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Abstract
Tumors develop in a complex physical, biochemical, and cellular milieu, referred to
as the tumor microenvironment. Of special interest is the set of immune cells that
reciprocally interact with the tumor, the tumor-immune microenvironment (TIME).
The diversity of cell types and cell–cell interactions in the TIME has led researchers
to apply concepts from ecology to describe the dynamics. However, while tumor cells
are known to induce immune cells to switch from anti-tumor to pro-tumor phenotypes,
this type of ecological interaction has been largely overlooked. To address this gap in
cancer modeling, we develop a minimal, ecological model of the TIME with immune
cell conversion, to highlight this important interaction and explore its consequences.
A key finding is that immune conversion increases the range of parameters supporting
a co-existence phase in which the immune system and the tumor reach a stalemate.
Our results suggest that further investigation of the consequences of immune cell con-
version, using detailed, data-driven models, will be critical for greater understanding
of TIME dynamics.
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1 Introduction

Cancer is a class of evolving diseases, similar in many ways to infectious diseases
characterized by viral, bacterial, or eukaryotic parasite infection. Tumor cells can
be thought of as cheaters in the cooperative multicellular state from which they are
derived, although tumor cells often act collectively in a proto-multicellular manner
(Ben-Jacob et al. 2012; Aktipis et al. 2015). The key point is that cancer cells over-
come controls ensuring intercellular cooperation and develop into a distinct population
upon which evolutionary forces act, not unlike a population of pathogens within a
host organism. While this evolutionary nature of cancer has long been acknowledged
(Nowell 1976), recent work has rapidly developed our understanding of cancer popu-
lation dynamics by applying concepts and theoretical tools from evolutionary biology
and ecology (Gerlinger et al. 2014; Korolev et al. 2014; Wu et al. 2016; Reynolds
et al. 2020). Advances in lineage tracing (Simeonov et al. 2021) and genomics (Navin
2014) technologies have allowed for unprecedented understanding of the complex
eco-evolutionary processes underlying tumor growth and metastasis, and theoretical
approaches drawing from evolutionary and ecological theory (McFarland et al. 2014;
Gluzman et al. 2020; Gatenbee et al. 2022; Kessler and Levine 2022) have enabled pre-
dictions of eco-evolutionary phenomena in cancer and interpretation of experimental
data. However, much is still unknown about cancer population dynamics, with many
complexities still unexplored.

Recent work has developed the concept of the tumor microenvironment (TME),
referring to the biochemical, cellular, and physical context in which a tumor exists
and how this context impacts tumor behavior (Anderson and Simon 2020). To further
emphasize the specific role played by the immune system, one can focus on the tumor-
immune microenvironment (TIME). The TIME concept emphasizes that tumors exist
in an ecological context of immune and other host cells which influence tumor growth
and progression in a complex manner (Binnewies et al. 2018). While there are sev-
eral clear differences between the ecological interactions of tumors with host cells
and traditionally studied interactions in ecology, such as those between predator and
prey animals (Kareva et al. 2021), concepts from ecology have nonetheless proved
useful in understanding tumor-immune interactions. These concepts hold promise for
further untangling the complexities arising from nonlinear, multi-directional interac-
tions between adapting (through varying combinations of mutations and phenotypic
plasticity) populations of cells (Hamilton et al. 2022).

While the ability of the immune system to suppress tumor proliferation and
metastasis has rightfully received considerable attention (Schreiber et al. 2011), our
understanding of how tumors attempt to shape the immune system into cancer-tolerant
or even cancer-promoting states remains incomplete (De Visser et al. 2006). While
tumors are well-known to affect the metabolic and biochemical state of the TIME
(Binnewies et al. 2018; Roy et al. 2021), tumor cells are also able to influence immune
cell phenotypes (Flavell et al. 2010), a process known as immune cell conversion. A
prime example of immune cell conversion is the polarization of macrophages between
M1 andM2 phenotypes (Biswas andMantovani 2010; Li et al. 2019b). In theM1 phe-
notype, macrophages produce tumor-suppressing molecules, including nitric oxide
and reactive oxygen species, while M2 macrophages produce pro-tumor factors and
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promote angiogenesis (Wang et al. 2014; Jetten et al. 2014). Other examples of tumor-
influenced immune cell conversion include T cell/regulatory T cell polarization (Liu
et al. 2007) and NK cell/ILC1 cell polarization (Gao et al. 2017).

Despite strong evidence for the importance of immune cell conversion in the TIME,
this phenomenon has been largely ignored inmathematicalmodels of the TIME.While
a number of models exist which include the polarization of immune cells in the TIME
(Eftimie and Hamam 2017; Shu et al. 2020), very few (Guo et al. 2023) have included
the ability of tumor cells to bias this immune cell polarization. In order to explore the
role of immune cell conversion in the TIME, we develop here a minimal mathematical
model for tumor-immune interaction including the ability of tumor cells to convert
immune cells into a pro-tumor phenotype. Using modified Lotka–Volterra equations,
we explore the effects of the rate of immune cell conversion, finding that conver-
sion can be essential to the viability of a tumor population. Specifically, non-zero
immune conversion rates can allow for tumor survival in the presence of non-trivial
anti-tumor immunity.Our results highlight the need to further inspect the role of tumor-
to-immune system feedback, especially in mathematical and computational models
of cancer. Furthermore, greater understanding of the consequences of immune cell
conversion may have an impact on the development of novel cancer immunothera-
pies.

2 Model

2.1 Guiding Principles for Tumor-ImmuneModeling

Following the work of Wilson and Levy (2012) and Arabameri et al. (2018), we adopt
a minimal description of the essential aspects of tumor-immune population dynamics
by considering the densities of tumor, anti-tumor immune, and pro-tumor immune
cells. This coarse-grained approach greatly simplifies our model and its analysis. This
simplification is of course at the expense of the potential quantitative accuracy of a
more detailed approach. Once we have established basic mechanisms, future efforts
can extend our approach to include a larger number of cell types and more realistic
descriptions of interactions.

We proceed by adapting the Lotka-Volterra framework (Wangersky 1978) with
multiplicative interaction terms. The resultant ODEs ignore both spatial aspects of
tumor-immune interaction and complexities such as saturating interactions. We note
that some TIMEs may be better represented by spatially homogeneous models than
others. For example, tumor cells in leukemia are largely suspended in the bloodstream,
and therefore the assumption that all cells interact with all other cells is a reasonable
approximation. For solid tumors, our model assumes that there is no barrier to immune
infiltration (Li et al. 2019a). Regardless of which biological scenarios our model is
better suited for, we emphasize that our goal is to explore the potential consequences
of immune conversion, not to make quantitative predictions about tumor-immune
population dynamics.
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2.2 AModified Lotka–Volterra Model

We examine a generalized Lotka–Volterra model describing tumor cell (T ), pro-tumor
immune cell (P), and anti-tumor immune cell (A) population densities. Our basic
innovation is the inclusion of a tumor-induced switching term from anti-tumor to pro-
tumor immune phenotypes. We abbreviate pro-tumor immune cells as PTI cells and
anti-tumor immune cells as ATI cells. Our baseline model can be written as

dT

dt
= T

(
rT − rT

KT
T + αT P P − αT A A

)
(1)

dP

dt
= P

(
− dP P + αPT T

)
+ ωAT (2)

d A

dt
= A

(
rA − rA

KA
A + αAT T − αAP P

)
− ωAT , (3)

or in condensed vector notation

dN
dt

= f (N), N =
⎡
⎣T
P
A

⎤
⎦ . (4)

All parameters are non-negative (Table 1), so that a negative sign in front of a parameter
in Eqs. (1)–(3) indicates either inhibition of growth or contribution to death, while a
positive sign indicates contribution to growth or inhibition of death. The parameters rT
and rA describe the “intrinsic” growth rates of tumor and ATI cells each in the absence
of other cell types, while KT and KA denote their carrying capacities. Quadratic
self-limitation terms for tumor and ATI cells are written as rT /KT and rA/KA for
convenience, in a similar manner to previous work (Bunin 2017). By calling rT and rA
intrinsic growth rates, we mean that they are the growth rates in the absence of other
interactions in themodel.Weassume that PTI cellsmostly arise through tumor-induced
conversion processes, so we take rP to be zero, and denote their density-dependent
growth inhibition and/or death rate as dP . The parameters αXY represent the quadratic
contributions of interactions between cell types to growth rates, where αXY is the
effect of Y on the net growth rate of X . Note that we assumed that contact with tumor
cells induces growth of all types of immune cells.

Finally, as mentioned above, we include terms reflecting the ability of tumor cells
to induce some immune cells that inhibit tumor growth, such as M1 macrophages, to
switch phenotypes into functionally pro-tumor states, such as M2 macrophages. This
is reflected in Eqs. (1)–(3) by a conversion parameter ω ≥ 0 controlling the rate at
which tumor cells induce ATI cells to switch to PTI cells. We assume that all of these
parameters are independent of time and cell concentrations.
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Table 1 Parameter values used in figures

Parameter Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

rT 1 1 1 1 1 1

KT 1 1 1 1 1 1

dP 1 1 1 1 1 1

rA 1 1 1 1 1 1

KA 1 1 1 1 1 1

αT P 0.95 0.95 0.95 0.95 0.95 0.95

αT A [0, 2] [1, 20] 1.5 1.5 [1, 1.5] 1.5

αPT 0.15 0.15 0.15 0 or 0.15 0.15 [0, 1.5]
αAT 0.05 0.05 0.05 0.05 0.05 0.05

αAP 0.5 0.5 0.5 0.5 0.5 0.5

ω [0, 2] [0, 2] [0, 1] [0, 5] [0, 0.75] 0.5

[a, b] means that parameters vary in the closed interval from a to b

2.3 Types of Steady States

We refer to states of the system as feasible when the densities of all cell types are
non-negative

N ≥ 0 ⇐⇒ T , P, A ≥ 0 (5)

corresponding to physically meaningful states of the system. Equations (1)–(3) can
support the following types of feasible steady states beyond the trivial steady state
T = P = A = 0:

(T) Tumor-only: T > 0 and P = A = 0
(A) ATI-only: A > 0 and T = P = 0
(TA) Tumor-ATI coexistence: T , A > 0 and P = 0
(TP) Tumor-PTI coexistence: T , P > 0 and A = 0
(TPA) Tumor-PTI-ATI coexistence: T , P, A > 0.

Tumor-only (T) and ATI-only (A) steady states always exist and are always feasible
in the allowed parameter space, while the simultaneous feasibility and existence of
steady states TA, TP, and TPA depend on the choice of parameters. As we will see,
there can be at most one steady state corresponding to types T, A, TA, and TP, while
there can be more than one tumor-PTI-ATI coexistence (TPA) steady state.

We denote the set of steady state solutions corresponding to each type as SX , where
X in the subscript indicates the cell types that are positive in the steady state. For
example, for the tumor-only steady states, we have

ST = {N ∈ R
3 | f (N) = 0, T > 0, P = A = 0}, (6)
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while for tumor-PTI-ATI coexistence steady states we have

ST P A = {N ∈ R
3 | f (N) = 0, N > 0}. (7)

Because there can be at most one feasible steady state for each of the types (T), (A),
(TA), and (TP), we can unambiguously refer to the steady state meeting the respective
criteria of these types, writing these as

T ∈ ST , A ∈ SA, TA ∈ ST A, TP ∈ ST P . (8)

We can refer to steady states with tumor-PTI-ATI coexistence similarly

TPA ∈ ST P A, (9)

but we must often take care to specify which solution in ST P A we are referring to.

2.4 Linear Stability Analysis

In order to assess the linear stability of steady states, we use the Jacobian matrix

∇ f (N)

=
⎡
⎣rT − 2 rT

KT
T + αT P P − αT A A αT PT −αT AT

αPT P + ωA −2dP P + αPT T ωT
(αAT − ω)A −αAP A rA − 2 rA

KA
A + (αAT − ω)T − αAP P

⎤
⎦ ,

(10)

obtained from taking partial derivatives of the right-hand side of Eqs. (1)–(3) with
respect to T , P , and A, and check whether the real parts of its eigenvalues are all
negative. When this is the case, the Hartman-Grobman theorem allows us to identify
a steady state as stable. When at least one eigenvalue of the Jacobian is positive, the
steady state is unstable. When at least one eigenvalue is zero, while all others are
negative, we cannot determine whether the steady state is stable from the linearized
system alone. In this case, we provide numerical evidence for the asymptotic stability
(or instability) of a steady state.

2.5 Computational Methods

We performed all numerical ODE integration and root finding using SciPy 1.7 (Vir-
tanen et al. 2020). We used NumPy 1.21 Harris et al. (2020) in most calculations.
For creating plots, we used Matplotlib 3.5 (Hunter 2007) within a Jupyter notebook
(Kluyver et al. 2016). We used the scikit-learn 1.0 (Pedregosa et al. 2011) support
vector machine implementation with a degree 3 polynomial kernel for visualizing the
interfaces between basins of attraction in Fig. 4.
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3 Results

3.1 Characterizing the Steady States Through Feedback and Invasion Growth
Rates

As described above, we can classify the steady states of ourmodel by the cell types that
have non-zero density. For all classes of steady states, except for the case of tumor-PTI-
ATI coexistence (TPA) with ω > 0, we can write the steady state densities in simple
terms of the model parameters (Table 2). We can further simplify these expressions by
gathering parameters into terms describing effective growth rates, written as �X→Y ,
meaning the net growth rate of X when “invading” a steady state population of Y , and
net negative feedback, written as �X→Y ;S , meaning the net negative feedback of X
on Y at the specified steady state S. For example, the effective growth rate of tumor
cells in a population of ATI cells is

�T→A = rT − αT AKA (11)

We note that by “invasion” we refer to the general concept of invasive populations
in ecological settings, rather than the specific physical movement of one type of cell
into a population of another type of cell (although this could constitute an invasion
by our definition). Invasive species and their effects on ecosystems are an important
topic of study in ecology. In theoretical ecology, invasions have been given a precise
definition to serve as a mathematical tool for analyzing the robustness of communities
against invasive species. Suppose we catalog n > 0 different species and index them
by the set {1, 2, . . . , n}. Within a community, we observe a steady state, described
by the vector of densities of each species within the community, N�. Suppose that
N �
i > 0 for at least one species i ∈ {1, 2, . . . , n} \ { j}, while N �

j = 0 for some
focal species 1 ≤ j ≤ n. An infinitesimal density of species j is then introduced into
the community, representing the introduction of an invasive species, whether through
natural migration or human intervention. Species j is said to invade the community
if the per-capita growth rate of species j is positive, or using our notation described
above

� j→N� ≡ lim
δN j→0+

1

δN j

dN j

dt

∣∣∣∣
N=N�+δN

> 0 (12)

with the density introduced through invasion defined as

δNi =
{
0 i 
= j

δN j > 0 i = j .
(13)

We use this definition of invasions throughout the article.
As an example of net negative feedback, we define the net negative feedback of

tumor cells on tumor cells in the tumor-PTI-ATI coexistence state (TPA) with ω = 0
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Fig. 1 Schematic diagram of interactions in themodel. Note that the exponential growth terms rT and rA are
not depicted. The meanings of each type of line between T , P , and A are as follows. Single pointed arrow:
positive (“activating”) interaction; Line with straight, perpendicular end: negative (“inhibiting”) interaction;
Double pointed arrow with perpendicular, bisecting single pointed arrow: conversion interaction, here
conversion of A to P is “catalyzed” by T

as

�T→T ;TPA = rT
KT

+ αT AαAT

rA/KA
− αT AαAPαPT

(rA/KA)dP
− αT PαPT

dP
. (14)

This quantity arises from rearrangement of the TPA the steady state solution of
Eqs. (1)–(3) with ω = 0, and adds up all the contributions to tumor negative self-
feedback, which can be visualized in Fig. 1. The first term, rT /KT , is direct tumor
self-limitation. The second term reflects the positive effect of tumor density of ATI
cell growth, which in turn inhibits tumor growth. This effect is mitigated by strong ATI
self-limitation, which is why rA/KA appears in the denominator. The third and fourth
terms are actually positive feedback, and hence have negative signs in the net nega-
tive feedback, �T→T ;TPA. The third term represents the positive effect that tumor cell
density has on PTI cell growth, while PTI cell density has a negative effect on ATI cell
growth, and ATI cell density has a negative effect on tumor cell growth. Thus, tumor
cell density activates PTI cell growth which inhibits the growth of tumor-inhibiting
ATI cells, a net positive effect on tumor growth. Finally, the fourth term represents
tumor cell density activating PTI cell growth, which then activates tumor cell growth.
Self limitation terms also appear in the denominators of the third and fourth terms, for
the same reasons as discussed for the second term.

Note that the feedback�X→Y ;S depends directly on the state S, because zero density
of one or more cell types will remove feedback “channels”, limiting the number of
ways that feedback can be felt by a cell type. To illustrate this, we can compare the
net feedback of tumor cells on tumor cells in the tumor-PTI-ATI coexistence state
(Eq. 14) with that for the tumor-PTI coexistence state (TP)

�T→T ;TP = rT
KT

− αT PαPT

dP
(15)

which lacks all interaction parameters with ATI cells (see Fig. 1).
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Table 2 Summary of steady states

T A TA

T KT 0 KT

(
1 − αT A

rT
�A→T

�A→A;TA
)

P 0 0 0

A 0 KA
�A→T

�A→A;TA
Feasible Always Always rT − αT A

�A→T
�A→A;TA > 0

Stable Never �T→A < 0 Never

States 1 1 0 (if ω 
= 0) or 1

TP TPA (ω = 0) TPA (ω > 0)

T rT
�T→T ;TP

�T→A
�T→T ;TPA See Appendix A

P αPT
dP

rT
�T→T ;TP

αPT
dP

�T→A
�T→T ;TPA See Appendix A

A 0 KA − �T→A;TPA
rA/KA

�T→A
�T→T ;TPA See Appendix A

Feasible rT
KT

>
αT PαPT

dP
See Appendix A See Appendix A

Stable ω > �T→T ;TP rA
rT

+ αAT − αAPαPT
dP

See Appendix A See Appendix A

States 1 0 or 1 0 or 1 or 2

See Appendix A for details

The tumor-only (T) and tumor-ATI coexistence (TA) steady states are always unsta-
ble (Table 2), and are therefore of no interest for our purposes. This leaves theATI-only
(A), tumor-PTI coexistence (TP), and tumor-PTI-ATI coexistence (TPA) states as the
focus of our analysis. These can be thought of respectively as immune “wins”, tumor
“wins”, and tumor-immune “draw”. To narrow the parameter space of interest, we can
see that TP is feasible only when

rT
KT

>
αT PαPT

dP
or equivalently �T→T ;TP > 0 (16)

is satisfied. This can be interpreted to mean that the direct negative feedback of tumor
cells on themselves must be greater than the positive feedback of tumor cells on
themselves through PTI cells, where the feedback signs are clear from Eqs. (1) and
(2) (tumors are self-limiting through rT /KT while tumor cells increase PTI growth
rate and PTI cells increase tumor growth rate). If this condition is violated, unbounded
tumor growth is possible (see Fig. 7), contradicting the biophysical realities of cancer.
Thus, we can reasonably focus on the parameter space where Eq. (16) is met, as we
do throughout the remainder of this work.

3.2 Stability of Steady States

The stability conditions we have derived for several of the steady states have several
interesting implications. The A state is only stable when the tumor invasion growth
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rate (�T→A) is negative (Table 2). When ω = 0, a necessary condition for the TPA
state to be stable is that �T→T ;TPA > 0 (Appendix A). This means that the only way
for there to be a feasible, stable tumor-PTI-ATI steady state when ω = 0 is for �T→A
to be positive (Table 2). Thus, when ω = 0 the A and TPA steady states cannot both
be feasible and stable. There can, however be bistability for ω = 0 between the A and
TP states.

The stability of the TP state can switch when ω is increased, provided that the
right-hand side of the stability condition

ω > �T→T ;TP
rA
rT

+ αAT − αAPαPT

dP
(17)

is positive. We will see in the next section that this stability switch corresponds to a
transcritical bifurcation where the TPA state collides with the TP state. The TP state
can only be stable for ω = 0 when the right-hand side of Eq. 17 is negative (see
Appendix A). While we can exactly solve for the TPA state and the eigenvalues of the
corresponding Jacobian for any ω value, the complexity of the resulting expressions
prevent clear interpretation. See Appendix A for a more detailed account of solving
for TPA.

3.3 Viability of Tumor Cell Populations is Dependent on Immune Cell Conversion

Given the stability conditions discussed in the previous section, there are several
possible scenarios exhibited by the tumor-immune ecosystem when immune cells
cannot be converted (ω = 0). There can be a single, stable, steady state, either A
or TPA, or there can be bistability between A and TP. This bistability can only
occur when ATI cells cannot invade the TP state (�A→TP < 0, see Appendix A and
Eq. (52)), an exceptionally hostile environment to ATI cells for a normally functioning
immune system. Because �A→TP depends only on the model parameters, the choice
of parameters for the model in some sense reflect the long-term development of the
tumor while the dynamics of the model reflect faster processes. A parameter set where
�A→TP < 0 reflects a decidedly pro-tumor TIME where immune cell conversion is
less relevant than when�A→TP > 0, where ω must be positive for bistability between
A and TP (healthy and cancerous states, respectively).

The behavior is of more interest in this second case, where we consider non-zero
ω effects. The top row of Fig. 2 shows the behavior of the steady states as ω varies
when �T→A ≥ 0, where an increasing killing rate of tumor cells by ATI cells (αT A)
decreases the tumor density in TPA. When �T→A = 0, as shown in the first row
of Fig. 2 (darkest green curve in the subplot), the stable TPA solution disappears
altogether at ω = 0, while the A state switches from being unstable to stable. Thus,
when �T→A is non-negative, there is no stable healthy state (A) of the system, while
once �T→A becomes negative the healthy state becomes stable. When there is no
stable state with non-zero tumor cell density at ω = 0 (�T→A < 0), a saddle node
bifurcation occurs at a positive ω (Fig. 2). Above this ω value, there are two TPA
steady states, one stable and one unstable. As ω increases, eventually the stable TPA
solution collides with the TP state, exchanging stability in a transcritical bifurcation.
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For larger ω values, past the transcritical bifurcation, there is bistability between the
A and TP states.

The saddle node bifurcation occurs at larger ω values as αT A increases, meaning
that in order to maintain a positive steady state population density, tumor cells must
convert ATI cells more rapidly when ATI cells kill tumor cells more efficiently. When
αT A is large enough, the stable branch of the TPA state disappears and a pitchfork
bifurcation occurs at ω = �T→T ;TP rA

rT
+αAT − αAPαPT

dP
(Fig. 3). For even larger αT A

values, the ω value at which the saddle node bifurcation occurs decreases, but the
stable TPA steady state is no longer feasible.

There are several interesting biological implications of these results. First, wewould
expect to see a minimal immune cell conversion rate for tumor viability, below which
the tumor cannot be sustained. This is visible in the second row of Fig. 2, for ω

values below the the saddle node bifurcations. We would not expect to observe this
phenomenon in all cases, as we see viable tumor cell populations at ω = 0 for tumor-
friendly parameters, as mentioned above. Rather, we would expect to find minimal
immune conversion rates for tumor viability in the early stages of tumor development.
This is a testable prediction of our model. If the production rate or degradation rate
of the biochemical messengers mediating immune cell conversion, such as TGFβ

(Flavell et al. 2010) can be experimentally manipulated, it should be possible, albeit
perhaps technically difficult, to examine the effects of ω on tumor viability in vitro.

Second, our model suggests that a “stalemate” state (TPA) can exist at intermediate
immune conversion rates, as seen in all subplots of Fig. 2. The steady state with coex-
istence between tumor cells, PTI cells, and ATI cells represents a stalemate between
pro-tumor and anti-tumor cell types, consistent with previously hypothesized “equi-
librium” tumor states (Koebel et al. 2007). In the context of metastasis, this possibility
is sometimes referred to as tissue dormancy. We predict that, intuitively, the possible
sizes of “equilibrium” tumor populations are limited by the ability of ATI cells to kill
tumor cells (αT A, see Fig. 2).

Third, we find that there can be an intermediate immune cell conversion rate at
which the tumor population density is maximal in the stable TPA state, as can again
be seen in all subplots of Fig. 2. This is due to the fact that the steady state ATI cell
“reservoir” for producing PTI cells shrinks as ω increases, so that in some parameter
sets there is an optimal ωmax such that for larger ω > ωmax, the tumor cell density
is less than at ωmax. This phenomenon occurs as the stable TPA solution approaches
the TP solution, in which the anti-tumor immune system is non-existent in the local
TIME. While it is unclear how well a complete (local) lack of ATI cells reflects a
late stage TIME, the possibility of an intermediate immune cell conversion rate that
maximizes tumor cell density has not, to our knowledge, been discussed previously.

Finally, our model predicts that above a threshold immune cell conversion rate,
large tumor killing rates by ATI cells (αT A) are not sufficient to eradicate stable states
with positive tumor density (Fig. 3). In this way, immune cell conversion can protect
tumor viability against even an extraordinarily effective immune system.
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Fig. 2 Bifurcation diagrams overω for differentATI tumor-killing rates (αT A).When tumor cells can invade
an ATI-only state (�T→A > 0, first row), there is no stable steady state with T = 0. When �T→A = 0
(αT A = 1 in the first row, with the TPA steady state shown in the darkest shade of green) then the A and
TPA states collide at ω = 0, and as ω increases the TPA state changes continuously from the A state. The
TPA state has increasing values of T and P asω increases, until it collides with theTP state in a transcritical
bifurcation, swapping stabilities. When tumor cells cannot invade an ATI-only state (�T→A < 0, second
row), there is always a stable cancer-free state A. At ω = 0 the only stable steady state is A, with the TPA
steady state appearing for ω > 0; there is a saddle node bifurcation at a value of ω, below which there is no
steady state with positive tumor density. Above this value of ω, there is bistability between the cancer-free
and cancer states. The first column shows the steady state densities of tumor cells, while the second column
shows the density of PTI cells, and the third column shows the density of ATI cells. Only feasible steady
states are shown. Note that each individual subplot is a projection onto to T , P , or A densities from the
full three-dimensional state space, so that intersections of solutions occur only when curves in all three
projections intersect (Color figure online)

3.4 Immune Cell Conversion Promotes Tumor Survival at Small Growth Rate

As discussed in the previous section, our model indicates that when �T→A = rT −
αT AKA ≤ 0, there cannot be a stable TPA state when ω = 0. While we have focused
on the effects of αT A in Fig. 2, it is clear that reducing rT (reflecting a decreased tumor
growth rate) or increasing KA (reflecting a larger ATI cell carrying capacity) can yield
similar results. When the intrinsic tumor growth rate (rT ), the rate of ATI cells killing
tumor cells (αT A), and the ATI cell carrying capacity (KA) yield a negative�T→A, we
observe bistability between A (cancer-free) and either TPA or TP (cancer), provided
that ω is large enough. This leads to basins of attraction for the cancer-free and cancer
states, divided by an ω-dependent two-dimensional surface (Fig. 4).

This bistability between a state with zero tumor density and a state with positive
tumor density is an example of an Allee effect, a term commonly used in ecology
(Korolev et al. 2014). With an initially low tumor density, the system will evolve
towards the cancer-free state, while with sufficiently large tumor and ATI cell density
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Fig. 3 Values ofω for saddle node and pitchfork bifurcations. (a–c) Bifurcation diagrams showing the steady
state tumor cell density as ω is changed, as in Fig. 2, for three representative αT A values. a) For αT A = 2,
we see the same behavior as in the last row of Fig. 2. bAt αT A ≈ 9.05, there is a pitchfork bifurcation rather
than a saddle node bifurcation. The inset subfigure shows a zoomed-in view of the pitchfork bifurcation.
c For the large value of αT A = 20, there is again a saddle node bifurcation, which occurs at a value of
ω which now decreases as αT A is further increased. The stable part of the lower red branch of the tumor-
PTI-ATI solution (before colliding with the tumor-PTI solution in a transcritical bifurcation) is not feasible.
The inset subfigure shows a zoomed-in view of the saddle node and transcritical bifurcations. d) The value
of ω at which the saddle node bifurcation (or pitchfork bifurcation in the special case of αT A ≈ 9.055)
occurs, labeled as ωSN/PF , as a function of αT A . The ω value where the tumor-PTI-ATI solution and the
tumor-PTI solution collide in a transcritical bifurcation (ωTC ≈ 0.832) is shown as a red horizontal line
(Color figure online)

Fig. 4 The basins of attraction with increasing ω. As ω increases, the region of initial states that end up at
the cancer-free state diminishes rapidly, while the basins of attraction for states with positive tumor density
increase in volume. Each subplot depicts a three-dimensional grid of points representing initial values of
T , P , and A. The larger dots with black edges indicate the locations of steady states, with colors matching
those in Fig. 2 (note that the T = P = A = 0 and T steady states, shown in black and brown respectively,
are not shown in Fig. 2). The points in the three-dimensional grid are colored according to the steady state
that they asymptotically approach in numerical integration of Eqs. (1)–(3). The black curves are estimates
of the dividing surface contours separating basins of attraction, found using support vector machines with
degree 3 polynomial kernels as implemented in scikit-learn 1.0 (Pedregosa et al. 2011) (Color figure online)

the system will evolve towards the cancer state. As the ATI-to-PTI conversion rate
increases, the region of state space where the system will evolve towards the cancer
free state shrinks (Fig. 4). This means that if the system is initially in the cancer-free
state, the amount of tumor density that must be introduced for the system to reach the
cancer state decreases as ω increases. Without any ATI-to-PTI conversion (ω = 0),
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there cannot be bistability between the A and TPA states. However, there can still be
bistability between A and TP with ω = 0 when

rA + αAT T − αAP P ≤ 0 (18)

where T and P here are the steady state densities in the TP state (see discussion on
Appendix A and Eqs. (49)–(52) therein). This means that the growth rate of a small
ATI density introduced to the TP state must be negative, consistent with a developed
TIME state that is uninhabitable for ATI cells. Thus, while an ATI-to-PTI conversion
term is not strictly necessary for bistability, it allows for bistability in a broader range
of parameter sets with biological relevance.

Finally, we note that this baseline model does not exhibit tristability. That is, the
existence of a stable TPA state means that, for some range of parameters, further
growth of the tumor is precluded by an increasing immune response. There is no
mechanism whereby even a large increase in tumor size could overcome this linear
response, hypothetically giving rise to A, TP, TPA tristability. We cannot exclude the
possibility that a more complete model might exhibit such a parameter region.

3.5 Alternate Modeling Choices Yield Similar Results

While we have sought to analyze a minimal model of tumor-immune interaction, there
are several alternatemodeling choices we could havemade, depending on assumptions
about the behavior of the immune system. In order to test the effects of changing our
assumptions, we consider three modifications to our original model in Eqs. (1)–(3)

1. Linearity of PTI direct self feedback: −dP P2 or −dP P in Eq. (2)
2. Direct positive feedback from tumor cells to PTI cells: αPT > 0 or αPT = 0 in

Eq. (2)
3. ATI proliferation and non-linear direct self feedback or constant recruitment with

linear direct self feedback: rA A − rA
KA

A2 or rA − rA
KA

A in Eq. (3).

Altogether, there are eight total models spanned by all the choices listed above, lead-
ing to seven alternate models to our original set of equations in Eqs. (1)–(3). With the
same parameters examined for the originalmodel (Table 1), we find that the bifurcation
behavior remains qualitatively similar for all of the eight models (Fig. 5). However,
there are several noticeable differences with the alternate models. One of these dif-
ferences is that for each model except for the original, there is no stable, feasible TP
state for any ω value. Additionally, when ATI dynamics are altered so that ATI cells
are recruited in an A-independent manner and die at a constant rate, there is noT state,
so that the tumor density of the TPA state, when it exists, is an increasing function of
ω. For a more detailed analysis of the alternate models, see Appendices B & C.

When PTI cells have a non-linear self-limitation term, the saddle node bifurcation
leading to bistability occurs at a lower ω value (Fig. 5). This difference is likely due
to the fact that the value of P in the TPA state for the parameters we used is less than
one, leading to less self-limitation than would occur with a linear self-limitation term.
Thus, the saddle node bifurcation will likely occur at a larger ω value for these models
than for those with linear PTI self-limitation terms with the same parameters.

123



Modeling the Role of Immune Cell Conversion… Page 15 of 30 93

Fig. 5 Bifurcation diagrams showing the steady state density of tumor cells from all eight choices of model.
a The model from Eqs. (1)–(3), analyzed in the above sections. b The model in (a) except with an ATI
source term (immune cell recruitment) and a linear ATI death term. c Themodel in (a) without a PTI growth
term dependent on tumor cells (equivalent to αPT = 0). d The model in (c) with an ATI source term and
a linear ATI death term. e The model in (a) with a linear PTI death term. f The model in (d) with an ATI
source term and a linear ATI death term. g The The model in (a) without a PTI growth term dependent on
tumor cells and with a linear PTI death term. h The model in (g) with an ATI source term and a linear ATI
death term. With a linear intrinsic ATI birth term and non-linear ATI death rate, in subplots (a), (c), (e),
and (g), the stable tumor-PTI-ATI steady state collides either with the tumor-PTI coexistence state in (a) or
with the tumor-only state in (c), (e), and (g). On the other hand, with an ATI source term and a linear ATI
death term, in subplots (b), (d), (f), and (h), the stable tumor-PTI-ATI steady state does not collide with
another steady state but saturates as ω increases (Color figure online)
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4 Conclusions

We have analyzed the effects of tumor-induced immune cell conversion in a simple
model of the TIME, finding that an immune cell conversion term allows for bistability
between a cancer-free state and a state with a non-zero tumor cell density. Our results
suggest an important role for immune cell conversion in the early stages of tumor
growth, before the TIME has been shaped into a pro-tumor state, which in the context
of our model is characterized by parameters for which there is no stable steady state
with positive tumor density for ω = 0. For a large enough immune cell conversion
rate, we find that a “stalemate” or “equilibrium” stable steady state can exist. In this
stalemate state, tumor cells, PTI cells, and ATI cells can coexist, maintained by a
balance of pro-tumor and anti-tumor factors. Eventual escape from equilibrium tumor
states, leading to tumor growth not limited by the anti-tumor immune system, is not
directly captured by our model; perhaps including a direct competition for metabolic
resourcesmight allow a large enough tumor to completely suppress immunity. Instead,
escape from a coexistence state can be caused by changes in model parameters so that
a shift from a coexistence state to a stable tumor and PTI cell steady state occurs.

By assuming a quadratic form forATI-induced tumor cell death (−αT AT A inEq. 1),
we ignore the possibility of tumor cell population size-dependent or tumor growth
rate-dependent immunosurveillance (Finn 2018). In the case where small tumor cell
populations are not detected and/or targeted by the immune system, it is conceivable
that a large enough tumor cell population can grow before ATI-induced tumor cell
death becomes appreciable, allowing tumors to bypass the basin of attraction for A
states when there is bistability with steady states characterized by a non-zero tumor
cell density. In this case, the tumor cell population density at which the immune system
begins killing tumor cells can be considered the initial state of a tumor in our model,
and larger ATI-to-PTI conversion rates will place this initial state closer to the basin
of attraction of cancer states. At the same time, our model suggests that an immune
system able to successfully reduce a large tumor cell densitymay be able to bring tumor
cell density to a threshold value, below which tumor clearance is nearly inevitable.

Previous work has suggested that tumor cell populations may subject to an Allee
effect (Korolev et al. 2014; Böttger et al. 2015; Johnson et al. 2019; Azimzade et al.
2021). Allee effects can be classified as weak, where below a threshold population size
the growth rate is non-negative but small, or strong,where below a threshold the growth
rate is negative, driving the mean population size to zero. One suggested mechanism
for an Allee effect in tumor population dynamics is cell-density dependence of “go or
grow” phenotype switching (Böttger et al. 2015). Our ecological model of the TIME
suggests that tumor-immune interactions, namely immune cell conversion, may also
contribute to an Allee effect. Clearly, if a threshold initial population of tumor cells is
necessary for the tumor to persist (on average), there is a significant barrier to tumor
viability. As the ability of tumor cells to convert ATI cells to PTI cells increases,
the threshold population size decreases, lowering the barrier for tumor viability as a
function of initial population size.

Further work is needed to uncover the role of tumor-induced immune cell conver-
sion on cancer dynamics. From the theoretical side, more realistic treatment of the
immune system, together with consideration for the effects of spatial organization on
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tumor growth and immune interaction could be incorporated into modeling efforts. In
addition, phenotypic switching of tumor cells should be taken into account, especially
since processes such as EMT might alter a cell’s sensitivity to immune interdiction
(Tripathi et al. 2016). Ideally, a quantitatively predictive model could be developed to
allow for direct comparison with experiments, in order to test our theory-generated
hypotheses concerning the role of immune cell conversion in tumor dynamics. Further,
such a model could inform immunotherapy strategies targeting immune cell conver-
sion, including attempts to promote M1 tumor-associated macrophage phenotypes
over M2 phenotypes (Zhang et al. 2019; Li et al. 2020; Jaynes et al. 2020; Guo et al.
2023) and the targeting of regulatory T-cells (Tanaka and Sakaguchi 2019).
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Appendix A Analysis of Steady States

A.1 Tumor-Only (T)

The tumor-only steady state (T) is

T = KT , P = 0, A = 0 (19)

and is always feasible in the allowed parameter space. The eigenvalues of the Jacobian
for T are

λ ∈ {−rT , αPT KT , rA + (αAT − ω)KT }, (20)

so that the tumor-only steady state is always unstable because αPT KT > 0.
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A.2 ATI-Only (A)

The ATI-only steady state (A) is

T = 0, P = 0, A = KA (21)

with eigenvalues of the Jacobian

λ ∈ {rT − αT AKA, 0, − rA}. (22)

Because one of the eigenvalues is zero, we cannot conclude that A is stable under any
conditions from linear stability analysis alone. However, a necessary condition for the
the ATI-only steady state to be stable is

rT < αT AKA. (23)

This means that for the cancer-free ATI-only state to be stable, the ability of ATI cells
to reduce the growth rate of tumor cells at the maximal ATI population size (in the
absence of other cell types) must outpace the intrinsic growth rate of tumor cells. We
provide numerical evidence that A is stable when Eq. (23) is satisfied, by numerically
integrating Eqs. (1)–(3) for 5000 randomly chosen, feasible initial conditions sampled
from an open ball with radius 0.1 around the A steady state (Fig. 6). See Table 1 for
parameters used in Fig. 6. When αAT = 1, we have rT = αT AKA (for rT = KA = 1)
andwe do not necessarily expectA to be stable.WhileA appears to be stable forω = 0
in this case, for all other chosen ω valuesA is not stable; the final state of almost every
single trajectory is further away from A than the initial state and appears to converge
to a different steady state. On the other hand, for αT A = 1.25 and αT A = 1.5, for all
ω values, there is an open ball around A within which each trajectory moves towards
A. This suggests that A is stable for these two parameter sets with rT < αT AKA.
Invoking our definition of the invasion growth rate in Eq. (12), we can rewrite the
condition in Eq. (23) by defining the invasibility of a healthy system (meaning in the
ATI-only state) by tumor cells as

�T→A ≡ lim
T→0+

1

T

dT

dt

∣∣∣∣
N=A+δN

= rT − αT AKA (24)

with

δN =
⎡
⎣T
0
0

⎤
⎦ . (25)

When �T→A > 0, tumor cells can invade and when �T→A ≤ 0 they cannot. We can
restate the stability condition in Eq. (23) in terms of tumor invasibility as

�T→A < 0. (26)
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Fig. 6 Numerical integration of Eqs. (1)–(3) for small perturbations around the A state. The first row uses
αT A = 1, the second αT A = 1.25, and the third αT A = 1.5. The columns use ω = 0, 0.25, 0.5 and 0.75.
Each subplot shows the initial distance from theA state on the x-axis and the final distance after integration
over 500 time units for 5,000 randomly chosen initial conditions. Initial conditions were sampled from the
open ball with radius 0.1 around the A state, and chosen so that they were all feasible. The black line in
each subplot shows the line y = x (Colour figure online)

A.3 Tumor-ATI Coexistence (TA)

The tumor-ATI steady state (TA) can only exist when ω = 0, because otherwise the
combination of tumor cells and ATI cells would produce PTI cells, adding PTI cell
density. Setting Eqs. (1)–(3) equal to zero, and substituting P = 0 and ω = 0, we
have the following equations

0 = rT − rT
KT

T − αT A A (27)

0 = rA − rA
KA

A + αAT T (28)

which we can solve and rearrange to find the TA state

T = KT

(
1 − αT A

rT

�A→T

�A→A;TA

)
(29)

P = 0 (30)
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A = �A→T

�A→A;TA
. (31)

The invasibility of the tumor-only state by ATI cells and the net negative feedback of
ATI cells on themselves in the tumor-ATI coexistence steady state are defined as

�A→T = rA + αAT KT (32)

�A→A;TA = rA
KA

+ αATαT A

rT /KT
, (33)

respectively. Both quantities arise in the solution of Eqs. (27) and (28), and �A→T
(Eq. 32) can be defined in a similar way to �T→A (Eq. 24). In contrast to the case of
tumor cells invading the A state, tumor cell density has a positive effect of the growth
rate of ATI cells, so that �A→T increases with the tumor carrying capacity, KT . Note
that both �A→T and �A→A;TA are non-negative, so that the tumor-ATI coexistence
steady state is feasible when

rT − αT A
�A→T

�A→A;TA
> 0. (34)

This condition can be interpreted to mean that the tumor-ATI coexistence steady state
is feasible when the growth of the tumor outpaces tumor death due to ATI cells. The
tumor-ATI coexistence state is unstable, as when a small density of PTI (δP > 0) is
added to the system, the net growth rate of PTI cells (plugging δP into Eq. (2) with
ω = 0)

dP

dt
= αPT T δP − dPδP2 (35)

will be positive. It is clear that when

δP <
αPT T

dP
(36)

is satisfied Eq. (35) is positive, providing an explicit definition for a “small density”
in this case.

A.4 Tumor-PTI Coexistence (TP)

We can find the tumor-PTI coexistence steady state (TP) by again setting Eqs. (1)–(3)
equal to zero, and substituting A = 0 to yield

0 = rT − rT
KT

T + αT P P (37)

0 = −dP P + αPT T (38)
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Fig. 7 Numerical integration of Eqs. (1)–(3), showing unbounded growth of tumor cell density when
αT PαPT

dP
≥ rT

KT
. We varied αPT while keeping αT P and dP fixed (Colour figure online)

which we can solve for

T = rT
�T→T ;TP

(39)

P = αPT

dP

rT
�T→T ;TP

(40)

A = 0. (41)

The net negative feedback of tumor cells on themselves in this steady state is defined
as

�T→T ;TP = rT
KT

− αT PαPT

dP
(42)

which, as for the TA solution, arises from rearranging the TP solution. In order for
tumor-PTI coexistence to be feasible, the negative feedback of tumor cells on them-
selves must be positive,

�T→T ;TP > 0, (43)

meaning that the direct, negative feedback of tumor cells on themselves (rT /KT ) must
exceed, in magnitude, the positive feedback of tumor cells on themselves through PTI
cells (αT PαPT

dP
). When �T→T ;TP ≤ 0, we observe in numerical integration of Eqs. (1)–

(3) that the tumor density can grow in an apparently unbounded manner (Fig. 7).
Unlike for previously discussed steady states, the stability of the tumor-PTI coexis-

tence steady state is dependent on the ATI-to-PTI conversion rate ω. The eigenvalues
of the Jacobian are

λ ∈
{
rA + rT

�T→T ;TP

(
αAT − ω − αAPαPT

dP

)
, (44)
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− rT
2�T→T ;TP

(
rT
KT

+ αPT +
√( rT

KT
− αPT

)2 + 4
αT Pα2

PT

dP

)
, (45)

− rT
2�T→T ;TP

(
rT
KT

+ αPT −
√( rT

KT
− αPT

)2 + 4
αT Pα2

PT

dP

)}
(46)

As long as

ω > �T→T ;TP
rA
rT

+ αAT − αAPαPT

dP
(47)

holds then the first eigenvalue (Eq. 44)will be negative. The second eigenvalue (Eq. 45)
will always be negative, while the third eigenvalue (Eq. 46) be negative only when the
condition

rT
KT

>
αT PαPT

dP
(48)

is met. However, this condition is identical to that required for feasibility of the tumor-
PTI coexistence state (Eq. 43). Thus, when the tumor-PTI coexistence state is feasible,
it is stable if and only if the condition in Eq. (47) is met. When the right-hand side of
Eq. (47) is negative, the tumor-PTI coexistence steady state is stable for all ω ≥ 0,
provided that Eq. (48) is also satisfied. We can write the condition of right-hand side
of Eq. (47) being negative as

0 > rA − �T→A;TP
rT

�T→T ;TP
(49)

with

�T→A;TP = αAPαPT

dP
− αAT . (50)

This corresponds to the invasion growth rate of ATI cells in the TP steady state, so
that if ATI cells cannot invade then TP is stable for all ω ≥ 0. Accordingly, we can
write the condition in Eq. (49) as

�A→TP < 0 (51)

with

�A→TP = rA − �T→A;TP
rT

�T→T ;TP
= rA − αAP

αPT

dP

rT
�T→T ;TP

+ αAT
rT

�T→T ;TP
. (52)

Comparing with the steady state values of T and P in Eqs. (39) and (40), we can see
the influence of both steady state tumor cell density and PTI cell density on the ATI
cell invasion growth rate �A→TP.
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A.5 Tumor-PTI-ATI Coexistence (TPA)Without PTI to ATI Conversion (! = 0)

When ω = 0, the tumor-PTI-ATI (TPA) coexistence steady state can be solved for
from a system of linear equations, as we solved for the TA and TP states. Once again,
we set Eqs. (1)–(3) equal to zero, and set ω = 0 to yield

0 = rT − rT
KT

T + αT P P (53)

0 = −dP P + αPT T (54)

0 = rA − rA
KA

A + αAT T − αAP P. (55)

Solving for T , P , and A and rearranging terms, we have

T = �T→A

�T→T ;TPA
(56)

P = αPT

dP

�T→A

�T→T ;TPA
(57)

A = KA − �T→A;TPA
rA/KA

�T→A

�T→T ;TPA
. (58)

where the net negative feedback with zero ATI to PTI conversion from tumor cells on
themselves and on ATI cells, respectively, is

�T→T ;TPA = rT
KT

+ αT AαAT

rA/KA
− αT AαAPαPT

(rA/KA)dP
− αT PαPT

dP
(59)

�T→A;TPA = αAPαPT

dP
− αAT (60)

and �T→A is defined as in Eq. (24). Note that −αPT can similarly be defined as the
net negative tumor to PTI feedback.

Clearly, a necessary condition for the tumor-PTI-ATI coexistence steady state to
be feasible is that the signs of �T→A and �T→T ;TPA must be the same. If we perturb
the steady state when �T→T ;TPA < 0, however, we can see that it is unstable. For a
small, positive perturbation of the tumor cell density (δT > 0), we define the overall
perturbation

δN =
⎡
⎢⎣

δT
αPT
dP

δT

−�T→A;TPA
rA/KA

δT

⎤
⎥⎦ (61)

and then plug this into Eq. (1) for the change in tumor cell density, with T , P , and A
taking on the values in Eqs. (56)–(58), to find

dT

dt
= (T + δT )

(
rT − rT

KT
(T + δT ) + αT P

(
P + αPT

dP
δT

)
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− αT A

(
A − �T→A;TPA

KA/rA
δT

))

= (T + δT )

(
− rT
KT

δT + αT PαPT

dP
δT + αT A�T→A;TPA

KA/rA
δT

)

= −�T→T ;TPA(T + δT )δT . (62)

If �T→T ;TPA < 0, as we have assumed, then the tumor cell density will increase,
failing to restore the system to the steady state. Checking for P

dP

dt
=

(
P + αPT

dP
δT

) (
−dP

(
P + αPT

dP
δT

)
+ αPT (T + δT )

)

=
(
P + αPT

dP
δT

)
(αPT δT − αPT δT ) = 0 (63)

and A

dA

dt
=

(
A − �T→A;TPA

rA/KA
δT

) (
rA − rA

KA

(
A − �T→A;TPA

rA/KA
δT

)

+ αAT (T + δT ) − αAP

(
P + αPT

dP
δT

) )

=
(
A − �T→A;TPA

rA/KA
δT

) (
�T→A;TPAδT + αAT δT − αAPαPT

dP
δT

)
= 0

(64)

we see that both the PTI and ATI density remain unchanged, so that the system moves
away from the tumor-PTI-ATI coexistence steady state. The stability of the steady
state when �T→T ;TPA > 0 can be checked for each specific case by examining the
eigenvalues of the Jacobian matrix, as before.

A.6 Tumor-PTI-ATI Coexistence (TPA) with PTI to ATI Conversion (! ≥ 0)

We now examine the full steady-state behavior of the model as the ATI to PTI con-
version rate is varied. Rearranging the nullclines (setting each of Eqs. (1)–(3) to zero)
for steady states in STPA, we find the system of equations

T = KT + αT P KT

rT
P − αT AKT

rT
A (65)

T = dP P2

αPT P + ωA
(66)

T = − rA
αAT − ω

+ αAP

αAT − ω
P + rA

KA(αAT − ω)
A. (67)

123



Modeling the Role of Immune Cell Conversion… Page 25 of 30 93

In order to find the steady state, we find the intersection of the two planes (Eqs. 65
and 67) in terms of P

AP,ω = rA(rT /KT ) + rT (αAT − ω)

(rA/KA)(rT /KT ) + αT A(αAT − ω)
− αAP (rT /KT ) − αT P (αAT − ω)

(rA/KA)(rT /KT ) + αT A(αAT − ω)
P

(68)

and then look for intersections with Eq. (66) using Eqs. (65) and (68)

KT + αT P KT

rT
P − αT AKT

rT
AP,ω = dP P2

αPT P + ωAP,ω

. (69)

Rearranging Eq. (69) into the form

aP2 + bP + c = 0, (70)

we can easily solve for P , and subsequently find T and A. The bifurcation diagrams
in Fig. 2 illustrate the behavior of all the steady states (except for the tumor-only
steady state) as ω is varied, for parameters where all the steady states of interest
are feasible. When rT − αT AKA = 0 (first row of Fig. 2), the tumor density is
zero at steady state at ω = 0. For all ω > 0, the system is bistable, with the tumor
density either at zero, or for the tumor-PTI-ATI coexistence state, at a positive number.
The steady state with non-zero tumor density continuously increases until ω reaches
�T→T ;TP rA

rT
+αAT − αAPαPT

dP
(Eq. 47), when the tumor-PTI-ATI coexistence solution

and the tumor-PTI coexistence solution collide, resulting in a transcritical bifurcation
(note that we only depict feasible states in Fig. 2). As the rate of tumor death due to ATI
cells (αT A) increases, we can see that a saddle node bifurcation gives rise to a stable
and an unstable tumor-PTI coexistence solution at a positive ω. The ω value where
this saddle node bifurcation occurs increases with αT A, meaning that tumors need to
convert ATI cells to PTI cells at a higher rate in order for a stable tumor population to
exist as ATI cells kill tumor cells more rapidly.

When αT A is large enough, the value of ω for which the saddle node bifurcation
occurs reaches the value of ω for which the tumor-PTI-ATI and tumor-PTI solution
collide (Fig. 3). When these two values of ω coincide, there is no longer a saddle
node bifurcation creating the two tumor-PTI-ATI solutions, but rather a subcritical
pitchfork bifurcation giving rise to two unstable tumor-PTI-ATI solutions. At higher
αT A values, the saddle node bifurcation reappears, but now the branch with lower
tumor density has a stable region, which is infeasible.

Appendix B Alternate Models: Modifications to PTI Dynamics

There are several reasonable changes one could make to the model presented in the
main text,

dT

dt
= T

(
rT − rT

KT
T + αT P P − αT A A

)
(71)
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dP

dt
= P

(
− dP P + αPT T

)
+ ωAT (72)

d A

dt
= A

(
rA − rA

KA
A + αAT T − αAP P

)
− ωAT . (73)

The alternate models we consider involve changes to the PTI dynamics, in this
Appendix, and to the ATI dynamics, in Appendix C.

A.7 Linear PTI Death Rate

For the changes to the PTI dynamics, we first consider the consequences of changing
the PTI death rate to be linear

dP

dt
= P

(
− dP + αPT T

)
+ ωAT . (74)

For this model, there can be T,A,TA, and TP steady states and up to two TPA steady
states. The actualT,A, andTA state vectors are the same as in the original model. The
stability of T can switch as ω is changed, due to a transcritical bifurcation resulting
from a collision with a stable TPA state. The conditions for T stability are

dP > αPT KT (75)

ω > αAT + rA
KT

. (76)

The A steady state has the exact same stability conditions as in the original model,
while TA, which is equal to TA in the original model and can still only exist when

ω = 0, can now be stable if dP > αPT KT

(
1 − αT A

rT
�A→T

�A→A;TA

)
. The TP state can exist

in this alternate model with densities

T = dP
αPT

(77)

P = rT (dP − αPT KT )

KTαPTαT P
(78)

A = 0 (79)

and stability conditions

dP < αPT KT (80)

ω > αAT + rAαPT

dP
− αAPrT (dP − KTαPT )

dPαT P
. (81)

Note that the PTI density of TP can only be positive when the first stability condition
is not met (that is, when dP > αPT KT ). Thus, when TP is feasible, it is unstable.
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To find the TPA states, we can use the approach described for the original model,
substituting

T = dP P

αPT P + ωA
(82)

for Eq. 66. This again leads to a quadratic equation in P , from which we can solve for
two TPA steady states.

A.8 No ATI-Independent Effect of Tumor Density of PTI Dynamics

Next, we analyze an alternate model where the PTI death rate is nonlinear, but there
is ATI-independent effect of tumor density of PTI dynamics (αPT = 0)

dP

dt
= −dP P

2 + ωAT . (83)

Here, there can be T,A, and TA steady states and up to two TPA steady states. The
actual T,A, and TA state vectors are again the same as in the original model. The T
state has the single stability condition

ω > αAT + rA
KT

(84)

while the A state has the same stability criteria as in the previous section. Again, for
the TPA states, we can use the approach described for the original model, substituting

T = dP P2

ωA
(85)

for Eq. (66), yielding a quadratic equation in P and up to two TPA steady states.

A.9 Linear PTI Death Rate and No ATI-Independent Effect of Tumor Density of PTI
Dynamics

Finally, we can make both changes to the PTI dynamics simultaneously, yielding

dP

dt
= −dP P + ωAT . (86)

This model yields similar results as in Appendix A.8, except that to find the TPA
states, we substitute

T = dP P

ωA
(87)

for Eq. (66) and solve the quadratic equation for P , yielding up to two TPA steady
states.
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Appendix C Alternate Models: Modifications to ATI Dynamics

The final modification to our original model that we examine is to the ATI dynamics,
where now ATI cells are recruited at a constant rate and die at a constant rate, yielding

d A

dt
= rA + A

(
− rA

KA
+ αAT T − αAP P

)
− ωAT . (88)

There are now no T and TP states, because of ATI recruitment (rA). The A state and
its stability condition are exactly the same as in all other models.

Looking at the nullclines of the model, with each of the four possible models for
PTI dynamics, we have

T = KT + αT P KT

rT
P − αT AKT

rT
A (89)

T = dP P2

αPT P + ωA
or T = dP P

αPT P + ωA
or T = dP P2

ωA
or T = dP P

ωA
(90)

T = rA
KA(αAT − ω)

+ αAP

αAT − ω
P − rA

(αAT − ω)
A−1 (91)

from which we can solve for P in terms of A

PA,ω =
(

αAP

αAT − ω
− αT P KT

rT

)−1 (
KT − rA

KA(αAT − ω)

− αT AKT

rT
A + rA

(αAT − ω)
A−1

)
. (92)

Choosing, for example, the original PTI model dynamics, we end up with the equation

KT + αT P KT

rT
PA,ω − αT AKT

rT
A = dP P2

A,ω

αPT PA,ω + ωA
(93)

This leads to a degree four polynomial, with at most four roots. The solutions for A
can then be used to find the TPA states.
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