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Abstract
As motivated by studies of cellular motility driven by spatiotemporal chemotactic
gradients in microdevices, we develop a framework for constructing approximate
analytical solutions for the location, speed and cellular densities for cell chemotaxis
waves in heterogeneous fields of chemoattractant from the underlying partial dif-
ferential equation models. In particular, such chemotactic waves are not in general
translationally invariant travelling waves, but possess a spatial variation that evolves
in time, and may even oscillate back and forth in time, according to the details of the
chemotactic gradients. The analytical framework exploits the observation that unbi-
ased cellular diffusive flux is typically small compared to chemotactic fluxes and is
first developed and validated for a range of exemplar scenarios. The framework is sub-
sequently applied to more complex models considering the chemoattractant dynamics
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under more general settings, potentially including those of relevance for representing
pathophysiology scenarios in microdevice studies. In particular, even though solutions
cannot be constructed in all cases, a wide variety of scenarios can be considered ana-
lytically, firstly providing global insight into the important mechanisms and features
of cell motility in complex spatiotemporal fields of chemoattractant. Such analytical
solutions also provide a means of rapid evaluation of model predictions, with the
prospect of application in computationally demanding investigations relating theoret-
ical models and experimental observation, such as Bayesian parameter estimation.

Keywords Cell culture · Heterogeneous stimuli · Method of characteristics ·
Perturbation theory · Glioblastoma cell progression · Microfluidics

1 Introduction

Biological mechanisms require the orchestration of diverse cell populations, proper-
ties of the extracellular matrix (ECM), chemotactic gradients, and physical signals, to
effect a complex, dynamic, and interactive microenvironment (Chen et al. 1997; Cur-
tis and Seehar 1978; Schwarz and Bischofs 2005; Carter 1967; Lo et al. 2000). Cells
continuously adapt to their surroundings, particularly to maintain homeostasis, keep-
ing the intracellular and extracellular environment within physiological bounds (Bray
2000). In particular, in response to external stimuli, cells adapt, modifying numerous
aspects of their behaviour, such as proliferation, gene expression, ECM production,
migration and differentiation. Furthermore, these cellular responses impact the sur-
rounding medium and neighbouring cells (Mousavi et al. 2013b; Kumar et al. 2013;
Mousavi et al. 2014). This coupled interaction between cells and their environment
is fundamental in developmental and physiological processes such as embryogenesis,
organ development and tissue repair, as well as pathophysiologies such as atheroscle-
rosis or cancer (Huang and Ingber 2005; Hanahan 2022; Nagelkerke et al. 2015; Quail
and Joyce 2013; Urdeitx et al. 2023). Hence, advancing innovative frameworks to
enhance our understanding of these mechanisms, together with their interactions, is
essential for developing novel therapeutic strategies driven by promoting or inhibiting
specific cellular behaviours (Mousavi et al. 2013a).

However, with in vivo research it is difficult to control and isolate effects, justi-
fying in vitro research as an alternative to experimental medicine and studies with
animals. Nonetheless, biological mechanisms proceed in three-dimensional structures
(Edmondson et al. 2014), but in vitro cells are mostly cultured in a traditional Petri
dish (2D culture). Indeed, the continuous drop in the number of drugs that reach the
market, despite billion-dollar investments, demonstrates that the current predictive
power of both in vivo and in vitro research still requires improvement (Scannell et al.
2012).

Recently, microfluidics has arisen as a powerful tool to recreate the complex
microenvironment that governs tumour dynamics (Sackmann et al. 2014; Bhatia and
Ingber 2014). This technique allows the reproduction of numerous important features
that are lost in 2D cultures, as well as testing drugs in a much more reliable and
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efficient way (Bersini et al. 2014; Boussommier-Calleja et al. 2016; Jeon et al. 2015;
Zervantonakis et al. 2012; Wu and Yotnda 2011).

In addition to microfluidic in vitro models, theoretical cell population evolution
models based on transport partial differential equations (PDEs) have been increas-
ingly used to investigate cells and their environmental interaction in diverse areas,
as exemplified by cancer modelling (Byrne 2010; Altrock et al. 2015). A particular
niche of interest is Glioblastoma (GBM), the most common and aggressive primary
brain tumour (Brat 2012), with extensive studies dedicated to mathematical modelling
its evolution (Hatzikirou et al. 2005), reproducing aspects of GBM histopathology
(Bearer et al. 2009) and incorporating the influence of tumour microenvironment
(TME) chemical and mechanical cues (Kim et al. 2016). It has been demonstrated that
GBM progression is extensively controlled by the local oxygen concentrations and
gradients (Hatzikirou et al. 2012), motivating many studies to incorporate the role of
oxygen gradients and hypoxia in tumour progression (Ayuso et al. 2017; Martínez-
González et al. 2012; Frieboes et al. 2006).

In particular, there has been a confluence of theoreticalmechanism-basedmodelling
and microfluidic experimental studies in the investigation of GBM cultures (Ayensa-
Jiménez et al. 2020), where a go-or-grow transition switch, governed by nonlinear
activation functions for the chemotaxis and growth in a modelling framework has
reproduced GBM culture evolution under differing conditions. Such studies not only
implicate the balance between cell chemotaxis and proliferative activity, and their
relation to the different TME stimuli, as playing key roles in GBM evolution, but also
emphasise howmodelling can contribute to advances in microfluidic cell culture stud-
ies. However, numerically solving the model equations incurs a high computational
cost in these applications, especially in the resolution of inverse problems such as
parameter estimation, model selection, the design of experiments, sensitivity studies,
model structural analysis andUncertainty Quantification (UQ). Consequently, analyti-
cal solutions, even approximate, provide key information to test and validate numerical
algorithms, inform a mechanism-based understanding across parameter space and to
allow initial predictions for behaviours of interest, such as travelling fronts and equi-
libria, noting GBM progression has been considered in this manner (Pérez-García
et al. 2011; Gerlee and Nelander 2016; Stepien et al. 2018).

Thus our objective is to develop rational analytical approximations in the mod-
elling of the chemotactic cell motility dynamics, including situations of relevance for
microfluidic studies of GBM cultures (Shin et al. 2012; Sackmann et al. 2014). In
particular chemotaxis is typically represented via the framework of Keller and Segal
(1971), which is well-known for its rich structure (Arumugam and Tyagi 2021; Xue
et al. 2011). For many situations of interest for microdevice cell cultures, the problem
may be considered one-dimensional and the chemotactic agent concentration, while
heterogeneous, may be taken to be known, either because it can be directly measured,
or because its concentration can be computed by solving a diffusion problem that
is, to good approximation, decoupled from the cell population field. Consequently,
our objective reduces to determining approximate analytical solutions for the one-
dimensional chemotactic cell fronts in heterogeneous gradients of chemoattractants,
for instance considering the time dependence in spreading speeds and impact of tem-
poral oscillations of chemotactic stimuli. Of particular note, our study moves beyond
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traditional travelling wave analysis to analyse cell chemotactic invasive dynamics
where the wavefront and wavespeed evolve in time.

To proceed, we first describe the structure of the one-dimensional mathematical
problem associated with the response of cell populations to chemotactic gradients,
together with the general assumptions and hypotheses about the underlying mecha-
nisms. We derive pertinent features of the solutions, for instance migratory structures
with a transition zone wavefront, with estimates of the time-dependent wavespeed
and the shape of the solution profile. In particular, we compute an analytical solution
for specific exemplar cases associated with specific relevant experimental situations,
such as a constant spatial gradient of chemoattractant, temporal oscillations due to a
fluctuating source and an exponential profile of chemoattractants corresponding to the
diffusion from a localised source. We further apply the general results to the analysis
of potential cell culture microfluidic experiments, representing a simplified version
for an in vitro model of glioblastoma progression, developed by Ayensa-Jiménez et al.
(2020), showing the potential for the methods presented here to generate analytical
results for the simulation of microdevice representations for migratory tumour cell
dynamics.

2 Methods

2.1 TheModel

We study a broad class of problems that are related to the dynamics of a cell culture in
microfluidic devices under the influence of a chemoattractant, when the concentration
of the agent can be computed or measured. A schematic view of this situation is
represented in Fig. 1. The large aspect ratio of the microdevice chamber entails a
localised initial seeding along the side labelled A in plot (1a) will induce chemotaxis
toward side A′. This may be represented by a one-dimensional model with axis along
the direction AA′ representing chemotaxis, with the front representing a continuum
model approximation to the edge of the cell population as it migrates towards the high
oxygen levels at A′. In particular, given a uniform seeding of cells along A and high
oxygen levels are maintained without variation along the direction of the long side of
themicrodevice chamber labelled A′, then in the direction of this long side therewill be
no significant gradients of oxygen, and thus nogradients in cellmotility andhence cells.
Similarly, the small lengthscale of the vertical direction entails an absence of significant
gradients vertically. Hence, this geometry with a suitably uniform seeding of initial
cell populations and suitably maintained oxygen supply, motivates the consideration
of one-dimensional models, with variation in the direction AA′, as also motivated by
experimental studies (Ayuso et al. 2016, 2017; Ayensa-Jiménez et al. 2020). Hence,
we have focussed on one-dimensional models throughout the manuscript.

The cell dynamics in this dimension firstly has an unbiased randommotility contri-
bution, as modelled by diffusion, while growth is taken to be logistic, as exemplified
by the glioma models of Swanson et al. (2000); Jacobs et al. (2019); Konukoglu et al.
(2010). These studies present further detailed model justification, together with model
validation in the context ofMRI scans tracking tumour evolution.While in central ner-
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(a) Experimental configuration. (b) 1D approximation of the cell culture.

Fig. 1 (Color Figure Online) Typical experimental configuration for modelling cell cultures. Due to the
much larger length of the lateral channels relative to the width of the chamber, the domain geometry of
the model is assumed one-dimensional, with axis X and width L , as illustrated. Using t, x = X/L to
respectively denote non-dimensional time and space the non-dimensional cell concentrations are associated
with a continuum field u = u(x, t). At the edges along the channel width, that is x = 0, 1, zero flux
boundary conditions are imposed, corresponding to the inability of cells to pass through these boundaries.
Image created with BioRender.com

vous system tissue numerous complexities, ranging from boundaries to the different
properties of white and grey matter, entail that a complex process is required to com-
pare simulation and observation (Jacobs et al. 2019), with simple one-dimensional
models insufficient, such complications are not present in the microdevice setting.
Hence the modelling framework can be considered in the context of the simpler one-
dimensional models that we investigate below. However, in the microdevices, there
is chemotactic bias in favour of a chemotactic gradient, such as the oxygen profiles
in the studies of Ayensa-Jiménez et al. (2020). In controlled microdevice settings the
chemotactic concentration may often be assumed as known, for example due to mea-
surement or simulation, with the chemotactic agent often approximately independent
of the cell population, for instance due to extensive exogenous supply. Hence, we
also consider chemotaxis in the cell motility modelling, represented by the ubiqui-
tous model of Keller and Segal (1971), with a reduction to a known chemoattractant
gradient. However, this also entails that cellular migration may not be as simple as a
travelling wave, as will be examined below. Finally, while the cell carrying capacity
is taken to be fixed, for example by assuming it is imposed due to space limitations,
the growth rate may also depend on growth factor or nutrient concentrations and this
possibility is also allowed in the modelling framework below.

In summary, the non-dimensional equation for the cell population density, u ≥ 0,
thus represents cellular diffusion together with chemotaxis in response to a known het-
erogeneous chemoattractant that generates an advective flux α(t, x)u, where α(t, x)
represents the non-dimensional gradient of the chemotactic agent concentration. Fur-
thermore, cellular proliferation is also heterogeneous, with a constant logistic carrying
capacity that has been non-dimensionalised to unity and a heterogeneous growth rate
β(t, x)u ≥ 0, where β(t, x) represents the modulation of the growth rate by a nutrient,
chemoattractant or a growth factor. Thus the non-dimensional governing equations are
given by
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ut + (α(t, x)u)x = Duxx + β(t, x)u(1 − u), (1)

with D > 0 the non-dimensional cellular diffusion coefficient. This governing equa-
tion is also supplemented by zero-flux boundary conditions, given by

Dux − α(t, x)u
∣
∣
x=0 = 0, (2a)

Dux − α(t, x)u
∣
∣
x=1 = 0, (2b)

which represents the inability of cells to pass through the microdevice chamber walls.
Finally, the model is closed by the initial conditions

u(t = 0, x) = u0(x), (3)

where u0(x) typically represents by a localised seeding of cells fromwhich an invading
front emerges.

2.2 Computation of the General Solution for Small Diffusion

2.2.1 Outer Solution

The main hypothesis, which is usually true for cellular motility due to weak cell-based
random motility, is that the non-dimensional diffusion coefficient satisfies D � 1, as
we verify in Appendix E for the case of GBM cells in microdevices. Hence, away from
boundary layers, diffusion may be neglected compared to the influence of growth and
chemoattractant driven migration. Then, Eq. (1) may be approximated by:

ut + (α(t, x)u)x = β(t, x)u(1 − u). (4)

This is a first-order hyperbolic PDE, amenable to the method of characteristics. If we
know the initial data u(0, x) = u0(x), we can parameterise the initial data via s with
the relation (t, x, u) = (0, s, u0(s)). Also, there is another family of characteristic
curves, emerging from the (t, x) points where x = 0 and t > 0, with the imposition
of the x = 0 boundary condition of no flux, Eqs. (2). Assuming that α(t, 0) �= 0,
and that the boundary is away from the transition region of the cellular wavefront,
so that to excellent approximation ux = 0 since spatial gradients are small, we con-
clude from the boundary condition, Eqs. (2), that u(0, t) = 0 to the same level of
approximation. Therefore, this boundary condition can be parameterised via s with
the relation (t, x, u) = (s, 0, 0). Hence, at t = 0 and x = 0 there is an emerging sin-
gular characteristic that splits the domain in two regions. The geometric interpretation
of the method of characteristics is shown in Fig. 2, which shows the projection of the
characteristic curves onto the plane (t, x).

We have, therefore, two families of characteristic curves. For the first one:

dt

dτ
= 1, t(0) = 0, (5a)
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t

x
t0

t∗

Fig. 2 Projection of the characteristic curves. The two families of characteristic curves are shown in blue
and red (Color figure online)

dx

dτ
= α(t, x), x(0) = s, (5b)

du

dτ
= u (β(t, x)(1 − u) − αx (t, x)) , u(0) = u0(s), (5c)

and for the second:

dt

dτ
= 1, t(0) = s, (6a)

dx

dτ
= α(t, x), x(0) = 0, (6b)

du

dτ
= u (β(t, x)(1 − u) − αx (t, x)) , u(0) = 0. (6c)

Noting the uniqueness of the solution to Eqs. (6) courtesy of Picard’s theorem, we
have by inspection that these equations only generate the trivial solution u(x, t) = 0
for this second set of characteristic curves and thus leading orders predictions of zero
cell densities are not uniform but only valid on certain regions of the domain, and
away from transitions, as may be seen in Sect. 2.2.3 below for instance.

In contrast, the solution to the first family, given by Eqs. (5), is typically more
complex, though one always has

t = τ. (7)

Progress can be readily made when

• α(t, x) is linear in x , such that α(t, x) = a(t)x + b(t).
• α(t, x) is separable, that is α(t, x) = f (x)g(t).
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In particular when α(t, x) is linear in x we have

x = se
∫ t
0 a(η)dη +

∫ t

0
b(η)e

∫ t
η a(ξ)dξ dη =: F(t; s), (8)

which defines F(t; s) for α(t, x) = a(t)x + b(t). We generalise this definition so that
x = F(t; s) on the characteristic curve given by the value of s, and whenever this
relation can be uniquely inverted for s, we write s = G(t; x).

In contrast when α(t, x) = f (x)g(t)Eqs. (5a) and (5b) may be integrated to obtain

∫ x

s

dz

f (z)
=

∫ τ

0
g(η) dη. (9)

In turn, Eq. (9) generates the relation x = F(t; s) on the characteristic curve. Further
motivation for examples of linear and separable chemotactic response functions for
α(t, x) are given in section 3 below.

In both cases, or even in the more general case where F(t; s) cannot readily be
determined analytically for all relevant t, s, the location of the transition from u = 0,
and thus the location of the transition region for the cellular wavefront, x∗ = x∗(t),
is given by the characteristic with s = 0 – hence x∗(t) = F(t; 0). This is particularly
informative about the general behaviour of the solution, for instance in determining
the wavespeed. With respect to Eq. (5c), we proceed using the change of variable
r = 1/u, we obtain the ODE in terms of the τ = t variable:

r ′(τ ) + (β(τ, x(τ ; s)) − h(τ ; s)) r = β(τ, x(τ ; s)), (10)

where for the linear case h(τ ; s) = a(τ ) and h(τ ; s) = f ′(F(τ ; s))g(τ ) for the
separable case.

Noting the integration is along a characteristic, and thus s is fixed, this equation
is of the form r ′ + p(τ )r = q(τ ) for p(τ ) = β(τ, x(τ ; s)) − h(τ ; s) and q(τ ) =
β(τ, x(τ ; s)), with s fixed, so a general expression is given by

r(τ, s) = exp

(

−
∫ τ

0
p(η, s) dη

) [
1

u0(s)
+

∫ τ

0
q(η, s) exp

(∫ η

0
p(ξ, s) dξ

)

dη

]

,

(11)

where u0(s) is indeed the value of u0 at the location of the characteristic when τ =
t = 0.

Recapping, suppose x = F(t; s)may be inverted to give s = G(t; x). Then, noting

x(0, s) = F(0; s) = s,

by the parameterisation of the initial data, we have

u(x, t) = u(x = F(t; s), t) = 1

r(t; s = G(t; x)) ,
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and, in particular

u0(s) = u0(F(0,G(t; x))) = u0(G(t; x)).

Combining these expressions with Eq. (11), we obtain a general expression for r and
therefore for u = u(x, t):

u(x, t) =
⎛

⎝

u0(s) exp
(∫ t

0 p(η, s) dη
)

1 + u0(s)
∫ t
0 q(η, s) exp

(∫ η

0 p(ξ, s) dξ
)

dη

⎞

⎠

∣
∣
∣
∣
s=G(t;x)

, (12)

where s = G(t; x) is fixed on each characteristic curve and

p(η, s) = β(η, F(η; s)) − h(η; s),
q(η, s) = β(η, F(η; s)).

Eq. (12) may be also written in terms of x and t directly, obtaining

u(x, t) =
u0(G(t; x)) exp

(∫ t
0 p(η,G(t; x)) dη

)

1 + u0(G(t; x)) ∫ t
0 q(η,G(t; x)) exp (∫ η

0 p(ξ,G(t; x)) dξ)

dη
. (13)

A special separable case for u(x, t)
Often below, when the chemoattractant flux term is independent of time, so that

α(t, x) = f (x), we will have u0 � 1, β(t, x) ≡ 1, g(t) = 1. In these circumstances
we have the simplification

s = G(t; x) = F(−t; x),

by the symmetry (x, s, τ ) → (s, x,−τ) in Eq. (9) with g(t) = 1 and also that

p(η, s) = 1 − f ′(F(η; s)),

which gives

u(x, t) = u0(G(t; x))et exp
(

−
∫ t

0
f ′(F(η, s)) dη

)

+ O(u20).

Recalling that the integration is along a characteristic, so that s is fixed, we change
the integration variable via X = F(η; s), noting from Eq. (7) and from Eq. (5b), with
s fixed and α(t, x) = f (x), that

1

f (X(η))
= dη

dX
.
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Hence, on further noting s = F(0; s), x = F(t; s) and s = G(t, x), we have, to
within O(u20) corrections, that

u(x, t) = u0(G(t; x))et exp
(

−
∫ x

s

f ′(X)

f (X)
dX

)

, (14)

so finally

u(x, t) = u0(G(t; x))et f (G(t; x))
f (x)

= u0(G(t; x))et f (F(−t; x))
f (x)

. (15)

In the examples plotted below we also have u0(x) = u0 is constant, in which
case u0(G(t; x)) collapses to the constant u0. For clarity, please note that u0 is an
abbreviation for u0(G(t; x)) in general, though this is constant and denoted simply
by u0 in all examples, separable or otherwise, plotted below.

2.2.2 Inner Solution

To explore the transition layer moving with the wavefront, we introduce a scaling
of coordinates such that diffusion and advection provide a leading order dominant
balance in the transition layer, with x = x∗(t) + δX for X the inner variable and
δ � 1. With the change of variables

(t, x) → (τ, X), t = δτ, x = x∗(t) + δX , U (τ, X) = u(t, x),

one has the inner solution equations

1

δ
Uτ = 1

δ

(

x∗
t − α(t, x∗(t) + δX)

)

UX + D

δ2
uXX + βU (1 −U ) − αx (t, x

∗(t) + δX)

= 1

δ

(

α(t, x∗(t)) − α(t, x∗(t) + δX)
)

UX + D

δ2
UXX + O(1),

where the second line uses x∗
t = α(t, x∗(t)). We take δ = D � 1 to bring the

advective and diffusive terms into a nominal dominant balance.
Let us now assume that α uniformly possesses an order one derivative with respect

to x , that is, we assume that α(t, x∗(t)) − α(t, x∗(t) + δX) 	 −αx (t, x∗(t))δX ,
therefore

Uτ = uXX + O(δ),

for X ∼ O(1). The solution of this equation, when U (X , τ = 0) = H(X), with H
the Heaviside step function, is

U (X , τ ) = 1

2

(

1 + erf

(
X

2
√

τ

))

.
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2.2.3 Composite Solution

We can combine the inner solution, rewritten in terms of (x, t)with the outer solutions
via a composite approximation to generate an approximation for the full numerical
solution across the domain (away from any prospective boundary layer at x = 1).
Thus, with u0(x) = u0, constant, and uan(x, t) the analytical characteristic solution
of Eq. (13) we have

u(x, t) ∼
⎧

⎨

⎩

uan(x∗(t), t)U
(
x−x∗(t)

D , t
τ

)

+ 0, x < x∗(t),

uan(x∗(t), t)U
(
x−x∗(t)

D , t
τ

)

+ (uan(x, t) − uan(x∗(t), t)) , x ≥ x∗(t),

(16)

so, finally

u(x, t) ∼
⎧

⎨

⎩

1
2uan(x

∗(t), t)
(

erf
(
x−x∗(t)
2
√
t D

)

+ 1
)

, x < x∗(t),
1
2uan(x

∗(t), t)
(

erf
(
x−x∗(t)
2
√
t D

)

− 1
)

+ uan(x, t), x ≥ x∗(t).
(17)

For the special case discussed in the previous section, that is, when α(t, x) =
f (x), β(t, x) ≡ 1 and u0 � 1, uan(x, t) = u0(G(t; x))et f (G(t;x))

f (x) and in particular

uan(x∗(t), t) = u0(0)et
f (0)
f (x) so that for this special case

u(x, t) ∼
⎧

⎨

⎩

1
2u0(0)e

t f (0)
f (x)

(

erf
(
x−x∗(t)
2
√
t D

)

+ 1
)

, x < x∗(t),
1
2u0(0)e

t f (0)
f (x)

(

erf
(
x−x∗(t)
2
√
t D

)

− 1
)

+ u0(G(t; x))et f (G(t;x))
f (x) , x ≥ x∗(t),

(18)

with continuity assured from the constraint G(t; x∗(t)) = 0, which holds as, by
construction, both s = 0 and x = x∗(t) hold on the separating characteristic and
s = G(t; x).

We note that this analytical solution will lose accuracy, typically severely so, within
the localised vicinity of the right-hand boundary, that is x = 1. In particular, we have
an additional boundary condition at this location, where the right-hand outer solution is
imposed for the solutions of Eqs. (17), (18) above, with x ≥ x∗(t). This outer solution,
emerging from a hyperbolic equation with D = 0, does not have enough degrees of
freedom to satisfy the additional boundary condition and hence the breakdown in
accuracy. For the x = 1 boundary condition to be satisfied, sufficiently large gradients
in cell density are required with diffusive motility becoming a leading order effect
which provides the necessary freedom. This a classical boundary layer, as documented
in numerous textbooks, such as Bender and Orszag (2013), with this specific example
of a boundary layer studied extensively in Morton’s (1996) textbook. An analogous
boundary exists close to x = 0 for sufficiently small time, much smaller than the
non-zero time results presented. As with all boundary layers, the boundary layers are
localised and do not impact the rest of the solution and thus we do not consider them
further, except to remark that accuracy is lost sufficiently close to x = 1 as appropriate
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in the presentation of the results below. Analogous statements apply sufficiently near
x = 0 for sufficiently small time, but such times are so small that this x = 0 boundary
layer is not captured in the presented results, which are unaffected by this short-time
dynamics.

2.3 Particular Cases of Interest

The solution given by Eq. (13) is general given that D � 1, though even the separable
case using Eq. (9) to determine the functions F and G can generate complicated
solutions that are not readily expressed in terms of standard functions. Further, even
when α(t, x) is separable or linear, allowing extensive analytical progress, there is still
considerable freedom in the form of α(t, x) and hence we firstly analyse exemplar
case of chemotaxis in the presence of heterogeneity, before proceeding to consider an
example of cellular behaviour in a microdevice.

We consider the case of heterogeneous chemotaxis induced by the chemoattractant
spatial distribution. In particular, we derive a solution for linear gradients and for
exponential gradients that are modulated in time, with exponential gradients emerging
when there are point sources. A third case, considering quadratic gradients, is also
presented in Appendix A for reference.

The accuracy of the different particular solutions derived is evaluated by comparing
them to results from the Matlab pdepe routine, which numerically approximates
the solution of initial-boundary value problems for systems of parabolic and elliptic
partial differential equations in one space variable and time, noting here the full model
is parabolic since D > 0. This Matlab routine uses a time-space integrator based on
a piece-wise nonlinear Galerkin approach which is second-order accurate in space
(Skeel and Berzins 1990). For a quantitative comparison between the numerical and
analytical results obtained, the reader is referred to Appendix c.

2.3.1 Linear Gradients

We first consider a function of the form

α(t, x) = (ax + b)g(t).

Then, we have f (x) = ax + b and Eq. (9) yields

1

a
ln

(
ax + b

as + b

)

=
∫ τ

0
g(η) dη =: T (τ ).

Thus defines the function T , and with T (t) = ∫ t
0 g(η) dη we have

F(t; s) = 1

a

[

(as + b)eaT (t) − b
]

,

G(t; x) = 1

a

[

(ax + b)e−aT (t) − b
]

.
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Fig. 3 (Color Figure Online) Comparison of numerical and analytical solutions for the linear case. The
analytical and simulated profiles are compared at different times, considering a = 2 and b = 1, β(t, x) =
g(t) = 1 and u0(x) = u0 = 0.05, whereas the full numerical simulation was obtained using D = 1×10−3.
For this plot, and for analogous plots below, there are localised boundary layer effects near the right-hand
edge of the domain, x = 1, that are not captured by the presented analytical solution.An analogous boundary
layer is present in the immediate vicinity of x = 0 for sufficiently small time, such that the chemotactic
wavefront has not evolved to fullymove away from the x = 0 boundary, and thus a significantly smaller time
than the non-zero times presented here. Further details concerning boundary layers have been described in
the final paragraph of Sect. 2.2.3

Hence, the transition is located at

x∗(t) = b

a

(

eaT (t) − 1
)

.

Furthermore, forβ(t, x) = 1 and g(t) = 1, so that T (t) = t , the integral expression
for u(x, t) in Eq. (13) is readily determined to reveal

u(x, t) = u0(a − 1)e−(a−1)t

a − 1 + u0
(

1 − e−(a−1)t
) = u0e

−(a−1)t + O(u20),

while u = 0 before the transition. Figure3 shows a comparison between the numerical
results with D = 1 × 10−3 and the approximate analytical solution for α(x) =
2x + 1 and β(t, x) = 1 = g(t). For this plot, and for analogous plots below, note the
accurate prediction of the evolving front, x∗(t) and the general agreement between the
numerical and analytical solutions for u(x, t). Furthermore, one can expect boundary
layer effects near the right-hand edge of the domain, x = 1, that are not captured by
the presented solution, though these are not plotted in the current figure.
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Fig. 4 (Color Figure Online) Comparison of numerical and analytical solutions for the linear case with
oscillatory stimulus. The analytical and simulated profiles at different times are compared, considering
a = 1, b = 3, ω = 10, β(t, x) = 1 and u0(x) = u0 = 0.05 whereas the full numerical simulation was
again obtained using D = 1 × 10−3. One can clearly observe that the wave of cells oscillates, with the
cell density spatially constant on the right of the transition, except on approaching x = 1, where there is
a boundary layer that is not accommodated in the analysis. An analogous boundary layer is present in the
immediate vicinity of x = 0 for sufficiently small time, that is significantly smaller than the non-zero times
presented here. Further details concerning boundary layers have been described in the final paragraph of
Sect. 2.2.3

A further, and particularly relevant case, is when g(t) = cos(ωt), whence

F(t; s) = (as + b) exp
( a

ω
sin(ωt)

) − b

a
,

G(t; x) = (ax + b) exp
(− a

ω
sin(ωt)

) − b

a
.

Notewe still haveG(t; x) = F(−t, x) since g(t) = cos(ωt) is even so that (x, s, τ ) →
(s, x,−τ) remains a symmetry of Eq. (9). The transition is located at

x∗(t) = b

a

[

exp
( a

ω
sin(ωt)

)

− 1
]

.

Figure4 shows the comparison between the numerical results with D = 1 × 10−3

and the analytical solution, with β(t, x) = 1. Note that as almost all of the domain is
displayed, the boundary layer in the numerical solution near x = 1 can be observed.

The oscillating gradient case is very pertinent as it corresponds to the case where
the oxygenation feed between the two channels at the microfluidic device switches,
so we shall explore it in more detail. Rather than working with the general solution
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given by Eq. (13) it can be more expedient to consider the differential equation for
r = 1/u given by Eq. (10); noting β = 1, f (x) = (ax + b), u0(x) = u0, constant,
for the cases considered here, this reduces to

r ′ + (1 − a cos(ωt)) r = 1, r(0) = 1/u0, (19)

with no x-dependence. Hence, on the right of the transition region the solution is
constant, that is, u(x) = u∗.

In Appendix 1 we show that Eq. (19) may be solved using different asymptotic
methods for four different regimes:

• Slow variations of the gradients, ω � 1.
• Fast variations of the gradients, ω � 1.
• Dominant chemotaxis, β � a.
• Dominant growth, a � β.

For spatial locations to the right of the transition region, but away from any bound-
ary layer at x = 1, these approximate, time-oscillating, solutions are compared to
numerical solutions computed using standard Runge–Kutta solvers for Eqn. (19) in
Fig. 5.

2.3.2 Exponential Gradients

We consider now a function of the type:

α(t, x) = (a exp(−λx) + b exp(λx)) g(t).

Then, we have f (x) = a exp(−λx) + b exp(λx), with Eq. (9) reducing to

arctan

(
b exp(λx)√

ab

)

− arctan

(
b exp(λs)√

ab

)

= √
abλ

∫ τ

0
g(η) dη = √

abT (τ ).

Hence

F(t; s) = 1

λ
ln

⎛

⎝

√
ab + a tan

(√
abλT (t)

)

e−λs

√
abe−λs − b tan

(√
abλT (t)

)

⎞

⎠ ,

G(t; x) = 1

λ
ln

⎛

⎝

√
ab − a tan

(√
abλT (t)

)

e−λx

√
abe−λx + b tan

(√
abλT (t)

)

⎞

⎠ .

with the transition is located at

x∗(t) = 1

λ
ln

⎛

⎝

√
ab + a tan

(√
abλT (t)

)

√
ab − b tan

(√
abλT (t)

)

⎞

⎠ .
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Fig. 5 (Color Figure Online) Comparison between analytical solutions using asymptotic theory and numer-
ical solutions for the oscillatory gradient. The four exposed cases are analysed: slow variations of the
gradients (ω � 1), fast variations of the gradients (ω � 1), dominant chemotaxis (β � a) and dominant
growth (a � β)

In particular, if b = 0 this reduces to

F(t; s) = 1

λ
ln

(

aλT (t) + eλs) ,

G(t; x) = 1

λ
ln

(−aλT (t) + eλx) ,

and

x∗(t) = 1

λ
ln (1 + λaT (t)) .

Figure6 shows the comparison between the numerical results and the analytical
solution with α(t, x) = 2 exp(−x) and β(t, x) = 1 = g(t), D = 1 × 10−3. Further-
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Fig. 6 (Color Figure Online) Comparison of numerical and analytical solutions for the exponential case.
The analytical and simulated profiles are compared at different times, considering β(t, x) = 1 = g(t),
α(t, x) = a exp(−λx) with a = 2, λ = 1 and the initial condition u0(x) = u0 = 0.05 � 1. In that case,
we use D = 1 × 10−3 for computing the numerical solutions. There are also localised boundary layer
effects near the right-hand edge of the domain, x = 1, that are not captured by the presented analytical
solution, with an analogous boundary layer is present in the immediate vicinity of x = 0 for sufficiently
small time, that is significantly smaller than the non-zero times presented here. Further details concerning
boundary layers have been described in the final paragraph of Sect. 2.2.3

more, in this regime on neglecting O(u20) corrections, we have

u(x, t) = u0e
t f (s)

f (x)

∣
∣
∣
∣
s=G(t;x)

= u0et

1 − aλte−λx
,

noting that x ≥ x∗(t) on this characteristic, so that

1 − aλte−λx ≥ 1 − aλte−λx∗(t) = 1 − aλt

1 + aλt
= 1

1 + aλt
> 0,

in turn demonstrating that u(x, t) does not possess a singularity with exponential
decay in x for t fixed away from the transition to a good approximation, as may be
also observed in Fig. 6.
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3 Applications to Potential Microfluidic Experiments

3.1 The General Model

We study a broad class of problems that are related to the evolution of a cell culture in
microfluidic devices under a chemotactic agent, such as oxygen, when the concentra-
tion of the agent can be computed or measured, as schematically represented in Fig. 1.
Hence, we proceed to consider the following model of generic cell culture evolution
in microfluidic devices (Ayensa-Jiménez et al. 2020; Ayensa-Jiménez 2022)

∂Cn

∂T
= ∂

∂X

(

D
∂Cn

∂X
− χCn

∂B

∂X

)

+ αnMg(B)Cn

(

1 − Cn

csat

)

− αndMd(B)Cn,

(20a)

∂Cd

∂T
= αndMd(B)Cn, (20b)

∂B

∂T
= ∂

∂X

(

DB
∂B

∂X

)

− αBW (B,Cn). (20c)

where Cn and Cd are respectively the alive and dead cell concentrations and B is a
chemotactic agent,Mg andMd are nonlinear dimensionless corrections accounting for
the effect of the chemo-attractant on cell growth and death. In additionW (B,Cn) is the
nonlinear dimensionless correction of the chemo-attractant consumption by all cells
in the microdevice, noting that additional cells other than those of direct interest may
be present, such as the study of metastatic tumour cells of interest migrating within a
stromal cell population for instance. We also assume that the dead cell concentration
is sufficiently low to ensure that it does not compromise either live cell proliferation
or migration. Note that if the chemotaxis agent is a cell nutrient, such as glucose or
oxygen, W (B,Cn) �= 0, whereas for unconsumed biochemical signals, W (B,Cn) =
0. The boundary conditions considered are

fn(x = 0, t) = 0, (21a)

fn(x = L, t) = 0, (21b)

B(x = 0, t) = BL(t), (21c)

B(x = L, t) = BR(t), (21d)

with BL(t) and BR(t), the chemotactic agent concentration at the left and right channel,
and fn = D ∂Cn

∂X −χCn
∂B
∂X the live cell flux. As the dead cell population is slave to the

other variables in this model, we neglect it henceforth which is equivalent to taking
αnd 	 0.

Therefore, the full model here analysed is

∂Cn

∂T
= ∂

∂X

(

D
∂Cn

∂X
− χCn

∂B

∂X

)

+ αnMg(B)Cn

(

1 − Cn

csat

)

, (22a)
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∂B

∂T
= ∂

∂X

(

DB
∂B

∂X

)

− αBW (B,Cn). (22b)

In order to evaluate the relevance of the different phenomena, we define the dimen-
sionless variables:

Cn = csatu, (23a)

B = B∗v, (23b)

X = Lx, (23c)

T = t

αn
. (23d)

Hence Eqs. (22) become

∂u

∂t
= ∂

∂x

(

�1
∂u

∂x
− �2u

∂v

∂x

)

+ m(v)u (1 − u) , (24a)

∂v

∂t
= ∂

∂x

(

�3
∂v

∂x

)

+ �4w(v, u), (24b)

where

�1 = D

αnL2 , (25a)

�2 = χB∗

αnL2 , (25b)

�3 = DB

αnL2 , (25c)

�4 = αBcsat
αn B∗ , (25d)

m(v) = Mg(B
∗v), (25e)

w(v, u) = W (B∗v, csatu). (25f)

The associated boundary conditions are

fn(x = 0, t) = 0, (26a)

fn(x = 1, t) = 0, (26b)

v(x = 0, t) = ψ1(t), (26c)

v(x = 1, t) = ψ2(t), (26d)

where now fn = �1
∂u
∂x − �2u

∂v
∂x and ψ1(t), ψ2(t) are prescribed functions of time

corresponding to the level of nutrient or chemoattractant fixed to be at the channel
edges. In what follows, we will use ut and ux as an abbreviation for ∂u

∂t and ∂u
∂x and

similarly for uxx .
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In particular the governing PDEs described in Eqs. (24) may be reformulated as

ut = �1uxx − �2 (vxu)x + m(v)u (1 − u) , (27a)

vt = �3vxx − �4w(v, u), (27b)

and typical parameter values are considered in Appendix E, where it is noted that
�1 � 1 and �3 � 1 for instance.

3.1.1 TheWeak Consumption Limit

First, we consider the case where the chemoattractant is not a nutrient and therefore
is not consumed by cells. In that case, we can set

w(v, u) = 0.

For all the problems in which it is possible to assume �1 � 1, whereby random
cellular motility is negligible compared to directed chemotaxis and with �3 � 1,
so that the chemoattractant diffusion is large relative to cellular diffusion Eqs. (27)
reduce to

ut + k (vxu)x = m(v)u (1 − u) , (28a)

vxx = 0. (28b)

where k = �2.
However, care is required in considering the boundary conditions for u and the

initial conditions for v in this reduced model, due to the loss of the second spatial
derivative of u and the first temporal derivative of v. In particular, we cannot satisfy all
the boundary conditions for u; instead we have boundary layers. We have seen in the
examples these occur at internal transitions and at the right of the domain (see Fig. 4).
Thus for the simplified system the boundary condition is enforced at x = 0 for u
with the simplification of the flux to fn = −kvxu, as diffusion is treated as negligible.
However, enforcing the boundary condition at x = 1will require the consideration of a
boundary layer that is not resolved in the simplifiedmodel as it is complicated, but does
not further insight into cell migratory and chemotaxis. The two boundary conditions
for v, as given by Eqs. (26c) and (26d) are inherited and applied at both boundaries.We
now consider the initial conditions for v, which cannot be satisfied. Instead there is an
analogous temporal boundary layer for early time while initial transients relax, though
such transients persist for such a short time that they are not of interest, and thus not
resolved, here. The justification of the neglect of these fast transients is further detailed
in Appendix D, where it is demonstrated that the solution of Eq. (28b) corresponds
to the leading order composite solution in a temporal boundary layer analysis that
exploits �3 � 1.

Proceeding, we set v(x = 0, t) = ψ1(t) and v(x = 1, t) = ψ2(t), Eq. (28b) is
immediately integrated to

v(t, x) = (ψ2(t) − ψ1(t)) x + ψ1(t). (29)
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We recover therefore Eq. (4) with

α(t, x) = k(ψ2(t) − ψ1(t)), β(t, x) = m((ψ2(t) − ψ1(t)) x + ψ1(t)),

that is a special case of the linear problem α(t, x) = a(t)x + b(t), with a(t) = 0 and
b(t) = k(ψ2(t) − ψ1(t)), so the different functions needed in order to compute the
solution are:

F(t; s) = s + k
∫ t

0
�ψ(η) dη, (30a)

G(t; x) = x − k
∫ t

0
�ψ(η) dη, (30b)

x∗(t) = k
∫ t

0
�ψ(η) dη = x − G(t; x), (30c)

where we have defined�ψ(t) = ψ2(t)−ψ1(t). Also, the expression of the cell profile
far from the transition is

u(x, t) =
u0(G(t; x)) exp

(∫ t
0 K (η, F(η;G(t; x))) dη

)

1 + u0(G(t; x))
(

exp
(∫ t

0 K (η, F(η;G(t; x))) dη
)

− 1
) , (31)

where

K (η, X) = m ((ψ2(η) − ψ1(η))X + ψ1(η)) .

Theevolutionof the transition coordinate x∗(t) and the dimensionless cell profile for
different times are shown in Fig. 7 for k = 1, ψ1(t) = 0 and different external stimuli
ψ2(t). In particular, let us consider the case with m(v) = m0v, and with ψ1(t) = 0
and use of the change of variable X = F(η; s), whereby on a characteristic

dX

dη
= α(η, X) = kψ2(η)

with F(t; s) = x and F(0, s) = s. This reveals

∫ t

0
K (η, F(η, s)) dη

∣
∣
s=G(t;x) =

∫ x

s

1

kψ2(η)
m0ψ2(η)X dX

∣
∣
s=G(t;x)

= m0

2k
(x − G(t; x))(x + G(t; x)) = m0

2k
x∗(t)(2x − x∗(t)).

Combined with Eq. (31), this gives a simple expression for u(x, t). For instance

u(x, t) ≈ u0 exp
(m0

k
x∗(t)(x − x∗(t)/2)

)

+ O(u20),
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Fig. 7 (Color Figure Online) Approximate analytical solution for the case with no consumption.We assume
k = 1, m(v) = v and the transition region is recreated with D = 1 × 10−4. The initial condition is set
again to u0(x) = u0 = 0.05. Also, we consider three different shapes for ψ2, with ψ1 = 0. A constant
oxygen level ψ2(t) = 1, a trigonometric oscillatory stimulus ψ2(t) = 1 + cos(ωt) with ω = 10π , and an
increasing ramp stimulus ψ2(t) = t

for u0 � 1 constant; in this case, we have an increasing function at fixed t to the
right of the transition given x∗(t) > 0 and this is essentially linear for x∗(t) � 1, as
observed in Fig. 7.
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3.1.2 Cellular Consumption of Chemoattractant

A more interesting case is when the chemoattractant is a nutrient and therefore it is
consumed by cells. In that case, w(v, u) �= 0.

With wpc(v) denoting the non-dimensional uptake of nutrient per cell, we take
wpc(v) to be monotonic increasing with

lim
v→0

wpc(v) = 0,

lim
v→+∞ wpc(v) = 1,

where the final limit is without loss of generality, with the overall scale of uptake
governed by �4.

For instance, with Michaelis-Menten kinetics we take (Cornish-Bowden 2013):

wpc(v) = v

v + km
, (32)

or, more generally, we can use the Hill-Langmuir equation for modelling the con-
sumption kinetics (Hill 1910)

wpc(v) = vn

vn + knH
. (33)

For any of the above choices, there are numerous possibilities, for instance the cases:

1. There are no other cells at the microfluidic device besides the cell culture of our
interest and we are at the low cell regime, �4u/�3 � 1. In that case, after rapid
initial transients describing the diffusion relaxation of the nutrient, and too fast
to be on the timescale of cellular motility, Eq. (27b) becomes vxx = 0, and the
discussion is analogous to the case without the consumption term.

2. There are other non-migrating cells within the microfluidic device in addition to
the migrating cells, for instance if we are considering a metastasis model, with
the other cells at constant concentration and in excess of the tumour cells. If we
additionally have high nutrient concentrations the situation is illustrated in Fig. 8a
using oxygen as an example of nutrient. In that case, wpc(v) ∼ 1 and have

w(u, v) = K ,

where K is the (dimensionless) total amount of cells, essentially constant as the
non-tumour cells are in excess. Then, with the definition

λ = �4K/�3,

Equation (27b) becomes

vt = �3vxx − �3λ. (34)
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Fig. 8 (Color Figure Online) Cell culture model recreating cancer cells in an oxygenated ambient. For
illustration purposes, the oxygen is considered as the chemoattractant nutrient of the heterogeneous growth
and death. The different local and global oxygen gradients appearing in the chamber may be approximated
by approximating Eq. (27b) when considering specific situations, such as high oxygen levels or low oxygen
levels. Created with BioRender.com

In addition, we assume

�−1
3 � λ = �4K

�3
� �3, (35)

as motivated in Appendix E, so that λ may be treated as order one on using asymp-
totic methods based on the leading order of approximations based on �3 � 1.
Then the above further reduces to

vxx = λ, (36)

noting, as above, that fast initial transients are not of interest, with further justifi-
cation of Eq. (36) in Appendix D via a boundary layer analysis.

3. There are other cells within the microfluidic device at constant concentration and
in excess relative to the tumour cells, together with low nutrient concentrations.
The situation is also illustrated in Fig. 8b. Assuming the Michaelis-Menten model,
wpc(v) ∼ v/km so that w(u, v) = Kv/km where K is the non-dimensional total
cell density, effectively constant, and Eq. (27b) reduces to

vt = �3vxx − �3λv, (37)

where now λ = �4K/(km�3). As above, this reduces if

�−1
3 � λ = �4K

km�3
� �3, (38)

as assumed with the motivation of Appendix E, in order to yield

vxx = λv, (39)

once more noting fast initial transients are not of interest, with additional justifica-
tion of Eq. (39) presented in Appendix D.
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The presence of other cells in excess and high chemoattractant or oxygen levels
With the assumptions and motivations as above in the derivation of Eq. (36) we

now have

ut + k (vxu)x = m(v)u (1 − u) , (40a)

vxx = λ. (40b)

where the boundary conditions are again the ones given by Eqs. (26), except for the fact
that the flux is given by fn = −kvxu as diffusion is neglected and the cell boundary
condition at x = 1, with its associated boundary layer, is no longer considered as
discussed in detail previously.

If we prescribe v(x = 0, t) = ψ1(t) and v(x = 1, t) = ψ2(t), Eq. (40b) integrates
to

v(x, t) = 1

2
λx2 +

(

ψ2(t) − ψ1(t) − 1

2
λ

)

x + ψ1(t). (41)

We have therefore

α(t, x) = kλx + k

(

ψ2(t) − ψ1(t) − 1

2
λ

)

,

and

β(t, x) = m (v(t, x)) ,

for cell growth. Once more, this is a special case of α(t, x) = a(t)x + b(t) with
a(t) = kλ and b(t) = k

(

ψ2(t) − ψ1(t) − 1
2λ

)

, so the different functions needed in
order to compute the solution are:

F(t; s) = sekλt + 1

2

(

1 − ekλt
)

+ k
∫ t

0
�ψ(η)e−kλη dη, (42a)

G(t; x) = xe−kλt − 1

2

(

e−kλt − 1
)

− ke−kλt
∫ t

0
�ψ(η)e−kλη dη, (42b)

x∗(t) = 1

2

(

1 − ekλt
)

+ k
∫ t

0
�ψ(η)e−kλη dη. (42c)

The expression of the cell profile may be computed using Eq. (13), which gives

u(x, t) =
u0(G(t; x))e−kλt exp

(∫ t
0 K (η, F(η;G(t; x))) dη

)

1 + u0(G(t; x)) ∫ t
0 K (η, F(η;G(t; x)))e−kλη exp

(∫ η

0 K (ξ, F(ξ ;G(t; x))) dξ)

dη
,

(43)

where now

K (η, X) = m

(
1

2
X2 + (ψ2(η) − ψ1(η) − 1

2
λ)X + ψ1(η)

)

.
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The evolution of the transition coordinate x∗(t) and the dimensionless cell profile
for different times are shown in Fig. 9 for k = 1, λ = 0.1, m(v) = m0v with m0 = 1,
u0 = 0.05 and an external stimulus given byψ1(t) = 0 and different shapes forψ2(t).

While a fast oscillatory stimulus with ψ2(t) = 1+ cos(10π t) plotted in Fig. 9 does
not allow a ready approximation for cell density to the right of the transition region,
we can consider the cases of ψ2(t) = 1 or ψ2(t) = t that are also considered in this
Figure. In particular, we can use elementary but extensive manipulation to determine
and approximate

∫ t

0
K (η, F(η, s)) dη

∣
∣
s=G(t;x)

to deduce that

u0 ≈ u0e
−λt exp

(
1 − e−2λt

4λ
(x − x∗(t))2 + 1

3
h1(t, λ)(x − x∗(t)) + h2(t, λ)

)

+ O(u20),

in these cases. In particular, h1(t, λ) is of the form

h1(t, λ) =
(

3t + 3

2
t2

)

−
(
3

2
+ 9

4
t + t2

)

λt + O(λ2t2),

for ψ2(t) = 1 and

h1(t, λ) =
(
3

2
t2 + 1

2
t3

)

−
(
3

2
+ 3

4
t + 1

2
t2 + 3

8
t3

)

λt + O(λ2t2),

for ψ2(t) = t .
For h2(t, λ), we have with ψ2(t) = 1 that

h2(t, λ) = 1

2
t2

(

1 + 1

3
t

)

− t

(
1

2
+ 1

3
t + 1

8
t2

)

λt + O(λ2t2),

while, in contrast, for ψ2(t) = t we note that

h2(t, λ) = t4

40
(5 + t) − t2

(
1

4
+ 1

16
t + 1

15
t2 + 1

36
t3

)

λt + O(λ2t2).

For both cases note that at fixed time the cell concentration to the right of the
transition is essentially the exponential of a quadratic in x − x∗(t), provided that λ is
small enough.
Other cells and low chemoattractant or oxygen levels. With analogous reasoning,
Eqs. (27) now reduce to

ut + k (vxu)x = m(v)u (1 − u) , (44a)

vxx = λv. (44b)
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Fig. 9 (Color Figure Online) Solution for the case with chemoattractant consumption and high chemoat-
tractant levels. Approximate analytical solution for k = 1, m(v) = v, λ = 0.1 and the transition region is
recreated with D = 1 × 10−4. The initial condition is set again to u0(x) = u0 = 0.05. We consider three
different shapes for ψ2. A constant oxygen level ψ2(t) = 1, an oscillatory stimulus ψ2(t) = 1 + cos(ωt)
with ω = 10π , and an increasing stimulus ψ2(t) = t

The general solution to Eq. (44b) generates a chemotactic function α(t, x) that is
neither linear in x nor separable, with Eq. (6b) equivalent to a Riccati differential
equation in exp(x), for which general solutions are not known in terms of standard
functions. Even though the general case is not tractable in terms of constructing solu-
tions, two particular important configurations do allow progress, namely the gradient
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configuration (v(x = 0, t) = 0 and v(x = 1, t) = ψ(t)) and the symmetric configu-
ration ((v(x = 0, t) = v(x = 1, t) = ψ(t)).

The gradient configuration is certainly the most interesting configuration. For that
case, Eq. (44b) integrates to

v(t, x) = ψ(t) sinh(
√

λx), (45)

whereby

α(t, x) = k
√

λ cosh(
√

λx)ψ(t), β(t, x) = m0(v(t, x)).

Hence we have separability, with f (x) = k
√

λ cosh(
√

λx) and g(t) = ψ(t). With

S(t) = tan(kλT (t)/2), T (t) =
∫ t

0
g(η)dη,

we in turn have

F(t; s) = 1√
λ
ln

(

1 + e−s
√

λS(t)

e−s
√

λ − S(t)

)

, (46a)

G(t; x) = 1√
λ
ln

(

1 − e−x
√

λS(t)

e−x
√

λ + S(t)

)

, (46b)

x∗(t) = 1√
λ
ln

(
1 + S(t)

1 − S(t)

)

. (46c)

As with the previous cases the expression of the cell profile may be computed using
Eq. (13), whereby

u(x, t) =
u0(G(t; x)) exp

(∫ t
0 K (η, F(η;G(t; x))) dη

)

1 + u0(G(t; x)) ∫ t
0 K (η, F(η;G(t; x))) exp (∫ η

0 K (ξ, F(ξ ;G(t; x))) dξ)

dη
, (47)

where K (η, X) = m(v) − kvxx , that is

K (η, X) = m
(

ψ(η) sinh(
√

λX)
)

− kλψ(η) sinh(
√

λX),

and, with m(v) = m0v and u0(x) = u0 � 1, constant, use of the change of variables
X = F(η, s) reduces Eq. (47) to

u(x, t) = u0

(

cosh(
√

λG(t; x))
cosh(

√
λx)

)m0−kλ
kλ

+ O(u20).

Theevolutionof the transition coordinate x∗(t) and the dimensionless cell profile for
different times are shown in Fig. 10 for m0 = 1, k = 1, λ = 0.1, u0(x) = u0 = 0.05,
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constant. Here, the cellular density to the right of transition further simplifies to

u(x, t) = u0

⎛

⎝
1 + S2(t)

(1 − S2(t)) + 2S(t) sinh
(

x√
10

)

⎞

⎠

9

+ O(u20), S(t) = tan

(T (t)

20

)

,

which entails for small time the spatial variation of the cellular density is that of a
hyperbolic sine. Finally, note from the expression for x∗(t) and the fact x∗(t) ≤ 1 for
the transition zone to be within the domain, we have the bound T ≤ tanh(1/2) < 1
so that the denominator in the above expression is positive and there is no singularity.

Even if less interesting from the experimental point of view, we can also obtain
an expression for a symmetric configuration by considering half of the domain and
applying Neumann boundary conditions for x = 0 so Eq. (44b) is integrated to

v(t, x) = ψ(t) cosh(
√

λx). (48)

Again we are under a separable case with α(t, x) = k
√

λ sinh(
√

λx)ψ(t) and
β(t, x) = 1, so f (x) = k

√
λ sinh(

√
λx) and g(t) = ψ(t), so the different func-

tions needed in order to compute the solution are:

F(t; s) = 2√
λ
arctan

(

ekλT (t) tanh

(

s
√

λ

2

))

, (49a)

G(t; x) = 2√
λ
arctan

(

e−kλT (t) tanh

(

x
√

λ

2

))

, (49b)

x∗(t) = 0. (49c)

Now in Eq. (47) we shall use

K (η, X) = m
(

ψ(η) cosh(
√

λX
)

− kλψ(η) cosh(
√

λX),

and, with m(v) = m0v and u0(x) = u0 � 1, constant, Eq. (47) reduces to

u(x, t) = u0

(

sinh(
√

λx)

sinh(
√

λG(t; x))

)m0−kλ
kλ

+ O(u20).

4 Discussion

There is an increasing use of in vitro investigations in the exploration of cellular motil-
ity, for instance with microdevice studies exploring tumour cell dynamics in response
to oxygen gradients, as illustrated by glioblastoma studies (Ayuso et al. 2016, 2017;
Ayensa-Jiménez et al. 2020). In turn this has motivated the main theme of this paper,
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Fig. 10 (Color Figure Online) Solution for the case with chemoattractant consumption and low chemoat-
tractant levels. Approximate analytical solution for k = 1, m(v) = v, λ = 0.1 and the transition region is
recreated with D = 1 × 10−4. The initial condition is set again to u0(x) = u0 = 0.05. We consider three
different shapes for ψ1. A constant oxygen level ψ1(t) = 1, an oscillatory stimulus ψ1(t) = 1 + cos(ωt)
with ω = 10π , and an increasing stimulus ψ1(t) = t
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namely modelling cell migration chemotaxis in heterogeneous environments, which
applies for general chemoattractants, not just oxygen. In particular, the governing
equations for cellular motility that have been considered are of the form

∂u

∂t
= D

∂2u

∂x2
− ∂

∂x
(α(t, x)ux ) + β(t, x)u(1 − u),

and supplemented by zero flux boundary conditions and suitable, typically con-
stant, initial conditions. Furthermore, the general spatiotemporal heterogeneity in
the chemotactic function α(t, x) and the growth function β(t, x) emerges from the
chemoattractant gradients that the cells respond to, which may be manipulated exten-
sively in microdevice experiments. However, the heterogeneity also entails that while
cellmigration dynamics towards high concentrations of chemoattractant is anticipated,
the dynamics will not simply be that of a translationally invariant travelling wave and
their associated analytical simplicity.

Hence, we have considered a framework capable of considering spatiotemporal
chemotactic gradients and the resulting wavefront and cell density dynamics for cel-
lular migrations in the presence of spatial and temporal heterogeneity. In particular,
the fact cell spreading in the absence of chemotaxis is generally much slower than in
its presence, the non-dimensional cellular diffusion coefficient is very small, so that
typically D � 1, which we assume and exploit in this study. With this, we have that
away from boundary layers near sources, which were located at the domain edge in
the examples considered, and away from cell wavefronts with sharp transitions, an
advection equation for the cellular density u emerges with D ∼ 0. Nonetheless, this
advection equation is still complex, entailing that a constraint on constructing solu-
tions for the cell density behaviour within the analytical framework presented here
is that the chemotactic function α(t, x) must either be linear in x or separable with
respect to space and time. However, numerous cases are consistent with these con-
straints, as illustrated by the range of examples considered in Sect. 2.3, together with
potential examples that emerge from the consideration of cellular dynamics within
microdevices in Sect. 3, as highlighted in Appendix E.

In such contexts,wehave illustrated how themethodof characteristics can be used to
construct the cell density solutions away from boundary layers and transition regions,
together with the use of boundary layer methods to construct a uniformly continuous
approximate solution that accommodates the transition in the wavefront of the cells. In
turn this provides an analytical characterisation of themovement of cellularwavefronts
and the concentrations of cells within and either side of the wavefront. However we
do not resolve boundary layers near oxygen sources, which has been the righthand
boundary in the examples considered, for the presented framework given the limited
insight the boundary layer will provide for the overall cell behaviour.

Even with the restriction of linearity or separability of the chemotactic functions
α(t, x), there is extensive freedom in the choices of α(t, x) and β(t, x). Hence we
first considered the predictions of the model for cell behaviour in exemplar test cases.
In particular, we have explored and documented the behaviour of the cell density
where the chemotactic function varies linearly in space and non-trivially in time, as
well exponential spatial behaviour and, in Appendix A, quadratically in space. In
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addition to analytical investigations, we have also verified that the analytical solutions
faithfully reproduce the behaviour of direct numerical solutions of the model, as may
be observed extensively in Figs. 3, 4, 5 and 6. Furthermore the exemplar solutions are
subsequently used to study models reduced from a full coupling between the cellular
density and chemoattractant concentrationwithin a prospectivemicrodevice setting, as
documented in Sect. 3. Once more the resulting dynamics are analytically investigated
and documented, with rationally based analytical approximation for the location of
the transition region and the cellular density presented.

Such analytical solutions are useful in numerous ways. For example, they provide
oversight and insight for the system dynamics across parameter space. To illustrate, we
consider the wavefront being driven by chemoattractant at the right-hand boundary, so
thatψ1(t) = 0, v(t, 1) = ψ2(t). Then, with k ameasure of the strength of chemotaxis,
differentiating x∗(t) from Eq. (42c) for the speed for the transition front gives

dx∗

dt
= −1

2
kλekλt + kψ2(t)e

−kλt

for the model of Sect. 3.1.2, with high chemoattractant or oxygen levels. Hence, in this
case, increasing the chemoattractant/oxygen uptake, as representing by increasing λ,
always slows the propagation of a rightmoving wave. In contrast, for the model with
low chemoattractant or oxygen levels of Sect. 3.1.2 differentiating x∗(t) from Eq.
(46c) we obtain

dx∗

dt
=

√
λ

cos (kλT )
ψ2(t)

therefore revealing that increasing the chemoattractant/oxygen uptake always speeds
up the propagation of the rightmoving wave, illustrating the general deductions that
may be made from the presented analytical solutions.

As well as providing analytical characterisation of the systems behaviour the ana-
lytical approximations provide a means to very rapidly compute cell behaviour. Thus
the approximate analytical solutions can support computationally intensive studies. A
simple example would be a global sensitivity analyses over all parameters. In particu-
lar, rapid evaluationwould bemost useful for parameter estimation using experimental,
often noisy, data especially if Bayesian techniques are considered as this require exten-
sive simulation to provide posterior distributions, rather than optimisation techniques
which only generate point estimates for parameters.

A directly analogous example isBayesianmodel selection,whereby the comparison
of experimental data and model prediction is used to distinguish different model struc-
tures when these are not known a priori, such as different functional forms of α(t, x)
or β(t, x) representing different prospective growth and chemotactic responses for a
given the tumour cell line in question. In particular both optimisation techniques and
the Bayesian techniques are iterative, so that the use of a rational but rapid evaluation
of an approximation to an optimum in optimisation studies or a posterior for Bayesian
techniques can in turn be used to restart the procedure with the full numerical model to
further refine the results (Brown et al. 2022). As well as investigating the prospective
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role of such analytical solutions in parameter estimation, future work might also con-
template the analytical structure and solution for problems in higher spatial dimension,
though it is unclear at this stage how tractable such a study would be.

In summary, we have developed a framework for the construction of analytical
approximations for front behaviours and densities for cells undergoing chemotaxis in
heterogeneous environments, as characterised by the chemotactic andgrowth functions
α andβ respectively. The resulting cellularwaves ofmigration are not simple travelling
waves due to the heterogeneity induced by the chemoattractant profiles. Nonetheless,
numerous features of the wavefronts have been extracted via rational approximation,
such as the location and speed of the propagating wave, together with the cellular
density profile. These have been explored and validated for exemplar scenarios as
well as investigated for models fundamentally motivated by prospective experimental
microdevices for observing cellular motility under a very wide range of conditions,
even if complete generality is not feasible for progress using constructive methods.
Thus, the solutions presented here not only provide insight into the behaviour of
cellular motility under the influence of spatiotemporal chemotactic heterogeneity, but
also highlight general behaviours and important mechanisms, as well as providing
a means of rapid evaluation in demanding computational studies, such as Bayesian
parameter estimation and model selection.
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Appendix A: Quadratic Chemotaxis

As an extension to the linear and exponential chemotaxis cases, we now consider a
function of the form

α(t, x) = (ax2 + bx + c)g(t),
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and hence f (x) = ax2 + bx + c.

• If � = b2 − 4ac = 0, Eq. (9) gives

1

2as + b
− 1

2ax + b
= 1

2

∫ τ

0
g(η) dη = 1

2
T (τ ),

and in turn

F(t; s) = 4as + 2absT (t) + b2T (t)

4a − 2baT (t) − 4a2sT (t)
,

G(t; x) = 4ax − 2abT (t)x − b2T (t)

4a2xT (t) + 2abT (t) + 4a
.

The transition is located at

x∗(t) = b2T (t)

4a − 2baT (t)
= cT (t)

1 − bT (t)/2
.

Furthermore, in the case where g(t) = β(t, x) = 1 we have to an accuracy of
O(u20) that

u(x, t) = u0e
t f (s)

f (x)
= u0e

t as
2 + bs + c

ax2 + bx + c

∣
∣
∣
∣
s=G(t;x)

= 4u0et

(2 + bt + 2atx)2
,

via use of Eq. (15), with u0 � 1where significant, but elementary, manipulation is
required to deduce the final expression. In particular for the parameters of Fig. 11a
it is straightforward to show that at leading order the behaviour in x for t fixed is
linear, as observed in this figure.

• If � = b2 − 4ac < 0, Eq. (9) yields

(

arctan

(
2ax + b√−�

)

− arctan

(
2as + b√−�

))

= 1

2

√−�

∫ τ

0
g(η) dη = 1

2

√−�T (τ ),

so that

F(t; s) = 1

2a

[√−� tan

(
1

2

√−�T (t) + arctan
2as + b√−�

)

− b

]

,

G(t; x) = 1

2a

[√−� tan

(

−1

2

√−�T (t) + arctan
2ax + b√−�

)

− b

]

,

with the transition is located at

x∗(t) = 1

2a

[√−� tan

(
1

2

√−�T (t) + arctan
b√−�

)

− b

]

.
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Furthermore, the analytical and full numeric solutions are plotted for the parame-
ters a = b = c = 2 with β(t, x) = g(t) = 1 in Fig. 11b. For this set of parameters,
where t ≤ 0.25 as in Fig. 11b, we have

tan

(

t
√−�

2

)

≈ t
√−�

2

⎛

⎝1 + O

⎛

⎝
1

3

(

t
√−�

2

)2
⎞

⎠

⎞

⎠ ≈ t
√−�

2
,

noting

1

3

(

t
√−�

2

)2

� 0.06.

Dropping the corrections in higher powers of t
√−�, valid for sufficiently small

time including the times plotted in Fig. 11, we have

x∗(t) = ct

1 − bt/2
,

and then also dropping terms scaling with O(u20), one finds

u(x, t) = u0e
t f (s)

f (x)
= u0e

t as
2 + bs + c

ax2 + bx + c

∣
∣
∣
∣
s=G(t;x)

= u0et (4 − t2�)

(2 + bt + 2atx)2
,

with a relative correction of (1 + O([t√−�/2]2/3)). The latter again gives an
approximate linear dependence in x for t fixed given the parameters of Fig. 11b,
as observed.

• If � = b2 − 4ac > 0, Eq. (9) gives

ln

(

2ax + b − √
�

2ax + b + √
�

)

− ln

(

2as + b − √
�

2as + b + √
�

)

= √
�

∫ τ

0
g(η) dη = √

�T (τ ),

so that

F(t; s) = 1

2a

[

γ +(2as + γ −) exp( 12
√

�T (t)) − γ −(2as + γ +) exp(− 1
2

√
�T (t))

(2as + γ +) exp(− 1
2

√
�T (t)) − (2as + γ −) exp( 12

√
�T (t))

]

,

G(t; x) = 1

2a

[

γ +(2ax + γ −) exp(− 1
2

√
�T (t)) − γ −(2ax + γ +) exp( 12

√
�T (t))

(2ax + γ +) exp( 12
√

�T (t)) − (2ax + γ −) exp(− 1
2

√
�T (t))

]

,

where we have defined γ + = b + √
� and γ − = b − √

�, with the transition
location given by

x∗(t) = 2c

[

exp( 12
√

�T (t)) − exp(− 1
2

√
�T (t))

γ + exp(− 1
2

√
�T (t)) − γ − exp( 12

√
�T (t)

)

]

.
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For Fig. 11c, we again have β(t, x) = 1 = g(t), so that T (t) = t ; we also
have t

√
�/2 � 1 throughout the simulation regime. Hence, on neglecting higher

powers of t
√−�/2, the transition location simplifies to

x∗(t) = ct

1 − bt/2
,

which agrees with the above as t
√−�/2 → 0. Furthermore, under these condi-

tions with u20 � 1 and neglecting higher orders in u0, one finds

u(x, t) = u0e
t f (s)

f (x)
= u0e

t as
2 + bs + c

ax2 + bx + c

∣
∣
∣
∣
s=G(t;x)

= u0e
t (1 − (b + 2ax)t),

with an relative error of (1+O([t√−�/2]2)). For t fixed, again we have u(x, t)
is approximately linearly decreasing in x , as observed in Fig. 11c.

More generally, Fig. 11 shows a comparison between the numerical results with
D = 1 × 10−3, β(t, x) = 1 = g(t) and the analytical solution for three different
expressions of α(x) and β(t, x) = 1, with full consistency with the above solutions
and approximations.

Appendix B: Oscillatory Solutions for Homogeneous Growth

We consider homogeneous growth, so that β(t, x) is a constant independent of x and
t , together with a temporally oscillating chemotactic response governed by α(t, x), so
that Eq. (19) reduces to

r ′ + (β − a cos(ωt)) r = β, r(0) = r∗. (50)

Hence the cell concentration to the right of the transition region, but away from the
boundary layer at x = 1, is spatially constant with a temporal oscillation, which we
consider below for four distinct parameter regimes.

B.1 SlowVariations of the Gradients,! � 1

Let T = ωt and, without loss of generality, we consider the decomposition r(t) =
y + z(ωt). Then, Eq. (50) becomes

ωz′(ωt) + dy

dt
+ (β − a cos(ωt)) z(ωt) + (β − a cos(ωt)) y = β. (51)

Further, let ωz′(ωt) + (β − a cos(ωt)) z(ωt) = β, so we have

ωz′(T ) + (β − a cos(T )) z(T ) = β. (52)
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Fig. 11 (Color Figure Online) Comparison of numerical and analytical solutions for α quadratic. The
analytical and simulated (for D = 1 × 10−3) profiles at different times are compared for three different
α(t, x) = ax2 + bx + c expressions
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Since ω � 1, we can approximate the solution of Eq. (52) by

z(T ) = β

β − a cos(T )
+ O(ω). (53)

Then, Eq. (51) yields

dy

dt
+ (β − a cos(ωt)) y = 0, (54)

and the initial condition is

y∗ = y(t = 0) = r(t = 0) − z(0) = r∗ − β

β − a
. (55)

As we have a slow modulation of the frequency/decay rate, we use the Wentzel-
Kramers-Brillouin (WKB) method (Olver 1997). In terms of T = ωt , Eq. (54)
becomes

ω
dy

dT
+ (β − a cos(T )) y = 0, y(0) = y∗. (56)

The WKB approximation is expressed here as

y = p exp

(
φ(T )

ω

)

J (T ), J (T ) = J0 + ωJ1 + O(ω2). (57)

Substituting Eq. (57) into Eq. (54) we obtain

p exp

(
φ(T )

ω

) [

ω

(
φ̇

ω
J + J̇

)

+ (β − a cos T )J

]

= 0. (58)

Therefore, ω
(

φ̇
ω
J + J̇

)

+ (β − a cos T )J = 0, so that

φ̇ (J0 + ωJ1 + . . .) + ω
(

J̇0 + ω J̇1 + . . .
) + (β − a cos T ) (J0 + ωJ1 + . . .) = 0.

(59)

The O(1) corresponding equation is

J0
(

φ̇ + (β − a cos T )
) = 0, (60)

and solving it for φ gives

φ(T ) = φ∗ − βT + a sin T . (61)
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The O(ω) corresponding equation is

J1
(

φ̇ + (β − a cos T )
) + J̇0 = 0, (62)

so, as φ̇ + (β − a cos T ) = 0, we obtain J0 = J ∗
0 (constant). Consequently, Eq. (57)

becomes

y = K exp

(−βT + a sin T

ω

)

, (63)

for K = p exp(φ∗
ω

)J0 constant. Using that T = ωt and the initial value y(0) = y∗,
we obtain the approximation

y =
(

r∗ − β

β − a

)

exp
(

−βt + a

ω
sin(ωt)

)

. (64)

Finally, as r = y + z(ωt), we have

r ∼ β

β − a cos(ωt)
+

(

r∗ − β

β − a

)

exp
(

−βt + a

ω
sin(ωt)

)

. (65)

B.2 Fast Variations of the Gradients,! � 1

We solve now the problem using the method of multiple scales. Let us assume that
r(t) = r(T1, T2), where T1 = t and T2 = ωt , so that

dr

dt
= ∂r

∂T1

∂T1
∂t

+ ∂r

∂T2

∂T2
∂t

= ∂r

∂T1
+ ω

∂r

∂T2
. (66)

If ε = 1
ω

� 1, Eq. (50) becomes

ε

(
∂r

∂T1
+ ∂r

∂T2

)

+ ε (β − a cos(T2)) r = εβ. (67)

If we use an asymptotic expansion of r , r = r0 + εr1 we obtain:

ε

(
∂r0
∂T1

+ ε
∂r1
∂T1

)

+ ∂r0
∂T2

+ ε
∂r1
∂T2

+ ε (β − a cos(T2)) (r0 + εr1) + O(ε2) = εβ.

(68)

Solving the equation obtained collecting the O(1) terms, we find r0 is a function
of T1 only, that is

r0 = r0(T1), (69)
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with the initial condition r0(0) = r∗. Now, for the equation obtained collecting the
O(ε) terms, we have

r ′
0(T1) + ∂r1

∂T2
+ (β − a cos(T2))r0(T1) = β. (70)

As r1 is a periodic correction, integrating Eq. (70) over T2 ∈ [0, 2π ] we obtain

2πr ′
0(T1) + 2πβr0(T1) = 2πβ, (71)

and thus, solving for r0(T1), we have

r0(T1) = r∗e−βT1 + (1 − e−βT1). (72)

Hence, the leading order approximation is

r(t) ∼ r∗e−βt + (1 − e−βt ). (73)

Now, for the O(ε) equation we have:

∂r1
∂T2

= a cos(T2)r0(T1). (74)

Since r1(T1, T2 = 0) = 0,

r1(T1, T2) = a sin(T2)r0(T1). (75)

and therefore the first order correction is, r0 + εr1, that is:

r(t) ∼ (

r∗e−βt + (1 − e−βt )
) (

1 + a

ω
sin(ωt)

)

. (76)

B.3 Dominant Chemotaxis, a � ˇ.

We solve now the problem using the standard asymptotic expansion method. We set
ε = β/a � 1. Then, Eq. (50) reduces to

r ′ + a (ε − cos(ωt)) r = aε. (77)

The leading order solution is obtained immediately as it is the solution to the
homogeneous linear differential equation:

r ′
0 − a cos(ωt)r0 = 0. (78)

Thus the leading order approximation is

r ∼ r0 = r∗e
1
ω
a sin(ωt), (79)
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though the next order correction generates a cumbersome expression and thus is not
presented.

B.4 Dominant Cell Proliferation, a � ˇ.

Again, we solve the problem using the standard asymptotic expansion method. Now,
we set ε = a/β � 1. Then, Eq. (50) gives

r ′ + β (1 − ε cos(ωt)) r = β. (80)

The leading order solution is obtained immediately as the solution to the inhomo-
geneous linear differential equation

r ′
0 + βr0 = β, (81)

and hence is given by

r ∼ r0 = r∗e−βt + (

1 − e−βt) . (82)

For the first correction, an asymptotic expansion of r of the form r = r0 + εr1 reveals
that

r ′
1 + βr1 = β cos(ωt)r0. (83)

The solution to this ODE with initial condition r1(0) = 0 is given by

r1(t) = β
[

(r∗ − 1)γ 2 sin(ωt) + ω2eβt sin(ωt) + ωβeβt cos(ωt)
]

ωγ 2eβt
− β2

γ 2 e
−βt , (84)

where we have defined γ 2 = β2 + ω2. Hence up to the first order correction we have

r(t) ∼ r0 + εr1 =
1 + (r∗ − 1)γ 2ω − A

[(

γ 2r∗ − γ + ω2eβt
)

sin(ωt) + ωβeβt cos(ωt) − βω
]

ωγ 2eβt
.

(85)

Appendix C: Error Indicators

For reference, we present select error indicators for the different approximations pre-
sented.
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Table 1 Error indicators for the
linear chemotaxis case. The
error is computed for numerous
times, corresponding to those
presented in Figs. 3 and 4

t Constant gradient Oscillatory gradient

0.04 0.08 × 10−3 0.08 × 10−3

0.09 0.22 × 10−3 0.11 × 10−3

0.14 0.37 × 10−3 0.12 × 10−3

0.19 0.53 × 10−3 0.09 × 10−3

0.25 0.69 × 10−3 0.32 × 10−3

Table 2 Error indicators for the
exponential chemotaxis case.
The error is computed for
numerous times, corresponding
to those presented in Fig. 6

t Exponential function

0.04 0.10 × 10−3

0.09 0.25 × 10−3

0.14 0.44 × 10−3

0.19 0.67 × 10−3

0.25 1.00 × 10−3

Table 3 Error indicators for the
quadratic case. The error is
computed for numerous times,
corresponding to those presented
in Fig. 11

t � = 0 � < 0 � > 0

0.04 0.09 × 10−3 0.12 × 10−3 0.17 × 10−3

0.09 0.24 × 10−3 0.29 × 10−3 0.41 × 10−3

0.14 0.41 × 10−3 0.52 × 10−3 0.64 × 10−3

0.19 0.59 × 10−3 0.77 × 10−3 0.84 × 10−3

0.25 0.79 × 10−3 1.02 × 10−3 1.01 × 10−3

C.1 Errors in Space

For the approximations presented in Figs. 3, 4, 6 and 11, the error is estimated using
the L2 norm in [0, 0.8]. Themaximum of the interval is set to 0.8 to avoid the influence
of the right boundary layer, while the boundary layer at x = 0 is only relevant for
small time and not for the times considered below in the error indicator tables. With
a normalisation of the domain length, we therefore define

E(t) = 1√
0.8

√
∫ 0.8

0

(

û(x, t) − u(x, t)
)2 dx, (86)

where u is the numerical solution and û the approximate composite solution obtained
using the analytical expressions. Table 1 presents the L2 errors for the linear chemo-
taxis case, Table 2 for the exponential chemotaxis and Table 3 for the quadratic
chemotaxis case.
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Table 4 Error indicators for the
linear polynomial case. The
error is computed in the interval
[0, 50] for the four different
cases analysed in Fig. 5 and both
orders of approximation

Case Order 0 Order 1

ω � 1 0.053 0.018

ω � 1 0.068 0.012

β � a 0.002 –

a � β 0.048 0.003

C.2 Errors in Time

For comparison purposes, we compute the approximation error for the solutions
obtained using asymptotic theory of Fig. 5. With a normalisation of the domain length
this is defined as

Ei = 1√
50

√
∫ 50

0

(

û∗
i (t) − u∗(t)

)2 dt, (87)

where û∗
i is the approximated solution of order i and u∗ is the numerical solution using

standard Runge–Kutta solvers, with the results presented in Table 4 for the different
approximations.

Appendix D: Simplification of the Transport Equation for Chemotaxis

With v(t, x) denoting the concentration of the chemoattractant, and with �3 � 1 we
have in Sect. 3.1 an equation of the form

vt = �3vxx ,

since w(u, v) = 0 has been imposed on (27b), while in Sect. 3.1.2 we have equations
of one of the two forms

vt = �3vxx − �3λ, vt = �3vxx − �3λv,

via Eqs. (34), (37) respectively. These are accompanied by boundary conditions of the
form

v(t, 0) = ψ1(t), v(t, 1) = ψ2(t),

and initial conditions v(0, x) = v0(x) are required to close the system. For simplicity,
we assume the boundary conditions and initial conditions are consistent at (t, x) =
(0, 0), (0, 1).

To further proceed we firstly assume �−1
3 � λ � �3, so that λ can be treated as

unit order of magnitude in asymptotic methods based on ε = �−1
3 � 1, and we also

assume that ψ1(t), ψ2(t) have derivatives that are unit order of magnitude, or less.
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With these weak assumptions, our objective is show that the time derivative vt can be
neglected at leading order, justifying the use of Eqs. (28b), (36), (39) in the main text
and also justifying the neglect of the consideration of initial conditions in the main
text on the grounds this only governs fast initial transients.

Below we work with the PDE

vt = �3vxx − μ�3λvζ , (88)

with μ, ζ ∈ {0, 1} so that μ = 0 gives one the above equations while μ = 1, ζ = 0,
gives another with the final possibility corresponding to μ = 1, ζ = 1, allowing the
three cases to be considered simultaneously.

We have an outer timescale of t and an inner timescale of τ = �3t = t/ε. In the
outer region, t � ε, for the leading order outer solution vout(t, x) one indeed has

0 = voutxx − μλ(vout)ζ , vout(t, 0) = ψ1(t), vout(t, 1) = ψ2(t),

without consideration of the initial condition. Hence the solutions presented in the
main text, for instance Eqs. (29), (41), (45), (48), are the same as the leading order
outer solutions. With the leading order inner solution vin(τ, x) we have

vinτ = vinxx − μλ(vin)ζ , vin(0, x) = v0(x),

and the leading order boundary conditions

vin(τ, 0) = ψ1(ετ ) = ψ1(0), vin(τ, 1) = ψ2(ετ ) = ψ2(0),

on noting t = ετ and where O(ε) corrections are dropped in the final term for both
boundary conditions. Recalling μ, ζ ∈ {0, 1} and using the decomposition

vin(τ, x) = vout(0, x) + q(τ, x),

without loss of generality, we have

qτ = qxx − μζλq, q(τ, 0) = q(τ, 1) = 0, q(0, x) = v0(x) − vout(0, x).

With the Fourier decomposition of q(τ, x) and its initial condition

q(x, τ ) =
∞
∑

n=1

qn(τ ) sin (nπx) , q(0, x) =
∞
∑

n=1

q0n sin (nπx) ,

we have

dqn
dτ

= −n2π2qn − μζλqn, qn(0) = q0n ,
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so that

q(x, τ ) =
∞
∑

n=1

q0n sin (nπx) e−(n2π2+μζλ)τ ≈ 0 for π2τ � 1.

Thus the leading order composite solution is given by

v(t, x) = vout(t, x) + vin(τ (t), x) − lim
t→0

vout(t, x) = vout(t, x) + q(τ (t), x)

≈ vout(t, x) for t � ε/π2. (89)

Thus, as implemented in the main text, working solely with the outer solution and
neglecting the initial conditions is a rational asymptotic approximation at leading
order with respect to ε = �−1

3 � 1, once initial transients have decayed, that is for
times satisfying t � ε/π2 = �−1

3 /π2. As the initial transients, and very short times,
are not of interest for determining the behaviour of the invasive front of cells for the
majority of its propagation we thus work only with the outer equations and solution
in the main text.

Appendix E: Representative Values for Physical and Non-dimensional
Parameters

In this Appendix we present order of magnitude parameter estimates for the dynamics
of glioblastoma cell cultures in microfluidic devices where chemoattractant gradients
play a key role in the progression dynamics, drawing from the theoretical work of
Ayensa-Jiménez et al. (2020) and the experimental studies of Ayuso et al. (2017).
Table 5 presents characteristic values of the dimensional parameters used to define
�1, �2, �3, �4, defined via Eqs. (24a)–(25d), and yielding the order of magnitude
estimates

�1 = 8.34 × 10−2, �2 = 6.67 × 100, �3 = 1.19 × 103, �4 = 7.14 × 103.

Note that �1 � 1 is equivalent to D � 1 in the original formulation of the non-
dimensional model in Sect. 2.2.1.

However,with these parameters the glioblastoma experiments ofAyuso et al. (2017)
do not fall into any of the cases considered in the main text, most notably because the
equation for oxygen uptake, although approximately time-steady since �3,�4 � 1,
reduces to

vxx = �4

�3
wpc(v)u,

�4

�3
�� 1,

which is not considered and more complex than the cases of the main text.
In terms of the microdevice scenarios considered in Sect. 3.1.2 of the main text it

is clear that the above parameters from the microdevice are not consistent with Case
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Table 5 Parameter estimates.
Estimates of dimensional
parameters associated with cell
culture evolution in microfluidic
devices, based on the
experimental studies presented
by Ayuso et al. (2016, 2017)

Parameter Value Units

D 7 × 10−10 cm2/s

χ 8 × 10−9 cm2/mmHg s

αn 1 × 10−6 s−1

csat 5 × 107 cell/mL

DB 1 × 10−5 cm2/s

αB 1 × 10−9 mmHgmL/cell s

B∗ 7 × 100 mmHg

km 3 × 100 mmHg

(1). This case is associated with sufficiently low cell concentrations to ensure minimal
oxygen uptake, requiring the condition (�4/�3)u � 1, which is not consistent with
the above order of magnitude parameter estimates. Instead one would require, for
instance, cell concentrations, as measured by csat, lowered by two orders of magnitude
for example.

Cases (2), (3), respectively require

�−1
3 � λ = �4K

�3
� �3, �−1

3 � λ = �4K

km�3
� �3, (90)

where K is the non-dimensional cell density and thus of order unity, and km is an
non-dimensional version of km in Table E, having been non-dimensionalised by B∗,
and thus also is of order unity. Hence these constraints are satisfied. Thus, the physical
scales associated with the microdevice experiments of Ayuso et al. (2017) would be
consistent with cases (2) or (3) of Sect. 3.1.2, if surrounding tissue was also present, so
as to maintain oxygen consumption in the absence of glioblastoma cells together with
either high or low nutrient concentrations. Hence, cases (2) and (3) may be relevant
for future microdevice studies.
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