ AA
uu = κ AB

uu = 0.3575 κBB
uu = κBA

uu = 0.2487 κ AA
vu = κ AB

vu = 0.1589 κBB
vu = κBA

vu = 0.1632

κ AA
uv = κ AB

uv = 9.6994 κBB
uu = κBA

uv = 7.5912 κ AA
vv = κ AB

vv = 1.3040 κBB
vv = κBA

vv = 0.2821

dF1� = 101.9 d = 138.2 d A
� = 142.3 dB� = 212.9

ωF1 = 85.8

In this and subsequent tables, Du = 0.1, Dv = dDu , and � indicates a critical value

Table 5 Parameters used in Fig. 5

Figure5A

αA
u = 5.0617 × 10−4 αB

u = 4.8463 × 10−5 αA
v = 7.5301 × 10−4 αB

v = 6.3299 × 10−4

βA
u = 0.0048 βB

u = 0.0029 βA
v = 0.0094 βB

v = 0.0182

γ A
u = 1.1298 γ B

u = 0.8056 γ A
v = 1.2327 γ B

v = 0.4460

κ AA
uu = κ AB

uu = 3.9125 κBB
uu = κBA

uu = 1.5698 κ AA
vu = κ AB

vu = 6.4121 κBB
vu = κBA

vu = 0.2480

κ AA
uv = κ AB

uv = 3.1422 κBB
uu = κBA

uv = 15.0419 κ AA
vv = κ AB

vv = 0.4017 κBB
vv = κBA

vv = 0.4074

dF1� = 31.3 d = 40.4 d A
� = 41.3 dB� = 51.5

ωF1 = 63.7

Figure5B

αA
u = 0.0016 αB

u = 1.0142 × 10−4 αA
v = 7.4401 × 10−4 αB

v = 1.7396 × 10−4

βA
u = 0.0052 βB

u = 0.0022 βA
v = 0.0248 βB

v = 0.0131

γ A
u = 1.7306 γ B

u = 0.4177 γ A
v = 0.8788 γ B

v = 0.8070

κ AA
uu = κ AB

uu = 0.5348 κBB
uu = κBA

uu = 0.4988 κ AA
vu = κ AB

vu = 1.5258 κBB
vu = κBA

vu = 4.7691

κ AA
uv = κ AB

uv = 2.4156 κBB
uu = κBA

uv = 1.0868 κ AA
vv = κ AB

vv = 1.9042 κBB
vv = κBA

vv = 1.0809

dF1� = 162.5 d = 180.6 d A
� = 243.2 dB� = 182.6

ωF1 = 96.5

Figure5C

αA
u = 1.1154 × 10−4 αB

u = 2.9340 × 10−4 αA
v = 1.7720 × 10−4 αB

v = 1.4803 × 10−4

βA
u = 0.0067 βB

u = 0.0071 βA
v = 0.0070 βB

v = 0.0154

γ A
u = 0.1384 γ B

u = 0.1528 γ A
v = 0.5847 γ B

v = 0.4356

κ AA
uu = κ AB

uu = 1.1426 κBB
uu = κBA

uu = 1.7916 κ AA
vu = κ AB

vu = 0.4669 κBB
vu = κBA

vu = 1.4204

κ AA
uv = κ AB

uv = 9.1243 κBB
uu = κBA

uv = 4.2542 κ AA
vv = κ AB

vv = 1.3774 κBB
vv = κBA

vv = 2.6028

dF1� = 31.3 d = 40.4 d A
� = 535.8 dB� = 41.4

ωF1 = 52.7
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Table 5 continued

Figure5D

αA
u = 0.0011 αB

u = 5.7845 × 10−4 αA
v = 3.9353 × 10−4 αB

v = 0.0024

βA
u = 0.0078 βB

u = 0.0039 βA
v = 0.0512 βB

v = 0.0072

γ A
u = 0.0873 γ B

u = 0.1341 γ A
v = 1.3311 γ B

v = 0.0466

κ AA
uu = κ AB

uu = 2.4419 κBB
uu = κBA

uu = 1.3145 κ AA
vu = κ AB

vu = 0.8460 κBB
vu = κBA

vu = 2.8702

κ AA
uv = κ AB

uv = 2.5520 κBB
uu = κBA

uv = 2.7183 κ AA
vv = κ AB

vv = 0.8983 κBB
vv = κBA

vv = 1.5572

dF1� = 384.5 d = 575.2 d A
� = 878.9 dB� = 596.4

ωF1 = 88.0

Table 6 Parameters used in Fig. 6

αA
u = αB

u = 0.0029 βA
u = βB

u = 0.0087 γ A
u = γ B

u = 1.4259

αA
v = αB

v = 4.0000 × 10−4 βA
v = βB

v = 0.0423 γ A
v = γ B

v = 0.7232

κ AA
uu = κBB

uu = 0.3626 κ AA
vu = κBB

vu = 0.3059 κ AB
uu = κBA

uu = 0.2407 κBA
vu = κ AB

vu = 0.1708

κ AA
uv = κBB

uv = 4.0156 κ AA
vv = κBB

vv = 0.3215 κ AB
uv = κBA

uv = 2.1895 κ AB
vv = κBA

vv = 0.1193

dF1� = 243.2 d = 347.1 d A
� = 485.3 dB� = d A

�

ωF1 = 58.0

Parents have equal rate constants (e.g., αA
u = αB

u ) and binding constants (κ AA∗∗ = κBB∗∗ ). The F1 hybrid
has reduced trans-interaction binding coefficients, that is, κ trans∗∗ < κcis∗∗ where κ trans∗∗ = κ AB∗∗ = κBA∗∗ and
κcis∗∗ = κ AA∗∗ = κBB∗∗

1/s and µm2/s, respectively. This gives a physical interpretation in which the typical
peak-to-peak spot separation is 100µm, Du = 0.1µm2/s, Dv is 100 to 400-fold
larger, and 0.001/s < β∗ < 0.05/s corresponds to TF half-lives of 10 s to 10 min.
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