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Abstract
A high mutation rate of the RNA virus results in the emergence of novel mutants
that may escape the immunity activated by the original (wild-type) strain. However,
many of them go extinct because of the stochasticity due to the small initial number
of infected cells. In a previous paper, we studied the probability of escaping stochastic
extinction when the novel mutant has a faster rate of infection and when it is resistant
to a drug that suppresses the wild-type virus. In this study, we examine the effect
of escaping the immune reaction of the host. Based on a continuous-time branching
process with time-dependent rates, we conclude the chance for a mutant strain to be
established p(t) decreases with time t since the wild-type infection when the mutant
is produced. The number of novel mutants that can escape extinction risk has a peak
soon after the wild-type infection. The number of novel escape mutations produced
per patient in the early phase of host infection is small both for very strong and very
weak immune responses, and it attains its maximum value when immune activity is
of an intermediate strength.

Keywords Viral dynamics · Time-dependent branching processes · Cross-immunity ·
Escape mutants per patient

1 Introduction

Within the host body, the virus infects target cells, increases the number of copies using
host cell machinery, and is transmitted to the uninfected target cells. The replication
error of their genome may produce mutants that are more efficient in some key steps
of the viral life cycle. The mutants with a faster rate of proliferation or a weaker
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suppression by immunity than the original strain (or wild-type virus) would increase
in number and replace the wild-type strain within the host. However, because these
mutants start from a small number of infected cells (often a single infected cell),
they suffer strong stochasticity, driving them to extinction. As a result, a considerable
fraction of these advantageous mutants go extinct because of the stochasticity caused
by the small number of infected cells. While the number of infected cells is small,
stochasticity dominates the dynamics of themutant strain. Once their number becomes
sufficiently large, their deterministic increasing ability dominates stochasticity, and
extinction becomes unlikely.

In a previous study (Hayashi et al. (2022)), we calculated the fraction of mutants
that can escape stochastic extinction, based on a continuous-time branching process
with a time-dependent growth rate. The chance for a mutant strain to be established
decreases with the time since the infection of thewild-type strain, and it shows damped
oscillation before convergence to the low stationary value. We also calculated the
probability of escaping stochastic extinction for a drug-resistant mutant when a patient
received an antiviral drug that suppressed the wild-type strain. Combining the rate of
mutant production from the wild-type strain and the chance of escaping stochastic
extinction, the number of emerging drug-resistant mutations may have two peaks: one
soon after the infection of the wild-type strain and the second at the start of antiviral
drug administration (Hayashi et al. 2022).However, the previous study did not consider
the effect of the immune system, which is activated by the abundant wild-type strain
and may partially suppress the proliferation of mutant strains.

In the present paper as a sequel to Hayashi et al. (2022), we study the probability
of escape from initial stochastic extinction owing to the small number of infected
cells when the mutant and the wild-type strains differ in their ability to stimulate
immune responses. We evaluate how the fraction of mutants that survive stochastic
extinction changes with the time at which they are produced. To illustrate, we consider
the following scenario: before the viral infection, the number of target cells in the host
was maintained at equilibrium. At a certain time, the host becomes infected with a
viral strain that proliferates rapidly, reducing the number of susceptible target cells
and activating the immune system. The proliferation of the virus is suppressed by the
shortage of susceptible target cells and by the immune activity, leading to a stationary
abundance of infected and target cells. Mutant strains may be produced owing to
mistakes in the genomic replication of the original viral strain (or wild-type virus).
Some of these are advantageous because they proliferate faster or evade immune
surveillance more effectively than the wild-type strain. However, they suffer a high
risk of stochastic extinction owing to the small number of infected cells.

We apply themathematical analysis adopted inHayashi et al. (2022) to the casewith
immune reaction of the host. Tomake the analysis of branching process applicable, we
consider the escape (establishment) probability of a mutant virus under the following
setting (see Fig. 1 for the scheme of the model): The number of cells infected by the
wild-type strain is sufficiently large and their dynamics can be handled by a differential
equation, deterministic dynamics. In contrast, a mutant strain starts from a single
infected cell and has a high chance of stochastic extinction. Because the number of
cells infected by the mutant virus is small, the reduction in susceptible target cells due
to infection by the mutant strain can be neglected in the dynamics of target cells. In
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Fig. 1 Schematic of the model. The four variables indicated in circles are the number of target cells x , the
number of cells infected by the wild-type strain y, those infected by the mutant strain z, and the number of
killer T cells w. We consider the situation in which z is small and requires consideration of stochasticity
in the dynamics of z. In contrast, because three other variables are much larger than unity, we can adopt
deterministic dynamics for them. We focus on the time frame in which z does not affect the dynamics of x ,
y, and w, rather the dynamics of z are strongly affected by x and w, both of which depend on time

contrast, the proliferation rate of the mutant critically depends on both the abundance
of susceptible target cells and the intensity of the immune reaction.

Under this setting, the fate of a lineage starting froma single cell infected by amutant
strain is independent of the presence or the prevalence of other mutant strains. The
independence between lineages is the key assumption that allows us to adopt branching
process calculation (see (Hayashi et al. 2022)). The number of mutant-infected cells
follows a continuous-time branching process, where the mean rates of proliferation
and mortality change with time following the dynamics of the target cells and immune
activity. We derive a differential equation for the escape (establishment) probability of
a mutant p(t) as a function of the time t at which the mutant is produced. We obtain
an explicit mathematical formula for p(t). The escape probability of a mutant p(t)
exhibits characteristic temporal patterns: it starts at a high value, then decreases with
time, and converges to a stationary level after damped oscillation. We examine the
parameter dependence of the temporal pattern of escape probability and the number
of novel mutant viruses produced in a single patient.

2 Model

Let x , y, and w be the number of susceptible target cells, number of cells infected
by the wild-type virus, and number of immune effector cells (e.g., activated killer T
cells), respectively (see Fig. 1). We consider the following dynamics:

dx

dt
= λ − cx − bxy (1a)
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dy

dt
= bxy − hwy − δy (1b)

dw

dt
= ay − dw (1c)

Equation (1a) indicates the dynamics of susceptible target cells. The first term on
the right-hand side indicates the supply of target cells at rate λ and the second term
indicates the loss of target cells with a turnover rate of c. Without viral infection, the
target cells have a mean longevity of 1/c. The third term indicates the rate of infection
of the target cells by the virus, which is proportional to the number of infected cells y.

Equation (1b) indicates the dynamics of the number of cells infected by the virus.
The first term on the right-hand side is the total rate of infection (transition from
susceptible cells to infected cells), which is the same as the third term in Eq. (1a).
The second term indicates the removal of infected cells by the action of cytotoxic T
lymphocytes (i.e., killer T cells), and the third term indicates the mortality of infected
cells by other processes. The instantaneous mortality of the infected cells is hw + δ,
which increases linearly with the number of active killer T cells w.

Equation (1c) gives the dynamics of the number of active killer T cells. They are
formed by the activation of naïve killer T cells through the action of antigen-presenting
cells, and subsequent proliferation by cell division of a finite number of times. The rate
of production of active killer T cells is proportional to the abundance of viral antigens,
which increases with the number of infected cells y. The proportionality coefficient
is a, as indicated in the first term on the right-hand side. This functional form was
called "linear immune response" by Nowak andMay (2000) and was adopted in Iwasa
et al. (2021). In the following analysis, we adopt this simplest form, although more
complex functional forms of immune activation have also been studied (Boer et al.
2001). The second term on the right-hand side is the loss of activated killer T cells
owing to mortality at rate d. The mean lifetime of killer T cells is 1/d. If we neglect
the function of killer T cells (either h = 0 or w = 0), the model is the same as that
used in our previous study (Hayashi et al. 2022).

Because x , y and w are large numbers, we can assume them as the deterministic
differential equations given in Eq. (1). Figure 2 illustrates the case with the following
scenario: Initially, there was no virus (y = 0). The abundance of the target cells was
calculated using Eq. (1a) with y = 0, and converged to x = λ/c. The wild-type virus
then invaded with a very low initial abundance. For simplicity of argument, we set the
infection time to t = 0. We denoted the initial abundance of the virus as y(0) = ε,
where ε > 0 was positive but much smaller than λ/c. Viral prevalence y measured in
terms of the number of infected cells increased and then decreased because the target
cells decreased and killer T cells w increased in number. Finally, it converged to a
positive value y(∞). At equilibrium, the abundance of susceptible target cells x(∞)

and the intensity of immune reactions w(∞) were positive.
The mutants are produced from the original (wild-type) strain at a very low rate.

Because a newly produced mutant strain starts from a single infected cell, it has a high
risk of extinction even if it has a positive mean growth rate. The escape probability of a
mutant strain depends on the time t at which the mutant is produced (t > 0). The mean
per capita rate of increase of the mutant infected cells decreases with time because the
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Fig. 2 Time dependent solutions. a Numbers of susceptible target cells x(t), infected target cells y(t),
and killer T cells w(t). The horizontal axis represents time t at which the mutant is produced. b Escape
probability of a mutant virus starting from a single infected cell at time t , p(t). Two curves are for different
h′: h′= 0, and h′ = 2 × 10−5(< h). Other parameters were: a = 10, b = 2.5 × 10−4, c = 1, d = 5,
δ = 5, λ = 5 × 104, h = 5 × 10−5, b′ = 3 × 10−4, and ε = 100

abundance of target cells x(t) declines and the immune reaction w(t) increases as the
wild-type strain proliferates. Hence, mutants produced earlier have a higher chance of
escape than those produced later.

The mutant has an infection rate b′ and the effectiveness of immune reaction h′
(i.e. efficiency of cytotoxic T lymphocytes), which may differ from the corresponding
rates for the wild-type strain (b and h, respectively). Because the mutant is produced
from the wild-type viral strain, we consider the situation in which the wild-type virus
has a positive abundance. This precludes the case of λ/c ≤ δ/b, for which the wild-
type strain cannot be maintained in the host body (Appendix A). Hence, we assume
λ/c > δ/b in the following.

To simplify the mathematical analysis, we assume that the stochasticity caused by
the small number of infected cells is important for the mutant strain, but not for the
wild-type strain. Even if the initial abundance of the wild-type strain y(0) = ε is much
smaller than the abundance of the susceptible target cells, it can be sufficiently larger
than 1. The dynamics of x , y, and w are then described by the deterministic dynamics
given by Eq. (1).

Let z be the number of cells infected with the mutant strain. It is produced by rare
mutations at the time of replication of the wild-type strain. We assume that z starts
from 1. The dynamics of z can be expressed as:

dz

dt
= b′xz − h′wz − δz + [stochasticfluctuation] (2)

where the last term on the right-hand side indicates stochastic fluctuation with a mean
of zero. If the infection rate of the mutant strain is higher than that of the wild-type
strain (b′ > b), the immune suppression on the mutant is weaker than that on the wild-
type strain (h′ < h), or both, z increases on average over time (otherwise the mutant
becomes extinct with probability one). However, the stochasticity caused by the small
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number of cells results in the extinction of mutant with a considerable probability.
Once the abundance of the number of infected cells becomes sufficiently large, the
effect of stochasticity is weaker than the deterministic rate of increase, and thereafter
the cell number z continues to increase exponentially.

Because we focus on the situation in which the number of target cells infected by
the mutant strain is much smaller than that of cells infected by the wild-type virus,
we neglect the effect of the mutant strain on the abundance of susceptible target cells.
Hence, Eq. (1a) does not contain a term for z.

3 Escape Probability of a Mutant

We represent the dynamics of the number of infected cells by stochastic process in
which z is an integer (z = 0, 1, 2, 3, ...). For simplicity of mathematical analysis,
we first consider the viral transmission by cell-to-cell contact, in which an infected
cell encounters a susceptible cell and infects it at a rate proportional to x(t). The
transmission via cell-to-cell contact was proved in the experiment with HIV (Iwami
et al. 2015). Alternatively, viruses may proliferate to produce free viral particles that
infect susceptible cells, inwhich a single infected cell ruptures, resulting in a number of
newly infected cells with a Poisson distribution. The latter model for viral proliferation
will be discussed later.

Equation (2) indicates that z increases with infection b′x(t)z and decreases with
mortality

(
h′w(t) + δ

)
z, which are both proportional to z, suggesting that these events

occur independently between infected cells. Thus, we can handle the stochastic change
in z by focusing on the events experienced by a single infected cell. Suppose that a
cell infected by a viral strain infects many other cells by transmission of the virus.
Then, we regard these cells as "descendants" of the wild-type cell in this study. This
usage of "lineage terminology" is useful for explaining the model, in which we treat
the virus as a focal agent, and cells as their habitat (Hayashi et al. 2022).

We consider a single cell infected by the mutant strain at time t and ask the prov-
ability of the lineage not to extinct within a finite time. This can be calculated by
considering p(t) as the probability that the lineage starting from the focal cell does
not go extinct by time T , and examining the limit when T is infinitely large. To derive
the differential equation for p(t), we decompose it according to the alternative events
occurring in a short interval from t to t + �t , which are given as follows.

(i) The cell encounters with an uninfected target cell and virus is transmitted (gen-
erating two "offspring" cells) with a probability b

′
x(t)�t .

(ii) The cell dies with a probability
(
h′w(t) + δ

)
�t .

(iii) The cell remains unchanged with probability 1 − b′x(t)�t − (
h′w(t) + δ

)
�t

In these three events, the number of infected cells are (i) two, (ii) zero, and (iii) one,
respectively. Then, we have the following equation:

p(t) = b′(t)x(t)�tp2(t + �t) + δ�t · 0
+(

1 − b′x(t)�t − (
h′w(t) + δ

)
�t

)
p(t + �t) + o(�t) (3)
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where p2(t + �t) is the probability that the lineage starting from two initial cells at
time t+�t does not go extinct by time T . This explains the first term on the right-hand
side of Eq. (3). If the cell dies by t +�t , the probability for the focal lineage to escape
by time T is zero, which explains the second term on the right-hand side of Eq. (3).
The third term is the case when the infected cell remains unchanged.

The behavior of the lineages starting from different cells is assumed independent
of each other, which is a key premise of branching process. We have p2(t) = 1 −
(1 − p(t))2 because the extinction of descendants starting from two cells is equivalent
to the extinction of both lineages starting from one cell. The last term in Eq. (3), o(�t),
indicates a small quantity of higher order than�t , which satisfieso(�t)/�t → 0when
�t → 0. Hence, as �t → 0, Eq. (3) becomes the following:

−dp

dt
= b′x(t)p(t)[1 − p(t)] − (

h′w(t) + δ
)
p(t) (4)

For detailed explanation of the derivation of Eq. (4), see Appendix B.
We can calculate p(t) by integrating Eq. (4) with respect to t using the terminal

condition p(T ) = 1. Because we here ask whether or not a newly produced mutant
virus can be established in the target cell population, we consider the behavior at the
limit T → ∞. As explained in Appendix B, Eq. (4) can be solved, as follows:

p(t) = 1
∫ ∞
t b′x(s)exp

[−∫ s
t (b

′x(t ′) − (h′w(t ′) + δ))dt ′
]
ds

(5)

We first calculate the target cell abundance and immune activities
{x(t)andw(t), fort > 0} using Eq. (1). Next, we obtain the escape probability
from Eq. (5).

3.1 Trajectories of Escape Probability p(t)

The vertical axis indicates x(t), y(t), andw(t) in Fig. 2a, and the escape chance of the
mutant p(t) in Fig. 2b, which is calculated from Eq. (5). The horizontal axis indicates
time t . We also performed direct simulations of the stochastic process. An explanation
of this method can be found in our previous paper (Hayashi et al. 2022). These results
are consistent with the predictions of the mathematical formula.

The escape probability of a mutant p(t) starts from the highest value p(0) because
the wild-type viral type y(t), a competitor for the mutant strain sharing the common
resources x(t), is initially small. As competitor abundance increases, the probability
for the focal mutant to establish decreases. Figure 2b illustrates p(t) in two cases that
differ in the value of h′, but in which the two stains have the same rate of infection of
the target cells (b′ = b).When themutant escapes the immune attack developed by the
wild-type strain (h′ = 0), there is no cross-immunity. Themutant has a positive escape
probability because it has an advantage over its competitor in that it is not attacked by
immunity. When the mutant suffered an immune attack with an intensity lower than
that of the wild-type strain (0 < h′ < h), cross-immunity exists but is weaker than the
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immunity to the wild-type type. Therefore, p(t) is positive but is smaller than that in
the case where h′ = 0.

4 Number of Mutations that Escape Stochastic Extinction

The production rate of novel mutants is proportional to the number of infection events
per unit time, bx(t)y(t). Because the fraction of novel mutations that can escape
the initial high risk of stochastic extinction is p(t), the rate of production of novel
mutants that will eventually be established is proportional to their product f (t) =
bx(t)y(t)p(t), although it needs to be multiplied by the mutation rate. We examine
this quantity f (t) as an indicator of the emergence rate of novel mutants as a function
of time t .

An example is shown in Fig. 3. The top part indicates x(t), y(t), and w(t), the
middle part illustrates p(t), the escape probability. The horizontal axis represents
time t . The bottom part of the figure illustrates f (t), an indicator of the production
rate of mutations surviving stochastic extinction, which has a sharp peak shortly after
the start of infection. Let τ f be the time interval between the start of infection with
the wild-type strain and the time when quantity f (t) attains its maximum value. The

Fig. 3 An indicator for the rate of
novel mutant production f (t).
Horizontal axis is the time at
which mutants are produced. We
can see that the curve for f (t)
has a sharp peak near the onset
of the infection. We numerically
calculated the area under the
curve between 0 and t1, the
latter being the time for the first
local minimum of function f (t).
We call the size of the shaded
area, FM = ∫ t1

0 f (t)dt ,
"potential of novel mutant
production in the early phase of
infection." Standard set of the
parameters were: a = 10,
b = 2.5 × 10−4, c = 1, d = 5,
δ = 5, λ = 5 × 104,
h = 5 × 10−5, b′ = 3 × 10−4,
h′ = 2 × 10−5, and ε = 100
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Fig. 4 Potential of novelmutant production in the early phase of infection FM . The horizontal axis represents
the strength of immune reaction h, shown in the logarithmic scale. We fixed the ratio h′/h (= 0.4), and
hence a large h implies a large h′. Sensitivity analysis showed that FM = ∫ t1

0 f (t)dt , the potential of novel
mutant production in the initial phase, is small both for extremely small h and extremely large values of h;
however, it achieves its maximum at an intermediate rate. Other parameters are the same as in Fig. 3

height of the peak is f
(
τ f

)
. In Appendix C, we show the sensitivities of τ f and f

(
τ f

)

on the parameters in the model in terms of elasticity.
Furthermore, we consider the expected number of novel mutants that escape

stochastic extinction per patient. The integral of f (t) = bx(t)y(t)p(t) over the peak
gives the expected number of mutants produced that did not go extinct within the host.
Let t1 be the time at the localminimumof f (t) just after the first peak. FM = ∫ t1

0 f (t)dt
is the potential for novel mutations that escape the stochastic extinction in the early
phase of infection. FM is proportional to the expected number of novel escape muta-
tions per patient.

Figure 4 illustrates FM . The horizontal axis is the magnitude of immune pressure
h. Because we fixed the ratio h′/h, a larger h results in a larger h′. FM is small under
both strong and weak immune pressures. FM attains a maximum at an intermediate
magnitude of immune pressure.

5 Parameter Dependence

In the current paper and a twin paper (Hayashi et al. 2022), we showed the importance
of stochastic extinction of mutant viral strains when they appear in a body of the host.
The main aim of these papers is to search for the general property of the system.
Numerical examples are simply to illustrate the possibility of the behavior of the
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model. Research activity of fitting the model to particular situations should be done
separately.

Herein, we report the parameter dependence of the model’s behavior known from
introducing various approximations. Below, we describe the results briefly and the
analyses are explained in Appendixes.

5.1 Target Cell Abundance x(t)

The target cell abundance x(t) starts from x(0) = λ/c and decreaseswith time (Figs. 2,
3 and 5). The rate of decline is initially slow but becomes increasingly fast, because the
abundance of virus infected cells starts from a small value and increases exponentially
with time.

To characterize the time until x(t) to start declining, we consider τx , defined as the
time for x(t) to reduce by 20% of the initial level: x(τx ) = 0.8x(0). We numerically
derived τx for different sets of parameters and performed a sensitivity analysis, as
explained in Appendix C.

As described in Appendix D, we derive the approximate formulas assuming that t is
small. We define x̂(t) = x(t)−λ/c. Then x̂(t), y(t), and z(t) are of order ε for a small
t .We derive the linear dynamics for these three variables by neglecting the terms of the
higher order with respect to ε and solving them explicitly. All three include a dominant

Fig. 5 Trajectories of the approximate formulas for small t (Eq. (D.1) in Appendix D). x(t), y(t), and z(t)
were accurate for the time close to the infection of the virus. Parameters were the same as in Fig. 3
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term that grows in proportion to ε·exp[ηt] where η = bλ/c−δ. For example, the abun-
dance of the target cells is given by xapprox (t) = (λ/c)[1 − (εb/(η + c))· exp[ηt]].
As shown in Fig. 5, we plotted this approximation along with the exact solution
using Eq. (1). The approximation was accurate for small t ; however, the deviation
from the exact solution increased with time. The approximate formula for x(t) pro-
vides an explicit solution for the time taken for the 20% decline in x(t) as follows:

τx = 1
η
log

(
0.2(η+c)

εb

)
(see Appendix D). This formula underestimates the exact value

of τx but is useful for determining parameter dependence.
After transient behavior including damped oscillation, x(t) converges to a stationary

value, which can be calculated as the value at the stable positive equilibrium of Eq. (1).
See Appendix A for details.

5.2 Escape Probability p
(
t
)

Next, we consider p(t), the probability for a mutant to be established depending on
the time t at which the mutant is produced.

5.2.1 Initial Value p(0)

The escape probability is the highest just after the onset of infection by the wild-type
strain (t = 0), and it declines with time because the target cells are consumed and
the immune reactions become stronger owing to the increase in the wild-type strain.
In Fig. 6, the different parts illustrate the changes in curve p(t) when one of the
nine parameters is modified. In Appendix C, we numerically performed a sensitivity
analysis of p(0). The results are summarized as follows: p(0) increases with b′/b, λ,
and b; it decreases with c and δ; however, it is independent of h′/h, h, a, or d.

The lineage starting from amutant produced at time t experiences temporal changes
in the availability of target cells x(t) and in the intensity of the immune system w(t).
These changes affect the escape probability. If most extinction events of mutant lin-
eages occur within a short time after mutation, we may be able to calculate p(t)
using x(t) and w(t) fixed at the values at which the mutant is produced. Under this
approximation, the result is given as follows: pSCA(t) = 1 − h′w(t)+δ

b′x(t) , which we call
"slow-change approximation."

In Appendix E, we explained this approximation in detail. Numerical analysis
showed that the approximation was exact for the final stationary value p = p(∞) and
was relatively close for the initial value p(0) when p(0) > 0.6. However, between
these two situations, the formula deviates significantly from the exact value. This is
plausible because the time change of p(t) was zero for the stationary value and was
small near t = 0 but very fast between them. The parameter dependence shown in
Fig. 6 indicates that the dependence of p(0) on the nine parameters is consistent with
the slow-change approximation. Further details are provided in Appendix E.
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Fig. 6 Parameter dependence of function p(t). We set the standard parameter set, and changed parameters
one by one by multiplying 1.2, 1.1, 1.0, 1/1.1 = 0.9091, and 1/1.2 = 0.8333, shown as curves in red,
orange, gray, blue, and black, respectively. Parameters are the same as in Fig. 3

5.2.2 Time Required for p(t) to Decline by 20%

Let τp be the time at which p
(
τp

) = 0.8p(0) holds. This is the time for p(t) to
decrease by 20% of the initial level. We performed sensitivity analyses as explained
in Appendix C.

5.2.3 Stationary Value p

After the transient behavior, Eq. (1) converges to a stationary state, which is a stable
equilibrium. The escape probability for a novel mutant produced at time t also reaches
its stationary value p = p(∞).

According to calculation in Appendix A, the stationary value of escape (establish-
ment) non-extinction probability p is affected by parameters as follows (summarized
in Fig. 7 in Appendix A): p is determined by the relative rates of infection b′/b
and immune removal h′/h. In addition, p also depends on � = hw/δ, which is the
immune removal relative to the natural mortality of cells infected by the wild-type
strain. All other parameters affect p by modifying �, which is the positive solution

of the quadratic equation, 1 = (� + 1)
(

δc
λb� + δ2d

λah

)
. The importance of immunity
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Fig. 7 Scheme of the dependence of the stationary level of escape probability p. It increases with ratio b′/b
and decreases with ratio h

′
/h. In addition, it also depends on other parameters via �, the importance of

mortality by immune killing relative to random mortality. We assumed 0 < h′ < h. Other parameters are
the same as in Fig. 3. See Appendix A for derivation

compared to natural mortality � increases with the efficiency of the immune reaction
to remove infected cells (ah/dδ), the rate of infection of susceptible target cells (b/c),
and the rate of supply of target cells (λ/c), as illustrated in Fig. 7 in Appendix A.

In the following two cases, we can obtain simple results:
Case 1. When the immune efficiency is the same between strains.
If h′/h = 1 holds, the immune system activated by the wild-type strain operates on

the mutants at the same strength (perfect cross-immunity). The stationary probability
of escaping stochastic extinction is p = 1−b′/b (see Appendix A for the derivation).
This is the same as in our previous study (Hayashi et al. 2022), where the dynamics
of the immune reaction were neglected. In the current paper, p(t) depends on the
dynamics of the immune reactionw(t); however, the stationary value p is independent
of the immune system.

Case 2. When the rate of infection of target cells is the same between strains.

By setting b′/b = 1, we have p =
(
1 − h′

h

)
�

�+1 , where
�

�+1 indicates the fraction

of mortality of infected cells killed by immune reactions, instead of natural mortality.
The probability of escaping extinction is possible when the cross-immunity is weaker
than perfect (i.e. 0 < h′ < h).

Figure 6 indicates that p increases with b′/b and decreases with h′/h. It also
increases with λ, a, b, and h but decreases with c, d, and δ. These results are consistent
with the parameter dependence of p (see Appendix C).
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6 Discussion

Pathogens threaten the lives of many organisms including human beings. Vertebrates
have developed acquired immunity that prevents infection by the same pathogen twice.
However, pathogens evolve by mutation to escape from the hosts’ immune responses.
RNA viruses have a high mutation rate and exhibit rapid evolutionary adaptation,
causing medical problems such as drug resistance and escape from immune surveil-
lance ((Goulder et al. 1997; Althaus and Bonhoeffer 2005)). Hence, evaluating the
emergence rate of mutants within a host is essential for disease control and medical
treatment.

Grenfell et al. (2004) proposed “phylodynamics,” a methodology that predicts the
epidemic dynamics of RNA viruses by considering viral evolution. In phylodynamics,
the frequency and periodicity of pandemics were analyzed using epidemic models
incorporating both the dynamics of host immunity and pathogen immune evasion.
RNA viruses differ greatly in their epidemic dynamics and evolutionary patterns.
These differences can be explained by the differences in the evolutionary potential
of viruses to evade host immunity by mutation (antigenic drift) (Koelle et al. 2006;
Lewis et al. 2008; Volz et al. 2013; Suchard et al. 2018; Saad-Roy et al. 2021). For
example, measles with strong cross-immunity exhibits a highly synchronized and
periodic infection. On the other hand, influenza A virus has immunity of intermediate
strength, showing recurrent emergence of antigenically-different strains every year
and an elongated molecular phylogeny of the virus (Grenfell et al. 2004).

The role of immune escape by mutant strains is also important in the within-host
dynamics as well as in epidemiological dynamics. The immune system activated by
the wild-type strain may remove cells infected by the mutant strain if they are similar
in antigen type (cross-immunity). Many models have been studied to analyzed virus
evolution under the influence of immune system (Nowak and May 2000). Most of
these models of viral evolution within a host were deterministic. However, because of
the stochasticity caused by the small initial number of cells, a large fraction of novel
mutations go extinct even if they have a positivemean growth rate in the corresponding
deterministic dynamics. This extinction may have a strong influence to the dynamics
and evolution of the virus. For example, Sasaki and Haraguchi (Sasaki and Haraguchi
2000) highlighted that the loss of novel mutant viruses with a positive growth rate
results in a prolonged existence of antigen drift within a host, rather than an explosion
in the diversity of strains (Sasaki and Haraguchi 2000; Haraguchi and Sasaki 1997;
Sasaki et al. 2012).

6.1 Expected Number of Mutants that Escape Immune Surveillance

In our previous paper (Hayashi et al. 2022), we studied the temporal pattern of the
probability of escape of a novel mutant virus within a target cell population of a host.
However, we did not consider the effects of the host immune system. As a sequel,
in the current paper, we studied the probability of establishing novel mutations when
they experience cross-immunity that is weaker than the one attacking the wild-type
strain. We again formalized the model as a continuous-time branching process when
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the growth rate and mortality of infected cells are given as functions of time. Unlike
in Hayashi et al. (2022), we need to consider the time dependence of mortality caused
by the immune system.

The rate of production of novel mutants that survive stochastic extinction is pro-
portional to f (t) = bx(t)y(t) · p(t), the product of the number of infection events
per unit time and the fraction of mutants that can escape the stochastic extinction risk.
The potential emergence rate of novel mutants escaping extinction f (t) had a sharp
peak soon after infection with the wild-type virus (Fig. 3).

We observed that FM , potential of novel mutations per patient produced during the
initial phase of host infection, increased with cell-to-cell contact infection rate and
decreased with susceptibility to cross-immunity, both being relative to the values of
the wild-type strain (b′/b and h′/h, respectively). If we fix these ratios, the expected
number of novel mutations per patient attains its maximum in the case of immune
activity of intermediate strength (see Fig. 4).

This result reminds us of how the rate of adaptation of RNA virus at the popula-
tion level depends on host immunity. By studying epidemic dynamics incorporating
immune reactions and viral evolution, Grenfell et al. (2004) observed that the evolu-
tionary adaptation ofRNAviruses to escape immunity occurs at the highest speedwhen
the immune pressure is of intermediate strength. This is because very strong immune
reactions quickly suppress the wild-type virus, making the number of mutations small,
but very weak immune reaction does not favor mutants escaping immunity. Many
subsequent theoretical studies incorporating the evolution of escape from immune
surveillance have confirmed the usefulness of the phylodynamics concept (Koelle
et al. 2006; Lewis et al. 2008; Volz et al. 2013; Suchard et al. 2018; Saad-Roy et al.
2021). Although it was proposed for epidemiological dynamics, a similar conclusion
can be drawn for the viral dynamics within a single patient, as shown in the current
study (Fig. 4).

6.2 Viral Transmission Through Free Viral Particles

Many viruses proliferate within the host body by producing free viral particles that
infect susceptible target cells, insteadof cell-to-cell contact transmission.Weexamined
the probability of escape of a mutant virus proliferating through free viral particles in
the presence of immune responses activated by the wild-type strain by the following
stochastic model similar to that in Hayashi et al. (2022): the proliferation event of an
infected cell occurs at rate r (i.e., an infected cell makes contact with an uninfected
target cell and made the latter infected). At each event, the number of cells newly
infected byviral particles produced from the infected cell follows aPoissondistribution
with mean βx , proportional to the number of susceptible target cells. Simultaneously,
the wild-type infected cell ruptures. The dynamics of x , y, andw, given by Eq. (1) hold
if b is replaced by rβ and δ is replaced by δ + r (see Appendix F for details). Hence, a
positive stable equilibrium exists if λ/c > (1/β)(1 + δ/r) holds (otherwise, no virus
exists in the stable equilibrium). After a transient phase, x(t) andw(t) converge to the
stationary levels. These are calculated by the dynamics given in Eq. (1).
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The stochastic process of the abundance of a mutant strain is described by a
branching process with time-dependent rates. We again considered p(t), the escape
probability of a mutant strain produced at time t . In Appendix F, we derived a differ-
ential equation for p(t) and solve it numerically. We obtained p(t) using a numerical
integral with a sufficiently large T . The behavior of the model was similar to that of
cell-to-cell contact transmission (see Appendix F).

6.3 Stochastic Extinction of Advantageous Mutations

Stochastic extinction due to the small number of individuals plays an important role in
many different fields of biology and medicine. For example, in evolutionary genetics
theory, many advantageous mutations go extinct owing to stochasticity because they
start from a small number. The fraction of novel mutants that can escape the extinction
was first estimated by branching processes (Haldane 1927; Fisher 1930), which were
extended to cover various aspects (Barton 1995; Johnson andBarton 2002;Oliveira and
Campos 2004; Haccou et al. 2005; Peischl and Kirkpatrick 2012). A different line of
mathematical formalism was based on diffusion processes, which handled the fixation
of slightly deleteriousmutations aswell as the loss of advantageousmutations (Kimura
1957, 1962;Ohta 1972). In infectious diseases dynamics, branching process formalism
provides tools for designing disease control strategies (Nishiura et al. 2012, 2017;
Nakajo and Nishiura 2021). The stochastic extinction of small number of mutant cells
is important in the study of the initiation and progression of cancer. The probability
of cancer escaping drug or immune surveillance has been analyzed using stochastic
processes (Iwasa et al. 2003, 2004, 2006; Michor et al. 2006; Foo et al. 2014).

The stochasticity plays important roles in many different aspects of viral dynamics
and evolution within a host, which can be important themes of future theoretical stud-
ies.When a patient receives an antiviral drug treatment that suppresses the proliferation
of the wild-type viral strain, the virus may mutate to a different antigen type that is
resistant to the drug. Theoretical studies have been conducted on the emergence of
drug-resistant mutations (Bonhoeffer and Nowak 1997; Ribeiro and Bonhoeffer 2000;
Alexander and Bonhoeffer 2012). However, many of them were based on determin-
istic models. In our previous study (Hayashi et al. 2022), we discussed the temporal
pattern of the escape (establishment) probability of a novel mutant in a patient who
receives an antiviral drug. After drug administration starts, the wild-type strain stops
proliferating and declines in abundance, and the target cell abundance recovers. Hence,
the drug-resistant mutant enjoys an improved chance of escape. Because the mutant
needs to be produced from the wild-type stain by mutation, the rate of production of
drug-resistant mutants exhibits characteristic temporal patterns, with a sharp peak just
before the drug administration (Hayashi et al. 2022). This scenario can be extended
to cases in which the mutant enjoys the benefit of escaping immune suppression, in
addition to drug resistance. This could be a topic for future theoretical study.

The cumulative viral load is defined as the time integral of the mutant virus
abundance within a host. It has been used as an indicator of virulence in several
studies (Iwasa et al. 2021; Marconi et al. 2011; Sempa et al. 2016, 2019; Kim et al.
2021; Iwanami et al. 2021). Iwasa et al. (2021) evaluated how the cumulative viral
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load depends on different processes. However, the analysis was performed based on
deterministic dynamics. The effects of the stochastic extinction of the virus on the
cumulative viral load in a patient could also be an important theme for future theoret-
ical study.
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Appendix A

Equilibria of the Dynamics and the Stationary Value of Extinction Probability

Here, we consider the stable equilibrium of the dynamics for the number of susceptible
target cells, number of cells infected by the wild-type virus, and immune reaction
intensity, given by Eqs. (1a),(1b), and (1c), respectively. We set these equations to
zero and obtain the following:

0 = λ − cx − bxy (A.1a)

0 = bxy − hwy − δy = y(bx − hw − δ) (A.1b)

0 = ay − dw (A.1c)

Let (x, y, w) be the equilibriumofEqs. (A1.a), (A1.b), and (A1.c). FromEq. (A.1b),
at equilibrium, either [I] y = 0 holds, or [II]y > 0 and bx − hw − δ = 0 holds. At
the equilibrium of type I, which contains no infected cells, we have y = w = 0 and
x = λ/c. This equilibrium always exists but may be locally stable or unstable. The
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stability of this equilibrium can be determined from dy/dt = y(bλ/c − δ), where
we replace x and w with the equilibrium values. This equilibrium without infection
is locally stable if λ/c < δ/b. The equilibrium with infection does not exist; hence,
the equilibrium is globally stable. In contrast, it is unstable if λ/c > δ/b. Note that
this inequality is the same as R0 > 1, because the basic reproductive number is the
product of the infection rate b, the number of susceptible target cells (λ/c), and the
mean longevity of the infected cell (1/δ).

When the equilibrium of type I is unstable, equilibrium of type II exists, where
y > 0 holds. We consider the cases in which the system has a positive steady state at
which all three variables are positive (type II).

λ = cx + bxy (A.2a)

bx = hw + δ (A.2b)

ay = dw (A.2c)

By examining the linearized dynamics of Eq. (1), we can show that the equilibrium
of type (Nowak andMay 2000), the solution of Eqs. (A.2), is always stable if a positive
solution exists.

We can eliminate y using y = (d/a)w, which can be derived from Eq. (A.2c).
Then, from Eqs. (A.2a) and (A.2b), we obtain

λ = c

b
bx + d

a
bxw (A.3a)

bx = hw + δ (A.3b)

By eliminating bx , we have

λ = c

b
(hw + δ) + d

ah
(hw + δ)hw (A.4)

which becomes

1 = δ

λ

c

b

(
hw

δ
+ 1

)
+ δ2

λ

d

ah

(
hw

δ
+ 1

)
hw

δ
(A.5)

We set � = hw/δ, which is the ratio of mortality caused by the immune reaction
to that caused by other mortality factors. This is a positive solution of

1 = K (� + 1) + L(� + 1)� (A.6)

where K = (δ/λ)(c/b) and L = (δ/λ)(dδ/ah). K is larger when the number of target
cells is limited. In contrast, L is larger when the immune reaction is weak. Eq. (A.6)
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has a positive solution � when K = (δ/λ)(c/b) < 1, and has no positive solution
when K = (δ/λ)(c/b) ≥ 1.

To obtain the positive equilibrium of the dynamics, we first obtain� fromEq. (A.6).
Then we have w = (δ/h)�. Finally, we calculate x = (hw + δ)/b and y = (d/a)w.

Probability of Escaping Extinction for a Mutant

The probability of escaping stochastic extinction emerging at time t follows Eq. (4).
The stable equilibrium of the dynamics when x and w are the values at stable equilib-
rium should satisfy the following equation:

0 = p
(
(1 − p)b′x − h′w − δ

)
(A.7)

From Eq. (A.7), the stationary value of p that is stable in the dynamics of Eq. (4)
is given as.

p = 0, i f b′x ≤ h′w + δ. (A.8a)

p = 1 − h′w + δ

b′x
, i f b′x > h′w + δ. (A.8b)

Here, we consider how the escape probability p or extinction probability.
1− p, depend on the parameters. In particular, we attempt to determine the impact

of the relative magnitude of the rates of the focal mutant to those of the wild-type virus
(such as h′/h and b′/b). Eq. (A.8b) becomes

1 − p =
h′
h hw + δ

b′
b bx

=
h′
h

hw
δ

+ 1
b′
b

( hw
δ

+ 1
) =

h′
h � + 1

b′
b (� + 1)

(A.9)

Parameter Dependence

The parameter dependence of the stationary value of extinction probability 1 − p
depends on the relative vulnerability to the immune reaction (h′/h) and on the relative
rate of infection to target cells (b′/b). It also depends on � = hw/δ, indicating the
importance of mortality due to immune reactions relative to natural mortality.

As we consider the equilibrium with a positive abundance of viruses, the immune
reaction is also positive, and � > 0 holds. From Eq. (A.9), we obtain

∂

∂ h′
h

(1 − p) = �

b′
b (� + 1)

> 0 (A.10a)
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and

∂

∂ b′
b

(1 − p) = (−1)
h′
h � + 1

(
b′
b

)2
(� + 1)

< 0 (A.10b)

Then, the extinction probability increases with h′/h and decreases with b′/b.
All other parameters affect the extinction probability through their effects on �.

Considering the dependence of�, as the positive solution of Eq. (A.6), we can interpret
the parameters as follows: λ/δ is the rate of target cell supply relative to the decay rate,
b/c is the infection efficiency relative to themortality of infected cells, and ah/dδ is the
efficiency of immune reactions to the pathogen. Larger values of these quantities make
� larger, which is the ratio of infected cell removal by immune reactions relative to the
mortality by other processes. The greater impact of the immune reactions increases
or decreases the stationary probability of escape (establishment) of the mutant virus.
If the mutant can evade immune reactions more effectively than the wild-type strain,
the greater impact of the immune reactions improves the escape probability.

∂ p

∂�
> 0because

h′

h
< 1 (A.11)

However, if the mutant suffered more immune reactions than the wild-type strain,
the effect would be reversed. The impact of parameters on the stationary value of the
escape probability p can be summarized by the scheme shown in Fig. 7.

Simple Cases

We consider two simple cases:
Case 1. When the vulnerability to immune reaction is the same for the mutant and

wild-type strains.
In this case, h′/h = 1 holds. We have 1 − p = 1/

(
b′/b

)
, or p = 1 − b/b′. This is

the same as the condition when there is no immune reaction, derived in our previous
study (Hayashi et al. 2022). The model includes the dynamics of immune reaction but
it does not affect the stationary value of extinction probability for the mutant.

Case 2.When the rate of infection of the target cells is the same between the mutant
and the wild-type strains.

Under this condition, b′/b = 1 holds. We have the extinction probability 1 − p =((
h′/h

)
� + 1

)
/(� + 1), which is equal to 1 if h′/h > 1, indicating that the extinction

is certain (p = 0). If h′/h < 1, the novel mutant stands a chance of surviving.

p =
(
1 − h′

h

)
�

� + 1
(A.12)

The effect is proportional to �/(� + 1) = hw/(hw + δ), which indicates the
importance of removal by the immune system.
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Figure 6 suggests that the stationary value p increased with b′/b but decreased with
h′/h. It also increased with λ, b, a, and h, but decreased with δ, c, and d, which is
consistent with Fig. 7.

Appendix B

Derivation of the Differential Equation for p(t)

From Eq. (3) and the expression of p2(t) in the text, we have the following equation:

p(t) = b′x(t)�t
(
1 − (1 − p(t + �t))2

) + p(t + �t)

+ (−b′x(t)�t − (
h′w(t) + δ

)
�t

)
p(t + �t) + o(�t)

= p(t + �t) + �tp(t + �t)
[
b′x(t)(2 − p(t + �t)) − b′x(t) − h′w(t) − δ

] + o(�t)
(B.1)

Note that the difference between p(t + �t) and p(t) is a small quantity of order
�t , we can rewrite the last expression of Eq. (B.1) as follows:

= p(t + �t) + �tp(t)
[
b′x(t)(2 − p(t)) − b′x(t) − h′w(t) − δ

] + o(�t) (B.2)

Hence, we have.

− (p(t + �t) − p(t))

�t
= p(t)

[
b

′
x(t)(1 − p(t)) − h

′
w(t) − δ

]
+ o(�t)

�t

In the limit of �t → 0, we have

−dp

dt
= p(t)

[
b′x(t)(1 − p(t)) − b′x(t) − h′w(t) − δ

]
(B.3)

which is the same as Eq. (4) in text.

Derivation of the Integral Formula

Here, we consider the integration of the differential equation Eq. (4) in the main text.
We consider the time derivative of the inverse of p(t), as follows:

d

dt

(
1

p(t)

)
= − 1

p(t)2
dp

dt
= b′x(t)

1

p(t)
(1 − p(t)) − (

h′w(t) + δ
) 1

p(t)

= −b′x(t) + (
b′x(t) − h′w(t) − δ

) 1

p(t)
(B.1)

Because Eq. (B. 1) is a linear differential equation for a single variable 1/p(t) with
time-dependent coefficients, we can obtain the time-dependent solution explicitly as
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follows:

1

p(t)
= 1

p(T )
exp

[
−

∫ T

t

(
b′x

(
t ′
) − h′w

(
t ′
) − δ

)
dt ′

]

+
∫ T

t
b′x(s)exp

[
−

∫ s

t

(
b′x

(
t ′
) − h′w

(
t ′
) − δ

)
dt ′

]
ds (B.2)

We confirm that Eq. (B.2) satisfies differential equation (B.1) and the termi-
nal condition at t = T . The mutant is advantageous because of either a faster
infection rate or weaker immunity than those of the competing wild-type strain,
and the mutant has a positive mean growth rate. Hence, when T → ∞, we have∫ T
t

(
b′x

(
t ′
) − h′w

(
t ′
) − δ

)
dt ′ → ∞. As T → ∞, Eq. (B.2) becomes:

1

p(t)
=

∫ ∞

t
b′x(s)exp

[
−

∫ s

t

(
b′x

(
t ′
) − h′w

(
t ′
) − δ

)
dt ′

]
ds (B.3)

which is rewritten as

p(t) = 1
∫ ∞
t b′x(s)exp

[−∫ s
t (b

′x(t ′) − h′w(t ′) − δ)dt ′
]
ds

(B.4)

This formula is identical to Eq. (5) in themain text.Most of the numerical results for
the model with the cell-to-cell contact transmission were generated using Eq. (B.4),
or Eq. (5).

Appendix C

We performed the sensitivity analysis of the model. We chose the following eight
quantities to characterize the model’s behavior: p(0), τp, p, τx , x , τ f , f

(
τ f

)
, and FM .

These values were calculated numerically from the trajectory of the dynamics given
by Eq. (1) and Eq. (5). The model contains nine parameters: λ, c, b, h, δ, a, d, b′/b,
and h′/h.

Let Q be one of the eight quantities. We evaluated Q for the standard parameter
set: for example, a = 10, b = 2.5 × 10−4, c = 1, d = 5, δ = 5, λ = 5 × 104,
h = 5 × 10−5, b′/b = 1.2, and h′/h = 0.4. These parameters are the same as the
values adopted in drawing Fig. 3 and many other figures in this paper. We wanted to
know the behavior of the model as a whole, rather than the case of a specific viral
strain. How robust of the results of the sensitivity analysis for alternative choices of
the standard parameter sets should be examined separately.

We also evaluated Q for the case inwhich one parameter k is shifted by a smallmag-
nitude �k. The difference in Q caused by this change is �Q = Q(k + �k) − Q(k).
We calculated k

Q
�Q
�k ≈ �logQ

�logk , and used it as a numerically calculated "elasticity,"

which is defined as ek = ∂logQ
∂logk . Note that the elasticity remains the same when we

change the scale of the quantity (for example, it is independent of whether we mea-
sure length in terms of cm, mm, or μ m). Although defined in physics for materials,
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it has been widely adopted in economics, ecology, and virology (Iwasa et al. 2021;
Acemoglu 2002; Kroon et al. 1986) as a useful measure of parameter sensitivity.

Table 1 illustrates the elasticities of eight quantities characterizing the behavior of
the model (p(0), τp, p, τx , x , τ f , f

(
τ f

)
, and FM ) on nine parameters (λ, c, b, h, δ, a,

d, b′/b, and h′/h) at the standard parameter set. From these values, we can determine
how Q depends on parameter k. The exact values of elasticities may generally depend
on the choice of the standard parameter set. We calculated the elasticities for many
different choices of the standard parameter set. We produced 100 parameter sets by
multiplying one of the three factors (×2,×1,×0.5) to each of the nine parameters. For
those parameter sets that produced stable positive equilibria, we performed sensitivity
analysis around the equilibrium. The median values of the sensitivities were shown in
Table 1.

Many of the elasticities did not change sign. To indicate the robustness of the
sensitivities, we classified the results to the following four situations: (Hayashi et al.
2022) the elasticity was greater than 0.01 for all cases; (Nowak and May 2000) the
elasticitywas less than -0.01 for all cases, (Iwasa et al. 2021) the elasticitywas between
-0.01 to 0.01 for all cases; and (Iwami et al. 2015) the elasticity showed mixed results.
p(0): elasticity was positive for λ, b, and b′/b; negative for c and δ; and is zero for h, a,
and d. Elasticity for h′/h was mostly zero but sometimes negative. τp: elasticity was
positive for λ and b′/b; negative for c, b, δ, and h′/h; zero for h, a, and d. p: elasticity
was positive for λ, b, h, a, and b′/b; negative for c, δ, d, and h′/h. x : elasticity was
positive for λ, h, δ, and a; negative for c, b, and d. τ f : elasticity was positive for λ,
b, h, a, and b′/b; negative for c, δ, d, and h′/h. f

(
τ f

)
: elasticity was positive for

λ, and b′/b; negative for b; zero for d. Elasticity was variable in sign for c and δ. It
was mostly zero for h and a, but sometimes positive; it was mostly zero for h′/h but
sometimes negative.

Table 1 Parameter sensitivity of eight quantities (p(0), τp , p, τx , x , τ f , f
(
τ f

)
, and FM ) characterizing the

model’s behavior on nine parameters (λ, c, b, h, δ, a, d, b′/b, and h′/h) Elasticities were calculated using
the method described in Appendix C. We generated many sets of parameters by randomly multiplying 2,
1, or 0.5 for each of nine parameters randomly to the one in Fig. 6, and calculated elasticities using the
method described in Appendix C. Each number in the table shows the median of corresponding elasticity
(from 58 to 100 values)

λ c b h δ a d b′
b

h′
h

p(0) 0.06 −0.03 0.56 0.00 −0.33 0.00 0.00 1.93 0.00

τp 0.65 −0.33 −1.26 0.00 −0.50 0.00 0.00 3.85 −0.09

p 0.36 −0.11 0.14 0.10 −0.61 0.10 −0.11 3.07 −0.09

τx 0.19 −0.24 −0.46 0.00 0.00 0.00 0.00 0 0

x 0.28 −0.11 −1.03 0.01 0.63 0.01 −0.02 0 0

τ f 1.55 −1.20 1.93 0.15 −1.95 0.15 −09 4.59 −0.23

f
(
τ f

)
0.45 0.00 −1.43 0.00 0.00 0.00 0.00 0.78 0.00

FM 1.28 −0.57 0.34 0.15 −1.39 0.15 −0.09 4.32 −0.23
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FM ; elasticity was positive for λ, and b′/b; negative for c, δ, and h′/h. Elasticity
was variable in sign for b, h, a, and d,

Median of the elasticity in Table 1 gives an information on their magnitude.

Appendix D

Numerical analyses of trajectories of the dynamics show that the rate of decline in x
is initially slow but accelerates overt time. The wild-type virus abundance y and the
strength of the immune reaction w start from a small value (or zero) and increase in
an accelerating manner. In this appendix, we discuss an approximate calculation near
the onset of infection with the wild-type virus.

Dynamics for Small t

Here we consider the behavior of the dynamics close to the time of initial infection
by the original (wild-type) strain. For simplicity, we set the time of infection of the
wild-type strain to 0 (t0 = 0), and consider the dynamics for small a small t .

The values of the three variables before the start of the infection are x = λ/c and
y = w = 0. The initial values of the three variables are x(0) = λ/c, y(0) = ε, and
w(0) = 0, where ε is a positive constant that is much smaller than λ/c.

We set x̂(t) = x(t) − λ/c. x̂(t), y(t), and w(t) are quantities of the order ε.
Equation (1) becomes

dx̂

dt
= −cx̂ − bλ

c
y (D.1a)

dy

dt
=

(
bλ

c
− δ

)
y (D.1b)

dw

dt
= ay − dw (D.1c)

where we neglected small terms of higher order with respect to ε.
Differential equation (D.1b) with the initial condition y(0) = ε gives

y(t) = ε · exp[ηt], (D.2a)

where we set η = bλ/c − δ. We integrate Eq. (D.1a) with x̂(0) = 0:

x̂(t) =
∫ t

0

(
−bλ

c

)
ε · exp[ηs]e−c(t−s)ds = −ε · bλ

c

exp[ηt] − exp[−ct]

η + c
(D.2b)

Eq. (D.1c) together with the initial condition w(0) = 0 gives

w(t) =
∫ t

0
aε · exp[ηs]e−d(t−s)ds = ε · a

η + d
(exp[ηt] − exp(−dt)) (D.2c)
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From Eq. (D.2b), we have

x(t) = λ

c
− ε · bλ

c

exp[ηt] − exp[−ct]

η + c
(D.2d)

By neglecting the term that decreases with time, we have further simplified formu-
las:

xapprox (t) = λ

c

(
1 − ε · b

η + c
exp[ηt]

)
(D.3a)

yapprox (t) = ε · exp[ηt] (D.3b)

wapprox (t) = ε · a

η + d
exp[ηt] (D.3c)

where η = bλ/c−δ. Figure 5 illustrated these approximate formulas together with the
exact solutions. We can see that Eq. (D.3a) overestimated the abundance of the target
cells, and Eq. (D.3c) underestimated the immune intensity. However, the magnitude
of the differences was rather small for a small t .

Time Required for x(t) to Decline by 20%

Using the approximate formula (D.3a), we can derive the following estimate of τx .
From x(τx ) = 0.8λ

c , we have 0.2 = εb
η+c exp[ητx ], which becomes

τx = 1
λb
c − δ

log

(
0.2

(
λb
c − δ + c

)

εb

)

(D.4)

Appendix E

Slow Change Approximation

The lineage starting from a mutant produced at time t experiences temporal changes
in the availability of target cells x(t) and the intensity of immune reactions w(t). The
probability of escape depends on temporal changes in these rates. If most extinction
events of mutant lineages occur within a short time after the mutant is produced, we
can calculate p(t) using x(t) andw(t) fixed to the values when the mutant is produced
t . Under this approximation, the result is given as follows:

pSCA(t) = 1 − h′w(t) + δ

b′x(t)
(E.1)

which we call "slow-change approximation."
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Fig. 8 Slow-change approximation of p(t). a Trajectory of escape probability p(t) predicted by the slow-
change approximation (refer to main text) and the exact value (Eq. (5)). Dots indicate the results of the
different set of parameters. Note that the slow-change approximation was fairly accurate at t = 0, and at
the stationary value (t = ∞) but very different between these two limits. b pSC A(0) and exact value of
p(0), indicated in the vertical and horizontal axes, respectively. The diagonal line y = x corresponds to
cases when the approximate formula is exact. Parameters are the same as in Fig. 3. (See Appendix E for
explanation)

In Fig. 8(a), we plotted the prediction of pSCA(t) together with the exact value of
p(t) given by the integral formula in Eq. (5). The approximation results in Eq. (E.1)
must be exact for the stationary value p = p(∞). In Fig. 5, the approximation is
also close to the exact value for p(0), the value at the onset of infection. However, it
was very different in the transient phase, in which p(t) changed rapidly. Note that the
rate of change in p(t) was small both at t = 0 and for a very large t , where the slow-
dynamics approximation was rather accurate. Because x(0) = λ/c andw(0) = 0 hold
before the infection of the wild-type strain, the slow-change approximation yields

pSCA(0) = 1 − cδ

(b′/b)λb
(E.2)

Eq. (E.2) increases with b′/b, λ, and b and decreases with c and δ; however, it is
independent of h′/h, h, a, or d. Figure 8 illustrates the exact value of p(0) and the
value given by Eq. (E.2), on the vertical and horizontal axes, respectively. The dots
represent the results of the different sets of parameters (see caption to Fig. 8b). The
slow-change approximation in Eq. (E.2) was positively correlated with the exact value
when p(0) > 0.6. However, they could be very different for p(0) < 0.6 (not shown).

Appendix F

Here, we study the case in which virus proliferation occurs through free viral particles.
In most cases, viruses proliferate within the host body by producing free viral

particles that infect susceptible target cells, rather than through cell-to-cell contact
transmission. In our previous paper (Hayashi et al. 2022), we studied the escape
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probability of a mutant virus with this mode of transmission. We can extend this
analysis to a case that includes immune reactions activated by the wild-type strain.

For the virus proliferating through free viral particles, we consider the following
model: the proliferation of an infected cell occurs at rate r at random times. At each
proliferation event, the number of cells newly infected by the viral particles produced
from a single infected cell follows a Poisson distribution with mean βx , proportional
to the number of susceptible target cells. Furthermore, the wild-type infected cell
dies because it ruptures. These modifications change the dynamics of x , y, and w, as
follows:

dx

dt
= λ − cx − rβxy (F.1a)

dy

dt
= r(βx − 1)y − (hw + δ)y (F.1b)

dw

dt
= ay − dw (F.1c)

Eq. (F.1c) is the same as Eq. (1c).
Note that Eqs. (1a), (1b), and (1c) become Eqs. (F.1a), (F.1b), and (F1.c), respec-

tively, if we replace b by rβ and δ by δ + r . This implies that the dynamics of Eq.
(F.1) has a globally stable equilibrium with a positive abundance of infected cells
if λ/c > (1/β)(1 + δ/r) holds. If the opposite inequality holds, the dynamics have
no equilibrium with a positive abundance of virus, and the one without the virus is
globally stable. Below, we focus on the case in which λ/c > (1/β)(1 + δ/r) holds.

Differential Equation for the Escape Probability of theMutant

The stochastic process of the abundance of a mutant strain is described by a branch-
ing process with a time-dependent rate constant. The number of target cells x(t) is
determined by the dynamics given in Eq. (F.1). We again consider p(t), the escape
probability of a mutant strain produced at time t .

Within a short time interval of �t , a single cell ruptures with a probability r�t . If
this event occurs, the cell dies and releases numerous viral particles. If each susceptible
target cell has a small probability to be infected by viral particles, the number of newly
infected target cells follows a Poisson distribution with the mean proportional to the
abundance of viral particles, which is assumed to be proportional to the number of
infected cells.We assume that the number of cells that are newly infected by these viral
particles follows a Poisson distribution with mean β ′x(t) and the infection efficiency
greater than the one for the wild-type strain (β ′ > β). Consider a single cell at time
t , which experiences the following transition until t + �t . The cell may become
n − 1 cells with probability r�t

(
β ′x(t)

)n
(1/n!)e−β ′x(t) (n = 0, 1, 2, 3, ..). It may be

killed by random mortality with probability δ�t . Alternatively, the cell may remain
unchanged, with a probability of 1 − r�t − (hw + δ)�t . Here, we trace the number
of target cells that are susceptible, infected by the wild-type strain, and infected by the
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mutant; however, we do not trace the number of free viral particles explicitly (Nowak
and May 2000).

By considering a cell at time t and occurring until time t + �t , we obtain the
following:

p(t) = r�t

⎡

⎢
⎣

∑∞
n=0

(
β

′
x(t)

)n

n! e−β
′
x(t) pn(t + �t)

⎤

⎥
⎦

+
(
h

′
w(t) + δ

)
�t · 0 + (

1 − r�t − (
h′w(t) + δ

)
�t

)
p(t + �t) + o(�t) (F.2)

where pn(t) is the probability for the lineage that starts from n initial cells at time
t not to go extinct at time T . By assuming that the behavior of the lineages starting
from different cells is independent of each other, we obtain the following equation:
pn(t) = 1 − (1 − p(t))n for n = 0, 1, 2, 3, .., because the extinction of descendants
starting from the initial n cells is equivalent to the extinction of all the lineages. o(�t)
is a term of higher order than �t ; hence, o(�t)/�t → 0 when �t → 0.

As �t → 0, Eq. (F.2) becomes as follows.

−dp

dt
= r

⎡

⎢
⎣

∑∞
n=0

(
β

′
x(t)

)n

n! e−β
′
x(t){1 − (1 − p(t))n

} − p(t)

⎤

⎥
⎦ − (

h′w(t) + δ
)
p(t)

which can be rewritten as

−dp

dt
= r

[
1 − e−β ′x(t)p(t) − p(t)

]
− (

h′w(t) + δ
)
p(t) (F.3)

We numerically integrated Eq. (F.3) from t to T . The following terminal condition
was used: p(T ) = 1. The target cell availability x(t) is obtained from Eqs. (F.1a) and
(F.1b), the dynamics of the wild-type strain and target cells, which are independent of
the abundance of the mutant. However, in contrast to the quadratic equation in Eq. (4)
and Appendix B, the nonlinear differential equation in Eq. (F.3) cannot be solved
mathematically, and we do not have an explicit solution of p(t) for a given {x(t)},
such as Eq. (B.4) or Eq. (5). Therefore, we must adopt the numerical integration of
Eq. (F.3) with sufficiently large T .

Stationary Level of Escape Probability

As explained in the main text, x(t) starts from a high value, which is determined by
the balance between supply and mortality of target cells. At time t = 0, it decreases,
and after damped oscillation, it converges to a stationary value x . The intensity of the
immune reaction w(t) starts from 0, increases, and converges to a stationary value w.
We can obtain the stationary value of p(t) = p after x(t) and w(t) converge to x and
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w, respectively, by setting x(t) = x and w(t) = w in Eq. (F.3). Thus, we have.

0 = r
[
1 − e−β

′
x p − p

]
− (

h′w + δ
)
p

which is rewritten as

1 − e−β ′x p = h′w + δ + r

r
p (F.4)

We examined how p depended on the parameters of themodel. Although there were
some minor differences, parameter dependences were similar to those for cell-to-cell
contact dynamics.
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