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Abstract
Determining how cell-scale processes lead to tissue-scale patterns is key to under-
standing how hormones and morphogens are distributed within biological tissues and
control developmental processes. In this article, we use multiscale asymptotic anal-
ysis to derive a continuum approximation for hormone transport in a long file of
cells to determine how subcellular compartments and cell growth and division affect
tissue-scale hormone transport. Focusing our study on plant tissues, we begin by pre-
senting a discrete multicellular ODE model tracking the hormone concentration in
each cell’s cytoplasm, subcellular vacuole, and surrounding apoplast, represented by
separate compartments in the cell-file geometry. We allow the cells to grow at a rate
that can depend both on space and time, accounting for both cytoplasmic and vacuo-
lar expansion. Multiscale asymptotic analysis enables us to systematically derive the
corresponding continuum model, obtaining an effective reaction–advection–diffusion
equation and revealing how the effective diffusivity, effective advective velocity, and
the effective sink term depend on the parameters in the cell-scale model. The contin-
uum approximation reveals how subcellular compartments, such as vacuoles, can act
as storage vessels, that significantly alter the effective properties of hormone trans-
port, such as the effective diffusivity and the induced effective velocity. Furthermore,
we show how cell growth and spatial variance across cell lengths affect the effective
diffusivity and the induced effective velocity, and how these affect the tissue-scale hor-
mone distribution. In particular, we find that cell growth naturally induces an effective
velocity in the direction of growth, whereas spatial variance across cell lengths induces
effective velocity due to the presence of an extra compartment, such as the apoplast
and the vacuole, and variations in the relative sizes between the compartments across
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the file of cells. It is revealed that hormone transport is faster across cells of decreasing
lengths than cells with increasing lengths. We also investigate the effect of cell divi-
sion on transport dynamics, assuming that each cell divides as soon as it doubles in
size, and find that increasing the time between successive cell divisions decreases the
growth rate, which enhances the effect of cell division in slowing hormone transport.
Motivated by recent experimental discoveries, we discuss particular applications for
transport of gibberellic acid (GA), an important growth hormone, within theArabidop-
sis root. The model reveals precisely how membrane proteins that mediate facilitated
GA transport affect the effective tissue-scale transport. However, the results are general
enough to be relevant to other plant hormones, or other substances that are transported
in a similar way in any type of cells.

Keywords Hormone transport · Multiscale analysis · Subcellular compartment ·
Reaction–advection–diffusion equation · Cell growth and division

1 Introduction

Within biological tissues, tissue-scale patterns of hormones and morphogens emerge
from processes at the cell scale. Understanding how these tissue-scale patterns arise
is often key to revealing how regulation of transport or metabolism at the cell scale
affects developmental patterning and thus, phenotype. To understand how effective
tissue-scale properties depend on processes at the cell scale, multiscale asymptotic
methods enable us to derive continuum approximations of the tissue-scale dynamics;
this analysis reveals precisely how the tissue-scale dynamics relate to the cell-scale
processes and parameters. In this study, we consider transport within a single cell file
and use multiscale asymptotics to analyse how the presence of subcellular compart-
ments, cell growth, and cell division affect the effective tissue-scale transport. While
the results could be easily adapted to study the transport of other substances within
other biological tissues, we focus specifically on hormone transport within plant root
tissues, which have a regular multicellular structure and uni-directional growth and so
are ideally suited to these asymptotic techniques.

1.1 Biological Background on Plant Hormones

Plant hormones play a key role in regulating growth, development, and cell division
(Davies 1987). Examples include gibberellic acid (GA), abscisic acid (ABA), salicylic
acid (SA), auxin and others. Dynamic hormone distributions govern plant develop-
ment, for instance, controlling the sizes of developmental zones, specifying cells to take
on different fates during organ initiation, mediating communication between different
tissues during gravitropism and lateral root emergence, and providing long-distance
signalling between different plant organs.

Herewe focus on the hormoneGA,which is a key regulator of plant growth (Achard
et al. 2009; Nelissen et al. 2012; Ubeda-Tomás et al. 2008, 2009). In particular, within
plant roots and monocotyledonous leaves, cells occupy three main developmental
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zones: cells closest to the root apex or leaf base are located in the meristem, where
they undergo division and little growth; as they leave the meristem, the cells enter the
elongation zone, where they rapidly increase in length due to growth; and, eventually,
cells reach the mature zone, where the cell lengths stop increasing. The sizes of the
meristem and elongation zone are key parameters that determine overall organ growth
rates (Gázquez and Beemster 2017) and are dynamically controlled by hormone distri-
butions (Moubayidin et al. 2009; Ubeda-Tomás et al. 2012). For example, it has been
shown that GA regulates growth, in part, by controlling the size of the meristem (thus
controlling the cell production rate) (Ubeda-Tomás et al. 2009; Achard et al. 2009;
Nelissen et al. 2012). Thus, understanding which processes affect the GA distribution
is key to understanding this growth regulation.

Our focus onGA transport is also partlymotivated by the recent discoveries ofmem-
brane transporter proteins of the NPF family (molecular structures that aid hormone
transport across cellular and subcellular membranes) (Binenbaum et al. 2023; Tal et al.
2016) that transport both GA and ABA. Some of these transporters, such as NPF 2.12,
2.13, and 3.1 are involved in intercellular transport being localised on the cytoplasmic
membrane of certain cell types, whereas NPF 2.14 is a novel transporter localised on
the tonoplast (vacuolar membrane) and thus involved in intracellular transport. How
such transport into the subcellular vacuole compartment affects the GA distribution is
an open question.

1.2 Previous Models of Hormone/Morphogen Dynamics

Multicellular modelling has provided substantial insights into the hormone distribu-
tions that underlie plant development. Such models have provided insights into how
hormone transport regulates developmental zonation (Grieneisen et al. 2007; DiMam-
bro et al. 2017; Salvi et al. 2020), lateral root initiation (Xuan et al. 2016; van den Berg
et al. 2021; Santos Teixeira et al. 2022), gravitropism (Swarup et al. 2005), root hair
growth (Jones et al. 2009), halotropism (van den Berg et al. 2016), root vasculature
patterning (Muraro et al. 2014; el Showk et al. 2015), leaf venation (Mitchison et al.
1981; Feugier and Iwasa 2006; Bayer et al. 2009) and phyllotaxis (Smith et al. 2006;
Jönsson et al. 2006; Stoma et al. 2008). Such modelling has also provided insights into
the roles of specific processes, for example, how auxin regulation of its own transport
creates emergent patterns (e.g. Wabnik et al. 2010, Allen and Ptashny 2020).

Similarly, multicellular modelling has been used to studymorphogen dynamics and
the effect of its spatial distribution in animals. The concept that spatial distributions
of morphogens can control developmental patterning was proposed throughWolpert’s
“French flag” model (Wolpert 1969) that suggested that changes in cellular positional
information underlie pattern regulation enabling organic systems (with applications to
sea urchins) to form patterns even when parts of them are removed or added in a size-
invariant manner. More recently, models of morphogen gradients have investigated
patterning precision in linear and non-linear morphogen degradation (Adelmann et al.
2023), regeneration of the spinal cord in axolotls (Rodrigo Albors et al. 2015; Rost
et al. 2016; Cura Costa et al. 2021), and long-range effects of morphogen gradients in
zebrafish (White et al. 2007).
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Several multicellular models of GA dynamics in files of cells have previously been
developed (Band et al. 2012, 2022; Rizza et al. 2021), and have provided insights
into how growth-induced dilution (Band et al. 2012) and GA metabolism (Band et al.
2022; Rizza et al. 2021) affect the GA distribution. The initial model (Band et al.
2012) considered cell growth only representing the root elongation zone and the for-
mulation was subsequently developed to include the meristem and cell division (Band
et al. 2022; Rizza et al. 2021). While these models incorporated subcellular vacuolar
compartments, transport across the tonoplast is assumed to be rapid and passive. Fur-
thermore, these models either do not consider hormone transport between cells (Band
et al. 2022; Rizza et al. 2021) or assume this to be a small effect (Band et al. 2012). GA
transport was however, previously investigated in a model of the root cross-section
(Binenbaum et al. 2023), which revealed how the localization of the NPF transporters
leads to accumulation in the endodermal layer, and suggested that the vacuole acts as
a storage vessel that can release GA in regions where it is not readily supplied.

1.3 Previous Studies UsingMultiscale Asymptotic Analysis

Multiscale asymptotic analysis has been used to investigate numerous biological sys-
tems including calcium dynamics (Goel et al. 2006), pattern formation (Newell et al.
2008), nutrient distribution (Shipley et al. 2009), and viral dynamics (Rüdiger et al.
2019). Several studies have applied multiscale asymptotic analysis to models that
consider cell growth due to biomechanical processes (Middleton et al. 2014; Murphy
et al. 2019; Piatnitski and Ptashnyk 2020; Tambyah et al. 2020). In Tambyah et al.
(2020), for example, they present a model for epithelial tissue dynamics with diffu-
sive transport of chemical species between cells. They begin with a discrete coupled
mechanobiological model incorporating elastic forces between cells due to growth
and derive a continuum macroscale effective reaction–advection–diffusion equation
for the species transport.

Relating tissue-scale dynamics to the cell-scale processes has been much exploited
in analysing plant growth dynamics, whereby kinematic analysis has been used to
relate tissue-scale measurements to the underlying cellular behaviours (e.g. Beem-
ster and Baskin 1998, Silk and Erickson 1979). Far fewer studies have considered
such relationships in the context of hormone transport, with the majority of mod-
els focusing on computational simulations (as listed in Sect. 1.2 above). Notable
examples applying asymptotic analysis to examine the transport of the plant hormone
auxin include Mitchison and Brenner (1980), Kramer (2002), Chavarría-Krauser and
Ptashnyk (2010), and Band and King (2012). These studies considered how cellular
parameters and polar auxin transporters lead to a directed hormone flux, characterised
by an auxin velocity. Of particular relevance here, is the work of Mitchison and Bren-
ner (1980) who discuss the role of the subcellular vacuole compartment in reducing
the effective auxin velocity. In addition, a continuum approximation for a GA model
was developed in Band et al. (2022) (albeit with no cell-to-cell transport) in order to
reduce simulation times and enable parameter estimation.
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1.4 Paper Layout

In this paper, we aim to further understand the role of transport into the subcellular
vacuolar compartments by focussing on the longitudinal direction of the root, and
assessing how membrane transport combined with hormone dilution impacts longi-
tudinal hormone transport. We aim to determine how tissue-scale transport depends
on the combined effect of both cellular and subcellular (through the vacuole and the
continuous apoplast) hormone transport along a single file of growing cells of the
same type. Furthermore, unlike previous analysis, where cell growth is linked to other
processes, such as elastic forces, here, we will explicitly prescribe the growth and
division dynamics, and spatial variance across cell sizes to study their effect on the
hormone transport.

The paper is structured as follows.We first focus on the role of subcellular compart-
ments, considering these in a file of non-growing cells in Sect. 2. In Sects. 2.1–2.4, we
present the dimensional and non-dimensionalised discrete model for hormone trans-
port, together with the set of dimensional and dimensionless parameters. In Sect. 2.5,
we use asymptotic analysis to derive a continuummacroscopic model for the hormone
concentration along the file, and consider how the cell geometries and transport pro-
cesses influence the derived effective diffusivity. In Sect. 2.6, we present numerical
results, comparing the discrete and the continuum models and exploring the effect
of varying the model parameters. The analysis reveals how the cell-scale parameters
contribute to the effective tissue-scale diffusivity, providing insights into the role of
the transporters, plasmodesmata, geometry, and pH (Sects. 2.5–2.6). In Sects. 3.1–3.2,
we extend the model and analysis to consider a file of growing cells with spatially
varying lengths. In Sects. 3.3 and 3.4, we consider two base cases of growing identical
cells, and static cells with spatially varying lengths, and, in Sect. 3.5, we discuss the
origin of the induced effective velocity. In Sect. 3.6, we present the corresponding
numerical results and how they depend on parameter variation. Given growing cells
in biological tissues typically divide to maintain viable cell sizes, we conclude our
analysis with a short Sect. 4 which describes how cell division affects the hormone
transport dynamics. Finally, we discuss biological significance and draw conclusions
in Sect. 5.

2 Model of Hormone Transport in a File of Non-growing Identical
Cells with Subcellular Compartments

2.1 Model Set-up

We begin by considering a file of N cells with subcellular comparments, considering
cells that do not grow and are identical. For simplicity, we consider a two-dimensional
geometry. We compartmentalise each cell into rectangular sections for the cytoplasm,
cell wall (apoplast), and vacuole (as shown in Fig. 1). We assume that the vacuole
is centrally aligned within the cytoplasm and occupies a prescribed area fraction, φ

(Kaiser and Scheuring 2020; Dünser et al. 2022), of the symplastic part of the cell (the
cell without the apoplast). Furthermore, even though the whole apoplast is continu-
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Fig. 1 Schematic of afile that consists of repeating cell units.Red arrows represent the cytoplasmic importers
(NPF 2.12, 2.13 3.1 in the case of GA), whereas blue arrows represent the vacuolar importer (NPF 2.14
in the case of GA). The cytoplasmic membrane is shown in red, and the tonoplast is shown in blue (Color
figure online)

ously connected, for analytical purposes, we split it into “longitudinal” compartments
aligned with the file length, “transverse” compartments between cells, and “corner”
compartments that join them together. We let the length and width of the cytoplasm
compartment be l̂ and ŵ, respectively, and the thickness of the cell-wall compartments
be â, so that the total length of the cell file is calculated to be L̂ = N (l̂+ â). We assume
that the vacuole dimensions are in the same proportions as the dimensions of the cell
(i.e. the vacuoles have length

√
φl̂ andwidth

√
φŵ), and thus the length of the tonoplast

(membrane of the vacuole) is given by 2
√

φ(l̂ + ŵ). We note that the assumed rectan-
gular shape of the vacuole is an idealised, yet not unrealistic, representation of a real
cell, especially when the vacuole is large (Kramer and Ackelsberg 2015; Kaiser and
Scheuring 2020). The focus here is on developing the mathematical tools necessary to
model such a system, but, in principle, any shape of the vacuole can be appropriately
incorporated into the model. We also denote the hormone concentration within each
of the cytoplasm, vacuole, and the “transverse,” “corner,” and “longitudinal” cell wall
compartments by ĉi , v̂i , f̂i , ĝi , and ĥi , respectively, where the index i (1 ≤ i ≤ N )
refers to the i-th cell in the file (see Fig. 1 for a schematic of the cell-file geometry).We
note that the chosen representation of the repeating cell unit is equivalent to consid-
ering a symmetric cell with horizontal apoplastic compartments (of half their original
thickness) on either side of it, as explained in Appendix A. Finally, we assume that
the cell file is isolated from its surroundings and there is no flux of hormone across its
external boundary.

Hormones, such as GA, ABA, and auxin, can exist in both protonated and anionic
form within the cell, where only the protonated form can passively diffuse through the
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cell membrane and the tonoplast down a concentration gradient. The anionic form is
transported across them down an electrochemical gradient via protein transporters that
can either be importers or exporters, depending on whether they carry the hormone
into or out of the compartment. The ratio of protonated to anionic hormone within
the cell is determined by the pH and the equilibrium dissociation constant, pK. In
particular, the proportions of protonated hormone in the cell apoplast, cytoplasm, and
vacuole, respectively, are given by

A1 = 1

1 + 10pHapo−pK , B1 = 1

1 + 10pHcyt−pK , C1 = 1

1 + 10pHvac−pK , (1)

where pHapo, pHcyt, and pHvac are the apoplastic, cytoplasmic, and vacuolar pH,
respectively. Thus, for example, the protonated hormone concentration in the cyto-
plasm of cell i is given by A1ĉi , whereas (1− A1)ĉi denotes the corresponding anionic
hormone concentration. The passive flux from the cytoplasm into the “longitudinal”
apoplastic compartment of cell i is then given by

P̂pass(B1ĉi − A1ĥi ), (2)

where P̂pass is the passive membrane permeability. The low pH in the apoplast and
vacuoles results in a substantial proportion of the hormone being protonated and able
to passively diffuse across the membranes, whereas in the cytoplasm, where the pH
is around 7, very little hormone is protonated, and nearly all requires transporters to
facilitate membrane transport (see Table 1 for the values relevant to GA).

Transport of plant hormones across cellmembranes via protein transporters depends
on the localisation and nature of the membrane protein in a particular tissue, with
different membrane proteins transporting different hormones. In this study, we focus
on the specific case of GA transport, although by redefining the parameter groupings
introduced in (9) below, the analysis can be easily adapted to any other hormone
following a similar transport mechanism.

Motivated by the recent scientific discoveries of NPF transporters for GA and ABA
(Binenbaum et al. 2023; Tal et al. 2016), namely, NPF 2.12, 2.13, 2.14, and 3.1, we
assume we have an importer localised on the cytoplasmic membranes transporting
hormone out of the apoplast into the cytoplasm (cf. NPF 2.12, 2.13, 3.1), and an
exporter localised on the tonoplast transporting hormone out of the cytoplasm into the
vacuole (thus, also called a vacuolar importer, cf. NPF 2.14).

In order to describe the flux associated with the facilitated transport via these trans-
porters, we follow previous plant hormone models using the Goldman–Hodgkin–Katz
theory (Band et al. 2014; Band and King 2012; Mellor et al. 2020). As explained in
Band and King (2012), the flux from the cytoplasm into the “longitudinal” apoplastic
compartment, for example, is given by

P̂imp(B2ĉi − A2ĥi ), (3)
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where P̂imp is the permeability of the importer, and A2 and B2 are given by

A2 = q(φ̃mem)(1 − A1), B2 = q(−φ̃mem)(1 − B1), (4)

with

q(φ̃mem) = φ̃mem

eφ̃mem − 1
, φ̃mem = FDV̂mem

RT̂
, (5)

where FD is Faraday’s constant, V̂mem is the potential difference across the cytoplasmic
membrane, R is the universal gas constant, and T̂ is the absolute temperature. Similarly,
the flux from the cytoplasm into the vacuole is given by

P̂exp(B3ĉi − C3v̂i ), (6)

where P̂exp is the permeability of the exporter, and B3 and C3 are given by

B3 = q(φ̃ton)(1 − B1), C3 = q(−φ̃ton)(1 − C1), (7)

with

φ̃ton = FDV̂ton

RT̂
, (8)

where V̂ton is the potential difference across the tonoplast.
For convenience, we define the parameter groupings

P̂ca = B1 P̂pass + B2 P̂imp, P̂cv = B1 P̂pass + B3 P̂exp,

P̂ac = A1 P̂pass + A2 P̂imp, P̂vc = C1 P̂pass + C3 P̂exp, (9)

where P̂ca, P̂cv, P̂ac, and P̂vc are effective permeabilities for hormone transport from
the cytoplasm into the apoplast and the vacuole, and from the apoplast and the vacuole
into the cytoplasm, respectively.

In addition to transport across cell membranes, plant hormones also diffuse directly
between adjacent cytoplasms through plasmodesmata (membrane-lined channels
within the cell apoplast) (Rutschow et al. 2011). The associated flux is given by

P̂plas(ĉi+1 − ĉi ), (10)

where P̂plas is the permeability associated with transport through the plasmodesmata.
We can now present the total fluxes, Ĵxyz , from compartment x into compartment

y of cell z for a general hormone, given by

Ĵc f i = P̂ca ĉi − P̂ac f̂i , (11a)
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Ĵcvi = P̂cvĉi − P̂vcv̂i , (11b)

Ĵ f ci = P̂ac f̂i−1 − P̂ca ĉi , (11c)

Ĵchi = P̂ca ĉi − P̂acĥi , (11d)

Ĵ f gi = 2D̂apo

ŵ + â
( f̂i − ĝi ), (11e)

Ĵghi = 2D̂apo

l̂ + â
(ĝi−1 − ĥi ), (11f)

Ĵhgi = 2D̂apo

l̂ + â
(ĥi − ĝi ), (11g)

Ĵcci = P̂plas(ĉi+1 − ĉi ), (11h)

The fluxes (11e)–(11g) are between apoplastic compartments and are due to passive
hormone diffusion, with diffusivity Dapo, over the distance between the centres of the
corresponding compartments. The flux (11h) is associatedwith direct passive transport
between cell cytoplasms via the plasmodesmata. We assume that the intracellular
hormone diffusion is sufficiently fast that the concentration in each compartment
can be treated as spatially uniform (noting that the justification for this assumption
described inBand andKing (2012) also holds for the parameter values used throughout
this paper).

2.2 Parameter Values

Before we proceed to describe the full model, in Table 1, we present the physical
parameters with their typical values that pertain to the hormone GA in the model
species Arabidopsis thaliana. We note that there can be short or long cells, and small
or large vacuoles, depending on which zone within the plant they are located in. For
example, in the root, the cells in the meristem are short and the vacuoles are small,
whereas, in the mature zone, the cells have undergone elongation, and the vacuoles
have enlarged. We assume the cell lengths are not large enough that the timescale for
cytoplasmic diffusion becomes comparable to the timescales for apoplastic diffusion
and membrane transport, enabling us to maintain the assumption of spatially uniform
concentrations within each compartment (see Section 2.2). Using the parameters from
Table 1 and a cytoplasmic diffusivity of Dc = 670µm2/s (Kramer et al. 2007), we
calculate that this occurs at lengths that are approximately 1200µm, which is much
longer than most of Arabidopsis cells.

2.3 Governing Equations

In order to derive the full discrete multicellular formulation of the model for hormone
transport within the file of cells, we relate the rate of change of hormone concentration
in each of the compartments to the corresponding net flux of the hormone into that
compartment over the area of the corresponding boundary, which is due to both passive
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and facilitated transport of the hormone across all internal boundaries between com-
partments. We assume that, at the upstream end of the file, the hormone concentration
in the cytoplasm is given by an external value, Ĉ , whereas, at the downstream end, we
assume a passive boundary condition of no flux of the hormone. We note that, to close
the system, we need to prescribe an additional boundary condition at the upstream
end associated with the hormone concentration in the corresponding “longitudinal”
apoplastic compartment. However, as we will see in the next section, in the physically
relevant parameter regime, the hormone concentrations evolve quasi-statically, and
there is a dependence of the concentration in the “longitudinal” apoplastic compart-
ments on the cytoplasmic concentration, which will effectively prescribe the boundary
condition we need. Initially, we assume that there is no hormone in the cells. We thus
obtain the following system of ordinary differential equations in time, t̂ ,

(1 − φ)ŵl̂
dĉi
dt̂

= ŵ( Ĵ f ci − Ĵc f i + Ĵcci − Ĵcc(i−1)) − l̂ Ĵchi − 2
√

φ(l̂ + ŵ) Ĵcvi ,

(12a)

φŵl̂
dv̂i
dt̂

= 2
√

φ(l̂ + ŵ) Ĵcvi , (12b)

âŵ
d f̂i
dt̂

= ŵ( Ĵc f i − Ĵ f c(i+1)) − â Ĵ f gi , (12c)

â2
dĝi
dt̂

= â( Ĵhgi − Ĵgh(i+1) + Ĵ f gi ), (12d)

âl̂
dĥi
dt̂

= l̂ Ĵchi + â( Ĵghi − Ĵhgi ), (12e)

which hold for 2 ≤ i ≤ N . This is subject to the following boundary conditions

ĉ1 = Ĉ, ĥ1 = Ĥ , (13a)

ĉN+1 = ĉN−1, ĥN+1 = ĥN−1, (13b)

and initial conditions

ĉi = v̂i = f̂i = ĝi = ĥi = 0 at t̂ = 0 for 2 ≤ i ≤ N , (14)

where Ĥ is a constant that will be determined in Sect. 2.5.1 from the compatibility
conditions between the leading-order contributions of the cytoplasmic and apoplastic
concentration.

We note that we have used the formulation in (13b) to express the no-flux condition,
following the approach in Band et al. (2012), but the solutions are approximately
the same for sufficiently many cells, if we use an alternative formulation, such as
ĉN+1 = ĉN , ĥN+1 = ĥN .
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2.4 Non-dimensionalisation

We non-dimensionalise the system (12), (13), and (14) using the following scales

t̂ = (L̂2/D̂apo)t, (ĉi , v̂i , f̂i , ĝi , ĥi ) = Ĉ(ci , vi , fi , gi , hi ), Ĵ = D̂apoĈ

l̂ + â
J ,

(15)

where we choose to non-dimensionalise time with the timescale associated with dif-
fusion of the hormone through the apoplast across the length of the whole file, since
D̂apo has been accurately measured (Kramer 2006) and is a parameter that we will
not vary. We non-dimensionalise the fluxes using the typical scale for the diffusive
apoplastic flux along the cell length, motivated by formula (11e–11g).

From (12), the dimensionless equations therefore read

(1 − φ)ε2ω

1 + λ

dci
dt

= ω(J f ci − Jc f i + Jcci − Jcc(i−1)) − Jchi − 2
√

φ(1 + ω)Jcvi ,

(16a)

φε2ω

1 + λ

dvi
dt

= 2
√

φ(1 + ω)Jcvi , (16b)

ε2λω

1 + λ

d fi
dt

= ω(Jc f i − J f c(i+1)) − λJ f gi , (16c)

ε2λ2

1 + λ

dgi
dt

= λ(Jhgi − Jgh(i+1) + J f gi ), (16d)

ε2λ

1 + λ

dhi
dt

= Jchi + λ(Jghi − Jhgi ), (16e)

where

Jc f i = Pcaci − Pac fi , (17a)

Jcvi = Pcvci − Pvcvi , (17b)

J f ci = Pac fi−1 − Pcaci , (17c)

Jchi = Pcaci − Pachi , (17d)

J f gi = 2(1 + λ)

ω + λ
( fi − gi ), (17e)

Jghi = 2(gi−1 − hi ), (17f)

Jhgi = 2(hi − gi ), (17g)

Jcci = Pplas(ci+1 − ci ), (17h)
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with

Pac = A1Ppass + A2Pimp, Pca = B1Ppass + B2Pimp,

Pcv = B1Ppass + B3Pexp, Pvc = C1Ppass + C3Pexp, (18)

in the case of GA transport. Equations (16) and (17) hold for 2 ≤ i ≤ N , except
(17c) and (17f), which hold for 2 ≤ i ≤ N + 1, and we have defined the following
dimensionless parameters

ε = l̂ + â

L̂
= 1

N
, λ = â

l̂
, ω = ŵ

l̂
,

(Ppass, Pimp, Pexp, Pplas) = l̂+â
D̂apo

(P̂pass, P̂imp, P̂exp, P̂plas). (19)

Here, ε is the ratio of the cell length to the length of the whole file, λ is the aspect ratio
of the “longitudinal” apoplastic compartments,ω is the aspect ratio of the cytoplasmic
compartments, and Ppass, Pimp, Pexp, and Pplas are the dimensionless passive, importer,
exporter, and plasmodesmata permeabilities, non-dimensionalised with the typical
apoplastic diffusive rate, which, for a plant cell with average length of 100µm, as
in the elongation zone of the Arabidopsis root, is of the same order of magnitude
as the dimensional passive permeability. The typical values of these dimensionless
parameters relevant to GA transport are presented in Table 2, out of which there are
nine independent dimensionless parameters governing the behaviour of our model
(Ppass, Pimp, and Pexp are absorbed into the definitions of Pca, Pac, Pcv, and Pvc). We
assume that the cytoplasm area is the same in the short and long cells (given root cells
elongate through vacuolar expansion (Dolan and Davies (2004)), thus, with φ = 0.1
for short cells with l̂ = 20µm (as appropriate for meristem cells), we set φ = 0.91
for long cells with l̂ = 200µm (as appropriate for mature cells).

The governing equations (16) are subject to the following boundary conditions

c1 = 1, h1 = ϒ, (20a)

cN+1 = cN−1, hN+1 = hN−1, (20b)

and initial conditions

ci = vi = fi = gi = hi = 0 at t = 0 for 2 ≤ i ≤ N , (21)

where ϒ = Ĥ/Ĉ .

2.5 Model Analysis

We now exploit the size of the dimensionless parameters (19) to systematically reduce
the discrete model (16), (17), and (20), which consists of 5N −2 equations, to a single
continuum equation that describes the GA transport across the tissue. In particular,
we use the fact that ε � 1, i.e., the length of a single cell is much smaller than the
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Table 2 Dimensionless parameter estimates, calculated from the parameter estimates in Table 1 using (18)
and (19)

Parameter Value (short/long cells) Description

ε 0.05 Ratio of cell length to file length

λ 0.025/0.0025 Ratio of apoplast thickness to cell length

ω 0.5/0.05 Ratio of cell width to cell length

φ 0.1/0.91 Vacuolar fraction

Ppass 0.21/2.09 Dimensionless passive permeability

Pimp 0.011/0.11 Dimensionless cytoplasmic transporter permeability

Pexp 0.36/3.48 Dimensionless tonoplast transporter permeability

Pplas 0.52/5.08 Dimensionless plasmodesmata permeability

Pca 0.00083/0.0081 Effective dimensionless permeability

from cytoplasm to apoplast

Pac 0.063/0.62 Effective dimensionless permeability

from apoplast to cytoplasm

Pcv 0.60/5.89 Effective dimensionless permeability

from cytoplasm to vacuole

Pvc 0.19/1.84 Effective dimensionless permeability

from vacuole to cytoplasm

length of the cell file. We let x̂ = L̂x measure the dimensional continuum distance
along the file and be non-dimensionalised with the file length. We assume that one
end of the file (x = 0) is located at the centre of the first cell, and the other end
(x = 1) is located at the centre of the (N + 1)-st cell, as shown in Fig. 1. We proceed
by explicitly converting the discrete concentration variables into continuum variables
that have both spatial and temporal dependence using Taylor’s approximation, as in

ci+1(t) = c(x + ε, t) = c(x, t) + ε
∂c

∂x
+ ε2

2

∂2c

∂x2
+ O(ε3) (22)

for ε � 1. We then asymptotically expand all concentration variables in powers of ε,
as in

c = c(0) + εc(1) + ε2c(2) + O(ε3) (23)

for ε � 1, where superscripts refer to the asymptotic orders in the expansion of the
continuous concentration variables.

2.5.1 Leading-Order Continuum Approximation with O(1) Parameters

We begin by considering the richest asymptotic limit when all dimensionless param-
eters are of O(1) magnitude. Noting that the left-hand sides of (16) are O(ε2) and
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substituting for the fluxes from (17), the leading-order governing equations are

0 = 2ω(Pac f
(0) − Pcac

(0)) − Pcac
(0) + Pach

(0) − 2
√

φ(1 + ω)(Pcvc
(0) − Pvcv

(0)),

(24a)

0 = 2
√

φ(1 + ω)(Pcvc
(0) − Pvcv

(0)), (24b)

0 = 2ω(Pcac
(0) − Pac f

(0)) − 2λ(1 + λ)

ω + λ
( f (0) − g(0)), (24c)

0 = 4λ(h(0) − g(0)) + 2λ(1 + λ)

ω + λ
( f (0) − g(0)), (24d)

0 = Pcac
(0) − Pach

(0) + 4λ(g(0) − h(0)). (24e)

Thus, the leading-order hormone concentrations form an algebraic system. Equations
(24a)–(24e) are linearly dependent, since summing all of them gives zero due to con-
servation of the hormone. Thus, solving this homogeneous system of linear equations
for the leading-order variables, we obtain

f (0) = g(0) = h(0) = Pac
(0), v(0) = Pvc

(0), (25)

where we have defined

Pa = Pca/Pac ≈ 0.013, Pv = Pcv/Pvc ≈ 3.20, (26)

which describe the relative hormone transport into and out of the apoplast and the
vacuole, respectively. We note that, for consistency, this relationship (25) must hold at
the two ends of the file, x = 0 and x = 1. Thus, as described in Sect. 2.3, specifying
c(0) = 1 at x = 0 (from (20a)), determines the necessary boundary condition for the
“longitudinal” apoplastic compartment, namely, h(0) = Pa. Thus, in the corresponding
boundary condition (20a) for the discrete model, ϒ = Pa, and so Ĥ = PaĈ in (13).

We note that the ratios in (26) are independent of the cell length, as they are solely a
function of the permeability of the corresponding membrane. Thus, with O(1) param-
eters, the apoplastic and vacuolar concentrations are proportional to the cytoplasmic
concentration, with constants of proportionality depending on the effective transport
permeabilities between the corresponding compartments. Using parameter values rel-
evant for GA (given in Table 2), Eq. (25) suggest that the apoplastic GA concentration
at a given cell and time is approximately 0.013 times the cytoplasmic concentration,
whereas the vacuolar concentration is approximately 3.2 times the cytoplasmic con-
centration,which is consistentwith the experimental observations in Shani et al. (2013)
for vacuolar and nuclear GA concentrations.

In deriving the continuummodel, we will present the results in terms of one macro-
scopic variable, namely, the cytoplasmic concentration, c(0)(x, t). In order to close
the system and obtain a governing equation that describes how c(0) varies, we sum the
original dimensionless Eqs. (16a)–(16e). This way, we do not have to consider balance
at every single order to close the system but rather use the simultaneous cancellations
of terms when we do the summation. To O(ε2), we obtain
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ε2

1 + λ

∂

∂t

(
(1 − φ)ωc(0) + φωv(0) + λω f (0) + λ2g(0) + λh(0)

)

= ε

(

ω

(

−Pac
∂ f (0)

∂x
+ Pca

∂c(0)

∂x

)

+ 2λ

(

−∂g(0)

∂x
+ ∂h(0)

∂x

))

+ ε2

2

(

ω

(

Pac
∂2 f (0)

∂x2
+ Pca

∂2c(0)

∂x2
+ 2Pplas

∂2c(0)

∂x2

)

+ 2λ

(
∂2g(0)

∂x2
+ ∂2h(0)

∂x2

))

+ε2

(

ω

(

−Pac
∂ f (1)

∂x
+ Pca

∂c(1)

∂x

)

+ 2λ

(

−∂g(1)

∂x
+ ∂h(1)

∂x

))

. (27)

We note that, from (25), the O(ε)-term on the right-hand side of (27) vanishes. In
order to evaluate the O(ε2)-term on the right-hand side of (27), we sum (16a), (16b),
and (16e), and consider the result to O(ε). This yields

0 = 2ω
(
Pac f

(1) − Pcac
(1)

)
+ 4λ

(
g(1) − h(1)

)
− ωPac

∂ f (0)

∂x
− 2λ

∂g(0)

∂x
. (28)

Differentiating (28) in x and substituting into (27) gives

ε2

1+λ

∂

∂t

(
(1 − φ)ωc(0) + φωv(0) + λω f (0) + λ2g(0) + λh(0)

)

= ε2

2

(

ωPca
∂2c(0)

∂x2
+ 2ωPplas

∂2c(0)

∂x2
+ 2λ

∂2h(0)

∂x2

)

. (29)

Using (25),we can express v(0), f (0), g(0), and h(0) in terms of c(0), and, thus, obtain the
following effective diffusion equation for the macroscopic cytoplasmic concentration,
which we denote by C = c(0) to distinguish it from its discrete counterpart,

∂C

∂t
= Deff

∂2C

∂x2
, (30)

where the effective diffusivity Deff is given by

Deff = (1 + λ)(ωPca/2 + ωPplas + λPa)

(1 − φ)ω + φωPv + λ(1 + ω + λ)Pa
. (31)

We note that the first term in the second bracket of the numerator comes from trans-
port across the cell membranes, the second term is associated with plasmodesmatal
diffusion, and the third term comes from apoplastic diffusion. To close the continuum
model, we prescribe the concentration at x = 0 and impose no flux at x = 1, i.e.,

C = 1 at x = 0, (32a)

∂C

∂x
= 0 at x = 1. (32b)
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Initially, there is no hormone present, so we have

C = 0 at t = 0. (33)

Equations (30)–(33) can be solved explicitly using separation of variables to obtain

C(x, t) = 1 − 4

π

∞∑

k=0

1

2k + 1
sin

(
(2k + 1)πx

2

)
exp

(
−Deff(2k + 1)2π2t/4

)
.

(34)

We now consider the physically relevant limits and other cases ofmathematical interest
that can be distilled as sub-limits of this limit.

2.5.2 Physically Relevant Limit for Short Cells

Based on the parameter values listed in Tables 1 and 2, we consider the physically
relevant limit for GA transport in short cells with Pa, λ = O(ε) and Pca = O(ε2).
We, thus, write (Pa, λ) = ε(P̃a, λ̃) and Pca = ε2 P̄ca with P̃a, P̄ca, λ̃ = O(1). This
means that the rate of GA transport across the cytoplasmic membrane is slower than
the rate across the tonoplast, and, furthermore, transport from the apoplast into the
cytoplasm dominates over transport from the cytoplasm into the apoplast. Considering
the balances in (25), this implies the apoplastic concentration is an order of magnitude
smaller than the cytoplasmic concentration, i.e., f (0), g(0), h(0) = O(ε).

We first describe the continuum limit with no GA transport through the plasmod-
esmata (Pplas = 0). In this case, the evolution of the cytoplasmic concentration is
governed by

∂C

∂ t̄
= D̄eff

∂2C

∂x2
, (35a)

D̄eff = ω P̄ca/2 + λ̃P̃a

(1 − φ)ω + φωPv
, (35b)

subject to boundary conditions (32) and initial condition C = 0 at t̄ = 0, where we
have rescaled time and the diffusivity as t = t̄/ε2 and Deff = ε2 D̄eff , respectively, to
balance the time derivative with the slow diffusion in this case.

Using the values in Tables 1 and 2, we see that the dimensional effective dif-
fusivity (taking into account the rescaling in time) is D̂eff = (0.35ε2)D̂apo ≈
28 × 10−3 µm2/s. Considering the magnitude of the two numerator terms in (35b),
we find that 40% of the effective diffusivity occurs cell-to-cell (i.e. through the cell
membranes), with the remaining 60% of the diffusivity occurring through the adjacent
layer of apoplast.
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2.5.3 Physically Relevant Limit for Long Cells

We now consider the physically relevant limit for GA transport in long cells, where
Pa, ω = O(ε), Pca, λ = O(ε2). We write (P̃a, ω) = ε(P̃a, ω̃) and (Pca, λ) =
ε2(P̄ca, λ̄) with P̃a, P̄ca, ω̃, λ̄ = O(1). Thus, the transport properties are the same as
above, and the only difference are the aspect ratios of the cell and the “longitudinal”
apoplastic compartment.

In this case (with Pplas = 0), we again need to rescale time and the diffusivity
as t = t̄/ε2 and Deff = ε2 D̄eff , respectively. Thus, (32), (33), and (35a) hold with
effective diffusivity

D̄eff = ω̃ P̄ca/2 + λ̄P̃a

(1 − φ)ω̃ + φω̃Pv
, (36)

which is the same as (35b), except for the rescaled aspect ratios ω̃ and λ̄.
Using the value in Table 1, we find that for long cells, the effective diffusivity is

larger (D̂eff = (0.63ε2)D̂apo ≈ 50 × 10−3 µm2/s), and a higher proportion of the
effective diffusivity occurs through the cell-to-cell pathway (from themagnitude of the
terms in the numerator of (36), the cell-to-cell component forms 87% of the effective
diffusivity for long cells).

2.5.4 The Effect of Plasmodesmata

We now consider the effect of plasmodesmatal diffusion. From Table 2, we see that,
in both the short-cell and long-cell limits, Pplas = O(1). Thus, (30), (32), and (33)
hold (with no time rescaling), and the effective diffusivity in both limits is

Deff = Pplas
1 − φ + φPv

. (37)

For short cells, D̂eff = 0.43D̂apo ≈ 14µm2/s, whereas, for long cells, D̂eff =
1.7D̂apo ≈ 54µm2/s.

Thus, we see that, provided the plasmodesmata are open, transport through them
dominates over the passive and facilitated transport across the cellmembrane,which do
not contribute to leading-order effective diffusion. This is because the derived formulae
(35b) and (36) show that the effective diffusivity associated with the cell-membrane
transport is proportional to the effective permeability from the cytoplasm into the
apoplast, Pca. This permeability is small, because the high cytoplasmic pH causes
the majority of the hormone (99.84% in the case of GA) to be anionic which cannot
passively diffuse from the cytoplasm into the apoplast.We see a dramatic increase in the
effective diffusivity in the presence of open plasmodesmata, as plasmodesmata provide
a direct pathway between the cytoplasms of adjacent cells for hormone diffusion.
In practice, though, plasmodesmata can be physically restricted by the presence of
callose (DeStormeandGeelen2014),which substantially decreases their permeability.
From (35b) and (36), we see that the passive and facilitated transport through the cell
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membrane become non-negligible when Pplas = O(ε2), which is when all three
transport mechanisms contribute at a similar rate.

We note that the transport across the tonoplast is important even when plasmodes-
mata are open, and decreases the effective diffusivity the larger the vacuoles are, since
this increases the uptake of hormone via the tonoplast transporter from the cytoplasm
into the vacuole.

2.5.5 Effective Diffusivities in Loss-of-Function Mutants

Given that (31) is the O(1) effective diffusivity, we can use it to derive the diffusivities
in the loss-of-functionmutants forGA transportwhere there is no cytoplasmic importer
(NPF 2.12, NPF 2.13, and NPF 3.1), no vacuolar importer (NPF 2.14), or neither.

When there is no cytoplasmic importer, Pimp = 0, and thus Pac = A1Ppass, Pca =
B1Ppass, and the effective diffusivity becomes

Deff = (1 + λ)(ωB1Ppass/2 + ωPplas + λB1/A1)

(1 − φ)ω + φωPv + λ(ω + λ + 1)B1/A1
. (38)

When there is no vacuolar importer, Pexp = 0, and thus Pcv = B1Ppass, Pvc =
C1Ppass, and so

Deff = (1 + λ)(ωPca/2 + ωPplas + λPa)

(1 − φ)ω + φωB1/C1 + λ(ω + λ + 1)Pa
. (39)

When there are no cytoplasmic nor vacuolar importers, we have

Deff = (1 + λ)(ωB1Ppass/2 + ωPplas + λB1/A1)

(1 − φ)ω + φωB1/C1 + λ(ω + λ + 1)B1/A1
. (40)

Similarly, we obtain the formulae for the effective diffusivity in the cases of short
and long cells with or without plasmodesmata for these loss-of-function mutants from
(35b), (36), and (37) by taking Pca = B1Ppass and Pa = B1/A1 in the case of no
cytoplasmic importer, Pv = B1/C1 in the case of no vacuolar importer, and all of
these when there are no transporters, as above.

In Table 3, we present the values for the dimensionless effective diffusivities in the
short-cell and long-cell limits from Sects. 2.5.2–2.5.5, noting that, in the case of no
vacuolar importer, Pv = B1/C1 = O(ε), and, in the case of long cells (1 − φ)ω ∼
φωB1/C1. We see that the presence of a vacuolar importer significantly slows down
diffusion by storing GA into the vacuole, especially in the long-cell limit, when the
vacuole takes up almost the entire cellular space. We also note that, for short cells,
the transporters are reducing the effective diffusivity, whereas, for long cells, the
cytoplasmic importer increases it, since this counteracts the effect of the transport
across the tonoplast, which is dominant. Adding plasmodesmata changes the results
only quantitatively, except that the presence of a cytoplasmic importer has no effect
on the effective diffusivity due to the dominant transport through the plasmodesmata.
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Table 3 Dimensionless diffusivities (in scaled time t = t̄/ε2 for the case without plasmodesmata) for wild
type and loss-of-function mutants with and without plasmodesmata for short and long cells, calculated
using formulae (35b)–(40) in the relevant limit, and parameter estimates in Table 2

All transporters No cytoplasmic No tonoplast No transporters
importer importer

Without plasmodesmata 0.35/0.63 0.41/0.37 0.48/15.71 0.56/9.14

(short/long cells)

With plasmodesmata 0.43/1.70 0.43/1.70 0.58/42.18 0.58/42.18

(short/long cells)

Fig. 2 Continuummodel predictions agreewith discretemodel. Plots of the spatial profile of the cytoplasmic
GAconcentration c from thediscretemodel (solid black) and themacroscopic cytoplasmicGAconcentration
C from the continuum model (dashed black) at t̄ = 0.01, t̄ = 0.1, t̄ = 0.5, t̄ = 1, t̄ = 2, and t̄ = 4 for a
short and b long cells. Parameter values given in Table 2 with Pplas = 0

2.6 Numerical Results

We first compare simulations of the discrete and continuum models to verify that the
continuum representation reproduces the modelled dynamics. We solve the discrete
model (16) subject to (20) and (21) using Mathematica and compare the results with
the solution to the continuum model (30) and (31), subject to (32) and (33), which we
solve using the method of lines with 100 grid points in space. For short and long cells,
we see excellent agreement between the discrete and the continuum model even for
N = 20 cells (Fig. 2). We note that diffusion is faster in the long cells, and the GA
concentration reaches more quickly steady state (c = C = 1) than in the short cells
(consistent with the effective diffusivities calculated in Table 3). This is because, in a
file of long cells, for a fixed distance, GA has to cross a cell membrane fewer times
than going through short cells. We see that this effect dominates over the opposite
effect of large vacuoles in long cells taking up more GA than smaller vacuoles in short
cells, which effectively reduces the diffusivity.

In Fig. 3, we show how varying the model parameters influences the effective
diffusivity (31), keeping the remaining parameters at their estimated value (Table 2).
We present results for short cells, noting that plots of the effective diffusivity for long
cells are qualitatively similar.
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We see that, when there is a tonoplast transporter, the effective diffusivity mono-
tonically decreases with the vacuolar proportion (Fig. 3a), since larger vacuoles take
up more GA, thereby reducing its effective transport along the file, consistent with the
results in Mitchison and Brenner (1980). However, when there is no tonoplast trans-
porter, we observe the opposite behaviour (Fig. 3b). This is because, in this case, there
is little transport of GA into the vacuole: Pv = B1/C1 ≈ 0.03 � 1, and thus the first
term in the denominator of (31) dominates over the second term, which dictates the
monotonically increasing behaviour. Furthermore, we see that, as the apoplast thick-
ness increases, or the cytoplasm width decreases, the effective diffusivity increases
(Fig. 3c and d). This is because either of these changes enlarges the proportion of the
apoplast within the tissue width, where GA diffuses more rapidly. We note that, in the
extreme cases, as λ → ∞ or ω → 0, Deff → 1, which corresponds to the apoplastic
diffusivity.

We observe that decreasing the cytoplasmic pH substantially increases the effective
diffusivity (Fig. 3e). This is because, at lower cytoplasmic pH, more of the hormone
is in a protonated form, which readily diffuses through the membrane without trans-
porters. In contrast, we see that the values of the apoplastic and vacuolar pH have
limited effect on the effective diffusivity (Fig. 3f).

We see that the effective diffusivity increases almost linearly with the cytoplasmic
importer permeability, Pimp, except for very small values of the permeability, where the
diffusivity initially decreases (Fig. 3g). This behaviour is due to competition between
the cytoplasmic (ωPca/2) and apoplastic (λPa) contributions to the effective diffusion,
with the cytoplasmic contribution dominating at larger importer permeabilities.We see
that the effective diffusivity monotonically increases with the passive permeability, as
expected,whereas itmonotonically decreaseswith the tonoplast exporter permeability,
quickly approaching a minimum threshold value (Fig. 3h). This suggests that the
precise numerical value for the tonoplast exporter permeability is not significant for
the transport dynamics.

For clarity, Fig. 3 has been made with Pplas = 0. With open plasmodesmata, the
plasmodesmatal diffusion dominates (as detailed in Sect. 2.5.4), and therefore the
effective diffusivity increases with the plasmodesmatal permeability, and the values
of importer permeability and apoplastic pH have very little effect. As we can see from
the formula (37), parameters that increase the vacuolar concentration relative to the
cytoplasmic concentration, Pv, lead to a decrease in the effective diffusivity, as more
hormone is stored in the vacuole.

In summary, this section has reduced a detailed discrete model for hormone trans-
port within a file of cells with subcellular compartments (comprising 5N − 2 ODEs)
to a single partial differential equation for the macroscopic cytoplasmic hormone con-
centration across the file. The derived effective diffusivity provides understanding of
precisely how the tissue-scale transport depends on geometric and transport parameters
of the cells.
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Fig. 3 Effect of varying system parameters on effective diffusivity. Plots of the effective diffusivity, Deff ,
from (31) (for short cells with Pplas = 0) as a function of a the vacuolar fraction, φ, b the vacuolar fraction,
φ, without a tonoplast transporter, c the dimensionless thickness of the apoplast, λ, d the dimensionless
width of the cytoplasm, ω, on a log-plot, e the cytoplasmic pH, f the apoplastic (dashed) and vacuolar
(dotted) pH, g the cytoplasmic importer permeability, and h the tonoplast exporter (dashed) and passive
(dotted) permeability. The red stars indicate the base parameter values corresponding to short cells (see
Tables 1 and 2) (Color figure online)
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3 Model of Hormone Transport in a File of Growing Cells with
Spatially Varying Cell Lengths

3.1 Discrete Model Set-up and Governing Equations

We now extend our model for hormone transport in a file of cells by allowing the cells
to grow with time, and cell lengths and vacuolar fractions to vary along the file. Thus,
in the discrete model, we prescribe each cell to have length l̂i = l̂i (t̂) and vacuolar
fraction φi = φi (t̂) that depend on time. For simplicity, we assume that, during
growth, the width of the cells stays constant. We further assume the cell lengths do not
become large enough that the timescale for cytoplasmic diffusion becomes comparable
to the timescales for apoplastic diffusion and membrane transport, enabling us to
maintain the assumption of spatially uniform concentrationswithin each compartment.
Furthermore, if we assume growth is entirely due to enlargement of the vacuole, as is
the case in the root elongation zone (Dolan and Davies 2004), then the volume of the
cytoplasm in each cell, (1 − φi )l̂i , is constant in time and equal to the initial volume
of the cytoplasm in each cell, respectively. For generality, we derive the full model
without this assumption. Thus, the governing equations are

ŵ
d

dt̂

(
(1 − φi )l̂i ĉi

)
= ŵ( Ĵ f ci − Ĵc f i + Ĵcci − Ĵcc(i−1)) − l̂i Ĵchi − 2

√
φi (l̂i + ŵ) Ĵcvi ,

(41a)

ŵ
d

dt̂

(
φi l̂i v̂i

)
= 2

√
φi (l̂i + ŵ) Ĵcvi , (41b)

âŵ
d f̂i
dt̂

= ŵ( Ĵc f i − Ĵ f c(i+1)) − â Ĵ f gi , (41c)

â2
dĝi
dt̂

= â( Ĵhgi − Ĵgh(i+1) + Ĵ f gi ), (41d)

â
d

dt̂

(
l̂i ĥi

)
= l̂i Ĵchi + â( Ĵghi − Ĵhgi ), (41e)

which is similar to (12), noting that l̂i and φi are functions of time. The definitions of
the fluxes are the same as in (11), except that l̂ becomes l̂i . The system (41) is again
subject to (13) and (14).

We non-dimensionalise the system using the following scales:

t̂ = (L̂2
0/D̂apo)t, (ĉi , v̂i , f̂i , ĝi , ĥi ) = Ĉ(ci , vi , fi , gi , hi ), l̂i = l̂avli ,

Ĵ = D̂apoĈ

l̂av + â
J , (42)

where L̂0 is the initial file length, and we define the average cell length at t = 0, l̂av,
by l̂av = L̂0/N − â. We note that the total file length is L̂(t̂) = ∑N

i=1(l̂i (t̂) + â).
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The dimensionless equations are then

ε2ω

1 + λ

d

dt
((1 − φi )li ci ) = ω(J f ci − Jc f i + Jcci − Jcc(i−1)) − li Jchi − 2

√
φi (li + ω)Jcvi ,

(43a)

ε2ω

1 + λ

d

dt
(φi livi ) = 2

√
φi (li + ω)Jcvi , (43b)

ε2λω

1 + λ

d fi
dt

= ω(Jcf i − J f c(i+1)) − λJ f gi , (43c)

ε2λ2

1 + λ

dgi
dt

= λ(Jhgi − Jgh(i+1) + J f gi ), (43d)

ε2λ

1 + λ

d

dt
(li hi ) = li Jchi + λ(Jghi − Jhgi ), (43e)

where ε, λ, ω are given by (19), the fluxes J are defined by (17a-e,h), with l̂av being
used in the non-dimensionalisation instead of l̂, and by

Jghi = 2(1 + λ)

li + λ
(gi−1 − hi ), (44a)

Jhgi = 2(1 + λ)

li + λ
(hi − gi ). (44b)

Again, (43) are subject to (20) and (21).

3.2 Continuum Approximation

As in Sect. 2.2, we convert the discrete concentration variables into continuous vari-
ables that depend on both space and time, but this time with spatio-temporal variations
in cell lengths. We also define continuous length and vacuolar-fraction functions

l(x, t) = li (t), φ(x, t) = φi (t), (45)

where we have non-dimensionalised distance along the file with the initial file length,
x̂ = L̂0x . Therefore, assuming that the cell lengths are slowly varying along the file
and using Taylor’s theorem, we obtain, for example,

ci+1(t) = c

(
x + ε(li + li+1 + 2λ)

2(1 + λ)
, t

)

= c(x, t) + ε

(
l + λ

1 + λ

)
∂c

∂x
+ ε2

2

(
l+λ

1+λ

)2
∂2c

∂x2
+ ε2(l+λ)

2(1+λ)2

∂l

∂x

∂c

∂x
+O(ε3)

(46)

for ε � 1. The assumption of slow variation in the cell lengths means that we require
∂l/∂x = O(1). We note that (46) is analogous to the expression in Band and King
(2012), but, here, l may also depend on time. This is a significant feature of this model,
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since it means that the time derivatives in (43) are Lagrangian derivatives, which are
related to the Eulerian time derivatives via

d

dt
= ∂

∂t
+ u

∂

∂x
, (47)

where u(x, t) is the velocity of the file at x relative to the position of the centre of the
first cell at x = 0. We can calculate u using conservation of mass in the file of cells
(the continuity equation), which takes the form

∂ρ

∂t
+ ∂(ρu)

∂x
= 0, (48)

where ρ(x, t) = 1/(l + λ) is the cell density in the cell file. Thus, substituting for ρ

and rearranging,

∂

∂x

(
u

l + λ

)
= 1

(l + λ)2

∂l

∂t
. (49)

Therefore, given l(x, t), (49) can be integrated with respect to x to find u.
Toderive the continuumapproximation,we asymptotically expand all concentration

variables in powers of ε, as in (23). For simplicity, we write l(0) = l without further
expanding the length function, l, since only the leading-order term contributes to the
governing equations.

At leading order, we see that, in an analogous way to Sect. 2.5.1, the apoplastic and
vacuolar concentrations are proportional to the cytoplasmic concentrations, as given
in (25). This is because the structure of (43) is the same as (16), and it can be verified
by substituting the relationships in (25) in the leading-order version of (43). Then,
summing (43a)–(43e) to O(ε2), we obtain

ε2

1 + λ

d

dt

(
ω(1 − φ)lc(0) + ωφlv(0) + λω f (0) + λ2g(0) + λlh(0)

)

= ε

(

ω

(

−Pac
∂ f (0)

∂x
+ Pca

∂c(0)

∂x

)(
l + λ

1 + λ

)
+ 2λ

(

−∂g(0)

∂x
+ ∂h(0)

∂x

))

+ε2

2

(

ω

(

Pac
∂2 f (0)

∂x2
+ Pca

∂2c(0)

∂x2
+ 2Pplas

∂2c(0)

∂x2

) (
l + λ

1 + λ

)2

+ 2λ

(
∂2g(0)

∂x2
+ ∂2h(0)

∂x2

)(
l + λ

1 + λ

))

+ε2

2

(

ω

(

Pac
∂ f (0)

∂x
+ Pca

∂c(0)

∂x
+ 2Pplas

∂c(0)

∂x

)
(l + λ)

(1 + λ)2

+ 2λ

(
∂g(0)

∂x
+ ∂h(0)

∂x

)
1

1 + λ

)
∂l

∂x

123



Multiscale Asymptotic Analysis Reveals How Cell Growth... Page 27 of 51 101

+ε2

(

ω

(

−Pac
∂ f (1)

∂x
+ Pca

∂c(1)

∂x

) (
l + λ

1 + λ

)

+ 2λ

(

−∂g(1)

∂x
+ ∂h(1)

∂x
+

(
g(1) − h(1)

) ∂l

∂x

1

l + λ
− ∂h(0)

∂x

∂l

∂x

1

1 + λ

))

,

(50)

wherewe note that we have additional terms, compared to (27), arising from the spatial
dependence of l, and d/dt is the Lagrangian derivative, as in (47). In particular, the
third term on the right-hand side of (50) comes from the last term in the expansion
(46) for the corresponding variables, and the last two terms in the fourth bracketed
term on the right-hand side of (50) come from expanding li+1 in the definition (44a) of
Jgh(i+1) from (43d). As in Sect. 2.5.1, we observe that, because of (25), the O(ε) term
in (50) is zero. To evaluate the last O(ε2) term on the right-hand side of (50), we use
the analogous version of (28) (by summing (43a), (43b), and (43e) and considering
the result at O(ε)), which, in this case, takes the form

0 = 2ω
(
Pac f

(1) − Pcac
(1)

)
+ 4λ

(
g(1) − h(1)

) (
1 + λ

l + λ

)

−
(

ωPac
∂ f (0)

∂x

(
l + λ

1 + λ

)
+ 2λ

∂g(0)

∂x

)

. (51)

We note that (51) is obtained in an analogous way to (28), except that l is not equal to
one, but is a function of x and t .

Differentiating (51) with respect to x and substituting into (50) gives

ε2

1 + λ

d

dt

(
ω(1 − φ)lc(0) + ωφlv(0) + λω f (0) + λ2g(0) + λlh(0)

)

= ε2

2

((

ωPca
∂2c(0)

∂x2
+ 2ωPplas

∂2c(0)

∂x2

) (
l + λ

1 + λ

)2

+ 2λ
∂2h(0)

∂x2

(
l + λ

1 + λ

))

+ε2

2

(

ωPca
∂c(0)

∂x
+ 2ωPplas

∂c(0)

∂x

)
(l + λ)

(1 + λ)2

∂l

∂x
.

(52)

Thus, using (17a), (47), and writing c(0) = C for the macroscopic cytoplasmic con-
centration, we have

(
∂

∂t
+ u

∂

∂x

)
((ω(1 − φ)l + ωφlPv + λ(ω + λ + l)Pa)C)

= (1 + λ)

((
ωPca
2

+ ωPplas

) (
l + λ

1 + λ

)2

+ λPa

(
l + λ

1 + λ

))
∂2C

∂x2

+(1 + λ)

(
ωPca
2

+ ωPplas

)
(l + λ)

(1 + λ)2

∂l

∂x

∂C

∂x
. (53)

123



101 Page 28 of 51 K. B. Kiradjiev, L. R. Band

This can be written in the standard form of an effective reaction–advection–diffusion
equation

∂C

∂t
+ ∂

∂x
(Ueff(x, t)C) = ∂

∂x

(
Deff(x, t)

∂C

∂x

)
− Qeff(x, t)C, (54)

where

Ueff(x, t) = u + K (l + λ) + M

V

∂l

∂x
− (K (l + λ) + M) (l + λ)

V 2

∂V

∂x
, (55a)

Deff(x, t) = (K (l + λ) + M) (l + λ)

V
, (55b)

Qeff(x, t) = u

V

∂V

∂x
− ∂Ueff

∂x
+ 1

V

∂V

∂t
, (55c)

and, for convenience, we have defined

K = ωPca/2 + ωPplas
1 + λ

, M = λPa,

V = ω(1 − φ)l + ωφlPv + λ(ω + λ + l)Pa. (56)

This is subject to

C = 1 at x = 0, (57a)

∂C

∂x
= 0 at x(t) =

N∑

i=1

(li + λ)/(N (1 + λ)), (57b)

C = 0 at t = 0, (57c)

noting that (57b) is the appropriate no-flux boundary condition given the moving
boundary x(t).

To illustrate the generality of ourmodel and identify its unique features, for compar-
ison, in Appendix B, we present the simple cases of a file of cells that consist either of
only a cytoplasmic compartment, or of cytoplasmwith either a vacuolar or an apoplas-
tic compartment. In summary, our analysis has revealed that spatio-temporal variations
in cell length change the nature of the tissue-scale transport, as such variations create
an effective advective velocity and an effective dilution (compare (54) with the contin-
uum equation derived for the case of static identical cells (30)). To explore the model
and the origin of these extra terms in detail, we first consider two base cases when
l and φ are only time- or space-dependent (Sects. 3.3 and 3.4, respectively) before
presenting numerical solutions in Sect. 3.6.
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3.3 The Case of Identical Time-Dependent Cell Lengths

As a particular case, we first consider a file of identical cells that grow with time, i.e.,
we take

l̂i (t̂) = l̂(t̂), φi (t̂) = φ(t̂), (58)

where we non-dimensionalise the length with the initial cell length l̂0 = l̂0,i = l̂av,
since all lengths are the same. In this case, (49) can be solved to obtain

u(x, t) = x

l + λ

dl

dt
, (59)

i.e., velocity depends linearly on distance. In this case, (54) holds with

Ueff(x, t) = u, Deff(t) = (K (l + λ) + M) (l + λ)

V
,

Qeff(t) = −∂u

∂x
+ 1

V

dV

dt
, (60)

subject to (57), where (57b) is evaluated at x = (l +λ)/(1+λ), and K , M , and V are
defined by (56). We note that, here, cell growth induces an effective advective velocity
and an effective sink term due to dilution.

We solve (54)with (57) and (60) numerically by first transforming to a fixed-interval
domain. Thus, we set

x = l + λ

1 + λ
ξ, (61)

where 0 ≤ ξ ≤ 1. Noting that

∂

∂t
= ∂

∂t
− ξ

l + λ

dl

dt

∂

∂ξ
, (62a)

∂

∂x
= 1 + λ

l + λ

∂

∂ξ
, (62b)

(54) reads

∂C

∂t
= Dcell

eff
∂2C

∂ξ2
− QeffC,

Dcell
eff = (1+λ)2(K+M/(l+λ))

V , Qeff = 1
V

dV

dt
, (63)

subject to

C = 1 at ξ = 0, (64a)
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∂C

∂ξ
= 0 at ξ = 1, (64b)

and (57c), where we define the inter-cellular diffusivity, Dcell
eff , in the fixed ξ−domain.

We note that, as in the static case, we can identify points that are equally spread (1/N
distance apart) in the ξ -domain, which is fixed, as the individual cells in the file.

For concreteness, we consider the case of linear cell growth, i.e.,

l̂i (t̂) = l̂(t̂) = k̂ t̂ + l̂0, (65)

where k̂ is the growth rate. Non-dimensionalising (65), we obtain

li (t) = l(t) = κt + 1, (66)

where κ = k̂ L̂2
0/(D̂apol̂0) measures the ratio of the growth rate and the diffusive rate

on the cellular length scale. This could be thought of as a Péclet number, which can
also be expressed in terms of the macroscopic length as κ = (1 + λ)k̂ L̂0/(ε D̂apo).

When the cell growth rate is constant, i.e., dl/dt = κ is constant, as in (66), we
may seek a steady-state solution for the hormone concentration in the fixed ξ -domain
when diffusion balances dilution due to growth over the macroscale level of the whole
file. Noting that M/(l + λ) → 0 for large t , we solve the steady-state version of (63)
to obtain

Ceq = cosh (
√

βξ) − tanh (
√

β) sinh (
√

βξ), (67)

valid for large time, where, in the case of growth due to vacuolar expansion (see
Sect. 3.6.1), β = κ(ωPv + λPa)/((1 + λ)(ωPca/2 + ωPplas)) is a dimensionless
parameter that measures the relative importance of growth and effective diffusive
transport over the macroscale of the whole file. We note that we will obtain the same
steady state if we only insist that dl/dt → κ − constant for large t , i.e., when the
growth rate approaches a constant value as time increases. The existence of this non-
trivial steady-state solution (in the ξ -domain) is a unique feature of this model, as,
typically, growing-domain problems exhibit uniform steady-states (in the ξ -domain)
due to constant diffusivity coefficients (see, for example, Simpson 2015).

3.4 The Case of Spatially Varying Cell Lengths

Secondly, we consider a fixed file of cells with spatially varying lengths and vacuolar
fractions

l̂i = l̂(x̂), φi (x̂) = φ(x̂), (68)

which we non-dimensionalise as in (42).
In practice, experimental datasets typically show the distribution of cell lengths (and

vacuolar fractions) in terms of distance along the tissue (see, for example, Band et al.

123



Multiscale Asymptotic Analysis Reveals How Cell Growth... Page 31 of 51 101

2012). This can then be used to obtain a continuum representation of the cell-length
distribution, l̂(x̂), and the vacuolar-fraction distribution, φ(x̂).

Since the cells are non-growing, (49) gives

u = 0. (69)

In this case, (54) holds, subject to (32) and (33), with

Ueff(x) = K (l + λ) + M

V

dl

dx
− (K (l + λ) + M) (l + λ)

V 2

dV

dx
,

Deff(x) = (K (l + λ) + M) (l + λ)

V
, Qeff(x) = −dUeff

dx
.

(70)

We note that, here, unlike Sect. 3.3, it is the spatial variance in the cell lengths and
vacuolar fractions that induces an effective advective velocity and an effective sink
term.

Here, for concreteness, we prescribe linearly varying cell lengths on the macroscale
of the file, i.e.,

l̂(x̂) = α̂ x̂ + l̂1, (71)

where α̂ is a proportionality constant, and l̂1 is the length of the first cell. This distribu-
tion is appropriate for cells in the Arabidopsis root elongation zone (see, for example,
Band et al. 2012). Non-dimensionalising (71), we obtain

l(x) = αx + ν, (72)

where α = (l̂N+1 − l̂1)/l̂av and ν = l̂1/l̂av. Similarly, we prescribe the macroscale
distribution of the vacuolar fraction,

φ(x) = (φN+1 − φ1)x + φ1. (73)

In order to obtain the corresponding values for l̂i (and li ), we need to discretise
(71) at the centre of each cell. For the purposes of the numerical solutions, we specify
the lengths and vacuolar fractions of the first and the last cell, and we find that this,
together with (72) is enough to uniquely determine the lengths and vacuolar fractions
of each cell, the average cell length, l̂av, and the file length, L̂ . In particular, when
calculating li and φi , we evaluate l(x) and φ(x), respectively, at the centre xi of cell
i , which can be calculated iteratively from

xi = 1

N (1 + λ)

⎛

⎝ l1
2

+
i−1∑

j=2

l j + li
2

+ (i − 1)λ

⎞

⎠ , (74)

where the last term comes from the contribution of the apoplast thickness.
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3.5 The Origin of the Induced Effective Velocity due to Spatially Varying Cell
Lengths

In the case of identical growing cells (Sect. 3.3), an effective velocity is naturally
induced due to cell growth. However, the origin of the induced velocity in the case
of non-growing cells (u = 0) with spatially varying lengths and vacuolar fractions is
less intuitive and requires the further analysis presented below.

As shown in Appendix B, for a file of cells comprised of only cytoplasmic com-
partments, having spatially varying cell lengths does not lead to an induced effective
advective velocity. However, introducing either vacuolar compartments or apoplastic
compartments alone is sufficient to induce an advective velocity. Furthermore, in these
two simpler cases, the induced velocity is proportional to both the spatial gradient of
the vacuolar fraction or the cell lengths, respectively, andPv−1 orPa−1, respectively.
Thus, not only is spatial variance in cell lengths necessary for an induced velocity, but
also the presence of unequal flow rates out of and into the cytoplasm.

To explain these results, we consider the ratio between the cytoplasmic hormone
concentration and the area-weighted average concentration, C/C, where the area-
weighted average concentration is defined by

C(x, t) = (1 − φ)ωlc(0) + φωlv(0) + λω f (0) + λ2g(0) + λlh(0)

V , (75)

where

V = (l + λ)(ω + λ) (76)

is the dimensionless area of each cell. Using (25), we can relate the average concen-
tration to the cytoplasmic one via

C = (1 − φ)ωl + φωlPv + λ(ω + λ + l)Pa

V C . (77)

Considering (56) (with l = l(x) for non-growing cells), we see that

C

C = V
V

. (78)

If C/C increases with distance along the cell file, i.e., its derivative with respect to x is
positive, this means that the relative proportion of cytoplasmic hormone concentration
in the cells increases, and therefore we interpret this as an effective velocity being
induced in the same direction and vice versa. In the particular case of cells having
only cytoplasmic and vacuolar compartments (without apoplast, i.e., λ = 0), after
rearrangement, we calculate

C

C = 1

1 + φ(Pv − 1)
, (79)
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and so

d

dx

(
C

C
)

= −dφ

dx

Pv − 1

(1 + φ(Pv − 1))2
. (80)

Thus, in the case of GA for a file of cells with increasing vacuole sizes, a negative
velocity is induced, since Pv > 1 (from (26)), which is in agreement with the analysis
in Appendix B. Similarly, in the case of cells having only cytoplasmic and apoplastic
compartments (without a vacuole, i.e., φ = 0), we find

C

C = (l + λ)(ω + λ)

ωl + λ(ω + λ + l)Pa
, (81)

and so

d

dx

(
C

C
)

= − dl

dx

ωλ(1 − Pa)(ω + λ)

(ωl + λ(ω + λ + l)Pa)2
. (82)

Again, in the case of GA for a file of cells with increasing lengths, a negative velocity
is induced, since Pa < 1 (from (26)), which is also in agreement with the results
in Appendix B. It is worth noting that, in the particular case, when there are only
“longitudinal” apoplastic compartments (i.e., there are no apoplastic compartments
between cell cytoplasms), then we find that C/C = (ω + λ)/(ω + λPa), which does
not change with x , and, consequently, there is no induced velocity. However, if we
keep the “transverse” apoplastic compartments only, then

C

C = l + λ

l + λPa
, (83)

and so

d

dx

(
C

C
)

= − dl

dx

λ(1 − Pa)

(l + λPa)2
. (84)

Thus, the “transverse” apoplastic compartments alone are enough to induce negative
effective velocity.

This analysis suggests that considering the sign of the derivative ofC/C is a faithful
criterion in determining whether there is an induced effective velocity and what its
direction is. Indeed, if we consider the expression for the effective velocity (70), we
see that it can be rewritten as

Ueff(x) = K (l + λ) + M

ω + λ

d

dx

(V
V

)
= K (l + λ) + M

ω + λ

d

dx

(
C

C
)

, (85)

using (78). Therefore, the sign of the spatial derivative of C/C coincides with the sign
of the induced velocity. Thus, we may now use this to study the more complicated
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general case when there are both a vacuolar and apoplastic compartments in the cells.
In this case, (78) holds, and thus

d

dx

(
C

C
)

= − ω(ω + λ)

((1 − φ)ωl + φωlPv + λ(ω + λ + l)Pa)2((
l2
dφ

dx
+ λl

dφ

dx
+ λφ

dl

dx

)
(Pv − 1) + λ

dl

dx
(1 − Pa)

)
. (86)

In the case of GA for a file of cells of increasing cell lengths and vacuolar fractions,
and with Pv > 1,Pa < 1, the right-hand side of (86) is negative, and thus a negative
effective velocity is induced, decreasing the rate of hormone transport. We note that
(80) and (82) can be obtained from (86) by setting φ = 0 and λ = 0, respectively. We
also observe that, if the cell lengths and the vacuolar fractions decrease along the cell
file, then a positive effective velocity is induced.

From (86), it is evident that the presence of a vacuole alters the transport dynamics,
regardless of the associated tonoplast transporter. For example, even if the cell lengths
increase with x and Pv > 1, a positive velocity can still be induced if the vacuolar
fractions decrease with x at a sufficiently large rate. For the purposes of concreteness,
we consider the case when the cytoplasmic area, σ = (1− φ)l, is constant among all
cells, i.e., the spatial variance is entirely due to changes in the size of the vacuole, as
would be the case in the root elongation zone. This means that

d

dx
((1 − φ)l) = (1 − φ)

dl

dx
− l(x)

dφ

dx
= 0. (87)

Substituting (87) into (86), we obtain

d

dx

(
C

C
)

= ω(ω + λ)((σ + λ)(Pv − 1) + λ(1 − Pa))

((1 − φ)ωl + φωlPv + λ(ω + λ + l)Pa)2

dl

dx
. (88)

Normally, for GA,Pa < 1 even when the cytoplasmicmembrane transporter is absent,
as in this case, Pa = B1/A1 � 1. However, if the tonoplast transporter is absent,
Pv = B1/C1 � 1, and so, provided the cell lengths increase with x , a positive
effective velocity is induced when

Pv <
σ + λPa

σ + λ
, (89)

which is thus satisfied when the tonoplast transporter is absent, since the right-hand
side of (89) is close to one for small λ and Pa. This is expected, since, when there is
no tonoplast transporter, GA is not taken up by the vacuole and is free to diffuse along
the file. Less intuitive, however, is the fact that a negative velocity can be induced
for a small interval of values for (σ + λPa)/(σ + λ) < Pv < 1 when GA is still
readily transported out of the vacuole. This is a result of the cytoplasmic membrane
transporters competitively interacting with the tonoplast transporters when Pa < 1.
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3.6 Numerical Results

We now present numerical simulations of the two base cases considered in Sects. 3.3
and 3.4 comparing the discrete and continuum formulations. In both cases, we use
Mathematica to solve the discrete model and use the method of lines with 100 grid
points in space to solve the continuum model. We then use the continuum model to
investigate the behaviour of the system further and how it depends on the physical
parameters.

3.6.1 Results for a File of Identical Growing Cells

We now solve the discrete model (43) with (17a–17e) and (44), subject to (20) and (21)
with (66), where l̂0 = l̂0,i = l̂av = 20µm, φ0 = φ0,i = 0.1, and Pplas = 0. We further
assume that cell growth is due to vacuolar expansion, as is the case for cells located in
the root elongation zone. This means that the cytoplasmic area, (1−φ)l, is constant in
time, and thus φ = 1− (1− φ0)l0/l, where l0 = l0,i and φ0 = φ0,i are the initial cell
lengths and vacuolar fractions, respectively. In this case, dV /dt = (ωPv+λPa)dl/dt .
We choose κ = 0.01 to illustrate the qualitative behaviour of the solutions when the
effect of diffusion onGA transport over the file of cells ismoderately comparable to the
effect of cell growth. For the continuummodel, we solve (63), subject to (57c) and (64).

We see an excellent agreement between the discrete and the continuum solutions,
which approach the steady solution, (67), for large time (Fig. 4a). The profiles of
the concentration are monotonically decreasing along the file. Within each cell, the
concentration initially increases with time, but, after a finite time, it starts to decrease
(Fig. 4a, b). This is because, in this regime, dilution due to growth gradually becomes
a more dominant effect than diffusion, driving the GA concentration down until a
balance between the two processes is reached, indicated by the steady-state profile.

We see that, for smaller values of the constant dimensionless growth rate κ , GA
spreads to the end of the file and raises the concentration in all cells in the long-term,
as indicated by the steady-state profile (Fig. 5a, b). However, for larger values of κ , GA
concentration rises only in the first few cells, remaining zero everywhere else. This
is because, with a smaller κ , transport by diffusion is more dominant over the effect
of dilution due to growth, and, therefore, GA is able to reach farther along the file.
The relative effects of dilution and diffusion on the macroscale is represented by the
parameter β: we note that κ = 0.001 corresponds to β = 7.5 = O(1), and, indeed,
we see a balance between these two effects over the length of the whole file.

Considering how the effective diffusivity, (60), varies with time for different values
of κ (Fig. 5c), we see that, after an initial decrease, due to competition between
the effects of the cytoplasmic and apoplastic contributions, the effective diffusivity
becomes monotonically increasing with time. This reflects our previous observation
for non-growing cells in Sects. 2.5.2 and 2.5.3 that the effective diffusivity is larger
for long cells. This is also the reason why, at later times, for smaller values of κ (i.e.
smaller values of the growth rate, k̂), the effective diffusivity is smaller. In Fig. 5d,
we show how the effective inter-cellular diffusivity from (63) in the fixed ξ -domain
varieswith time for the same values of κ . In this case, this diffusivitymeasures how fast
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Fig. 4 Continuum model predictions for growing identical cells agree with discrete model. a Plots of
the spatial profile of the cytoplasmic GA concentration c from the discrete model (solid black) and the
macroscopic cytoplasmic GA concentration C from the continuum model (dashed) at each cell for t = 1
(red), 10 (orange), 100 (green), 1000 (blue) and constant growth rate κ = 0.01, and the steady-state solution
Ceq from (67) (thick black), b temporal profile of the macroscopic cytoplasmic GA concentration C at the
middle of the file (tenth cell) and the corresponding concentration value of the steady-state concentration
Ceq from (67) (thick black). Here, l̂0 = 20µm, φ0 = 0.1, and Pplas = 0 (Color figure online)

Fig. 5 Effect of the constant growth rate, κ , on the predicted GA concentration for growing identical cells.
Plots of the spatial profile of the macroscopic cytoplasmic GA concentration C from the continuum model
at each cell for a t = 1 (red), 10 (orange), 100 (green), 1000 (blue), 10,000 (purple) and κ = 0.001, and b
t = 1 (red), 100 (orange) and κ = 0.1, together with the steady-state solution Ceq from (67) (thick black).
Plots of the temporal profile of the c effective diffusivity as from (60) and d the effective inter-cellular
diffusivity as from (63) for κ = 0.001, 0.01, 0.1. Here, l̂0 = 20µm, φ0 = 0.1, and Pplas = 0 (Color figure
online)

123



Multiscale Asymptotic Analysis Reveals How Cell Growth... Page 37 of 51 101

Fig. 6 Continuummodel predictions for non-growing cellswith spatially varying lengths agreewith discrete
model. a Plots of the spatial profile of the cytoplasmic GA concentration c from the discrete model (solid
black) and the macroscopic cytoplasmic GA concentration C from the continuummodel (dashed black) for
t = 1, 10, 100, 1000, 10, 000, and b temporal profile of the macroscopic cytoplasmic GA concentration C
at the middle of the file (x = 0.5), where α = 2.29, and ν = 0.25

GA is transported from one cell to another, rather than across a given distance. Thus,
this effective diffusivity decreases with time, since the cells grow, and the effective
diffusivity is larger for smaller values of κ , as this corresponds to a slower growth rate.

3.6.2 Results for a File of Spatially Varying Static Cells

We now solve the discrete model (43) with (17a–17e), and (44), subject to (20) and
(21) with (72–74), where l̂1 = 20µm, l̂N+1 = 200µm, φ1 = 0.1, φN+1 = 0.9, and
Pplas = 0 (choosing parameter values appropriate for a cell file along the Arabidopsis
root elongation zone (Band et al. 2012)). We find that l̂av ≈ 78.5µm and L̂ ≈
1580µm, and thus α = 2.29 and ν = 0.25. For the continuum model, we solve (54)
with (70), subject to (32) and (33).

Comparing of the GA distributions from the discrete and the continuum models
for different times, we see an excellent agreement for all times (Fig. 6a). We note that
the agreement for early time is better than the case of static identical cells (compare
Fig. 6a and 2a). This is because, in the case of spatially varying cell lengths, there are
more cells in the part of the file where there is a steep gradient in the GA concentration
profile at early times. As expected, at large times, the GA concentrations approach a
uniform steady state (Fig. 6a, b).

In Fig. 7a and b, we show spatial plots of the macroscopic GA concentration for
cell files with final cell length of 400µm and 100µm, respectively. In the first case,
we find that l̂av ≈ 127.6µm, L̂ ≈ 2562µm, α = 2.98, ν = 0.16, and, in the second
case, l̂av ≈ 49.85µm, L̂ ≈ 1007µm, α = 1.60, ν = 0.40. We see that, increasing the
final cell length (via an increase in α), leads to a faster approach to the steady state.
This is consistent with the results for static identical cells, where, in the case of long
cells, the effective diffusivity is larger than in the case of short cells, and thus the GA
concentration approaches the steady state faster. We note that the value of α affects
how the effective diffusivity varies with distance along the cell file (Fig. 7c). With
smaller α, the effective diffusivity decreases and becomes more uniform across the
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Fig. 7 Effect of cell-length gradient on the GA concentrations and effective diffusivity. Plots of the
spatial profile of the macroscale cytoplasmic GA concentration C from the continuum model for t =
1, 10, 100, 1000, 10000 for a α = 2.98 (final cell length is 400µm) and b α = 1.60 (final cell length is
100µm). c Plots of the spatial profile of the effective diffusivity as from (70) for α = 1.60, 2.29, 2.98 (and
final cell lengths 100, 200, 400µm, respectively) and ν = 0.40, 0.25, 0.16

file. In fact, for the case of a final cell length of 100µm, i.e., five times longer than
the initial cell length, the effective diffusivity is almost constant.

Finally, we explore how the velocity induced by the spatial variance in cell lengths
along the file affects the hormone transport dynamics. We consider three different
cases, namely, a file of cells with increasing lengths and vacuolar fractions, i.e., l̂1 =
20µm, l̂N+1 = 200µm,φ1 = 0.1,φN+1 = 0.9, and Pplas = 0, a file of cells that is the
mirror image of this one with respect to its middle, i.e., l̂1 = 200µm, l̂N+1 = 20µm,
φ1 = 0.9, φN+1 = 0.1, and a file, which consists of identical cells of length equal to
the average length in the previous two cases, i.e., l̂av ≈ 78.5µm. This will allow for
a fair comparison, because we keep the same number of cells and the total length of
the file. To be consistent, we also need to choose an average vacuolar fraction, φav, for
all cells in the third case, and we do this by insisting on preserving the total vacuolar
area in the file, i.e.,

φ1l1
2

+
N∑

j=2

φ j l j + φN+1lN+1

2
= Nφavlav. (90)

We find that φav ≈ 0.5.
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Fig. 8 GA is transported faster
in a file of cells with decreasing
lengths compared to a file of
cells with increasing lengths.
Plots of the temporal profile of
the GA concentration at the
middle of the file, x = 0.5, for a
file of identical cells (solid
black), decreasing cell lengths
(dashed), and increasing cell
lengths (dotted)

In Fig. 8, we show the temporal profiles of the GA concentration at themiddle of the
file for these three cases. We see that, in the case of decreasing cell lengths, transport
is fastest, and the steady state C = 1 is reached at t = 1000, whereas the slowest
transport occurs in the case of a file of cells of increasing lengths. The transport rate in
the case of identical cell lengths is between the other two cases. This is consistent with
our analysis in Sect. 3.5, since we found that, when the cell lengths are decreasing,
this induces a positive advective velocity, which promotes hormone transport along
the file. For example, looking at the times when C = 0.5 is achieved, we see that it
takes twice and 3.5 times as long in the case of identical cell lengths and the case of
increasing cell lengths, respectively, compared to the case of decreasing cell lengths.

4 Modelling the Effect of Cell Division

Within biological tissues, growing cells will typically divide at regular intervals to
maintain approximately constant cell sizes. Such a combination of growth and division
is typically essential for cellular functioning, as biochemical processes may break
down if cells became excessively large. Motivated by this, we now incorporate cell
division into our model for identical growing cells, in order to understand what effect
this has on the tissue-scale hormone transport. In this section, we aim to capture
more realistic cell growth dynamics and assume an exponential cell growth, such
that the relative elongation rate, r̂ , of the cells is constant (Beemster and Baskin
1998; Green 1976). In particular, using the non-dimensionalisation from Sect. 3.3, the
dimensionless cell lengths, l(t), satisfy

1

l

dl

dt
= μ, (91)

where μ = r̂ L̂2
0/D̂apo is the dimensionless relative elongation rate. We assume that

the cells divide synchronously at a constant cell division rate such that, as soon as a
cell doubles in size, it divides in two equal cells. Thus, we require the inter-division
time, T to be related to the relative elongation rate via

μ = log (2)

T
. (92)
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as detailed in Green (1976). Furthermore, since vacuoles remain small in the meristem
(Rizza et al. 2021), we assume that cell growth occurs due to both cytoplasmic and
vacuolar expansion such that the vacuoles remains at 10% of the cells area during
growth and division (thus, φ = 0.1 is constant).

Assuming that that every cell follows the exponential growth, given by (91), and at
every cell division (occurring at every T time units), the current length is partitioned
between two equal lengths of the two new cells and one thickness of a new apoplastic
compartment, located between the two cells, we calculate the cell-length function ld
to be

ld =
(
1 − λ

(
1 − 2−	t/T 
))

eμ(t−T 	t/T 
), (93)

where 	.
 is the floor function. We note that ld is discontinuous at the points of cell
division, namely, t = nT , where n ∈ N. Thus, the discrete model (43), subject to (20)
and (21), is valid everywhere except at the points of cell division.

The governing continuum equation is (54) with (60), as in Sect. 3.3, valid again
everywhere except at the points of cell division, where, now

Ueff(x, t) = ud = x

ld + λ

dld
dt

, Deff(t) = (K (ld + λ) + M) (ld + λ)

Vd
,

Qeff(t) = −∂ud
∂x

+ 1

Vd

dVd
dt

. (94)

Here, Vd is the equivalent expression for V , accounting for cell division, and is thus
given by

Vd = ω(1 − φ)ld + ωφldPv + λ(ω + λ + ld)Pa. (95)

This time (54) with (94) is subject to (57), where (57b) is evaluated at x = (l +
λ)/(1 + λ), where l is given through (91), as division does not affect the growth of
the whole file of cells. When numerically solving (54) with (94), we employ the same
method as in Sect. 3.3 and transform to a fixed-interval domain using (61). We treat
the case of cells with a single compartment in Appendix B.

In Fig. 9a, we show a temporal plot of the cell lengths ld for the case when T = 10.
We see that the lengths exhibit periodic behaviour due to the counteracting effects
of growth and cell division. Similarly, in Fig. 9b, we show a temporal plot of the
corresponding effective diffusivity, Deff , given in (94). We again see that it eventually
settles into a periodic behaviour due to the periodicity in ld.

In Fig. 10, we show a comparison between the spatial profiles of the GA concen-
tration in the discrete and continuum models after six, seven, and eight synchronous
cell divisions, respectively, starting with a file of two cells of length 5µm each. We
see an excellent agreement confirming that the continuum model with the modified
cell length accurately represents the transport dynamics in the discrete system.

In Fig. 11a, we show a temporal profile of theGA concentration at a fixed point (x =
0.1) along the file for different inter-division times T , compared to the corresponding
plots without cell division (but with the same corresponding relative elongation rate).
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Fig. 9 Cell division and growth together can induce periodic behaviour in cell lengths and diffusivity. Plots
of the temporal profile of the a cell lengths, ld, and b effective diffusivity, Deff , with T = 10, φ = 0.1, and
Pplas = 0

Fig. 10 Continuum model predictions for growing and dividing cells agree with discrete model. Plots of
the spatial profile of the cytoplasmic GA concentration c from the discrete model (solid lines) and the
macroscopic cytoplasmic GA concentration C from the continuum model (dashed lines) after five (black),
six (blue), and seven (red) cell divisions. Here, the inter-division time is 10h, φ = 0.1, and distance x is
non-dimensionalised with the initial length of the file (Color figure online)

We see that all profiles are similar to Fig. 4b, except that, here, they decrease down to
zero due to the exponential form of the growth, which, unlike linear growth, allows
only for a trivial steady state. Furthermore, we see that, as the inter-division time
increases, the concentration increases, which is expected, since this corresponds to
smaller relative elongation rate and a more dominant effect of diffusion (with reduced
dilution due to growth). Finally, we see that, as the inter-division time increases,
the difference between the cases with and without cell division increases. This is
again because increasing the inter-division time corresponds to decreasing the relative
elongation rate, and thus the effect of cell division, which acts to slow down diffusion
by introducing more cellular and apoplastic compartments, becomes significant. In
Fig. 11b, we show a spatial profile of the GA concentration for different times. We see
that, as time increases, the GA concentration initially increases, and then decreases
down to zero, as in Fig. 11a. We note that, in this case, GA reaches until about a third
of the length of the file. Since increasing the inter-division time reduces the relative
elongation rate, it will enhance GA spreading further into the file of cells.
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Fig. 11 Decreasing the relative elongation rate through an increase in the inter-division time promotes the
effect of cell division, which acts to slow down GA transport. a Plots of the temporal profile of the GA
concentration at a fixed point in the file, x = 0.1, for different inter-division times T = 5, 10, 15 (solid
black) and the corresponding plots without cell division (dashed black). b Plots of the spatial profile of the
GA concentration for t = 1, 10, 30, 50 with T = 10. The cell numbers on the axis reflect the initial number
of cells. In all plots, φ = 0.1 and Pplas = 0

5 Discussion and Conclusions

In this paper, we formulated a discrete cellular model for passive and facilitated
hormone transport along a file of plant cells featuring apoplastic, cytoplasmic, and
vacuolar compartments. We then systematically derived a continuum macroscopic
representation of the model, whereby the hormone concentration depends continu-
ously on distance along the file as well as time, exploiting the assumption that the
ratio of the average cell length to the length of the whole file ε, is small. We found
that, in all cases considered, for ε � 1, the hormone concentration in all cellular
compartments evolves quasi-statically over the timescale associated with diffusion
through the apoplast along the whole file. This enabled us to obtain a set of alge-
braic equations for the leading-order (in ε) hormone concentrations in the various
compartments, and we found that the hormone concentration in the apoplast and the
vacuole are proportional to the hormone concentration in the cytoplasm, where the
constants of proportionality form two further key dimensionless parameter groupings,
that represent the ratio of the effective transport permeabilities of the hormone from
the cytoplasm into the apoplast and vice versa, and from the cytoplasm into the vac-
uole and vice versa, respectively. These effective permeabilities incorporate the effect
of passive diffusion of the protonated form of the hormone and facilitated diffusion
via protein transporters of the anionic form of the hormone. In particular, for the case
of GA, we found that the apoplastic and vacuolar concentrations are approximately
0.013 and 3.20 times the cytoplasmic concentration, respectively. Thus, there is very
little GA in the apoplast and a significant proportion of GA is stored in the vacuole.
Based on fluorescence assays, it was shown in Shani et al. (2013) that a similar ratio is
measured between the vacuolar and the nuclear GA concentration. However, further
experimental data are needed to fully compare our results to actual measurements.

In deriving the continuum model, we began by considering the case of identical
static cells. We obtained a diffusion equation for the macroscopic cytoplasmic hor-
mone concentration with an effective diffusivity which consisted of a cytoplasmic,

123



Multiscale Asymptotic Analysis Reveals How Cell Growth... Page 43 of 51 101

apoplastic, and plasmodesmatal contribution. We considered two base cases of short
(20µm) and long (200µm) cells with vacuolar volume fractions of 0.1 and 0.91,
respectively, as appropriate for Arabidopsis root cells. We found excellent agreement
between the solutions of the discrete and the continuum models for both cases even
with only 20 cells. This means that we may use the continuum representation, which
is much easier to solve numerically and even explicitly, to explore the dynamics of the
system and investigate the effect of varying the parameters of the model. We found
that, without transport through the plasmodesmata, the effective diffusivity depends on
the effective hormone permeabilities across the cytoplasmic and vacuolar membranes,
the geometric aspect ratios of the various compartments, and the vacuolar fraction in
the cell. We observed the same functional dependence on the parameters for both short
and long cells, but there was a quantitative difference in the value of the diffusivity.
In the case of GA, effective diffusion in the long cells was estimated to be 80% faster
than in short cells, since, for a given distance, GA molecules cross cell membranes
fewer times when travelling through long cells. This effect seems to dominate over
the effect of having larger vacuoles in long cells, which would take up more GA, and
hence reduce diffusion. Still though, the effective diffusion in both cases was signifi-
cantly slower than diffusion through the apoplast, used for reference, which was due
to the fragmentation of the cell into various compartments, with the apoplast being
thin. We also found that transport through the continuous apoplast around all cells is
significant, and, without it, the effective diffusivity was reduced 2.5 times in the case
of short cells. The reduction in the case of long cells was smaller, since the proportion
of the apoplast in a long cell is smaller than in a short cell.

We then explored how the effective diffusivity depended on the model parameters.
For short cells, increasing the vacuolar fraction from its minimum to its maximum
value decreased the diffusivity approximately three times for the case of GA.However,
in a mutant plant, where there is no transporter localised on the vacuolar membrane
(exporting GA out of the cytoplasm into the vacuole), the diffusivity increases with the
vacuolar fraction, since this effectively decreases the relative proportion of the cyto-
plasm compared to the apoplast, where GA is transported faster. In fact, we obtained
formulae for the effective diffusivity for loss-of-function mutants lacking a cytoplas-
mic importer (npf2.12), vacuolar importer (npf2.14), or both (npf2.12 npf2.14), and
found that, in short cells, the diffusivity is largest in the double mutants and smallest in
the wild type. In long cells, there was an interplay between the effect of the vacuolar
importer, which was dominant in reducing the diffusivity due to the large vacuolar
fraction, and that of the cytoplasmic importer, which counteracts this effect. We thus
found that the diffusivity was smallest in the mutant without a cytoplasmic importer,
and largest (larger by an order ofmagnitude) in themutant without a vacuolar importer.
When varying the geometrical parameters of the model, we observed that the effective
diffusivity increased with the aspect ratio of the apoplastic compartment and increased
when decreasing the aspect ratio of the cytoplasmic compartment, since both of these
increase the relative proportion of the apoplast, where GA is transported fastest. We
also varied the pH in the various compartments and found that the cytoplasmic pH sig-
nificantly affects the effective diffusivity, with the diffusivity dramatically decreasing
above a pH value of six, since this results in the cytoplasmic GA being predominantly
anionic which requires transporters to mediate transport across the membranes. We
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found little variation in the effective diffusivity with changes in apoplastic pH and,
importantly, almost no variation with the vacuolar pH. This behaviour persisted both
for short and long cells, indicating that even a moderate uncertainty in the value for
the vacuolar pH would not alter the tissue-scale hormone diffusion significantly. Sim-
ilarly, we found that there was almost no variation of the diffusivity when varying the
tonoplast transporter permeability. This suggests that it is the presence or absence of
the vacuole with its transporter that alters the effective diffusivity, and not the actual
value of the permeability across the tonoplast. We also found that the effective diffu-
sivity was monotonically increasing with the passive permeability, as expected, and
was monotonically increasing with the cytoplasmic importer permeability except for
very small values, where it was decreasing due to a competition between its apoplastic
and cytoplasmic contributions.

We also explored the effect of hormone transport through the plasmodesmata. We
found that, plasmodesmatal hormone diffusion dramatically increases the effective
diffusivity for both short and long cells (being comparable to the diffusivity in the
apoplast), due to the direct pathway between cell cytoplasms provided by the plas-
modesmata. This was also evident from the formula for the effective diffusivity with
plasmodesmatal transport, where the cytoplasmic and apoplastic contributions to dif-
fusion became negligible, and the diffusivity depended only on the permeability of the
plasmodesmata and the vacuolar transporter, and the vacuolar fraction. Thus, cytoplas-
mic importers do not contribute to the leading-order longitudinal effective diffusion,
but may contribute to transport between adjacent cell files. Thus, we see that plasmod-
esmata can play a significant role in hormone transport. However, the channels may be
restricted by callose deposition (De Storme and Geelen 2014), so their permeability
is highly varying. We conclude therefore that when they are open, plasmodesmatal
transport will be dominant, even in the loss-of-functionmutants; when they are closed,
transport will be mediated by passive and facilitated diffusion; and when they are par-
tially open (in the sense that the plasmodesmatal permeability is much smaller than
the passive permeability of the membrane (O(ε2) in dimensionless terms)), then all
three kinds of transport will contribute.

We then considered the case when the cells in the file can grow with time and
be non-identical in length. While previous studies have considered cell lengths that
depend on other processes, such as growth-induced forces (Jensen and Fozard 2015;
Middleton et al. 2014; Murphy et al. 2019; Piatnitski and Ptashnyk 2020; Tambyah
et al. 2020), here, we prescribed the dynamic cell-length, l(x, t), and vacuole-fraction,
φ(x, t), distributions and focused on how they affected the tissue-scale transport rates.
Our analysis revealed that with spatio-temporal variations in cell lengths the governing
macroscopic equation for the hormone concentration is a reaction–advection–diffusion
equation. In particular, both spatial variance in cell lengths (and sizes of the subcellular
compartments) along the file and cell growth induced an effective advective velocity
of the hormone that depended on the growth rate of the cells and the spatial gradient of
the cell lengths (and the sizes of the subcellular compartments) in addition to the other
model parameters. These processes also introduced an effective sink term, proportional
to the hormone concentration, which represented dilution due to cell elongation. The
effective diffusivity was of the same form as for the static case of identical cells,
but was modulated by the cell length, which now depended on both distance along
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the file and time. We note that, in this case, we assumed that the cell lengths were
slowly varying, which required the spatial gradient of the cell lengths to be moderate
in size. Further, we neglected intracellular transport, as we assumed it happened on a
fast timescale, which required that the cells did not become as long as approximately
1200µm when diffusion through the cytoplasm became significant. In order to better
understand the individual effects of growth and spatial variance, we considered two
base cases, namely, a file of identical growing cells, and a file of static cells with
non-identical lengths.

In the first case, we assumed the cells grew linearly in time. We found that the
effective advective velocity was entirely due to the cell growth, and we were able to
remove it from the governing equation by transforming to a fixed domain, scaling
the distance variable. This meant that, instead of following the actual distance along
the file, we considered the hormone concentration against cell number along the file.
This led to a reaction–diffusion equation, where the sink term due to dilution was
proportional to the cell growth rate, and whose solutions were in excellent agreement
with the solutions from the corresponding discrete model. In addition, the effective
diffusivity from the unscaled equation increased with time, which was consistent with
our previous results that the diffusivity was larger for long cells. The scaled formula-
tion allowed us to find a non-uniform steady-state solution in the fixed domain. This
means that, for large time, the hormone concentration in each cell will approach the
corresponding steady-state value despite the fact that cells are growing. This illustrates
that diffusion can balance dilution due to growth. We found that decreasing the cell
growth ratemade the steady-state solutionmore uniform, since diffusion becamemore
dominant, whereas increasing the cell growth rate resulted in the hormone reaching
only the first few cells in the file at steady state. Thus, not only is growth influenced by
certain hormones, but it is also a key mechanism in regulating hormone distribution
in plants.

In the second case, we assumed that the cell lengths varied linearly with distance
along the file. This time, the spatial variance alone induced an effective advective
velocity in the continuum equation and a sink term, whereas the effective diffusivity
had the same functional form as for the growing-cells case, but it was dependent
on distance, rather than time. Again, there was an excellent agreement between the
solutions of the continuum and discrete models. Here, the steady state was simply
a spatially uniform solution for the hormone concentration, given by the boundary
condition at one end of the file. We found that increasing the gradient in cell lengths
along the file (by doubling the final cell length), resulted in a larger effective diffusivity,
and hence faster approach to the steady state, since diffusion is faster in long cells,
as explained before. In particular, when we halved the final cell length to 100µm,
compared to the initial cell length of 20µm, the effective diffusivity was almost
uniform along the file, indicating that the cell lengths do not have to be identical to
obtain a constant diffusivity. We also found a criterion for finding the direction of the
induced effective velocity, which involved examining whether the ratio between the
cytoplasmic and the average hormone concentration was an increasing or decreasing
function with distance along the file. This resulted in positive or negative velocity,
respectively. This had a significant effect on the hormone transport dynamics, as a
positive velocity promoted transport along the file, whereas a negative velocity slowed
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it down. Further, we explored three different cases of a filemade of identical cells, cells
of increasing, and cells of decreasing cell lengths, respectively. To aid the comparison,
we kept the number of cells, total file length and total vacuolar fraction constant among
all cases. We found that, in the case of decreasing cell lengths, transport was fastest
achieving half the concentration at steady state at the middle of the file two times faster
than the case of identical cell lengths due to the induced positive velocity. Thus, spatial
variance in cell size is a key mechanism in regulating the rate of hormone transport
across the cells.

We also considered the effect of cell division on transport dynamics. We assumed
that cells followed an exponential growth, which kept the relative elongation rate
constant, and that each cell dividedonce it haddoubled in size,which ensured aperiodic
behaviour in the cell sizes and effective diffusivity and established that the interdivision
time (time between successive cell divisions) was inversely proportional to the relative
elongation rate of the cells. Thus, we found that increasing the interdivision time
decreased the relative elongation rate, which enhanced the effect of cell division by
slowing down hormone transport when compared to the case without cell division.
Similarly, this also enabled the hormone to reach further into the file of cells, as
diffusion became more dominant when the growth rate decreased. In particular, for
an interdivision time of 14 hours (as appropriate for cells in the Arabidopsis root
meristem), GA diffused into approximately a third of the cell file.

Although our model was initially aimed at describing GA transport in plants, we
see that the analysis is general enough to be applied to various hormones, such as
ABA, auxin, SA in different regions of the plant. In fact, the framework is readily
applicable to other kinds of cells, such as animal cells, where there is similar transport
dynamics of a certain chemical or nutrient in a file of similar cells. The apoplas-
tic compartment can be removed by taking its thickness to be zero and removing
the corresponding concentration variables from the equations. Similarly, the vacuolar
compartment can be adapted to represent a different compartment in the cell, such
as the nucleus or endoplasmic reticulum, by changing the corresponding parameter
values. Thus, our analysis generally demonstrates how cell-scale transport processes
affect the tissue-scale hormone transport, providing formula for the effective diffusiv-
ity, effective velocity and effective dilution in terms of the cell-scale parameters. The
derived continuum approximations provide key insights into hormone transport and
provide a simpler macroscale representation of the hormone transport that could be
incorporated into more comprehensive multiscale plant models.
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Appendix A Clarification on the Symmetry of the Cell Geometry

A typical symmetric cell that would be used as a repeating unit in multiple files of
cells is a cell with horizontal apoplastic compartments on both sides with thicknesses
equal to half of their original thicknesses (â/2). By symmetry, this is equivalent to
considering half of this cell with a horizontal apoplastic compartment on one side of
it (of thickness â/2). This configuration corresponds to taking ŵ to ŵ/2 and â to â/2
only in the horizontal apoplastic compartments. Considering (31), we see that this
transformation does not change the formula for the effective diffusivity, and thus, for
simplicity, in Fig. 1, we consider a cell of width ŵ with a single horizontal apoplastic
compartment of thickness â.

Appendix B The Case of Cells with One or Two Compartments only

To illustrate the generality of our results, we use our continuum model with spatio-
temporal variations in cell lengths (54)–(57c) to derive the corresponding simpler
models for a file of cells that have only a cytoplasmic compartment, or a cytoplasmic
compartment and an additional vacuolar or apoplastic compartment.

In the first case, we consider cells which contain only cytoplasm and have only
cytoplasm-to-cytoplasm diffusion, as represented by plasmodesmatal diffusion (with
λ = 0, φ = 0, Pa = 0). We obtain

Ueff = u, Deff = Pplasl, Qeff = 0. (96)

Thus, the effective velocity depends only on the cell growth rate. In the case of non-
growing cells that have spatially varying lengths, u = 0, so there is no induced effective
velocity.

In the second case, we incorporate vacuolar compartments with facilitated transport
across the vacuolar membrane (with λ = 0 and Pa = 0). We obtain

Ueff = u − Pplas(Pv − 1)l

(1 − φ + φPv)2

∂φ

∂x
, Deff = Pplasl

1 − φ + φPv
,

Qeff = u

l

∂l

∂x
+ 1

l

∂l

∂t
+ u(Pv − 1)

1 − φ + φPv

∂φ

∂x
+ Pv − 1

1 − φ + φPv

∂φ

∂t
− ∂Ueff

∂x
.

(97)

In the third case, we extend the first case to incorporate apoplastic compartments
(but no vacuole, φ = 0) and consider both plasmodesmatal diffusion and facilitated
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transport across the cell membrane. We obtain

Ueff = u + λω(Pa − 1)(K (l + λ) + M)

(ωl + λ(ω + λ + l)Pa)2

∂l

∂x
, Deff = K (l + λ) + M

ωl + λ(ω + λ + l)Pa
,

Qeff = u(ω + λPa)

ωl + λ(ω + λ + l)Pa

∂l

∂x
+ ω + λPa

ωl + λ(ω + λ + l)Pa

∂l

∂t
− ∂Ueff

∂x
,

(98)

where K and M are given by (56).
These simpler cases demonstrate that when there are additional cellular compart-

ments, comprising either vacuoles or apoplastic compartments, then spatially varying
cell lengths and vacuolar fractions create an induced effective velocity (even in the
case of non-growing cells). This induced velocity is proportional to the spatial gradi-
ent of the vacuolar fraction and Pv − 1 in the case where vacuolar compartments are
present, and is proportional to the spatial gradient in the cell lengths and Pa −1, when
the apoplast is included.

Furthermore, in the case of cell division with inter-division time T in cells with
only one compartment, for example, (96) holds with l replaced by the modified length
ld that incorporates division, where

ld = l

2	t/T 
 . (99)
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