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Abstract
Full-scalemorphologically andbiophysically realisticmodel networks, aiming atmod-
eling multiple brain areas, provide an invaluable tool to make significant scientific
advances from in-silico experiments on cognitive functions to digital twin implemen-
tations. Due to the current technical limitations of supercomputer systems in terms of
computational power andmemory requirements, these networksmust be implemented
using (at least) simplified neurons. A class of models which achieve a reasonable
compromise between accuracy and computational efficiency is given by generalized
leaky integrate-and fire models complemented by suitable initial and update condi-
tions. However, we found that these models cannot reproduce the complex and highly
variable firing dynamics exhibited by neurons in several brain regions, such as the
hippocampus. In this work, we propose an adaptive generalized leaky integrate-and-
fire model for hippocampal CA1 neurons and interneurons, in which the nonlinear
nature of the firing dynamics is successfully reproduced by linear ordinary differential
equations equipped with nonlinear and more realistic initial and update conditions
after each spike event, which strictly depends on the external stimulation current. A
mathematical analysis of the equilibria stability as well as the monotonicity properties
of the analytical solution for the membrane potential allowed (i) to determine general
constraints on model parameters, reducing the computational cost of an optimization
procedure based on spike times in response to a set of constant currents injections; (ii)
to identify additional constraints to quantitatively reproduce and predict the experi-
mental traces from85 neurons and interneurons in response to any stimulation protocol
using constant and piecewise constant current injections. Finally, this approach allows
to easily implement a procedure to create infinite copies of neurons with mathemati-
cally controlled firing properties, statistically indistinguishable from experiments, to
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better reproduce the full range and variability of the firing scenarios observed in a real
network.

Keywords Neuronal modeling · Generalized leaky integrate-and-fire models ·
Hippocampus · CA1 pyramidal neurons and interneurons · Constant and piecewise
constant stimulations · Neuron firing properties

1 Introduction

Hippocampal CA1 pyramidal neurons and interneurons exhibit complex and highly
variable firing dynamics (such as adapting, non-adapting, and bursting) that play a
key role in modulating the dynamics of the network to which they belong. These
patterns can be successfully reproduced bymorphologically and biophysically realistic
neuron models based on the Hodgkin-Huxley equations (Golomb et al 2006; Bianchi
et al 2012; Migliore et al 2018); however, due to the large amount of (nonlinear)
equations involved, their computational cost is fairly high. This is an important issue,
because large full-scale networks, aiming at modeling multiple brain areas, must be
implemented using (at least) simplified neurons, given the actual technical limitations
of supercomputing systems.

An alternativemodelling option, to reach a balance between accuracy and efficiency,
is represented by point-neuron models. In this framework, nonlinear adaptive leaky
integrate-and-fire models (e.g. Izhikevich 2003; Brette and Gerstner 2005; Górski et al
2021) have been developed to approximate electrophysiological realism (see (Brunel
and van Rossum 2007), and references therein). A comparison of their performance
with more biophysical models has been carried out, among others, in Gerstner and
Naud (2009); Izhikevich (2004); Kobayashi (2009). However, despite their effective-
ness, nonlinear integrate-and-fire models present additional problems for parameter
optimization, as different numerical methods and initial conditions can lead to vastly
different results (Kobayashi 2009).

Another class of models, achieving a reasonable compromise between model com-
plexity, biological plausibility, and computational efficiency, is given by generalized
leaky integrate-and-fire (GLIF) models (e.g. Teeter et al (2018); Wang et al (2014);
Jimenez et al (2013)). Differently from the leaky integrate-and-fire (LIF) models,
which describe only the membrane potential dynamics (Burkitt 2006), in the GLIF
framework the dynamics of themembrane potential and of additional currents (usually
representing intrinsic active mechanisms responsible for adaptation or depolarization)
is introduced via a system of linear ordinary differential equations coupled with initial
and update conditions. These conditions—generally independent from the stimulation
current—correspond to the initial conditions assigned to the system after each spike.
The GLIF approach is a marked improvement over LIF models and, as shown in a
recent work (Teeter et al 2018), provides significant results. However, the parameter
optimization procedurewas linked to a training set of experimental recordings obtained
with a not widely used stimulation protocol, hindering its general applicability to more
standard experimental data.
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An extended version of this model (therefore called E-GLIF) was introduced in
Geminiani et al (2018), to successfully describe cerebellar firing patterns through a
constant increment of an adaptation current (independent of the external stimulation)
as an update condition. Although it is able to reproduce a variety of cerebellar cell
responses with a single set of optimized parameters, this model is unable to capture
the main firing properties of CA1 neurons and interneurons. In particular, updating
the adaptation current after a spike by adding a constant value often leads to constant
inter-spike intervals (ISIs) during a train of action potentials (see e.g. Geminiani et al
(2018, 2019)), a rather uncommon condition for CA1 neurons.

To overcome this problem, in this work we propose an adaptive GLIF (A-GLIF)
model,where theupdate conditions dependon the external stimulation current. Starting
froma suitable non-dimensionalization procedure to reduce the number of independent
model parameters, we carried out a thorough analytical investigation. From a more
general point of view, the multiparameter cost function used to optimize this type
of model is nonconvex; it is thus important to find ways to constrain the parameter
space to maximize the probability to find good solutions in a relatively short time. By
studying the system equilibria and their stability as well as themonotonicity properties
of the membrane potential, we were able to better constrain the parameter space and
obtain quantitative agreement with the number and timing of spikes experimentally
observed in 84 CA1 neurons and interneurons in response to a wide range of input
currents. These features, used as tuning and validation parameters on a neuron-by-
neuron basis, have been proven to be fundamental for effective neuronal models (see
e.g. Gerstner and Naud (2009); Jolivet et al (2008)).

In contrast with previous methods (see e.g. Teeter et al (2018)), the A-GLIF model
allows to successfully capture the firing features of CA1 neurons and interneurons
usingonly basic, anduniversally used, stimulationprotocols. This approach also allows
for an easy implementation of a controlled cloning procedure, increasing the ability
of a A-GLIF model to cover the full range of firing patterns observed experimentally
and building large networks with more realistic properties (Marasco et al 2023).

The paper is structured as follows: in Sect. 2 we introduce the mathematical model
and its nondimensional form, which allows to perform a thorough investigation of the
existence and stability of steady-states; this leads to precise constraints on parame-
ters and functional forms for the initial conditions data. The model is then validated
under both constant and piecewise constant stimuli. The implications of our results
are discussed in Sect. 3, whereas in Sect. 4 we describe the experimental data used as
a reference, the statistical analysis, and the optimization procedure.

2 Results

2.1 Mathematical Analysis

We start by presenting the mathematical rationale for the A-GLIF model, describing
the evolution of the membrane potential V and two intrinsic currents, Iadap and Idep. In
particular, the adaptive current Iadap implements the activation of the outward currents
causing a hyperpolarizing effect, and the depolarizing current Idep representing inward
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Table 1 List of parameters
appearing in Eq. (1), together
with their description and units
of measurement

Parameter Description UM

EL Resting potential mV

Vr Reset potential mV

Vth Threshold potential mV

�tref Refractory interval ms

Istim External stimulation current pA

Cm Membrane capacitance pF

τm Membrane time constant ms

Ith Threshold stimulation current pA

kadap Adaptation constant MH−1

k2 Iadap Decay rate ms−1

k1 Idep Decay rate ms−1

currents. The concurrent dynamic of these currents makes the model able to a-priori
reproduce several electrophysiological features.

Following (Geminiani et al 2018), we introduce the model defined by the following
set of three linear Ordinary Differential Equations (ODEs)

dV

dt
= 1

Cm

[
Cm

τm
(V − EL) − Iadap + Idep + Istim

]
,

d Iadap
dt

= kadap (V − EL) − k2 Iadap,

d Idep
dt

= −k1 Idep,

(1)

with all parameters described in Table 1.
All parameters in (1) are positive, except EL, and the injected current Istim (which in

general can also be negative). In our simulations, we use either constant or piecewise
constant non-negative values.

We assume that the neuron is at rest for t < tstart, i.e., Istim = 0 and V = EL, where
tstart represents the first time instant at which the stimulation current is different from
zero.Moreover, we denote with Ith the threshold current abovewhich the neuron starts
to fire, i.e. we assume that a spike event occurs when, for Istim > Ith, the potential V
reaches the threshold potential Vth.

Starting from the resting condition, the first spike for any Istim > Ith can be obtained
by setting the initial conditions of the Cauchy problem associated to system (1) as
follows

V (tstart) = EL,

Iadap(tstart) = 0,

Idep(tstart) = I startdep (Istim − Ith) θ(Istim − Ith),

(2)
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where I startdep is a suitable constant and θ(Istim − Ith) is the step function defined as

θ(Istim − Ith) =
{
1 if Istim > Ith,

0 if Istim ≤ Ith.
(3)

Following the E-GLIF framework, the potential V after a spike does not return to the
resting value EL but at the reset potential Vr. Then, for any following spike, the initial
conditions of each Cauchy problem for (1) are modified according to the following
after-spike update rules

V (t+spk) = Vr,

Iadap(t
+
spk) = I 0adap(t

+
spk, Istim),

Idep(t
+
spk) = I 0dep,

(4)

where t+spk is the time instant following the spike time tspk, i.e. t
+
spk = tspk +�tref , with

�tref = 2ms is the refractory time, I 0adap(t
+
spk, Istim) is a suitable set of initial values

that depend on both the stimulation current Istim and the corresponding spike times,
and finally I 0dep is a constant.

We derived an ad-hoc set of update rules for (4) that allowed us to reproduce all
the experimentally observed firing behavior of CA1 neurons and interneurons. The
rationale for defining the function I 0adap(t

+
spk, Istim) is discussed in Sec. 2.4.

As for any GLIF-type model, all parameters [including those directly related to the
initial conditions (3 and 4)] must be determined through an optimization procedure
that involves several parameters, especially for the update rules. However, performing
a nondimensional analysis of the model allows us to reduce the number of parameters
and consequently to obtain a general integral easier to analyze. In particular, follow-
ing this approach we obtain a stability analysis of the equilibria as a function of two
parameters that, together with the monotonicity properties of the membrane poten-
tial, can constrain the bidimensional parameter space where to find optimal values,
on a neuron-by neuron basis, via an optimization procedure. Moreover, we found a
functional form for I 0adap(t

+
spk, Istim) that depends only on a few parameters, and can

reproduce the entire dynamics experimentally observed in CA1 pyramidal neurons
and interneurons.

2.1.1 Nondimensional Analysis

Introducing the rescaled variables

t̃ = t

τ
, Ṽ = − V

EL
, Ĩadap = − k2 Iadap

EL kadap
, Ĩdep = − k2 Idep

EL kadap
, (5)

we obtain the following nondimensional version of the system (1) (for simplicity, from
now on we will omit the tildes)
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dV

dt
= α + β(Idep − Iadap) + δ(1 + V ),

d Iadap
dt

= 1 − Iadap + V ,

d Idep
dt

= −γ Idep,

(6)

where

α = − Istim
Cm EL k2

, β = kadap
Cm k22

, γ = k1
k2

, δ = 1

k2 τm
, τ = 1

k2
. (7)

Assuming k1, k2, kadap > 0, we have consequently β, γ, δ > 0, while the sign of α

depends on whether Istim is positive or negative.
At this point, in order to simplify the analysis we impose β = γ , i.e.

kadap = Cm k1 k2. (8)

This assumption implies that k1, k2 and kadap are not independent from each other.
In particular, condition (8) allows to link the (V−dependent) Iadap dynamics to both
a specific cell property (Cm) and the dynamics of Idep. Introducing without loss of
generality a scaling constant K > 0 such that

k2 = − K

Cm EL
, (9)

the nondimensional system (6) becomes

dV

dt
= α + β(Idep − Iadap) + δ(1 + V ),

d Iadap
dt

= 1 − Iadap + V ,

d Idep
dt

= −β Idep,

(10)

where

α = Istim
K

, β = k1
k2

, δ = 1

k2 τm
. (11)

We remark that all model parameters α, β, δ, and τ depend on the dimensional
constant quantities K , k1, k2, τm.

The nondimensional parameters in Eq. (10) can be interpreted as follows: α rep-
resents the scaled injected current; β is the ratio between the decay rate of the
depolarization current (k1) and the adaptation current (k2); δ represents the effective
rate of change for the membrane potential, caused by the decay rate of the adaptation
current (k2) and the intrinsic system time constant (τm).
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Similarly, the dimensionless initial conditions (2) and (4) assume the following
forms, respectively,

V (tstart) = −1, V (t+spk) = − Vr
EL

, (12a)

Iadap(tstart) = 0, Iadap(t
+
spk) = I 0adap(t

+
spk, Istim),

(12b)

Idep(tstart) = I startdep (Istim − Ith)θ(Istim − Ith), Idep(t
+
spk) = I 0dep, (12c)

where all time variables have been rescaled by means of τ = 1/k2 [cf. Eq. (5)].

2.1.2 General Integral

Assuming a constant stimulation current Istim, the linear nature of the system (10),
depending only on α, β, δ, permits to obtain the explicit form of the solutions in terms
of the following initial data

V (t0) := V 0, Iadap(t0) := I 0adap, Idep(t0) := I 0dep. (13)

In detail, we obtain

V (t) = −I 0adapβH1 + I 0dep
β

[
(β − 1)

(H2 − 2eβ(t0−t)
)] + H1 [(β − 1)(δ + 1) + 2β]

2
(
β2 + (β − 1)δ

)

+V0
2

[(δ + 1)H1 + H2] + H1

2

[
α(β − 1)

β − δ
+ α + δ + 1

]
− (H2 − 2)(α − β + δ)

2(β − δ)
,

Iadap(t) = 1

2
I 0adap [H2 − (δ + 1)H1] + I 0dep

β

2

[
2eβ(t0−t) + H1(2β + δ − 1) − H2

β2 + (β − 1)δ

]

+V0H1 − α

2

[
(1 − δ)H1 + H2 − 2

β − δ

]
+ H1,

Idep(t) = I 0depe
−β(t−t0), (14)

where

A = (δ + 1)2 − 4β, B = −1

2

(√
A − δ + 1

)
(t − t0), C = √

A(t − t0),(15)

H1 = eB
(
eC − 1

)
√A , H2 = eB

(
eC + 1

)
. (16)

This result allows to simply evaluate, in subthreshold dynamics, the value of V (t)
at any time avoiding the use of numerical integration methods to advance the ODE
system.
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2.2 Equilibria and Stability Analysis

A crucial step, in obtaining a better and faster model optimization, is to limit as much
as possible the parameters’ space reproducing the reference traces. For this purpose,
we performed a stability analysis of the equilibria. System (10) admits two types of
steady-state solutions (V ∗, I ∗

adap, I ∗
dep), which are classified below.

• For α = 0 and β = δ �= 0 there are infinite equilibria of the following form

E0 := (
V̄ , 1 + V̄ , 0

)
, (17)

where V̄ represents the steady-state value of the (non dimensional) membrane
potential V .
Considering V̄ = −1, we have that Eq. (17) reduces to E∗

0 = (−1, 0, 0).
• For α �= 0 or β �= δ there is a unique equilibrium given by

E1 :=
(

α

β − δ
− 1,

α

β − δ
, 0

)
. (18)

Because the system (10) is linear, the stability properties of the steady-states are
global and can be determined by studying the eigenvalue problem of the associated
Jacobian matrix

M :=
⎛
⎝δ −β β

1 −1 0
0 0 −β

⎞
⎠ . (19)

The matrix M admits the following three eigenvalues (independent from α and there-
fore from Istim)

λ1 = −β,

λ2 = 1

2

(
δ − 1 + √

�
)

,

λ3 = 1

2

(
δ − 1 − √

�
)

,

(20)

with � = (1 + δ)2 − 4β.
When considering the steady-states in Eq. (17), the eigenvalues in (20) reduce to

λ1 = −δ, λ2 = 0, and λ3 = δ − 1, and the Jacobian matrix is diagonalizable. We
hence have that these equilibria are stable for δ ≤ 1 and unstable for δ > 1. As for the
steady-state in Eq. (18), we observe that β > 0 implies λ1 < 0; therefore, the stability
properties depend only on the sign of λ2 and λ3. In particular, we have the following
cases (summarized in Fig. 1):

• When � ≥ 0, the two eigenvalues λ2, λ3 are real.
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– Both eigenvalues are negative - hence the steady state in (18) is asymptotically
stable - if and only if

δ < β ≤ 1

4
(1 + δ)2 with 0 < δ < 1. (21)

– On the other hand, at least one betweenλ2 andλ3 is positive (therefore implying
instability of the steady state) if and only if

β < δ, 0 < δ ≤ 1, or β ≤ 1

4
(1 + δ)2, δ > 1. (22)

• When � < 0, λ2 and λ3 are complex conjugates, and therefore there is an oscil-
latory dynamics around the steady-state (18).

– The oscillations are damped (hence implying asymptotic stability of the steady-
state) when the real part of λ2 and λ3 is negative, namely if and only if

β >
1

4
(1 + δ)2 with 0 < δ < 1. (23)

– The oscillations are sustained (i.e. we have simple stability) when the real part
of λ2, λ3 is zero and their algebraic as well as geometric multiplicity is equal
to one. This occurs if and only if

β > 1 and δ = 1. (24)

– Finally, at least one between λ2 and λ3 has a positive real part [leading to
instability of the steady-state (18)] if and only if

β >
1

4
(1 + δ)2 with δ > 1. (25)

The instability range in (25) canbe linked to a rebound spiking effect, i.e. a phenomenon
observed in a neuron during the repolarization phase following a hyperpolarized con-
dition (Ascoli et al 2010). Its occurrence is mediated by the dynamic interplay among
several ionic currents, and it is rarely observed in CA1 principal neurons under phys-
iological conditions. For this reason, this effect will not be taken into account in this
work, and for all our cases we will impose condition (21).

These results, and in particular condition (21) (which will ensure that a cell will
never reach Vth for Istim < Ith), imply that the numerical values of β, δ reproducing
the pyramidal cells and interneurons’ firing patterns can be limited to the dark green
region in Fig. 1, where we show the type of stability as a function of δ and β. Their set
of values may be further restricted in a much smaller region, according to the specific
firing properties of a given cell. This is shown by the dark red region in the right panel
of Fig. 1, illustrating the region of asymptotic stability covering the firing properties
of the NEURON model (see Sect. 4).
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Fig. 1 Stability analysis. Left: stability regions for the steady-state E1 in the (β, δ) parameter space. The
green areas represent (β, δ) values for which E1 is asymptotically stable (dark green: real eigenvalues,
light green: complex eigenvalues—see (21) and (23), respectively). The blue curve defines the points where
� = 0, whereas the orange line represents simple stability region for E1 [see Eq. (24)]. The gray area
covers the instability range given in Eqs. (22), (25). The dashed square indicates the zoomed area in the
right panel where the dark red area defines the subregion of the asymptotic stability regime provided by
Eq. (28) for αth = 0.0665 and Ṽth = −0.717, corresponding to the computational NEURON model

2.3 Parameter constraints and initial data sequences

Despite the linearity of the equations, the A-GLIF model can reproduce a wide range
of physiological firing patterns like bursting, non adapting, and continuous adapting
(Migliore et al 2018), provided that the initial data sequences, I 0dep and I 0adap, are
suitably chosen. For this purpose, a fundamental step is to carry out an analytical
study of the spiking properties as a function of the model parameters.

2.3.1 Constraints on the parametersˇ and ı

Here we derive the parameters’ constraints guaranteeing that the cell will not spike
for 0 < Istim < Ith. To this aim, we exploit the asymptotic stability results presented
in Sect. 2.2 to impose that when the external stimulation current is lower than the
threshold current Ith the V -component of the steady-state E1 lies below the spiking
threshold. Owing to the asymptotic stability conditions (21), imposing that

α

β − δ
− 1 < Ṽth, ∀Istim : Istim < Ith, (26)

where Ṽth = −Vth/EL is the nondimensional form of the threshold potential Vth, we
obtain the following constraints1

α <
(1 + Ṽth)(δ − 1)2

4
,

α

1 + Ṽth
+ δ < β ≤ 1

4
(δ + 1)2, 0 < δ < 1. (27)

1 If Istim ≤ 0, then the condition (26) is automatically satisfied since Ṽth > −1.
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In particular, for Istim = Ith we obtain

αth <
(1 + Ṽth)(δ − 1)2

4
,

αth

1 + Ṽth
+ δ < β ≤ 1

4
(δ + 1)2, 0 < δ < 1, (28)

where αth = Ith/K , and the corresponding dimensional constraints can be written as

K > −Cm EL

τm
+ 2EL

EL − Vth

[
Ith +

√
I 2th − IthCm(Vth − EL)

τm

]
, (29a)

K

ELτm

[
Ithτm

Cm(EL − Vth)
− 1

]
< kadap ≤ (Cm EL − K τm)2

4Cm E2
L τ 2m

. (29b)

2.3.2 Constraints on the initial data I0dep and I
0
adap

A natural condition to impose (when not restrictive, see Sect. 2.5.1) is that V is an
increasing function of t for any positive stimulation current Istim > Ith. Hence, I 0dep
and I 0adap after a spike must satisfy the following condition [see Eq. (12)]

I 0adap <
α

β
+ I 0dep + δ

β
(1 + V 0), (30)

whereV 0 = −1orV 0 = −Vr/EL for thefirst or after thefirst spike event, respectively.
Furthermore, in view of Eqs. (14) and (21), it is easy to prove that V is a decreasing

function with respect to I 0adap when the other initial data are fixed. In fact, we have

dV

d I 0adap
= βe

1
2 δ(t−t0)√

(δ + 1)2 − 4β

[
1 − e

√
(δ+1)2−4β(t−t0)

]
< 0. (31)

In contrast, under the constraints (21), it can be numerically proved that

dV

d I 0dep
> 0, (32)

for any fixed I 0adap and V 0. Typical values for the derivative in Eq. (32) are shown in
Suppl. Fig. 1 for a range of δ values.

Considering that the model is autonomous for any constant stimulation current
Istim, a nonuniform sequence of ISIs can be obtained if and only if at least one of
the initial conditions for the update rules must change after each spike. In particular,
owing to Eq. (31), if we fix the initial values of V 0 and I 0dep, increasing values of I

0
adap

will result in increasing ISIs, and vice versa.
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2.4 Functional form of I0adap(t
+
spk, Istim) sequence

In order to reproduce the experimentally observed spike-times as a function of the
stimulation current Istim, an optimization procedure must thus find a sequence of
I 0adap(t

+
spk, Istim), where Istim ∈ [

Imin
stim, Imax

stim

]
. The process can be very efficient and

accurate, if it is implemented following the constraints discussed in the previous
sections. For our set of reference data, Imin

stim and Imax
stim are (neuron dependent) quan-

tities which define the minimum and maximum stimulation current eliciting spikes
(200–1000pA for most of our reference traces). The set of I 0adap values found by
the optimization procedure (see Sect. 4) for two typical pyramidal neurons is shown
in Fig. 2, and represented with colored circles. Note that the set of values for each
current may increase (e.g. cell 95824000) or decrease (as for cell 95810012) as a
function of the stimulation strength. Although our model can be applied to any type
of neurons, we are interested in reproducing the main electrophysiological features
of CA1 pyramidal neurons and interneurons. The optimization results suggested that
the I 0adap(t

+
spk, Istim) sequence for any given cell can be interpolated by a Monod-type

function as (Monod (1949))

I 0adap(t
+
spk, Istim) := c + a eb Istim (t+spk − tstart)

d + (t+spk − tstart)
, ∀Istim ∈

[
Imin
stim, Imax

stim

]
, (33)

where a, b, c, d are constants, and tstart is the last instant in which Istim = 0 or
Istim ≤ Ith.

The function (33) is defined for all d + (tfirstspk − tstart) �= 0, where tfirstspk is the time of
the first spike event for the current Istim. For sake of simplicity, we assume that d ≥ 0.

Let us define χ := t+spk − tstart. This positive quantity allows us to rewrite Eq. (33)
as

I 0adap(χ, Istim) := c + a eb Istim χ

d + χ
. (34)

Fig. 2 Monod-type functions (33) (continuous lines) interpolating the initial data sequences
I 0adap(tspk, Istim) (dots) for the pyramidal cells 95824000 (left panel) and 95810012 (right panel). The
colors indicate the intensity of the constant stimulation currents (color figure online)

123



An Adaptive Generalized Leaky... Page 13 of 38 109

In the case of constant Istim, we have that tstart = 0 is the last instant where
Istim = 0; consequently, for any fixed value of Istim > 0 we obtain χ = t+spk ∈[
tfirstspk (Istim) , t last−1

spk (Istim)
]
. On the other hand, when the stimulation current is vary-

ing, the value tstart is updated to the last instant in which Istim = 0 or Istim ≤ Ith;

therefore, we have more generally χ ∈
[
tfirstspk (Istim) − tstart, t

last−1
spk (Istim) − tstart

]
.

The constraints on the constants a, b, c, d in Eq. (34) are derived by imposing the two
following requirements on the Monod function:

1. The Monod function must be positive, i.e.

I 0adap(χ, Istim) ≥ 0, ∀Istim > Ith > 0, ∀χ ∈
[
tfirstspk (Istim) , t last−1

spk (Istim)
]
.

(35)

We observe that the interval
[
tfirstspk (Istim) , t last−1

spk (Istim)
]
is a priori not known

for all Istim > Ith, as the only information available regards the experimental
data within the interval

[
Imin
stim, Imax

stim

]
. It is then mathematically more convenient to

determine the parameter conditions such that Eq. (35) holds ∀χ > 0.

2. Assuming that, ∀χ ∈
[
tfirstspk (Istim) , t last−1

spk (Istim)
]
and ∀Istim ∈ [

Imin
stim, Imax

stim

]
, we

have

I 0adap(χ, Istim) <
α

β
+ I 0dep + δ

β

(
1 + V 0

)
=: H(Istim), (36)

in order to ensure Eq. (30), the following inequality must hold

I 0adap(χ, Istim) < H(Istim) ∀χ ∈
[
tfirstspk (Istim) , t last−1

spk (Istim)
]
,

∀Istim > Ith > 0.
(37)

Remark 1 Equation (34) defines a sequence of constant ISIs with I 0adap independent

from Istim if a = 0 and c ≥ 0. In this case, in fact, we obtain I 0adap ≡ c. Analogously,

Eq. (34) defines a sequenceof constant ISIswith I 0adap dependent from Istim ifd = 0 and

c+a exp(b Istim) > 0. In this case, in fact, we obtain I 0adap(Istim) = c+a exp(b Istim).

Under this condition, the model will thus support suprathreshold oscillations (constant
ISIs) whereas, analogously to any other model based on LIF equations, it cannot
support subthreshold oscillationswhen Istim is constant. As the firing dynamicswe aim
to describe involve nonconstant ISIs, from now on we will exclude the two scenarios
described in Remark 1 by assuming that a, d �= 0. Under these assumptions, we obtain
d > 0.

We are hence able to derive several monotonicity properties for theMonod function
I 0adap(χ, Istim) in (34), which we summarize in the following result.

Proposition 1 Let us assume a �= 0 and d > 0. The following properties hold:
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1. The Monod function I 0adap(χ, Istim) is monotonic with respect to χ ; in particular,
it is monotonically increasing (resp. decreasing) if a > 0 (resp. a < 0).

2. TheMonod function I 0adap(χ, Istim) is monotonicwith respect to Istim; in particular,
it is monotonically increasing (resp. decreasing) if ab > 0 (resp. ab < 0).

3. The limit values for the Monod function I 0adap(χ, Istim) with respect to χ are given
by

lim
χ→0+ I 0adap(χ, Istim) = c,

lim
χ→+∞ I 0adap(χ, Istim) = c + a exp(b Istim) =: P(Istim),

(38)

where P(Istim) defines the asymptotic plateau of I 0adap(χ, Istim).

4. The plateau P(Istim) of the Monod function I 0adap(χ, Istim) is monotonic with
respect to Istim; in particular, it is monotonically increasing (resp. decreasing)
if ab > 0 (resp. ab < 0).

5. The threshold function H(Istim) in Eq. (37) is monotonically increasing.

Proof We split the proof in different steps referring to the corresponding results above.

1. We have that

d

dχ
I 0adap(χ, Istim) = ad exp(b Istim)

(d + χ)2
.

This quantity is positive (resp. negative) if a > 0 (resp. a < 0).
2. The derivative of I 0adap(χ, Istim) with respect to Istim is given by

d

d Istim
F(χ, Istim) = ab exp(b Istim)χ

d + χ
.

This quantity is positive (resp. negative) if ab > 0 (resp. ab < 0).
3. The result derives from direct calculation.
4. The derivative of P(Istim) with respect to Istim is given by

d

d Istim
P(Istim) = ab exp(b Istim).

This quantity is positive (resp. negative) if ab > 0 (resp. ab < 0).
5. Recalling Eq. (11), we have that the derivative of H(Istim) is given by

d

d Istim
H(Istim) = 1

Kβ
,

which is positive for all values of Istim.

�
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Proposition 1 allows us to derive the sufficient conditions on the parameters
a, b, c, d which ensure that Eq. (35) is satisfied for any χ > 0.

Proposition 2 The Monod function I 0adap(χ, Istim) is positive [i.e. satisfies Eq. (35)] if
the following conditions hold for all Istim > 0 and χ > 0

(i) either a > 0, c ≥ 0, ∀b,
(ii) or a < 0, b < 0, c ≥ −a.

Proof From Proposition 1 we have that, for all χ > 0, the Monod function
I 0adap(χ, Istim) is bounded as follows:

P(Istim) < I 0adap(χ, Istim) < c if a < 0,

c < I 0adap(χ, Istim) < P(Istim) if a > 0. (39)

Moreover, we observe that the plateau P(Istim) is positive for any Istim > 0 if

• for a > 0, if

– either c ≥ 0, ∀b,
– or b > 0, −a ≤ c < 0;

• for a < 0, if b < 0 and c ≥ −a.

The combination of these observations proves our claim. �
The conditions defined in Proposition 2 ensure the positivity of the Monod function
for all χ > 0 and Istim > 0. However, in the application of our optimization procedure
we only require that the Monod function remains positive as long as the neuron fires;
hence, the interpolation of the experimental data for I 0adap(t

+
spk, Istim) may lead to

Monod functions for which c < 0 when a > 0 or P(Istim) < 0 for a < 0. The above
considerations still allow us to derive necessary conditions which ensure the positivity
of the Monod function in the experimental range – i.e. for any Istim ∈ [

Imin
stim, Imax

stim

]
–

on the interval
[
tfirstspk (Istim) , t last−1

spk (Istim)
]
, given by

(i) a > 0 ⇒ P(Istim) > 0,
(ii) a < 0 ⇒ c > 0.

By simultaneouslyfitting, for eachneuron, the set of I 0adap values for all experimental
currents using Eq. (33) (solid curves in Fig. 2), we obtain a function with which we
can now predict the spike times of a given neuron for any constant current injection
in the interval

[
Imin
stim, Imax

stim

]
.

This implementation results in a model neuron that will keep firing as long as
the current injection is above Ith in the interval

[
Imin
stim, Imax

stim

]
. However, in several

cases, experimental traces show a sudden block of firing, long before the end of the
stimulation, as shown in the left panels of Fig. 3 for two typical interneurons. From a
biophysical viewpoint, a firing block is considered to occur when a neuron stops firing
and never recovers from this state.2 To reproduce this condition for any neuron and

2 This can happen as a result of a strong adaptation (Migliore et al 2018) or for a depolarization block
(Bianchi et al 2012).
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any stimulation current Istim, we implemented a Monod block procedure as follows.
First, let us assume that for the injected current Istim a firing block occurs when the
following condition holds

t lastspk (Istim) + 2 I S Ilast(Istim) < T , (40)

where t lastspk and I S Ilast are the time and the ISI of the last spike event for the current Istim,
respectively, and [tstart, T ] is the stimulation interval. In other words, when Eq. (40)
is verified, we assume that the neuron has entered a firing block state. This choice is
consistent with the experimentally observed average value of approximately 2 for the
maximum ratio between late and early action potential inter-spike intervals in a train
[(see (Scorza et al 2011)]. In the left panels of Fig. 3 we see that for the interneuron
cNAC 99111006 (upper panel) firing blocks occur at 237.02ms for Istim = 200pA, at
276.83ms for Istim = 600pA, and at 240.42ms for Istim = 800pA, whereas the neuron
keeps firing for Istim = 400pA and never fires for Istim = 1000pA. Coherently with
our definition, Eq. (40) is satisfied in this case for Istim = 200, 600, 800pA. Analo-
gously, for the interneuron cNAC 95817001 (lower panel) we observe firing blocks
at 199.72ms for Istim = 400pA and at 303.43ms for Istim = 600pA, whereas the
neuron fires for the entire length of the recording for Istim = 800, 1000pA and never
fires for Istim = 200pA. In this case, Eq. (40) is satisfied for Istim = 400, 600pA.
We thus expect firing blocks to occur in the two intervals of stimulation currents
[200pA, 400pA] and [400pA, 800pA] for the interneuron cNAC 99111006, and only
in the interval [400pA, 600pA] for the interneuron cNAC 95817001. In order to con-
struct an automatic rule (i.e. our Monod block procedure) based on condition (40), we
proceed as follows. First, from the set of experimental spike times of a given neuron,
we determine the range of currents [I Iblock, I I Iblock] forwhich condition (40) holds. Then,
for each of them we calculate the straight line connecting the points Pi = (Istim, t),
i = 1, 2, defined as

P1 =
(
I Iblock, t

last
spk (I Iblock) + 1

2
I S I Ilast

)
, P2 =

(
I I Iblock, t

last
spk (I I Iblock) + 1

2
I S I I Ilast

)
,

(41)

where I S I Ilast = I S Ilast(I Iblock), and I S I I Ilast = I S Ilast(I I Iblock). These two points can
be considered as the extrema in (Istim, t)-space of the firing dynamics. The choice of
the prefactor 1/2 allows us to take into account potential small deviations between the
model and the experimental values. Then, we consider the line joining P1 and P2 in
(Istim, t)-space, represented by the function

t = AI ,I I Istim + BI ,I I , (42)

where

AI ,I I =
(
I S I I Ilast + 2t lastspk (I I Iblock)

)
−

(
I S I Ilast + 2t lastspk (I Iblock)

)
2(I I Iblock − I Iblock)

, (43)
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Fig. 3 Examples of Monod function with firing block fitting the sequence of optimized I 0adap. Left: experi-
mental raster plots. The upper panels correspond to the interneuron cNAC 99111006 [see Eq. (45)], whereas
the lower panels are valid for the interneuron cNAC 95817001 [see Eq. (47)]. Right: Fitted Monod func-
tions for the interneurons cNAC 99111006 (upper panel) and cNAC 95817001 (lower panel); the line is
continuous until the firing block is activated, then it becomes dashed (color figure online)

BI ,I I =
I I Iblock

(
I S I Ilast + 2t lastspk (I Iblock)

)
− I Iblock

(
I S I I Ilast + 2t lastspk (I I Iblock)

)
2(I I Iblock − I Iblock)

.

Let Ifire be the closest stimulation current above I I Iblock or below I Iblock in the set
{200pA, 400pA, 600pA, 800pA, 1000pA} for which the firing block does not occur
(as we show below, we have Ifire = 400pA for the interneuron cNAC 99111006 and
Ifire = 800pA for the interneuron cNAC 95817001. Then the function (42) determines
the time interval inwhich theMonod function (33) is defined according to the following
rule

• for all Istim ≤ I I Iblock + Ifire
2

≡ I infblock when Ifire > I I Iblock;

• for all Istim ≥ I Iblock + Ifire
2

≡ I supblock when Ifire < I Iblock.

The above procedure can be easily generalized when there is only one Iblock value
that satisfies condition (40). In fact, in this case it is sufficient to set I Iblock = Iblock,
I I Iblock = Ifire when Ifire > Iblock, and I Iblock = Ifire, I I Iblock = Iblock if Ifire < Iblock.

As an example, in the right panels of Fig. 3 we show how the Monod block pro-
cedure applies to the case of the interneurons cNAC 99111006 and 95817001.We
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recall that for the interneuron cNAC 99111006 condition (40) is satisfied for Istim =
200, 600, 800pA. Therefore, we have two block intervals given by

[
I Iblock, I I Iblock

]
= [

200pA, 400pA
]
, with Ifire = 400pA,[

I Iblock, I I Iblock

]
= [

600pA, 800pA
]
, with Ifire = 400pA.

(44)

Moreover, the points P1 and P2 in these two cases are

P1 = (200pA, 259.95ms) , P2 = (400pA, 396.10ms) ,

P1 = (600pA, 277.85ms) , P2 = (800pA, 244.35ms) ,

respectively. Then, the functions (42) are

t = 0.68 Istim + 123.80, ∀Istim ≤ 300pA,

t = −0.17 Istim + 378.35, ∀Istim ≥ 500pA,
(45)

and they provide for each Istim the definition interval of the corresponding Monod
function (33).

In the case of the interneuron cNAC 95817001 there is only one block interval given
by

[
I Iblock, I I Iblock

]
= [

400pA, 600pA
]
, with Ifire = 800pA. (46)

The points P1 and P2 read

p1 = (200pA, 220.50ms) , P2 = (400pA, 315.15ms) ,

thus, we obtain

t = 0.47 Istim + 31.20, ∀Istim ≤ 700pA. (47)

In the right panels of Fig. 3 we show the application of the Monod block procedure
for the two interneurons cNAC 99111006 (upper panel) and cNAC 95817001 (lower
panel). Note that the dashed portion of the curves indicates the time interval over
which the neuron is expected to not fire according to the Monod block procedure, in
agreement with the experimental recordings (see left panels in Fig. 3). These intervals
are automatically calculated from experimental data, as shown above for the proto-
typical examples of two cNAC interneurons. We implemented the entire optimization
workflow into a single python package (see model availability in Sect. 4), which reads
the experimental data for all cells and carries out the parameter optimization and the
Monod fitting with or without a block (see Suppl. Tables 3–5).

Typical examples of the optimization results are shown in Fig. 4, where we report
the experimental raster plot for one pyramidal neuron and three interneurons. Note
that the model cells were able to quantitatively reproduce not only the entire trains

123



An Adaptive Generalized Leaky... Page 19 of 38 109

Fig. 4 Typical optimization results. Raster plots representing spike times from experiments (red bars) and
model (blue bars) for one pyramidal neuron and three interneurons exhibiting different firing patterns
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Fig. 5 Comparison between experiments and models. Left: spike times of all pyramidal neurons considered
in this work; (red experiments, blue model). Right: same as in the left panel but for interneurons (color
figure online)
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of spike times, but also the firing block in all cases. In Fig. 5 we show the full set of
experimental spike times (Fig. 5, redmarkers and lines), comparedwith those obtained
with the correspondingmodel cells (Fig. 5, bluemarkers and lines). As can be seen, the
A-GLIF model framework was able to capture the full range of variability observed
for both pyramidal neurons (Fig. 5A) and interneurons (Fig. 5B). In all cases, the
model and experimentally observed spike times for all cells and all tested currents
were statistically indistinguishable (see Suppl. Table 6 for p values).

2.5 Model validation

In this section, we test the ability of the A-GLIF implementation to also capture the
spike time patterns observed under experimental protocols when applying current
steps of different amplitudes not used to optimize the model. To this end, we adopted
as a reference the traces generated by a realistic hippocampal CA1 pyramidal neuron
model (Fig. 6a, see Sect. 4). The in-silico recordings under a constant current injection
steps are shown in Fig. 6b, and they were similar to those experimentally recorded
from real hippocampal CA1 pyramidal neurons. For the purpose of this paper, we also
used recordings from simulations in which the neuron was stimulated with a series of
current steps of different amplitude. Two representative cases are shown in Fig. 6c, d.
It is important to note that the membrane voltage dynamics of a real neuron, during a
period of constant current injection using a similar protocol, will be in general quite
different from that observed during a constant current step at the same amplitude.
An example can be seen in Fig. 6c during the two periods in which the current was
held constant at 400 pA (300–500 ms, and 800–1000 ms). Under a constant 400 pA
stimulation, the neuron should elicit two spikes (see top plot in Fig. 6b). However, in
the first interval (Fig. 6c, 300–500 ms), following a 600 pA step, it did not generate

Fig. 6 NEURON model. a The CA1 pyramidal neuron used for all simulations; b traces obtained for
constant current injections; c traces obtained by a sequence of constant current injections; (d) same as in
(c) but for a different current sequence
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any spike. The expected two spikes were instead generated during the second interval
(Fig. 6c, 800–1000 ms), after a period without stimulation. However, this situation can
be different for a different sequence, as shown in Fig. 6d for the two intervals at 600 pA
(400–600 ms) and at 1000 pA (800–1000 ms). In this case, the firing pattern was very
similar, although not identical, to what expected for constant injections (compare with
the traces at 600 and 1000 pA in Fig. 6b). These behaviors are caused by the nonlinear
dynamics of the ion channel currents, which can be captured by a biophysical accurate
model but it is out of reach for any GLIF model calibrated only on constant currents.
In the next section we will suggest further conditions that are able to reproduce this
effect.

2.5.1 Constant stimulation current inside and outside the experimental range

Weoptimized anA-GLIFmodel to reproduce the traces obtainedwithNEURONunder
a constant stimulationof 400, 600, 800, and1000pA.Tovalidate theA-GLIFapproach,
we tested currents different from those used to optimize the model parameters, but
still within the experimental range

[
Imin
stim, Imax

stim

]
(i.e. 500 and 700 pA). All update rules

and parameter constraints were automatically satisfied and no further changes and/or
conditions were required to quantitatively reproduce the experimental traces, as shown
in Fig. 7 where the experimental traces (Fig. 7, left plots) are compared with those
obtained with the A-GLIF model (Fig. 7, right plots).

We then focused our attention on constant stimulations outside the experimental
range, distinguishing two cases: (1) positive currents beyond the experimental range
and (2) positive or negative currents below Ith, which need additional considerations
as explained below.

(1) If we consider a positive stimulation Istim outside the range experimentally tested,
i.e. Ith < Istim < Imin

stim or Istim > Imax
stim , the sequence of initial data I 0adap(χ, Istim)

in Eq. (33) may not satisfy the positivity condition in Eq. (35) and/or the threshold
condition provided in Eq. (37). We observe that in the optimization procedure it is
required that the threshold condition (37) is satisfied for all Istim ∈ [

Imin
stim, Imax

stim

]
at

least in the interval
[
tfirstspk (Istim) − tstart, t

last−1
spk (Istim) − tstart

]
with t last−1

spk (Istim)−
tstart < T and t last−1

spk (Istim) − tstart eventually defined through the Monod block

procedure described in Sect. 2.4. Nevertheless, for Istim ∈ [
Imin
stim, Imax

stim

]
, Eq. (37)

may not be satisfied for all times; imposing that Eq. (37) holds for all Istim >

Ith outside the interval
[
Imin
stim, Imax

stim

]
is hence quite restrictive. In our numerical

procedure, we will thus prioritize the positivity property of the Monod function
given in Eq. (35) over the threshold condition (37); this might hence lead to an
initial decrease in the potential V after a spike event has occurred. We report
the conditions which ensure the validity of Eqs. (35) and (37) outside the range[
Imin
stim, Imax

stim

]
in the case a > 0, as this is the most common situation found in

this work (84 CA1 neurons, the computational NEURON model, and the Layer
5 visual cortical neuron). The full analysis, also including the other scenarios, is
carried out in Suppl. Sec. 4.4. In this case, when the Monod function is negative,
to satisfy the positivity condition (35) and, eventually, also the threshold condition
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Fig. 7 Model validation for constant current injections. Left: In-silico NEURON traces; red dashed lines
represent Vth . Right: model traces; blue bars represent spike times (color figure online)

(37) it is sufficient to translate the Monod function along the vertical axis. One
possibility which would ensure the validity of Eq. (37) consists in considering

(
I 0adap(χ, Istim)

)∗ := c∗ + a exp(b Istim)χ

d + χ
, (48)
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where

c∗ := α

β
+ ηI 0dep + δ

β

(
1 + V 0

)
− a exp(b Istim), η ∈ [0, 1] , (49)

as long as
(
I 0adap(χ, Istim)

)∗
satisfies the positivity condition (35). The value of

η in Eq. (49) can be chosen in order to minimize the distance from the original
Monod function I 0adap(χ, Istim). If the choice of c∗ in (49) does not ensure the
positivity of the modifiedMonod function, an alternative possibility is to consider

c∗ = c − L, (50)

where L = I 0adap(t
first
spk (Istim) , Istim) < 0. This ensures the positivity of the Monod

function for the interval over which spikes occur, i.e. our range of interest.
(2) If 0 < Istim < Ith, there are no spikes and the systemwill then reach an equilibrium

configuration E1, in which the membrane potential tends to V ∗
1 = α/(β − δ) − 1.

If Istim < 0, the membrane potential must relax to a value below EL. To limit
the minimum voltage to the physiologically plausible value of Vmin = −90mV
(corresponding to the reversal potential of potassium currents), we have chosen to
set the equilibrium value as follows:

V ∗
1 = −1 + (1 + V ∗

min)α

αneg , ∀Istim : I negstim ≤ Istim ≤ 0,

V ∗
1 = V ∗

min, ∀Istim : Istim < I negstim,

(51)

where αneg = I negstim/K , V ∗
min = −Vmin/EL, and I negstim is the, experimentally mea-

sured, current for which the cell relaxes to Vmin = −90mV. For our NEURON
cell, I negstim = −185 pA.

With these additional conditions, the model is now able to reproduce any constant
stimulation protocol. In Fig. 7 we compare the NEURON traces (Fig. 7, left) with
those obtained via the A-GLIF model (Fig. 7, right) for a series of constant current
stimulations, including amplitudes that were not used for the optimization (i.e. 500,
700, and 1100 pA).

2.5.2 Piecewise constant stimulation currents

We now consider the case in which the injected current Istim(t) is a constant piecewise
continuous function on the interval [T0, TN ], i.e., it is a function defined and continuous
on this interval except for a finite number of discontinuities.

In particular, we assume that in the time intervals [T0, T1), [T1, T2), ..., [TN−1, TN ]
the neuron is stimulated by the constant currents I1, I2, ..., IN , respectively. It should
be evident that our model can be applied in each of the above time intervals, and in
each of them all the qualitative and quantitative results on the equilibria, solutions,
and parameter constraints still hold.
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To take into account the discontinuities in the injected current, the model need to
be equipped with additional initial conditions, to take into account the current change
at time instants t̄ = T1, ..., TN−1.

• Let t̄ be a time such that Ith < Istim(t̄) < Istim(t̄ − �t). From a physiological
point of view, the only constraint for the model after such a change in the current
is that the membrane voltage should still be increasing, i.e. V̇ (t̄) > 0. Considering
Eq. (10)1 and Eq. (30), this condition can be obtained by setting V , Idep, and Iadap
as follows

V 0(t̄) = V (t̄), I 0adap(t̄) = Iadap(t̄), I 0dep(t̄) = I 0adap(t̄) + � α̃

β
, (52)

where ᾱ = Istim(t̄)/K and the constant � is defined as

� =
{

� if � ≥ 0,

0 if � < 0,
(53)

where

� = V (t̄ − �t)
¯̄α

(
1

�t
− δ

)
− V (t̄ − 2�t)

¯̄α�t
− δ

¯̄α − 1, (54)

and ¯̄α = Istim(t̄ − �t)/K . This allows us to choose the same (non negative) value
of theta as for t̄ − �t , i.e.,

Idep
(
t̄ − �t

) = Iadap
(
t̄ − �t

) + �
α

(
t̄ − �t

)
β

.

• If the current increases at t̄ , i.e. Istim(t̄) > 0 and Istim(t̄) > Istim(t̄ − �t), then the
system just continues with its dynamics, with initial conditions thus updated as

V 0(t̄) = V (t̄), I 0adap(t̄) = Iadap(t̄), I 0dep(t̄) = Idep(t̄). (55)

It should be noted that the dynamical behavior of the membrane potential in the
presence of piecewise constant currents is, in general, rather different from what can
be observed for constant stimulation currents (see Fig. 6).

Several different combinations of stimulation currents are reported in the top plots in
Fig. 8 (panels a–f). As can be seen from the middle plots in all panels if the stimulation
current decreases, the neuron generally stops firing (e.g. see Fig. 8a, between 300–500
ms) instead of eliciting spikes (see Fig. 7 for 400pA); if the current increases, the
neuron may still fire, but the number of spikes is lower than those expected (e.g. 11
spikes during the first 200 ms under a constant current injection from rest, as in Fig. 7,
instead of the 10 spikes generated after a 200pA step, 800–1000ms in Fig. 8d). To
reproduce this behaviour, it is necessary to update the initial conditions for Iadap after
each current change. We found that when Istim(t) ≥ Istim(t −�t) ≥ Ith, the sequence
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Fig. 8 Model validation for piecewise currents. a (top) current steps during a 1 sec long simulation;
(middle) experimental NEURON trace (red dashed line represents Vth ); (bottom) model traces, blue bars
represent spike times. (b–f) as in A but with a different current sequence (color figure online)

of I 0adap can still be obtained from the Monod function (33) provided that the value of
tstart is updated as follows

tstart → tstart

(
1 + Istim(t − �t) − Ith

Istim(t − �t)

)
. (56)

With these update rules we obtain a model that is able to quantitatively reproduce any
piecewise constant stimulation, as shown in the bottom plots of all panels in Fig. 8
(see Suppl. Table 2).
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2.6 Model validation using different current protocols and comparison with a
state of the art model

In order to validate the model using different experimental current injection protocols,
we adopted as a reference a set of experimental traces recorded from an excitatory
Layer 5 visual cortical neuron (cell id 476048909, from Allen (2018)) in response
to different somatic current injection protocols (see Teeter et al (2018)): (1) constant
steps, (2) dynamic clamp, generated with pink noise stimuli (3 s each, 1/f distribution
of power, 1–100 Hz) with amplitudes centered at 75, 100, and 125 percent of the
neuron rheobase, (3) a ramp, i.e. increasing amplitude at a rate much slower than
the time constant of the neuron. In all cases, we compared the results obtained with
our model with those obtained with the modeling approach presented in Teeter et al
(2018), and in particular with the LIF Afterspike Currents (LIF-ASC) model. For
this purpose, we first created an A-GLIF version of cell 476048909, by applying
our optimization workflow for constant current injections (all model parameters are
reported in Suppl. Table 3). The results are presented in Fig. 9a. We obtained, also
in this case, a very good agreement with experimental findings, in contrast with the
LIF-ASC model, which failed essentially over the entire range of currents. We then
validated our model against the experimental spike times obtained in response to the
dynamic clamp current (Fig. 9b). In this case, the LIF-ASCmodel produced very good
results, in comparisonwith those obtainedwith ourmodel. This was expected since the
LIF-ASCmodel was optimized also using these traces. Finally, our model was in very
good agreementwith the recordingobtained applying the rampprotocol (Fig. 9c), again
in striking contrast with the LIF-ASC model’s results. These results demonstrate the
ability of theA-GLIFmodel to be consistentwith experimental findings obtained under
experimental protocols substantially different from those used for the optimization
procedure.

3 Discussion

The implementation of simplified neuronmodels, able to accurately capture the exper-
imentally observed spike times, is of paramount importance to mitigate the technical
limitations of current supercomputing systems in running large-scale models of brain
regions at single cell resolution.

As pointed out in Gerstner and Naud (2009), an optimal neuron model should
consider tuning parameters on a neuron-by-neuron basis, should include adaptation,
and its quality should bemeasured on data not used during the tuning phase. Following
these indications, in this paper we have introduced a mathematical framework, built
upon the GLIF approach, which is able to reproduce all the main firing properties of
individual hippocampal CA1 pyramidal neurons (including adaptation and bursting),
and validated against recordings not used to optimize the parameters; we termed it
A-GLIF. The rationale for introducing the A-GLIF framework, is that the original
LIF equations are linear and with fixed reset rules, making it impossible to reproduce
the Hodgkin-Huxley type of nonlinear dynamics exhibited by real neurons. The main
goal of this paper was to maintain the linear nature of the equations, since they lead to
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Fig. 9 Model’s performance under different current stimulation protocols. a Constant current injection;
(left) experimental spike times, (middle) spike times obtained with the LIF-ASC model, (right) spike times
from our model. b Response of the same neuron in (a) to a dynamic current clamp protocol; the top plot
represents the experimental current, the other plots are the response obtained from a real neuron, the LIF-
ASC model, and our model; blue lines in the plots for the LIF-ASC and our model represent spike times.
(c): Response to a ramp current; the top plot represents the experimental current injected into the same
neuron in (a) and (b), the other plots represent the response recorded from the neuron, the LIF-ASC model,
and our model. All results for the LIF-ASC model are taken from Allen (2018) (color figure online)
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extremely useful analytic solutions, and introduce a new set of conditions and update
rules capturing the nonlinear nature of CA1 neuron dynamics.

A couple of notable attempts to deal with this problem are the GLIF approach of
Geminiani et al (2018), which captured the complex spiking behaviour of cerebellar
neurons, and that of Teeter et al (2018), which reproduced the experimental dynam-
ics observed under dynamic clamp protocols. However, the condition imposed on the
model parameters in Geminiani et al (2018) constrains the threshold potential to be
a stable equilibrium, whereas to capture the CA1 neuron dynamics, an asymptoti-
cally stable equilibrium is needed. In Teeter et al (2018), the optimization procedure
used experimental protocols that are not routinely carried out in laboratories, and the
resulting models are not able to reproduce at the same time experimental findings with
constant or variable current injections.

There are two main features making this model different, and more accurate, with
respect to any other similar implementation based on a leaky or an adaptive exponen-
tial integrate-and-fire scheme: (1) a compact representation of the general analytical
solutions using only three parameters, leading to (i) exact trajectories that outperform
in terms of speed and accuracy any other available optimization procedure, and (ii)
analytical conditions to reproduce both constant and variable current injections; (2)
the use of a mathematically derived set of constraints on the update rules after a spike,
which are able to capture themain experimentally observed firing properties, including
those that cannot be reproduced by any other published GLIF approach.

These results may have a significant (positive) impact on the implementation of
large-scale network models. The equilibrium and stability analysis of the analyti-
cal solutions, allowed to find constraints on the parameter space that can drastically
reduce the computational resources needed to optimize model parameters. Neverthe-
less, implementation speed and trajectory accuracy are not the only advantages of the
approach discussed in this work. One of the main results is that, by analyzing the
experimental firing properties, we were able to find a scheme to quantitatively char-
acterize and predict, through a Monod function, the firing behaviours of hippocampal
pyramidal neurons and interneurons, in response to any stimulation protocol using
piecewise constant current injections. This solves a serious limitation of all large scale
networks implementation based on spiking neurons, namely the use of identical copies
for the cells composing the network. Our approach allows to easily generate an arbi-
trary number of statistically representative neurons with different firing properties and
spike times, but still within the experimentally observed range (Marasco et al 2023).
It would thus be rather straightforward to reproduce the physiological variability, with
a significant (positive) impact on the implementation of large-scale network models.

One limitation of literally all models based on the linear LIF equations is that
they cannot quantitatively reproduce the nonlinear behavior of a neuron under a time-
varying current. This well known limitation is accepted by the community, in return
for a great reduction in computational requirements, mathematical tractability and, at
this time, as being the only possibility to implement full-scale models of entire brain
regions. In this latter case, additional tuning must be carried out to adjust the synaptic
transmission properties to reproduce specific network behaviors directly observed or
inferred from specific experimental findings. In the approach presented here, we used
current steps to help other researchers to implement their models using classic in vitro
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recordings, where constant current steps of different amplitude and duration are uni-
versally used in the field to assess firing behaviors and neuron excitability properties.
More complex experimental protocols to generate electrophysiological traces (such as
dynamic clamp, ramps, zaps, etc.) are much less common and are not a better repre-
sentation of natural conditions, where an unknown number of synaptic inputs targets
unknown dendritic locations on an unknown morphology. Unfortunately, under these
conditions, it is practically impossible to record traces under evoked synaptic inputs in
vitro or in vivo that can be directly used to optimize a model. Although synaptic cur-
rents could be considered as an extreme case of piecewise constant inputs, since they
change at each time step, their comprehensive consideration requires a more extensive
and detailed investigation. In conclusion, the framework presented in this work is an
important step toward a single cell model implementation able to accurately reproduce
the excitability properties of hippocampal neurons and interneurons. The model, as
is, was also able to be in qualitative agreement with experimental recordings under a
protocol mimicking synaptic inputs. In a future work, we will introduce and discuss a
suitable set of update rules taking into account also a large set of synaptic inputs.

4 Materials andMethods

4.1 Experimental Data Used for Modeling

To test and validate our model we considered a set of somatic voltage traces recorded
from84cells: 58pyramidal and26 interneurons, obtained from in vitro rat hippocampal
CA1 slices (Migliore et al 2018), in response to somatic constant current injections,
from Imin

stim =200pA to Imax
stim =1000pA with a step of 200pA. The 314 traces from

pyramidal neurons were all classified as continuous accommodating cells (cAC); for
interneurons, 54 traceswere classified as cAC, 72 traces as bursting cells (bAC), and 62
traces as continuous non-accommodating cells (cNAC). Typical examples illustrating
the physiological variability observed for these classification are shown in Fig. 10.
Note the large variability, in response to the same input, observed for both pyramidal
cells (Fig. 10a) and interneuron (Fig. 10b). This is particularly evident at low currents.
In this work we were interested in reproducing the spike times. Typical raster plots
for both type of cells are shown in Fig. 11a, and the full set of spike times for all
currents investigated experimentally are plotted in Fig. 11b for pyramidal neurons and
in Fig. 11c for interneurons.

4.2 Single cell NEURON simulations used for modeling

For a set of specific current injection protocols, which were not available experimen-
tally and that we wanted to use as a reference for model validation, we considered a
NEURON (Hines and Carnevale (1997),v8.0.0) model. For this purpose, a realistic
morphological and biophysical reconstruction of a hippocampal pyramidal CA1 neu-
ron (cell oh140807_A0_idB from Migliore et al (2018), see Fig. 6a), was adapted to
generate the specific cAC firing patterns illustrated in Fig. 6B. We tested both con-
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Fig. 10 Reference experimental traces. a: Typical somatic recordings from three CA1 pyramidal neurons.
b: Typical somatic recordings from CA1 interneurons

123



109 Page 32 of 38 A. Marasco et al.

Fi
g.
11

R
ef
er
en
ce

ex
pe
ri
m
en
ta
ld

at
a.
a
Ty

pi
ca
lr
as
te
r
pl
ot
s
fr
om

on
e
py
ra
m
id
al

ne
ur
on

an
d
th
re
e
in
te
rn
eu
ro
ns
,r
ep
re
se
nt
in
g
th
e
di
ff
er
en
tfi

ri
ng

be
ha
vi
ou

r
ob

se
rv
ed

ex
pe
ri
-

m
en
ta
lly
.b

sp
ik
e
nu

m
be
r
as

a
fu
nc
tio

n
of

th
e
sp
ik
e
tim

es
fo
r
al
lt
he

py
ra
m
id
al
ne
ur
on

s
co
ns
id
er
ed

in
th
is
w
or
k.

c
as

in
B
bu
tf
or

C
A
1
in
te
rn
eu
ro
ns
.M

ar
ke
r
an
d
lin

e
co
lo
rs

re
pr
es
en
td

if
fe
re
nt

fir
in
g
pr
op
er
tie
s

123



An Adaptive Generalized Leaky... Page 33 of 38 109

stant (Fig. 7), and piecewise constant current injections (Fig. 8). To avoid confusion
with the A-GLIF model traces, we will always refer to the NEURONmodel results as
“experimental traces”.

All model and simulation files are available in theModelDB section of the Senselab
database at the link http://modeldb.yale.edu/267598 and in the EBRAINS Live Papers
collection (Appukuttan et. al 2023) at the link https://live-papers.brainsimulation.eu/.

4.3 Optimization procedure

A custom procedure for parameter optimization was carried out using the genetical-
gorithm() python library, with 200 individuals and a maximum of 250 generations.
The procedure stops when the error between two consecutive generations does not
improve by more than 2%.

To determine the A-GLIF models for the 84 cells and the NEURONmodel, we first
extracted from the somatic traces the resting potential EL, the reset potential Vr , and
the threshold potential Vth, in addition to all spike times at all currents. Although, in
general, parameters like the rheobase current Ith, the membrane capacitance Cm, and
the membrane time constant τm, can also be inferred from the experimental traces, or
fixed according to the literature, we have preferred to treat them as fitting parameters,
together with all the other model parameters, K , kadap and the initial conditions for
Idep and Iadap. Their final values after the optimizing procedure for each cell are
reported in Table S1, together with all other parameters extracted from the traces. It is
important to note that the use of the analytical solution allowed a full vectorization (and
thus parallelization) of the optimization procedure, in contrast to the computationally
expensive simulation runs with the ODEs that would have been needed to evaluate a
cost function. In our case, we decided to focus the cost function on the time of first
spike and to the ISI sequences simultaneously for all tested currents, and it was thus
defined as

costfunc =
Nc∑
i=1

‖tfirstspkM(i) − tfirstspkE(i)‖ +
Nc∑
i=1

ni−1∑
j(i)=1

max
(
0, I S I expj(i) − I S Imax

i

)

+
Nc∑
i=1

ni−1∑
j(i)=1

max
(
0, I S Imin

i − I S I expj(i)

)
,

(57)

where I1, ..., INc are the injected constant stimulation currents, Nc ≤ 5, and ni
the number of the somatic spikes generated by the i−th stimulation current Ii ,
tfirstspkM(i), t

first
spkE(i) are the model and experimental first spike-time for the injected cur-

rent Ii , respectively. Moreover, I S I expj(i) denotes the j−th experimental ISI obtained

in response to the stimulation current Ii , and I S Imax
i , I S Imin

i are, respectively, the
maximum and minimum values of the expected ISI for the i−th stimulation current.
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We remark that in view of Eqs. (30) and (31) the maximum and minimum values
of the model ISIs are obtained by setting the values of I 0adap, respectively, as follows

I 0adap = αi

β
+ I 0dep + δ

β
(1 + V 0), I 0adap = 0, (58)

where αi = Ii/K .
For each stimulation current Ii , the optimization procedure provided a sequence of

data

(
t+spk(1), I

0
adap(t

+
spk(1), Ii )

)
, ...,

(
t+spk(ni−1), I

0
adap(t

+
spk(ni−1), Ii )

)
(59)

that were fitted by the Monod-type function (33) taking into account the parameter
constraints defined in items (i) and (ii) of Sect. 2.4.3

For this purpose, we adopted the fitting method described in Gao and Lixing (2012)
to obtain the coefficients a, b, c, d of Eq. (33) by minimizing the following cost func-
tion

costMonod =
Nc∑
i=1

ni−1∑
j(i)=1

(
c + a eb Ii (t+spk j(i) − tstart)

d + (t+spk j(i) − tstart)
− I 0adap(t

+
spk j(i), Ii )

)2

. (60)

In those cases in which we did not obtained a good fit, we used the built-in function
NonlinearModelFit of the software Mathematica (ver. 13.01, Wolfram), which imple-
ments fitting algorithms based on conjugate gradient, gradient, Levenberg–Marquardt,
Newton, NMinimize, and quasi-Newton methods.

The optimization and the python simulation code, together with a NEST imple-
mentation of the A-GLIF model using the analytical solutions, will be available in the
ModelDB section of the Senselab database (http://modeldb.yale.edu/267598), and in
the live papers section of EBRAINS (https://live-papers.brainsimulation.eu/).

4.4 Statistical Analysis

To statistically verify that the A-GLIF model was able to reproduce the spike trains
in response to constant and piecewise constant stimulation currents we relied on the
Mann–Whitney U-test using the built-in function MannWhitneyTest of the software
Mathematica (ver. 13.01, Wolfram). For each of the 84 hippocampal CA1 pyramidal
neurons and interneurons, and for the NEURON and the Layer 5 visual cortical neuron
models we considered the paired samples dataexp (experimental data) and datamod
(model data) of length n and m, respectively, as follows

3 In order to increase the fitting accuracy, we have relaxed the constraint c ≥ 0 for a > 0, since the second
spike (i.e. the first one for which the I 0adap values are defined) already occurs in a range where the Monod

function I 0adap(t
+
spk, Istim) is positive.
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dataexp =
{
(I 1stim, t̄1spk), ..., (I

1
stim, t̄ n1spk), ...., (I

N
stim, t̄1spk), ..., (I

N
stim, t̄ nNspk)

}
,

(
n =

N∑
i=1

ni

)
,

datamod =
{
(I 1stim, t1spk), ..., (I

1
stim, tm1

spk), ...., (I
N
stim, t1spk), ..., (I

N
stim, tmN

spk )
}

,

(
m =

N∑
i=1

mi

)
,

(61)

where nh andmh are the number of the experimental t̄ ispk andmodeled t jspk spike times,

respectively, in the h−th trace relative to the constant stimulation current I hstim.
After having verified that the data were elliptically symmetric, we tested whether

themedian of bivariate sample dataexp and datamod were equal performing an extension
of the Mann-Whitney U-test using the spatial ranks. In particular, we tested the null
hypothesis H0 : μ1 = μ2 against the alternative hypothesis Ha : μ1 �= μ2, where μ1
and μ2 are the median of the two data sets.

For the neuron model stimulated by piecewise constant currents we performed the
Mann–Whitney U-test for univariate samples. In this case, the statistic test is corrected
for continuity and is assumed to follow a normal distribution.

For all data set the null hypothesis H0 was rejected only if p < α, where the
significance level α was set to 0.05.

As reported in Suppl. Table 3, it was p > 0.05 for all the hippocampal cells and
for the NEURONmodel, except for the interneuron cAC 97509010. For this cell, after
having verified that the distribution of the differences dataexp − datamod constitutes a
sample from a normal population, we performed a Hotelling t2-test to verify whether
the means of dataE and dataM were equal at the significance level of 5%. For the
interneuron cAC 97509010 it was p > 0.05.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11538-023-01206-8.
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