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Abstract
With over 2 million people in the UK suffering from chronic wounds, understanding
the biochemistry and pharmacology that underpins these wounds and wound healing
is of high importance. Chronic wounds are characterised by high levels of matrix
metalloproteinases (MMPs), which are necessary for themodification of healthy tissue
in the healing process. Overexposure of MMPs, however, adversely affects healing of
the wound by causing further destruction of the surrounding extracellular matrix. In
this work, we propose a mathematical model that focuses on the interaction of MMPs
with dermal cells using a system of partial differential equations. Using biologically
realistic parameter values, this model gives rise to travelling waves corresponding to
a front of healthy cells invading a wound. From the arising travelling wave analysis,
we observe that deregulated apoptosis results in the emergence of chronic wounds,
characterised by elevated MMP concentrations. We also observe hysteresis effects
when both the apoptotic rate and MMP production rate are varied, providing further
insight into the management (and potential reversal) of chronic wounds.

Keyword Travelling waves and Bifurcation analysis

1 Introduction

Wound healing is a physiological response to injury of tissue involving the coordinated
interactions of many cell types and biochemical agents (Wallace et al. 2021; Martin
1997). In individuals such as diabetes patients, so-called ‘chronic wounds’ may per-
sist, which require medical treatments to promote healing (Nyugen et al. 2016; Fan
et al. 2021). There are approximately 2.2 million people in the UK suffering from
chronic wounds, costing the NHS over £5 billion per year (Department of Health and
Social Care 2021). These wounds last, on average, 12–13 months and recur in 60%–
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70% of individuals, potentially leading to the loss of function (Frykberg and Banks
2015). Improved understanding of the biochemical mechanisms underpinning chronic
wounds is therefore crucial to support the development of new treatments.

The healing of wounds involves the complex interplay of various cell types and
their mediators and cytokines (Flegg et al. 2015). A wound is defined as damage to the
skin which is comprised of two layers: the epidermis and the dermis. The epidermis
is the outermost layer and is responsible for protecting against infection, while the
dermis is the innermost layer and provides tensile strength for the skin by means of
the dermal extracellular matrix (ECM) (Flegg et al. 2015; Frantz et al. 2010). The
process of wound healing can be categorised into four successive stages: haemostasis,
inflammation, proliferation and remodelling (Wallace et al. 2021). A wound that is
able to complete these four stages in a well-coordinated manner is defined as an acute
wound; conversely, a wound that spends a prolonged time in any of the four stages is
defined as a chronic wound (Nyugen et al. 2016). The inflammation and proliferation
stages of wound healing involve the production of matrix metalloproteinases (MMPs)
by many cells types such as keratinocytes, fibroblasts, endothelial cells, and inflam-
matory cells (Guo and DiPietro 2010; Nyugen et al. 2016). For the remainder of this
work, we consider only the production ofMMPs by fibroblasts. MMPs are responsible
for lysing protein components of the ECM, allowing for fibroblast migration within
the ECM and, as a result, the proliferation of cells and modification of tissue (Nyu-
gen et al. 2016). Experimental data has shown that there is increased expression of
MMPs at the edge of a wound in all stages of the healing of an acute wound (Krejner
et al. 2016). It is essential to have a well regulated concentration of MMPs during this
process: if MMP levels are too low, this leads to uncontrolled ECM production and
can cause issues such as hypertrophic scarring or dermal fibrosis (Li et al. 2009). If
MMP levels are too high, chronic wounds are observed, as the overexposure of MMPs
results in the increased degradation of the ECM (Sabino and Keller 2015). One such
cause for these elevated MMP levels is deregulated apoptosis of dermal tissue, which
may be caused by uncontrolled blood sugar levels in diabetes patients (Rai et al. 2005;
Arya et al. 2014).

Mathematical modelling of the wound healing process can provide a framework
to understand the behaviour of chronic wounds, potentially to direct treatments and
improve the quality of life of patients.Manymathematicalmodels have been developed
to describe the wound healing process, each focusing on specific mechanisms of
interest. For example, agent–based models (ABMs) can emulate the individual-level
stochastic nature of the biological processes involved in wound healing (Sun et al.
2009; Mi et al. 2007; Walker et al. 2004; Ziraldo et al. 2013; An et al. 2009; Bankes
2002). Although ABMs are able to detail specific properties of individual cells, using
them to model dynamics of wound healing on a tissue level may be computationally
infeasible. We therefore will consider continuous models of wound healing, which
typically use partial differential equations (PDEs) and present opportunities for a
range of analytical techniques for further study (Flegg et al. 2015).

Continuous mathematical models of both dermal and epidermal wound healing
typically take the form of reaction-diffusion systems, extending the work of Sherratt
and Murray (1990) that examined the interaction of epidermal cells with a represen-
tative chemical acting as a regulator of mitosis. Their model has subsequently been
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developed to consider additional chemical agents involved in epidermal wound heal-
ing, such as the role of epidermal growth factor in corneal wound healing and the role
of keratinocyte growth factor in epidermal wound healing (Sherratt and Murray 1992;
Dale et al. 1994; Sheardown and Cheng 1996; Gaffney et al. 1999). Contrastingly,
other models of dermal wound healing consider the role of fibroblasts in restoring
the ECM in response to various mechanisms at different stages in the wound healing
process.Many of these models consider the roles of angiogenesis and consider the role
of oxygen transport in wound healing (Landen et al. 2016; Chaplain and Byrne 1996;
Pettet et al. 1996a, b; Schugart et al. 2008; Flegg et al. 2015), while others consider
the process of ECM restoration by fibroblasts in response to growth factors (Dale
et al. 1997; Wearing and Sherratt 2000), the crosstalk of the epidermis and the dermis
to simulate the simultaneous healing of both layers (Menon et al. 2012; Menon and
Flegg 2021) and the incorporation of collagen fibre orientation due to cell movement
(Dallon et al. 1999, 2000, 2001; McDougall et al. 2006; Cumming et al. 2009). Trav-
elling wave solutions are often observed in these mathematical models, agreeing with
the experimental evidence of wound healing assays (Maini et al. 2004a, b). However,
these models are often limited to the healing of acute wounds.

In this work, we consider the role thatMMPs play in wound healing, with particular
consideration given to chronic wounds. We propose a two-component reaction-
diffusionmodel that describes the interaction ofMMPswith dermal tissue, inwhich the
restoration of the ECM is affected by MMP concentration levels. Using biologically
realistic parameter values, this model gives rise to travelling waves corresponding to
a front of healthy cells invading a wound. From the arising travelling wave analysis,
we observe that deregulated apoptosis results in the emergence of chronic wounds,
characterised by elevated MMP concentrations. We also observe hysteresis effects
when both the apoptotic rate and MMP production rate are varied, providing further
insight into the management (and potential reversal) of chronic wounds.

We develop our mathematical model in Sect. 2. Direct numerical simulations indi-
cate the existence of travelling wave solutions, motivating a travelling wave analysis
in Sect. 3. We then consider the effect of deregulated apoptosis on the healing of a
wound via bifurcation and phase plane analysis in Sect. 4. Finally, we consider the
effects of elevatedMMP production levels on the healing of a wound in Sect. 6, before
discussing our results in Sect. 7.

2 Model Development

We begin by presenting a mathematical formulation to describe MMP concentration
dynamics in the presence of a wound. Elevated levels of MMPs play a key role in the
persistence of chronic wounds; in light of this, we focus on constructing a reaction-
diffusion model of wound healing that incorporates the interaction between MMPs
with dermal cells during the wound healing process. For simplicity, we consider a
woundwith aone-dimensionalCartesiangeometry,where x represents the longitudinal
distance across a fixed domain, which evolves over time t . This model consists of two
populations within a wound: the dermal cell density, denoted as n(x, t), and the MMP
concentration, denoted as m(x, t). We take n(x, t) to incorporate the actions of both
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Fig. 1 Schematic of the
interactions of dermal cells with
MMPs. Labelled rates are
defined as in the system (1), (2)

fibroblasts and ECM for the sake of simplicity, since fibroblasts are responsible for
creating the components of the ECM.

We assume that dermal cells undergo mitosis with intrinsic growth rate σ and
carrying capacity Kn , noting that n = 0 corresponds to the complete absence of cell
tissue. As mentioned previously, MMPs can assist in the healing of the wound up to
a threshold concentration, denoted here as mthresh, above which they adversely affect
healing of thewound by degrading the surrounding ECM. This effect is incorporated in
the mitosis process by means of a function f (m). Furthermore, dermal cells undergo
apoptosis with rate δn and dermal cell motion within the wound is represented by
linear diffusion with effective diffusivity Dn .

MMP production by fibroblasts, denoted by a recruitment function g(n), occurs in
response to inflammatory chemicals which are found in abundance in a wound. MMP
production is therefore assumed here to be proportional to the absence of healthy
tissue. MMPs undergo natural decay with rate δm and diffuse through the wound with
diffusivity Dm . These aforementioned processes are shown in Fig. 1. Combining these
modelling elements provides the following system of PDEs:

∂n

∂t
= Dn

∂2n

∂x2
︸ ︷︷ ︸

Cell
motion

+ σ
(

1 + f (m)
)

n

(

1 − n

Kn

)

︸ ︷︷ ︸

Mitosis

− δnn
︸︷︷︸

Apoptosis

, (1)

∂m

∂t
= Dm

∂2m

∂x2
︸ ︷︷ ︸

Diffusion

+ g(n)
︸︷︷︸

Recruitment
of m

− δmm
︸︷︷︸

Decay

. (2)

We now discuss the functional forms of f (m) and g(n) appearing in the system
(1), (2). The function f (m) in (1) represents the contribution to wound healing by
MMPs and is defined to be an increasing function of m until m = mthresh, at which
f (m) = fmax, the maximum factor by which mitosis can be enhanced due to the
presence ofMMPs. Larger concentrations ofMMPs hinder the wound healing process
and thus, for m larger than mthresh, f (m) is a decreasing function of m. A suitable
choice of f (m) is therefore
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Fig. 2 Schematic functional forms of a the healing contribution by MMPs function, f (m) in (3), and b the
MMP recruitment function, g(n) in (4)

f (m) = fmax

mthresh
m exp

(

1 − m

mthresh

)

; (3)

a schematic of f (m) is shown in Fig. 2a. We note that f (m) and hence the parameter
fmax are dimensionless. For elevated levels of MMPs, f (m) decreases to zero and the
mitosis term reduces to logistic growth with zero healing contribution due to MMPs.
One could also allow f (m) to take negative values for largem, representing a negative
healing contribution to the ECM.We have considered a functional form of this type in
Appendix A, where we show that such a choice gives rise to largely similar qualitative
features to those produced by the functional form of f (m) given in (3). Given these
similarities, we restrict attention to the choice of f (m) as in (3) as this choice results
in simpler analytic computations.

The recruitment function g(n) in (2) represents the production of MMPs by the
cells in proportion to the absence of healthy tissue. Consequently, we can represent
g(n) as

g(n) =
(

1 − n

Kn

)

kmn

γm + n
, (4)

where km is the maximum reaction rate and γm is a Michaelis–Menten constant
(Michaelis and Menten 1913). A schematic of g(n) is shown in Fig. 2b.

2.1 Initial Conditions and Boundary Conditions

The initial conditions of the system (1), (2) are chosen as follows to emulate a wound
starting at x = λ

ν
, i.e the tissue surrounding the wound occupies the spatial interval

[0, λ
ν
), and the wound is the region [λ

ν
, L]. Furthermore, a small concentration of

MMPs, η, is initially present at the wound edge λ
ν
:

n(x, 0) = KnH(λ − νx), (5)
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m(x, 0) = η exp
( − (νx − λ)2

)

. (6)

In (5), H is the Heaviside function while n = Kn corresponds to the cells being at
carrying capacity. Assuming the wound to be symmetric about its centre and that the
tissue is fully healed far away from thewound, we adopt zero-flux boundary conditions
on both endpoints of the finite domain of length L , i.e:

∂

∂x
n(x, t) = ∂

∂x
m(x, t) = 0 at x = 0, L. (7)

2.2 Nondimensionalisation

In this section, we non-dimensionalise the system (1)–(7). We are interested in the
dynamics of the system on the timescale of mitotic rate of dermal cells and therefore
introduce the following dimensionless variables:

N = n

Kn
, M = m

mthresh
, X =

√

σ

Dn
x, T = σ t . (8)

With these scalings, we obtain the following dimensionless equations:

∂N

∂T
= ∂2N

∂X2 + [

1 + fmaxMexp(1 − M)
]

N (1 − N ) − δN N , (9)

∂M

∂T
= DM

∂2M

∂X2 + αN (1 − N )

γM + N
− δMM, (10)

where

DM = Dm

Dn
α = km

mthreshσ
γM = γm

Kn
δN = δn

σ
δM = δm

σ
. (11)

In taking ν =
√

σ
Dn

in (5), (6) for simplicity, the dimensionless initial and boundary

conditions are:

N (X , 0) = H(λ − X), (12)

M(X , 0) = η exp
( − (X − λ)2

)

, (13)

and

∂

∂X
N (X , T ) = ∂

∂X
M(X , T ) = 0 at X = 0, L, (14)

where η = η
mthresh

and L = L
√

σ
Dn

. We note that the dimensionless values λ, η and L

are chosen for illustrative purposes. The corresponding dimensional parameter values
are easily computed and are consistent with physiological values.
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Table 1 Values for the dimensional parameters appearing in (1)–(4)

Parameter Description Value References

Dn Diffusion coefficient of cells 6.12 × 10−5 mm2h−1 (Schugart et al. 2008)

Dm Diffusion coefficient of MMPs 9 × 10−4 mm2 h−1 (Collier et al. 2011)

σ Mitotic rate of cells 0.0385 h−1 (Jin et al. 2011)

Kn Carrying capacity of cells 1250 cells mm −2 (Jin et al. 2011)

km Maximal rate of MMP
production by cells

4 pg/μg h−1 Estimate

γm Density of cells at which half of
ke is attained

625 cell mm −2 Estimate

fmax Maximum factor with which
mitosis can be enhanced due to
the presence of MMPs

50 Estimate

δm MMP decay rate 0.009 h−1 (Deakin and Chaplain 2013)

δn Cell apoptosis rate 0.005 h−1 (Jin et al. 2011)

mthresh Threshold concentration of
MMPs at which maximum
healing contribution fmax is
attained

7 pg/μg (Muller et al. 2008)

Table 2 Values of the
dimensionless parameter values
appearing in the wound healing
model in (9)–(14)

Parameter Value

DM 14.706

α 14.842

fmax 50

δN 0.130

δM 0.234

γM 0.5

λ 3

η 0.1

L 200

We define the dimensionless system (9)–(14) as the ‘wound healing model’ and
we note that 0 ≤ N (X , T ) ≤ 1, since we do not expect the cell density to exceed its
carrying capacity once healing is completed.

Suitable values for the dimensional parameters appearing in (1)–(4) are given in
Table 1; we remark that these parameters correspond to ‘normal’, or healthy, wound
healing and, unless otherwise stated, are employed in all simulations. These parameter
values are used to calculate the dimensionless parameter values in (11)–(14) and are
given in Table 2. We remark that where parameter values were unable to be obtained
from literature; these were estimated heuristically.
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Fig. 3 Simulation of the wound healing model (9)–(14) at regular time intervals T = 2 with parameter
values as in Table 2. a Evolution of cell density N (X , T ) across the spatial domain, b Evolution of MMP
concentration M(X , T ) across the spatial domain

2.3 Model Simulations

In order to obtain numerical solutions of the wound healing model, we use the method
of lines and discretise on a one-dimensional spatial domain, using second order finite
differences to approximate spatial derivatives. We then integrate the resulting system
of time–dependent ODEs using MATLAB’s ODE15s solver.

An example numerical simulation of the wound healing model is shown in Fig.
3. As seen in Fig. 3a, the cell density N (X , T ) evolves into a travelling wave where
a front of tissue of density N ≈ 1 is ‘invading’ the wound (N = 0). This state of
N ≈ 1 is close enough to unity to be considered as a healed state; we elaborate on
the classification of a healed state further in Sect. 3. Since we observe a travelling
wave where a healed front of tissue invades the wound, this scenario corresponds to a
wound healing to completion. In Fig. 3b, we also observe the formation of a travelling
wave for M(X , T ) in which a ‘spike’ in MMP concentration is found at the edge
of the healing wound. These qualitative phenomena are in agreement with biological
literature, which suggests the increased expression of MMPs at the edge of an acute
would at all stages in the healing process (Krejner et al. 2016).

3 Steady State and TravellingWave Analysis

From the previous section, we observe that the wound healing model gives rise to
travelling wave solutions. Therefore, in this section we conduct a travelling wave
analysis of the model. To determine the far-field states of the travelling waves, we
first examine the uniform steady-states of (9), (10). In particular, the invading far-field
state for N (X , T ) will indicate whether or not a wound is healing to completion. The
uniform steady states (N , M) of (9), (10) satisfy the following:

M = α

δM

N (1 − N )

γM + N
, (15)
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δN N = (

1 + fmaxMexp(1 − M)
)

(1 − N )N . (16)

Combining (15), (16), we find that all non-trivial steady states may be written in
terms of the single variable N :

δN = α fmax(1 − N )2N

δM (γM + N )
exp

(

1 − αN (1 − N )

δM (γM + N )

)

+ 1 − N . (17)

Using the fimplicit function in MATLAB, we determine a numerical solution
for N and subsequently M using equation (15).

It is clear from (16) that we always have the trivial steady state, i.e. (N , M) = (0, 0)
for all positive parameters. As discussed in Sect. 2.3, we characterise a wound as
healing to completion when a far-field state of N ≈ 1 is achieved. This is because
for δN = 0, N = 1 satisfies (16). For non-zero δN , however, N does not attain the
value one, since apoptosis of cells is continually occurring. For small δN , i.e. values
corresponding to healthy biological functioning, (16) provides N close to unity, and
we hence consider this state to describes healed tissue. Additionally, if an unhealed
or partially healed steady-state of N , i.e. not qualitatively close to one, invades a state
corresponding to damaged tissue, we characterise this as a chronic wound.

The stability of the uniform steady-states (N , M) is given by linear stability analysis
of the analogous spatially-independent form of the wound healing model:

dN

dT
= (

1 + fmaxMexp(1 − M)
)

N (1 − N ) − δN N , (18)

dM

dT
= αN

γM + N
(1 − N ) − δMM . (19)

This stability analysis (detailed in Appendix B) is used to determine the stability
of the branches of bifurcation diagrams which we examine in Sects. 4 and 6.

In order to verify the existence of travelling solutions to the wound healing model,
we consider a travelling wave analysis. Employing the travelling wave coordinates
ξ = X − cT ∈ R, where c is the wave speed, the wound healing model (9)–(14)
reduces to the boundary value problem (BVP):

d2N

dξ2
+ c

dN

dξ
+ (

1 + fmaxMexp(1 − M)
)

N (1 − N ) − δN N = 0, (20)

DM
d2M

dξ2
+ c

dM

dξ
+ α

N

γM + N
(1 − N ) − δMM = 0, (21)

with boundary conditions

lim
ξ→±∞ N ′(ξ) = lim

ξ→±∞ M ′(ξ) = 0. (22)

We note that when considering solutions in travellingwave coordinates, the stability
of N and M in the bifurcation diagrams in Figs. 5 and 9 are swapped, i.e. stable
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Fig. 4 Numerical solution of the boundary value problem (20)–(22) obtained using MATLAB’s BVP5c
solver with parameter values as in Table 2

branches are unstable in travelling wave coordinates and vice versa, due to the change
of variables ξ = X − cT .

Using MATLAB’s BVP5c solver, we present numerical simulations of the BVP
(20)–(22) in Fig. 4 with parameter values given in Table 2, which verifies the simula-
tions of the wound healing model in Fig. 3. We are also able to use BVP5c to obtain a
nondimensional wavespeed of c = 9.6, which translates to a dimensional wavespeed
of cdim = 1.504× 10−2mm h−1. This wavespeed is of the correct order of magnitude
observed from wound healing assays from (Maini et al. 2004a).

4 Deregulated Apoptosis

As mentioned previously, a potential cause for the emergence of chronic wounds is
deregulated apoptosis. In this section, we examine the behaviour of the wound healing
model under variation of the apoptotic rate of cells, δN . Figure 5 shows bifurcation
diagrams for N and M against δN ; the stability of the branches is determined by linear
stability analysis that is detailed in Appendix B.

Inspection of the bifurcation diagrams in Fig. 5 show that we have four bifurcation
points that separate five parameter regimes, in which solution behaviours of the wound
healingmodel differ qualitatively. The intervals for each regime are denoted as follows:

I1 = [0, β1); I2 = (β1, β2); I3 = (β2, β3); I4 = (β3, β4) and I5 = (β4,∞).

(23)

The positions of the interval boundaries β1 < β2 < β3 < β4 and the method used
to calculate them are given in Appendix C. While each interval is discussed in greater
detail in subsequent subsections, we begin with a brief overview of the qualitative
behaviours observed in each region.

For δN ∈ I1, we have two steady-states for N : a state approaching unity and the
trivial state. As discussed in Sect. 2.3, this parameter regime corresponds to a wound
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Fig. 5 Bifurcation diagrams of (15)–(17) showing the steady-states a N and b M under variation of
δN . Other parameter values are given in Table 2. The bifurcation diagrams show four bifurcation points
β1, β2, β3 and β4 separating five regimes I1, I2, I3, I4 and I5. Dashed lines represent unstable branches
and solid lines represent stable branches. The stable branches are colour-coded such that the green branch
of steady states of N in a corresponds to the green branch of steady states of M in b, and similarly for blue
branches

healing to completion, with an increased expression of MMPs at the wound edge.
For δN ∈ I2, I3, it is unclear from the bifurcation diagram whether or not a wound
will heal to completion, due to the existence of other non-trivial steady states. The
bifurcation diagram for N indicates that we have 3 and 4 nontrivial states for I2 and
I3 respectively: with one being a healed state (N ≈ 1), and the others being partially
healed states. At δN = β3, we observe a saddle node bifurcation point at which the
healed state is destroyed. For δN ∈ I4, there are two non-trivial states for N , both being
unhealed states which indicates that for δN ∈ I4, a wound will not heal to completion
and hence a chronic wound will persist. Finally, for δN ∈ I5 only the trivial state
exists.
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4.1 ıN ∈ I1

The bifurcation diagram in Fig. 5 indicates that we have two steady-state solutions,
with one being the trivial state. The other state is N ∼ 1 at leading order, which can
be verified using a regular perturbation analysis by considering the case where δN ,
δM 	 1. As discussed in Sect. 3, this regime describes the invasion of a wound by
a healed front of cells and thus the healing of an acute wound. These features are
reflected in direct simulation of the full system in Fig. 6a, for which δN ∈ I1. We
also note that travelling waves for M(X , T ) in Fig. 6b display an increased expression
of MMP concentration at the wound edge, which is in agreement with the biological
literature as discussed in Sect. 1. From the phase plane diagram in Fig. 6c, we see
that regardless of initial conditions, trajectories in (N , M) space always arrive at the
healed state, (N , M). Therefore, for δN ∈ I1 and other parameter values as in Table
2, a wound will always heal to completion.

4.2 ıN ∈ I2, I3

For δN ∈ I2, I3, the bifurcation diagram in Fig. 5 shows that we have 3 and 4 nontrivial
states, respectively. The phase plane diagrams in Fig. 6c indicate that the initial state
determines whether or not the wound heals to completion, with high initial concen-
trations of MMPs resulting in the emergence of a chronic wound. Contrastingly, if a
small concentration of MMPs is initially present at the wound edge, a wound can heal
to completion (Fig. 6a). This suggests that baseline levels of MMP must be kept low
in order to minimise risk of the persistence of a chronic wound. The simulations for
δN ∈ I2, I3 exhibit behaviour similar to that for which δN ∈ I1, demonstrating the
healing of an acute wound.

4.3 ıN ∈ I4

For δN ∈ I4, all trajectories arrive at one of two unhealed states for all initial conditions
(Fig. 6c). These states have complex eigenvalues, characterised by spirals in the phase
plane diagram and we therefore expect a travelling wave corresponding to a chronic
wound with fluctuating MMP levels about its nonzero state. This is verified by the
simulations in Fig. 6a, b,wherewe observe travellingwaveswith qualitatively different
features to those observed in previously discussed intervals.

This change in the qualitative features of the travelling waves corresponds to a
saddle-node bifurcation point at δN = β3 observed in the bifurcation diagrams in
Fig. 5. At this bifurcation point, the branch of healed states N ∼ 1, shown in blue
(and the corresponding branch for M) is destroyed. This loss of a healed state of N
indicates that the invading state in the travelling wave simulations will transition to an
unhealed state, which is verified by Fig. 6a where we also observe increased density
of dermal tissue at the edge of the wound. As discussed in Sect. 3, we characterise
this as a chronic wound. The emergence of a chronic wound also corresponds to the
invading state of M in the travelling wave simulations transitioning to a larger value as
shown in Fig. 6b, suggesting that elevated MMP concentrations prevent the complete
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Fig. 6 Direct simulations of the wound healingmodel, for various δN values for a N (X , T ) and bM(X , T ).
The phase plane diagrams in c correspond to the spatially independent ODE system (18), (19). Blue lines
represent nullclines, green lines indicate representative trajectories of theODE system and red dots represent
the steady states. The yellow highlighted section of the domain represents the set of all the initial conditions
(ICs) in the (N , M) phase space whose trajectories go to the healed state, the orange section represents the
ICs whose trajectories go to an unhealed state and the red section represents the ICs whose trajectories go
to the zero state. All other parameter values are as given in Table 2. We note that for I2 and I3, only the
fully healed travelling waves (obtained using initial conditions as in (12), (13)) are shown in a and b. We
also note that the M-axis changes in each row
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healing of the wound. These results are consistent with the biological literature in
that deregulated apoptosis is a prominent cause of the emergence of chronic wounds,
which are characterised by having raised MMP concentrations.

4.4 ıN ∈ I5

For δN ∈ I5, we find that N and M both tend to zero for all initial conditions. This
collapse of the travelling wave is expected in the case where apoptosis of dermal cells
is very high, as cells die faster than they can reproduce.

5 Multistability and Hysteresis

As discussed in Sect. 1, a potential cause for the emergence of chronic wounds
is deregulated apoptosis which may be caused by uncontrolled blood sugar lev-
els in diabetes patients. In this section, we therefore examine how the apoptotic
rate, δN controls the transition from a healthy to a chronic state. We also investi-
gate whether or not a chronic wound may be reversed if the apoptotic rate were
to be regulated, for example, by regulating blood sugar levels. As discussed in
Sect. 4.3, a saddle-node bifurcation point occurs at δN = β3, which results in
the emergence of a chronic wound, where high concentrations of MMPs prevent
the wound healing to completion. The subcritical nature of this bifurcation has
important implications for the solution behaviour, which we demonstrate in direct
simulations of the wound healing model by allowing δN in (9) to slowly increase in
time:

δN (T ) = ̂δN + εT , (24)

where ̂δN = 0.1 ∈ I1. As we see in Fig. 7, the travelling wave for N (X , T ) transitions
from a completely healed wound to a chronic wound with elevated MMP concentra-
tions, which verifies the results outlined in Sect. 4.3.

As mentioned in Sect. 4.3, a saddle-node bifurcation point also occurs at δN = β1.
As such, we consider the case of decreasing δN to investigate the implications for the
solution behaviour upon decreasing δN below β1 from a regime in which a chronic
wound persists.We take a value of ̂δN such that ̂δN > β3 (to ensure the persistence of a
chronic wound), and allow δN in (9) to slowly decrease in time via (24) by changing ε

with−ε. In Fig. 8, we take ̂δN = 2.5 ∈ I4 and simulate the wound healing model with
δN (T ) applied to (9). From Fig. 8c, we observe the emergence of a chronic wound as
we expect, displaying consistent qualitative features as in Fig. 7c when considering
increasing δN . For β1 < δN < β3, i.e. δN ∈ I2, I3, however, we observe another
partially-healed wound in the travelling wave simulations in Fig. 8b in contrast to
Fig. 7b and demonstrates the existence of two qualitatively different travelling wave
profiles, depending on the choice of initial conditions. We observe from Fig. 8a that
for a chronic wound to heal, δN (t) must be decreased to when δN < β1, i.e δN ∈ I1,
demonstrating the subcritical nature of the bifurcation point β1, and the multistable
nature of different travelling wave profiles for β1 < δN < β3. The multistability of

123



Modelling the Effect of Matrix Metalloproteinases in… Page 15 of 25 96

Fig. 7 Simulations of the wound healing model with (24) applied to (9), i.e. δN increasing in time with
̂δN = 0.1 and ε = 0.01. Other parameter values are as given in Table 2. Note that the X -axis has been
trimmed to highlight the qualitative features of each travelling wave (dotted lines) but has not been scaled,
i.e. the X -axis is the same length scale as those in Fig. 6a and b. The bifurcation diagram is as given in Fig.
5a for δN ∈ [0, 3] and coloured asterisks represent the δN (T ) values at the time points given in a, b and c.
The green arrows represent the evolution of the invading states of the travelling waves as δN is increased.
Note that all travelling waves shown connect to the zero state. We also note that the M-axis changes at each
time point

the travelling wave profiles occurs as there is history dependence upon increasing and
decreasing the apoptotic rate, i.e. a hysteresis loop affects the invading states of the
travelling waves profiles. We conclude that chronic wounds may persist if apoptotic
rates reach an unregulated state, but these chronic wounds may heal to completion
if δN were able to be regulated from a deregulated state, for example by controlling
blood sugar levels.
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Fig. 8 Simulations of the wound healing model with (24) and ε → −ε applied to (9), i.e. δN decreasing
in time with ̂δN = 2.5 and ε = 0.005. Other parameter values are as given in Table 2. Note that the X -axis
has been trimmed to highlight the qualitative features of each travelling wave (dotted lines) but has not
been scaled, i.e. the X -axis is the same length scale as those in Fig. 6a, b. The bifurcation diagram is as
given in Fig. 5a for δN ∈ [0, 3] and coloured asterisks represent the δN (T ) values at the time points given
in a, b and c. The green arrows represent the evolution of the invading states of the travelling waves as δN
is increased. Note that all travelling waves shown connect to the zero state. We also note that the M-axis
changes at each time point

6 ElevatedMMP Production

As described in Sect. 1, chronic wounds are characterised by elevated levels of
MMPs which prevent its healing. MMP production is a factor that may potentially be
targeted with treatments for chronic wounds. In a similar fashion to the varying of δN ,
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Fig. 9 Bifurcation diagrams of α against a N , and b M . Other parameter values are as given in Table 2.
Dashed lines represent unstable branches and solid lines represent stable branches. The stable branches are
colour-coded such that the green branch of steady states of N in a correspond to the green branch of steady
states of M in b; equivalent for blue branches

we now examine the qualitative changes to travelling wave profiles when we vary the
production rate of MMPs, α.

We present bifurcation diagrams for N and M against α in Fig. 9; the stability of the
branches is determined by linear stability analysis detailed in Appendix B. Inspection
of the bifurcation diagrams show that we have two saddle-node bifurcation points (μ1
and μ2) separating three parameter regimes. We note that at μ2 (at which α is large),
the branch of healed states of N is destroyed and hence, similar to in Sect. 4.3, we
expect the emergence of a chronic wound. We also note that the unhealed branch in
Fig. 9 consists of statesmuch higher than those in Fig. 5 upon varying δN . This contrast
is due to our choice of f (m) in (3). If we allowed f (m) to take negative values for
large m, then the unhealed branch would take much lower values.

Similar to Sect. 5, we now investigate the dynamics of the wound healing model
for both increasing and decreasing α. Firstly, we allow α in (10) to slowly increase in
time:

α(T ) = α̂ + εT , (25)

where α̂ = 0 < μ1. As we see in Fig. 10, the travelling wave for N (X , T ) transitions
from a completely healed wound to a partially healed wound with elevated MMP
concentrations (see the bifurcation diagram in Fig. 9b). These dynamics occur as α

exceeds a value μ∗ ≈ 103.2 determined heuristically, where, despite the invading
state of the travelling wave attaining a healed value, the wave visits the unhealed state,
resulting in a partially healed wound. Increasing α further results in the invading state
transitioning to an unhealed value, and thus the emergence of a chronic wound at μ2.
We deduce that the threshold MMP production rate at which wounds cease to heal to
completion is μ∗, rather than the saddle-node bifurcation point μ2 as we may have
originally expected.

We now consider decreasing α to investigate whether or not a chronic wound may
be reversed if MMP production levels were able to be regulated. In Fig. 11, we take
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Fig. 10 Simulations of the wound healing model with (25) applied to (10), i.e. α increasing in time with
α̂ = 0 and ε = 1. Other parameter values are as given in Table 2. Note that the X -axis has been trimmed
to highlight the qualitative features of each travelling wave (dotted lines) but has not been scaled, i.e. the
X -axis is the same length scale as those in Fig. 6a and b. The bifurcation diagram is as given in Fig. 9a for
α ∈ [0, 300] and N ∈ [0.8, 1] and coloured asterisks represent the α(T ) values at the time points given
in a, b, c and d. The green arrows represent the evolution of the invading states of the travelling waves as
α is increased. The maroon dotted line represents the value α = μ∗. Note that all travelling waves shown
connect to the zero state. We also note that the M-axis changes at each time point

α = 300 > μ2 and allow α in (10) to slowly decrease in time via (25) by changing ε

with −ε. From Fig. 11a, we observe the emergence of a chronic wound as we expect,
showing consistent qualitative features as in Fig. 10d when considering increasing α.
For μ1 < α < μ2 however, we observe wounds that do not heal to completion in
contrast to the case of increasing α, again demonstrating the existence of multistable
travelling wave profiles depending on the choice of initial conditions. We also observe
a change in qualitative features at α = μ∗. For α < μ∗, the travelling wave visits
the healed state resulting in a partially healed wound. From Fig. 11d, we deduce that
α(T ) must be reduced such that α < μ1 for a chronic wound to heal.
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Fig. 11 Simulations of the wound healing model with (25) and ε → −ε applied to (10), i.e. α decreasing
in time with α̂ = 300 and ε = 1. Other parameter values are as given in Table 2. Note that the X -axis has
been trimmed to highlight the qualitative features of each travelling wave (dotted lines) but has not been
scaled, i.e. the X -axis is the same length scale as those in Fig. 6a and b. The bifurcation diagram is as given
in Fig. 9a for α ∈ [0, 300] and N ∈ [0.8, 1] and coloured asterisks represent the α(T ) values at the time
points given in a, b, c and d. The green arrows represent the evolution of the invading states of the travelling
waves as α is decreased. The maroon dotted line represents the value α = μ∗. Note that all travelling waves
shown connect to the zero state. We also note that the M-axis changes at each time point

Similar to in Sect. 5, there is a hysteresis loopwhich results in history dependence of
the travellingwave profiles on increasing and decreasing α which results inmultistable
travelling wave profiles for μ1 < α < μ2. Unlike in Sect. 5 however, we observe an
inconsistency in qualitative features of travelling waves for μ1 < α < μ2 due to the
existence of the threshold value μ∗. We conclude that that wounds will only partially
heal beyond α = μ∗. Furthermore, a chronic wound may be reversed to a healed state
if MMP production rate is controlled from a deregulated state back to a regulated state.
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7 Conclusions and Discussion

In this work, we develop a two-variable reaction-diffusion model, describing the inter-
action of matrix metalloproteinases (MMPs) with dermal cells in the wound healing
process. In particular, we focus attention on the emergence of chronic wounds, since
biological literature suggests that elevated levels of MMPs play a key role in their
emergence. Our mathematical model gives rise to travelling wave solutions and in
particular is able to emulate key qualitative features of the wound healing process
reported in biological literature. One such property is that under parameter regimes
representing healthy biological functioning, we observe acute wounds healing to com-
pletion with an increased expression in MMP concentration at the edge of the healing
wound.

To contrast acute wounds with chronic wounds, we consider the effect of varying
the apoptotic rate of dermal cells. Small apoptotic rates correspond to healthy bio-
logical functioning and thus we observe the complete healing of a wound. Provided
initial concentrations of MMPs are kept low, an increase in apoptotic rate also results
in the healing of a wound, which suggests that in order to avoid risk of the emergence
of a chronic wound, baseline levels of MMPs must be kept minimal. Elevated apop-
totic rate beyond a threshold value leads to the emergence of a chronic wound, with
increased levels of MMPs invading the wound which prevents its healing. Moreover,
we observe mulitstable travelling waves depending on initial conditions due to the
existence of a hysteresis loop in the bifurcation diagrams for apoptotic rate. There-
fore, in order to reverse a chronic wound to a state of complete healing, the apoptotic
rate must be decreased below a threshold value. This gives insights into the regulation
of apoptotic rate in the healing of chronic wounds which may be achieved by, for
example, regulating blood sugar levels in diabetes patients.

We also consider the effect of varying MMP production rate on the healing of a
wound. Similar to the analysis for apoptotic rate, we obtain threshold values at which
chronic wounds persist and may be reversed. However, contrasting from the variation
of the apoptotic rate, we observe a change in the the qualitative features of the travelling
wave solutions at a different threshold value μ∗. At this new threshold, occurring in
the middle of the multistable regime, a wound transitions from healing completely to
only being partially healed, before reaching a regime where chronic wounds persist.

Due to the observation of multistable travelling wave solutions with varying quali-
tative features, a natural extension to this work includes conducting a stability analysis
of these travelling waves. Moreover, since we have considered the effects of varying
apoptotic rate and MMP production rate separately, future work should consider the
impact of concurrent defects in apoptotic rate andMMP production levels on the heal-
ing of a wound.We note that we have defined a chronic wound by changes to apoptotic
rates and MMP production rates starting from a parameter set corresponding to acute
wound healing. Parameter values corresponding to a chronic wound may however
involve additional changes beyond these, hence further work should consider a full
parameter sensitivity analysis.
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Despite the wound healing model successfully being able to emulate qualitative
features of both acute and chronic wounds, it has greatly simplified the process of
wound healing by coupling the action of fibroblasts and the extracellular matrix, as
well as assuming that MMPs directly contribute to healing of wounds. In reality,
MMPs indirectly contribute to the healing by allowing the migration of other key
elements involved in the wound healing process, such as fibroblasts, keratinocytes
and endothelial cells (Nyugen et al. 2016). Future research should therefore take
these factors into consideration. Furthermore, the role of tissue inhibitors of MMPs
(TIMPs) in the wound healing process should be considered as these have an impact
on the regulation of MMP concentration. This consideration would ultimately give
further insight into the behaviour of MMPs during the wound healing process, as well
as potentially direct biological therapies of chronic wounds, i.e. by determining the
optimum physical and chemical composition of hydrogel therapies.
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Appendix A: Alternative f (m)

In Sect. 2, we consider the functional form of f (m) in (1) which describes the healing
contribution of dermal cells by MMPs. Since large concentrations of MMPs results
in the destruction of the ECM, we may expect f (m) to become negative for large m.
One such function that captures this behaviour is the following:

f̃ (m) = f̃max

mthresh
m exp

(

1 − m

mthresh

)

− κm

1 + m
, (26)

for some values of f̃max and κ . A schematic of f̃ (m) is shown in Fig. 12. In non-
dimensionalising the PDE system (1), (2) subject to f̃ (m) given in (26), using the
scaling given in (8), we obtain the simulations given in Fig. 13. Initial and boundary
conditions are chosen as in (12)–(14) and we take f̃max = 67.46 and κ = 20; all
other parameter values are as given in Table 2. In Fig. 13, we observe largely similar
qualitative features as those seen in Fig. 3: the invasion of a wound by a healed front
of cells with an increased expression of MMP concentration at the wound edge.
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Fig. 12 Schematic functional
forms of the healing contribution
by MMPs functions f (m) as in
Fig. 2a and f̃ (m) as in (26)

Fig. 13 Simulation of the system (1)–(7), non-dimensionalised according to (8) with f (m) as in (26) at
regular time intervals with f̃max = 67.46, κ = 20 and other parameter values as in Table 2. a Evolution
of cell density N (X , T ) across the spatial domain, b Evolution of MMP concentration M(X , T ) across the
spatial domain

Appendix B: Steady State Stability Analysis

In this section, we consider the stability of spatially-uniform steady states that solve
(18), (19). We note that the Jacobian of this system is given by:

J =
⎛

⎜

⎝

(1 − 2N )
(

1 + fmaxMexp(1 − M)
) − δN fmaxN (1 − N )(1 − M)

(

exp(1 − M)
)

α(γM − N 2 − 2γMN )

(γM + N )2
−δM

⎞

⎟

⎠ .

(27)

At the steady state (N , M) = (0, 0), the Jacobian becomes

J |(0,0) =
⎛

⎝

1 − δN 0

α

γM
−δM

⎞

⎠ ,
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which provides the following eigenvalues:

λ1 = −δM ,

λ2 = 1 − δN .
(28)

Since δM , δN > 0, the zero state is an unstable saddle for δN < 1 and is a stable
node for δN > 1. For all other steady states, we use MATLAB’s fsolve function
to determine (N , M) which are then substituted into (27) and whose eigenvalues are
computed using MATLAB’s eig function.

Appendix C: Bifurcation Points ıN

From the bifurcation diagrams in Fig. 5, we observe that there are four bifurcation
points: one transcritical and three saddle nodes. The value of δN at which the transcrit-
ical bifurcation point occurs may be deduced from the argument in Appendix B. From
(28), we conclude that the zero state is an unstable saddle for δN < 1 and is a stable
node for δN > 1. This change in stability confirms that the transcritical bifurcation
point occurs at (δN , N , M) = (1, 0, 0).

The values of N at which the saddle node bifurcation points occurmay be calculated
by computing the derivative of (17) with respect to N and setting this equal to zero,
i.e.

α fmax

δM (γM + N )2

(

γM (1 − 4N + 3N
2
) − 2N

2
(1 − N )

+αN (1 − N )2(2γMN − γM + N
2
)

δM (γM + N )

)

exp

(

1 − αN (1 − N )

δM (γM + N )

)

+ 1 = 0.

(29)

We useMATLAB’sfzero function to find the N values of the saddle node bifurca-
tion points, and then substitute these into (15) and (17) to find the correspondingM and
δN values respectively. For the parameter choices as in Table 2, the saddle-node bifur-
cation points are (δN , N , M) = (0.2695, 0.7693, 8.8787), (1.8164, 0.9508, 2.0465)
and (50.5904, 0.007998, 0.9916). I.e. the values of β1, β2, β3 and β4 as discussed in
Sect. 4, subject to other parameter values as in Table 2, are β1 = 0.2965, β2 = 1, β3 =
1.9164 and β4 = 50.5904.
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