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Abstract
We present a new approach for relating nucleic-acid content to fluorescence in a
real-time Polymerase Chain Reaction (PCR) assay. By coupling a two-type branch-
ing process for PCR with a fluorescence analog of Beer’s Law, the approach reduces
bias and quantifies uncertainty in fluorescence. As the two-type branching process
distinguishes between complementary strands of DNA, it allows for a stoichiomet-
ric description of reactions between fluorescent probes and DNA and can capture the
initial conditions encountered in assays targeting RNA.Analysis of the expected copy-
number identifies additional dynamics that occur at short times (or, equivalently, low
cycle numbers), while investigation of the variance reveals the contributions from liq-
uid volume transfer, imperfect amplification, and strand-specific amplification (i.e., if
one strand is synthesizedmore efficiently than its complement). Linking the branching
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process to fluorescence by the Beer’s Law analog allows for an a priori description of
background fluorescence. It also enables uncertainty quantification (UQ) in fluores-
cence which, in turn, leads to analytical relationships between amplification efficiency
(probability) and limit of detection. This work sets the stage for UQ-PCR, where both
the input copy-number and its uncertainty are quantified from fluorescence kinetics.

Keywords Real-time polymerase chain reaction · Stochastic branching process ·
Uncertainty quantification

1 Introduction

Polymerase Chain Reaction (PCR) is a hallmark of molecular biology and applied
genetics. When the dynamics of PCR are monitored by a fluorescent probe, the initial
amount of target sequence can be quantified (qPCR) by a computational algorithm
equipped with a mathematical model and a set of control experiments (Ruijter et al.
2009; Lievens et al. 2012; Zhao and Fernald 2005; Peirson et al. 2003; Tichopad et al.
2003; Boggy andWoolf 2010; Guescini et al. 2008; Ruijter et al. 2013). Quantification
by PCR is routinely exploited in many applications, including analysis of forensic
evidence (Nicklas and Buel 2003; Bauer 2007), monitoring of food safety (Elizaquível
et al. 2014), and clinical diagnostics (Kaltenboeck andWang 2005; Bustin et al. 2021).

The accuracy and precision of the quantification process is limited by themathemat-
ical model relating DNA content to fluorescence. Current models possess subjective
and systematic bias and do not account for the uncertainty in fluorescence that arises
from imperfect amplification and pipetting errors.

Systematic bias originates from assuming that the initial DNA type is double-
stranded and that the fluorescence increases each time either complementary strand
is replicated. The former is obviously not true when the initial DNA is produced by
reverse-transcription of single-stranded RNA (RT, as in RT-qPCR), as only one of the
complementaryDNA strands is present at the beginning of PCR. The second statement
is not true for common probes that possess a fluorophore covalently attached to an
oligonucleotide. Since the oligonucleotide only hybridizes to one of the complemen-
tary strands, the fluorescence only increases when one of the complementary strands
is replicated. The second assumption also does not appear to be true for fluorescent
dyes that bind non-specifically to DNA, as the amount of dye bound to each DNA
strand depends on the amount of DNA in solution.

The impact of several of these assumptions was assessed by Ruijter et al. (2014).
The authors found that, depending on the initial DNA type and fluorescent probe
chemistry, the background-subtracted fluorescence could differ by up to a factor of 2
in the exponential phase. However, the authors’ analysis was rooted in the assumption
of perfect amplification. They also noted that what actually occurs during the first few
cycles of PCR is unknown.

Another source of systematic bias in the mathematical description of fluorescence
ariseswhen the initial DNAcontent is very small. Current approaches are deterministic
and do not take into account the fact that the number of DNA strands is an integer.
While the kinetics of PCR have been investigated in the framework of stochastic
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branching processes (Nedelman et al. 1992; Sun 1995; Weiss and von Haeseler 1995;
Stolovitzky and Cecchi 1996; Jacob and Peccoud 1996b, a), the first of which was
published in this journal, suchmodels have not been linked to the fluorescence reported
by probes. Like the deterministic approaches described above, these stochastic models
neither discriminate between complementary strands nor describe initial conditions
encountered in RT-qPCR.

A mathematical model that discriminates between complementary DNA strands
can investigate another source of bias: the assumption that the efficiency of synthesis
is independent of directionality (i.e., reverse or forward). Since primers are comple-
mentary to different ends of the target sequence, and are specifically chosen not to
be complementary to each other (i.e., avoiding dimerization), the formation of one
primer–target complex may be more efficient than the other. In addition, the yield
of the strand whose replication is being monitored by the fluorescent probe may be
affected by the monitoring process. These arguments are also supported by the fact
that optimal concentrations of each primer can be different (see, for example, Bustin
(2004), where the two concentrations differ by a factor of 3).

To address these challenges, we present a two-type stochastic branching process
model in Sect. 2.1 that differentiates between complementary strands and amplification
probabilities. Analysis of the expected value in Sect. 2.2 identifies a new timescale that
is prevalent during the first few cycles. This timescale explains some of the unknown
behavior that occurs during the first few cycles of PCR, explaining some of the afore-
mentioned unknown behavior. At short times, there is a lag in exponential growth
where the ratio of expected strand counts changes from its initial to critical value. The
critical ratio is related to the amplification probability of each complementary strand,
being unitywhen the probabilities are identical. The analysis also demonstrates that the
popular parameter describing PCR efficiency (or amplification probability) is really
the geometric mean of the efficiencies of both complementary strands.

Quantification by real-time PCR is also limited by a subjective and empirical
description of the fluorescence that is not associated with amplification, or the back-
ground fluorescence. The description of background fluorescence is usually taken a
posteriori (i.e., after measurements of fluorescence monitoring amplification). With-
out a clear connection to the chemical and physical processes occurring in solution,
the background fluorescence is often assumed to be a linear function of cycle, or a
‘baseline.’

In Sect. 3.1, we address these concerns by using the fluorescence analog of Beer’s
Law to relate fluorescence to the concentration of each fluorescent species.While such
expressions have often been used to describe the fluorescence of dyes interacting with
known amounts of DNA (Biver et al. 2003, 2005), we are not aware of any adaptation
to real-time PCR. We discriminate between the fluorescent species by referring to
the form present before PCR as the inactive species and the form activated by PCR
as the active species. For hydrolysis probes, we show how the relevant parameters
can be extracted from a few control experiments (see Sect. 3.2). In contrast to other
approaches, we can quantify the validity of the model of background fluorescence.
The relevant contributions can be determined without interrogating or adjusting fluo-
rescence data associated with amplification. We find that the model agrees well with
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experiment and observe that the incremental increase in fluorescence is not indepen-
dent of cycle.

A final limitation of real-time PCR is the lack of a mathematical expression relating
errors arising frompipetting and imperfect amplification to uncertainty influorescence.
To quantify the variance in copy number (Peccoud and Jacob 1996), we investigate the
stochastic branching process (Sect. 2.3) in a manner similar to previous reports ana-
lyzing error in high-throughput sequencing (Kebschull and Zador 2015; Schwabe and
Falcke 2022). After validating that the fluorescence parameter (the fluorescence per
mole) for each species is approximately constant for each cycle and well (Sect. 3.2),
the models for PCR and fluorescence are combined (Sect. 3.3). This yields analytical
expressions of the first two central moments of fluorescence in terms of reaction effi-
ciencies, input content, and input type (i.e., double-stranded DNA, forward-stranded
RNA, and reverse-stranded RNA).

Together with the parameters determined from experiment, fluorescence curves
computed with uncertainty identify regimes under which certain sources of error are
more prevalent than others (see Sect. 3.3). When the expected initial-strand-number
is sufficiently large, or the cycle number sufficiently small, the error in fluorescence
in a specific well is less than the well-to-well variation in expected value. As the ini-
tial strand count decreases and the fluorescence rises above initial levels, however,
the variance in input copy-number and imperfect amplification become the dominant
contributions to error. Finally, in Sect. 3.4, we use the fluorescence model to develop
analytical expressions for the limit of detection as a function of amplification efficiency
and nucleic acid type. These expressions may be particularly useful for application in
epidemic diseases, as false positives or false negatives may be instead termed incon-
clusive.

2 Strand-Specific Branching Process

In this section, we model PCR as a two-type branching-process. The model distin-
guishes between complementary DNA strands and amplification efficiencies. We then
derive analytical expressions relating the first two central-moments of strand counts
before PCR to those after each cycle has completed. Compartmentalizing DNA ampli-
fication and fluorescence, the linking of the two phenomena is postponed until Sect. 3.

2.1 Mathematical Model

PCR consists of a series of n cycles, with n usually ranging between 35 and 50.
Each cycle consists of a melting, annealing, and elongation step to synthesize new
DNA from existing DNA (i.e., a chain reaction). A variety of resources on PCR are
available online for further information (e.g., National Institutes of Health, National
Human Genome Research Institute 2023).

To distinguish between the two complementary strands of DNA, we refer to one
as the forward strand and the other as the reverse strand. We let the discrete random
variables Xi and Yi represent the number of forward and reverse strands, respectively,
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Fig. 1 Illustration of strand-specific model of DNA amplification. (top) After each cycle i , the outcome of
synthesis of a forward strand (orange, solid) from each reverse strand (blue, dashed) present in the previous
cycle is modeled as a Bernoulli random-variable with probability of success prf. (bottom) Similarly, the
outcome of synthesis of a reverse strand (blue, dashed) from each forward strand (orange, solid) present in
the previous cycle is modeled as a Bernoulli random-variable with probability of success pfr (Color figure
online)

present after i = 0 to n cycles have been completed. We represent the strand counts
after completion of i cycles as the random vector

U i =
(
Xi

Yi

)
,

and refer toU0 as the initial strand count. However, we distinguishU0 from the strand

count input to the reaction mixture, denoting the latter by the random vector

(
IX
IY

)
,

where IX and IY are discrete random variables representing the number of forward
and reverse strands input, respectively. This is important to distinguish between assays
targeting DNA and RNA sequences, as discussed in Sect. 2.1.2.

2.1.1 Relationship Between Consecutive Cycles

After completing i − 1 cycles, the biochemical events occurring during the next cycle
involve the attempt to produce one forward strand from each of theYi−1 reverse strands
and the attempt to produce one reverse strand from each of the Xi−1 forward strands
(see Fig. 1). The outcome of synthesis of a forward strand from each reverse strand
is modeled as a Bernoulli random-variable with probability of success prf ∈ (0, 1).
Similarly, the outcome of synthesis of a reverse strand from each forward strand is
modeled as a Bernoulli random-variable with probability of success pfr ∈ (0, 1). (The
subscripts rf and fr denote the direction reverse-to-forward and forward-to-reverse,
respectively.) This corresponds to the mathematical model

U i = U i−1 +
(
0 1
1 0

)
B (U i−1; pfr, prf) , (1)
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after completing i cycles, where

B (U i−1; pfr, prf) :=
[
B (Xi−1; pfr)
B (Yi−1; prf)

]
,

and B (a; b) denotes a Binomial random-variable of a trials with probability of success
b. All Bernoulli trials, whether associated with the outcome of synthesis of a forward
or reverse strand, are taken to be independent.

To compare to previous approaches that do not discriminate between complemen-
tary strands and efficiencies, we will use

Ni = Xi + Yi

to denote the total number of strands after i cycles have been completed. We will see
that an appropriate characterization of the average amplification efficiency of both
complementary strands is

p̄ := √
prf pfr, (2)

and that an appropriate parameter for the deviation in efficiencies is

R :=
√

prf
pfr

. (3)

To avoid changing notation, we will subsequently only investigate pfr = p̄

R
and

prf = p̄R in terms of p̄ and R, so that

B (U i−1; pfr, prf) = B
(
U i−1; p̄

R
, p̄R

)
=
⎡
⎣B
(
Xi−1; p̄

R

)

B (Yi−1; p̄R)

⎤
⎦ .

2.1.2 Relationship Between Initial and Input Condition

The relationship between the input number

(
IX
IY

)
and initial number U0 of strands

depends onwhether the nucleic acids input to the reactionmixture are forward-stranded
RNA (fs-RNA, referred to as Case RF), reverse-stranded RNA (rs-RNA, referred to
as Case RR), or double-stranded DNA (ds-DNA, which consists of both fs-DNA and
rs-DNA, referred to as Case D). If ds-DNA is generated by transferring rs-DNA and
fs-DNA separately into the reactionmixture, X0 andY0 can bemodeled as independent
and identically distributed (i.i.d.). Here,

Case D : U0 =
(
X0
Y0

)
=
(
IX
IY

)
,

IX (or IY ) represents number
of fs-DNA (or rs-DNA) strands.
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When RNA is input to the reaction mixture, on the other hand, the nucleic acids
all possess the same strandedness (i.e., they are all fs-RNA or rs-RNA). The RT step
yields DNA strands that are complementary to the RNA. As all RNA strands are fs-
RNA (or rs-RNA), the RT step yields rs-DNA (or fs-DNA). Modeling the outcome of
synthesis of each cDNA from each RNA strand as a Bernoulli random-variable with

probability of success r ∈ (0, 1), U0 is related to

(
IX
IY

)
via either

Case RF : U0 =
(
X0
Y0

)
=
[

0
B (IX ; r)

]
,

IX represents number of
fs-RNA strands, IY = 0,

or

Case RR : U0 =
(
X0
Y0

)
=
[
B (IY ; r)

0

]
,

IY represents number of
rs-RNA strands, IX = 0.

In comparison to the conventional PCR amplification efficiency p := pfr = prf when
R = 1,which is usually between 0.8 and 0.99, theRT efficiency r can adopt a relatively
large range of values (Bustin et al. 2015; Schwaber et al. 2019).

The nucleic acids are input to the reaction mixture by transferring liquids from one
container to another using a pipette. Since the process of transferring such liquids is
independent of the type of nucleic acids (i.e., independent of whether they are fs-RNA,
rs-RNA, fs-DNA, or rs-DNA), the number of strands of each type input to the reaction
mixture obey the same distribution. We will let this distribution be obeyed by the
discrete random variable I . As a result, it follows that

⎧⎪⎪⎨
⎪⎪⎩
IX , IY

i.i.d.∼ I , Case D,

IX
i.d.∼ I , IY = 0, Case RF,

IX = 0, IY
i.d.∼ I , Case RR,

where i.d. denotes identically distributed.

2.2 ExpectedValue

In this section, we derive relationships between E [I ] and expected copy-numbers
after i cycles have been completed. After using the total law of expectation to obtain
a relationship in expected copies between two sequential cycles, we use induction to
generate the desired results.We first investigate the conventional branching process for
PCR which results from assuming R = 1 and does not distinguish between fs-DNA
and rs-DNA. Subsequently, we consider the two-type branching process (1) where R
may not be 1 and fs-DNA is distinguished from rs-DNA.
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2.2.1 Conventional Branching Process

The conventional branching process model for PCR occurs when R = 1, implying
from (3) that prf = pfr =: p. In this case, the system (1) can be summed to yield

Ni = Ni−1 + B (Ni−1; p) , (4)

as has been investigated elsewhere (Nedelman et al. 1992; Sun 1995; Weiss and von
Haeseler 1995; Peccoud and Jacob 1996; Jacob and Peccoud 1996b, a; Stolovitzky
and Cecchi 1996). Using the law of total expectation and (4), one finds that

E [Ni ] = E
[
E
[
Ni | Ni−1

]] = E
[
Ni−1

]
(1 + p) , (5)

for any two consecutive cycles. From induction, it follows that (5) is identical to

E [Ni ] = E [N0] (1 + p)i , (6)

as reported elsewhere (Nedelman et al. 1992; Sun 1995;Weiss and von Haeseler 1995;
Peccoud and Jacob 1996; Jacob and Peccoud 1996b, a; Stolovitzky and Cecchi 1996).

2.2.2 Strand-Specific Branching Process

Below, we develop relationships between E [I ] and each E [U i ] for the more general
case of (1) where forward strands are distinguished from reverse strands and R may
not be 1. The law of total expectation and (1) lead to the relation

E [U i ] =E
[
E
[
U i | U i−1

]] = E

{
U i−1 +

(
0 1
1 0

)
E

[
B
(
U i−1; p̄

R
, p̄R

) ∣∣∣ U i−1

]}

=AE
[
U i−1

] = Ai
E [U0] , (7)

where A is defined as

A =
(

1 p̄R
p̄/R 1

)
,

and the last step follows from induction. The relationship between E [U0] in (7)
depends on E [I ] through

E [U0] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
E [IX ]
E [IY ]

)
=
(
1
1

)
E [I ] , Case D;

(
0

rE [IX ]

)
=
(
0
1

)
rE [I ] , Case RF;

(
rE [IY ]

0

)
=
(
1
0

)
rE [I ] , Case RR;

(8)
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which follows from E [U0] = E [E [U0 | IX , IY ]] and the case-by-case relationships
presented in Sect. 2.1.2.

We will see that the matrix A plays a central role in dynamics of the first two
central-moments of strand counts. A has two distinct eigenvalues,

λ1 := 1 + p̄,

λ2 := 1 − p̄,

and can be decomposed as

A = X�Z =
2∑
j=1

λ j x j z�j , (9)

where

X := (x1 x2
) := 1√

2

(
R R
1 −1

)
, � :=

(
λ1 0
0 λ2

)
,

and

Z := X−1 = 1

R
√
2

(
1 R
1 −R

)
=:
(
z�1
z�2

)
.

If R = 1, the scale factor
1√
2
in the definition of X implies that

‖x1‖ = ‖x2‖ = ‖z1‖ = ‖z2‖ = 1, (10)

where ‖ · ‖ denotes the Euclidean norm. If R �= 1, on the other hand, no scale factor
can be chosen to satisfy (10).

Since Z := X−1,

x�
i z j =

{
1, if i = j,

0, otherwise,
(11)

for i, j ∈ {1, 2}, and (after substitution of (9))

Ai =
⎛
⎝ 2∑

j=1

λ j x j z�j

⎞
⎠

i

=
2∑
j=1

λij x j z�j . (12)
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Substituting (12) into (7) leads to

E [U i ] =z�1 E [U0] λ
i
1x1 + z�2 E [U0] λ

i
2x2

=E

[
X0 + RY0

2

]
λi1

(
1

R−1

)
+ E

[
X0 − RY0

2

]
λi2

(
1

−R−1

)
, (13)

where second expression aids in physical interpretation (below) of Case D, RF, and
RR.

Where Equation (6) has 1+ p, Equation (13) has two values λ1 and λ2. In the case
that R = 1, λ1 := 1 + p̄ = 1 + p, as is present in (6). The eigenvalue λ2 does not
have an analog in (6).

The quantities Xi + RYi and Xi − RYi in the second expression of (13) arise
frequently in the investigation of the first two central-moments of U i . The quantity
Xi + RYi is referred to as the weighted sum of strand counts after i cycles have been
completed, while Xi − RYi is referred to as the weighted difference. Multiplying each

side of the equation (13) by the row vector

(
1

±R

)�
demonstrates1 that

{
E [Xi + RYi ] =E [X0 + RY0] λ

i
1,

E [Xi − RYi ] =E [X0 − RY0] λ
i
2.

As λ1 > 1, the expected weighted-sum exhibits exponential growth. As λ2 < 1, on
the other hand, the expected weighted-difference exhibits exponential decay.

The term in (13) associatedwithλ2 is always presentwhen the input is RNA (i.e., for
Case RF or RR and any p̄ ∈ (0, 1) and R ∈ (0,∞)), as E [X0] �= RE [Y0]. However,
it may not be present if the input is DNA, as the term vanishes (E [X0 − RY0] =
(1 − R)E [I ]) for Case D when R = 1.

When E [X0] �= RE [Y0], the term involving λi2 is usually negligible after a few
cycles, as p̄ is usually above 0.8. After the lag time is over (i is large enough for λi2
to be negligible), the ratio of expected forward to reverse strand counts reaches its
critical value, as

lim
i→∞

E [Xi ]

E [Yi ]
= lim

i→∞
e�
1 E [U i ]

e�
2 E [U i ]

= e�
1 x1
e�
2 x1

= R, (14)

where e1 =
(
1
0

)
and e2 =

(
0
1

)
are the standard unit vectors. An illustration of the

transition of
E [Xi ]

E [Yi ]
(when E [Yi ] > 0) to R is depicted in Fig. 2.

1 The expression which follows could have also been developed by substituting the first expression of (9)
into the final expression of (7) and left-multiplying by Z, yielding

ZE
[
U i
] = �i ZE [U0] .
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Fig. 2 Visualization of
convergence of the ratio of
expected-forward to
expected-reverse strands to R.
The initial condition E [U0] is
taken from (8) with Case D, RF,
or RR. The values of p̄ and R are
annotated, while r and E [I ] are
chosen so that
E [N0] = E [X0 + Y0] = 10

To compare the two-type branching process to (6), we compute from (13)

E [Ni ] = E [Xi + Yi ] =
(
1
1

)�
E [U i ]

= z�1 E [U0] λ
i
1

(
1
1

)�
x1 + z�2 E [U0] λ

i
2

(
1
1

)�
x2

= E

[
X0 + RY0

2

]
λi1

(
R + 1

R

)
+ E

[
X0 − RY0

2

]
λi2

(
R − 1

R

)
,

and, for Case D,

E [Ni ] = E [N0]

[
(R + 1)2

4R
λi1 − (R − 1)2

4R
λi2

]
, (15)

as (8) implies that E [I ] = E [X0] = E [X0 + Y0] /2 = E [N0] /2. Equation (15)
demonstrates that the two approaches are equal if R = 1. Otherwise, the absolute
difference between E [Ni ] calculated from (6) and (15) increases exponentially with
increasing i . In the future, determining R and using (15) instead of (6) may therefore
be important to reduce bias in quantification.

On the other hand, when R = 1, the expected amount of each strand is eventually
independent of the composition at the start of PCR. That is,

lim
i→∞

E [Xi ]

λi1

= lim
i→∞

E [Yi ]

λi1

= lim
i→∞

E [Ni ]

2λi1
= E [N0]

2
, if R = 1, (16)
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only depends on the expected initial-sum, or E [N0]. This result is in contrast to the
report of Ruijter et al. (2014), who used a deterministic model with perfect amplifi-
cation efficiency. When R = 1 and the input is RNA, the directionality of RNA (i.e.,
fs-RNA or rs-RNA) only dictates the characteristic length of the lag time.

2.3 Variance

In this section, we derive the relationship between Var [I ] and the variance after i
cycles have been completed. The procedure is similar to the previous section, except
the law of total variance is used instead of the law of total expectation.

2.3.1 Conventional Branching Process

Using the law of total variance and (4), one obtains

Var [Ni ] =Var
[
E
[
Ni | Ni−1

]]+ E
[
Var
[
Ni | Ni−1

]]
=Var

[
Ni−1

]
(1 + p)2 + E

[
Ni−1

]
p (1 − p) . (17)

Induction can be used to show that (17) is equivalent to

Var [Ni ] = Var [N0] (1 + p)2i + p (1 − p) (1 + p)2(i−1)
i−1∑
j=0

E
[
N j
]

(1 + p)2 j
. (18)

Substitution of (6), simplification of the resultant geometric series, and rearrangement
leads to the expression

Var [Ni ] =
{
Var [N0] + E [N0]

(
1 − p

1 + p

)}
(1 + p)2i

− E [N0] (1 − p) (1 + p)i−1 . (19)

When Var [N0] = 0, Equation (19) becomes identical to what has been reported
elsewhere (Sun 1995; Weiss and von Haeseler 1995; Jacob and Peccoud 1996b, a;
Stolovitzky and Cecchi 1996) (Nedelman et al. (1992); Peccoud and Jacob (1996)
report the leading-order approximation for large i). The more general result, Equa-
tion (19), demonstrates that Var [N0] can significantly impact Var [Ni ], as it is part of
the dominant term.

The growth in variance with increasing i by an exponent twice that of the expected
value explains why very large cycles, where the expected copy-number is also very
large, are not of interest. It also explains why quantification by real-time PCR is more
reproducible than end-point PCR.
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2.3.2 Strand-Specific Branching Process

The variance–covariance matrix of U i is defined as

Var [U i ] = E

[
U iU�

i

]
− E [U i ]E [U i ]

� ,

for each i . From the law of total variance,

Var [U i ] = Var
[
E
[
U i | U i−1

]]+ E
[
Var
[
U i | U i−1

]]
.

In a manner similar to (7), it follows that

Var
[
E
[
U i | U i−1

]] = Var
[
AU i−1

] = AVar
[
U i−1

]
A�.

In addition, after substitution of (1), it follows that

E
[
Var
[
U i | U i−1

]] =E

{
Var
[(

0 1
1 0

)
B
(
U i−1; p̄

R
, p̄R

) ∣∣∣ U i−1

]}

=E

⎡
⎣Var

⎧⎨
⎩
⎡
⎣ B (Yi−1; p̄R)

B
(
Xi−1; p̄

R

)⎤⎦
∣∣∣∣ U i−1

⎫⎬
⎭
⎤
⎦

=
⎡
⎣ p̄R (1 − p̄R)E

[
Yi−1

]
0

0
p̄

R

(
1 − p̄

R

)
E
[
Xi−1

]
⎤
⎦ .

Combining the two expressions, we obtain the two-type analog of (17),

Var [U i ] =AVar
[
U i−1

]
A�

+
⎡
⎣ p̄R (1 − p̄R)E

[
Yi−1

]
0

0
p̄

R

(
1 − p̄

R

)
E
[
Xi−1

]
⎤
⎦ . (20)

Before using induction to relate Var [U i ] to Var [U0], it is useful to simplify (20)
by substituting E

[
Yi−1

] = e�
2 E
[
U i−1

]
and E

[
Xi−1

] = e�
1 E
[
U i−1

]
with E

[
U i−1

]
provided by the first expression of (13). Collecting terms multiplying each eigenvalue,
we find that

Var [U i ] = AVar
[
U i−1

]
A� +

2∑
�=1

λi−1
� K �, (21)

where

K � :=
⎡
⎣ p̄R (1 − p̄R) e�

2 x� 0

0
p̄

R

(
1 − p̄

R

)
e�
1 x�

⎤
⎦ z�� E [U0] . (22)
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From induction, it follows that (21) is identical to

Var [U i ] = AiVar [U0]
(
A�)i +

2∑
�=1

i−1∑
q=0

λ
q
� A

i−1−qK �

(
A�)i−1−q

. (23)

Substitution of (12) and simplification of the resultant geometric series leads to (see
Sect. B.1)

Var [U i ] =
2∑
j=1

2∑
k=1

{[
ν j,k +

2∑
�=1

η�
j,k

] (
λ jλk

)i −
2∑

�=1

η�
j,kλ

i
�

}
x j x�

k , (24)

where

ν j,k :=z�j Var [U0] zk, (25a)

η�
j,k := z�j K �zk

λ jλk − λ�

. (25b)

In (24), the dependence of Var [U i ] on I arises through Var [U0] in each ν j,k and
E [U0] in each η�

j,k (through (22)). While the dependence of E [U0] on E [I ] is given
in (8), the relationship between Var [U0] and Var [I ] for Case D, RF, or RR is given by

Var [U0] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
Var [IX ] 0

0 Var [IY ]

)
=
(
1 0
0 1

)
Var [I ] , Case D;

(
0 0
0 Var [B (IX ; r)]

)
=
(
0 0
0 1

)
Var [B (I ; r)] , Case RF;

(
Var [B (IY ; r)] 0

0 0

)
=
(
1 0
0 0

)
Var [B (I ; r)] , Case RR,

(26a)

Var [B (I ; r)] =Var [E [B (I ; r) | I ]] + E [Var [B (I ; r) | I ]]
=Var [I ] r2 + r (1 − r)E [I ]

=Var [B (IX ; r)] = Var [B (IY ; r)] , (26b)

where (26b) utilizes the law of total variance. Since X0 and Y0 are independent for
any case, Cov [X0,Y0] = 0. As such, we will often use the substitution

Var [U0] =
(
Var [X0] 0

0 Var [Y0]

)
(27)

without specifying a particular case.
In contrast to (19), which only has terms proportional to (1+ p)2i and (1+ p)i−1,

Equation (24) has terms proportional to λ2i1 > λi1 > (λ1λ2)
i > λi2 > λ2i2 (if i > 0).
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While physical interpretation of all terms can be complicated, it is useful to examine
the leading-order expression as i → ∞,

Var [U i ] =
(
ν1,1 + η

(1)
1,1 + η

(2)
1,1

)
λ2i1 x1x�

1 +
(
1 1
1 1

)
O
(
λi1

)
, (28)

and compute the terms explicitly as

ν1,1 =Var
[
X0 + RY0

2

]
2

R2 , (29a)

η
(1)
1,1 =E

[
X0 + RY0

2

](
λ2

λ1

)
R + 1

2R2 , (29b)

η
(2)
1,1 =E

[
X0 − RY0

2

](
p̄λ1

λ21 − λ2

)
R − 1

2R2 , (29c)

where we have used (27). Note that the moments of (X0 ± RY0)/2 arise in (28) as
they did in (13). The term ν1,1 represents the contribution from the variance at the
start of PCR. The term η

(1)
1,1 accounts for the variance due to imperfect amplification,

as p̄ ≈ 1 implies that λ2 ≈ 0 ≈ η
(1)
1,1. If R = 1,

η
(1)
1,1 = E [N0]

2

(
1 − p

1 + p

)
,

one-half the second term in brackets of (19). The third term η
(2)
1,1 does not have a

counterpart in (19). It accounts for differences in strand-specific amplification, as it
vanishes when R → 1.

The expressions developed for expected value and variance can be used to produce
expressions in the squared coefficients of variation, defined as

CV [U i ]
2 = Var [U i ] � E [U i ]E [U i ]

� , (30)

where � denotes element-wise division. Substitution of (13) and (28) into (30) yields

CV [U i ]
2 =

(
1 1
1 1

){
ν1,1 + η

(1)
1,1 + η

(2)
1,1(

z�1 E [U0]
)2 + O

(
λ−i
1

)}
. (31)

As the term O
(
λ−i
1

)
rapidly approaches zero with increasing i , and λ1 is usually more

than 1.8, the dominant term in (31) is a useful approximation. The dominant term is
independent of i and is therefore a very practical tool for estimating the error present
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in PCR. As such, it is useful to express (31) as

e�
j CV [U i ]

2 ek ∼CV [X0 + RY0]
2 + 1

E [X0 + RY0]

(
λ2

λ1

)
R + 1

2

+ E [X0 − RY0]

E [X0 + RY0]2

(
p̄λ1

λ21 − λ2

)
R − 1

2

=αCV [I ]2 + β

E [I ]
, (32)

for any j, k ∈ {1, 2}, where (27) is used in the first step and the second step follows
from simplification with (8) and (26). The quantities α and β, defined as

α =

⎧⎪⎨
⎪⎩

R2 + 1

(R + 1)2
, Case D;
1, Case RF or RR;

(33a)

β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
λ2

λ1

)
1

2
− p̄λ1

λ21 − λ2

(
R − 1

R + 1

)2 1

2
, Case D;

1 − r

r
+
(

λ2

λ1

)
R + 1

2Rr
−
(

p̄λ1
λ21 − λ2

)
R − 1

2Rr
, Case RF;

1 − r

r
+
(

λ2

λ1

)
R + 1

2r
+
(

p̄λ1
λ21 − λ2

)
R − 1

2r
, Case RR;

(33b)

relate the reaction efficiencies to the coefficient of variation, as α = α (R) and β =
β (R, p̄, r). In Sect. 3.4, we will see that (32) also plays a central role in the limit of
detection.

3 Fluorescence Dynamics

3.1 Mathematical Model

To adapt the approach to the fluorescence measured in real-time PCR, it is necessary
to relate the DNA content in solution to the monitoring chemistry. When a fluorescent
probe is used to monitor the kinetics of PCR, the inactive and active probe species
usually make significant contributions to fluorescence. With these two fluorescent
species, the fluorescence analog of Beer’s Law is

Fi,w = f −
i,wC

−
i,w + f +

i,wC
+
i,w, (34)
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Fig. 3 Illustration of relationship between successful DNA replication and changes in fluorescence asso-
ciated with a hydrolysis probe binding to the reverse strand. (a) As polymerization begins, the hydrolysis
probe binds to the reverse strand (blue, dashed line). The probe is in its inactive state, where fluorescence
emitted by the fluorophore (‘F’) is quenched by the quencher (‘Q’) in close proximity. (b) As polymerization
(green arrow) reaches the location of the probe, the probe is hydrolyzed. (c) After successful production of
a forward strand (orange, solid line) from a reverse strand, the fluorophore is activated, as it is no longer
in close proximity to the quencher. When a reverse strand is produced from a forward strand, however, the
fluorescence does not change (Color figure online)

after2 each cycle i = 1 to n and for eachwellw = 1 tom. Here, Fi,w is the fluorescence
measured, f −

i,w (or f +
i,w) is a constant representing the fluorescence permole of inactive

(or active) probe, and C−
i,w (or C+

i,w) is the molar concentration of inactive (or active)

probes. Each molar fluorescence, f −
i,w or f +

i,w (also denoted as f ±
i,w), may depend

on i due to photobleaching. Each may also depend on w due to spatial variation in
electronics and temperature. The terms Fi,w, C

−
i,w, and C+

i,w are random variables
through their dependence on DNA content (see below).

Assuming that probe is not degraded during cycling,

C = C−
i,w + C+

i,w (35)

for all i and w, where C is a known constant representing the total concentration of
probe in solution. As DNA is replicated, inactive probe is converted to active probe
in a manner that depends on the reaction stochiometry. For hydrolysis probes, an
inactive probe is activated, or hydrolyzed, each time one of the complementary strands
is replicated. Without loss of generality, we consider the case where the hydrolysis
probe binds to the reverse strand (see Fig. 3). After completing i PCR cycles, the
concentration of active probe in each well w is then

C+
i,w = �Xi,w

VNa
, (36)

where V and Na are constants representing the volume of solution and Avogadro’s
number, respectively, and �Xi,w := Xi,w − X0,w. We assume for each i = 0 to n
that Xi,1, . . . , Xi,m are independent and distributed identically to Xi , and similarly
that Yi,1, . . . ,Yi,m are independent and distributed identically to Yi . By combin-
ing (34), (35), and (36), the fluorescence model becomes

Fi,w = bi,w + di,w�Xi,w, (37)

2 In this work, we assume that the fluorescence is measured after each PCR cycle. This is typical for assays
utilizing hydrolysis probes, but is not always the case.
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where

bi,w := f −
i,wC (38)

represents the contribution of background fluorescence, and

di,w := f +
i,w − f −

i,w

VNa
(39)

represents the increase in fluorescence per synthesis of forward strand.
From (37), the first two central-moments of Fi,w are

E
[
Fi,w

] = bi,w + di,wE [�Xi ] , (40a)

Var
[
Fi,w

] = d2i,wVar [�Xi ] , (40b)

where �Xi := Xi − X0. Here, E [�Xi ] can be viewed as a function of p̄, R, r , and
E [I ] by substituting (8) into (13). Similarly, Var [Xi ] can be viewed as a function
of p̄, R, r , E [I ], and Var [I ] by substituting (8) and (26) into (24). While Var [X0]
is a function of r , E [I ], and Var [I ] through (26), an expression for Cov [Xi , X0] is
needed for (40b). The methods described in Sect. 2.2 and 2.3 can be readily adapted
to the cross-covariance matrix (see Sect. B.2) to obtain

Cov [Xi , X0] = Var [X0]

2

(
λi1 + λi2

)
. (41)

From (13), (28), and (41), it follows that (40) can be expressed as

E
[
Fi,w

] =
(
di,w
2

)
E [X0 + RY0] λ

i
1 + O(1), (42)

and

Var
[
Fi,w

] = d2i,w
4

{
Var [X0 + RY0] + E [X0 + RY0]

(
λ2

λ1

)
R + 1

2

+E [X0 − RY0]

(
p̄λ1

λ21 − λ2

)
R − 1

2

}
λ2i1 + O

(
λi1

)
, (43)

as i → ∞. As the dominant term of Var
[
Fi,w

]
is proportional to λ2i1 � λi1, it is

independent of Cov [Xi , X0] = O
(
λi1

)
. Instead, the dominant term of Var

[
Fi,w

]
arises from Var [Xi ] as in (28). As in (32), Equations (42) and (43) imply

CV
[
Fi,w

]2 = αCV [I ]2 + β

E [I ]
+ O

(
λ−i
1

)
, (44)

where α = α (R) and β = β (R, p̄, r) were defined in (33) for Case D, RF, and RR.
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In contrast to other models (e.g., Ruijter et al. 2013, 2014), the fluorescence
model (37) is consistent with stoichiometric reactions involving hydrolysis probes
and DNA polymerase. By using the fluorescence analog of Beer’s Law, it provides
a physical basis for description of the background fluorescence bi,w. Finally, unlike
conventional approaches, the more mechanistic model demonstrates that di,w may
depend on cycle i .

When R �= 1, R complicates the relationship between DNA content and fluores-
cence. However, for Case RR, Equations (8), (13), and (40a) lead to

E
[
Fi,w

] = bi,w +
(
rdi,w
2

)
E [I ]

(
λi1 + λi2 − 2

)
, Case RR,

which is independent of R. Since the choice of forward and reverse strands was
arbitrary, this demonstrates that the monitoring probe can be chosen so that E

[
Fi,w

]
is independent of R, and may be a useful design-rule for RT-qPCR assays.

3.2 Extraction of Molar Fluorescence

In real-time PCR, control experiments containing all reagents except nucleic acid
template are often performed to check for contamination. In this section, we will show
how they can also be used to calculate f ±

i,w.
Since template is not present (i.e., U0 = 0), amplification does not occur and the

probe cannot be activated. Equation (37) with (38) becomes

Fi,w = f −
i,wC, (45)

where Fi,w is instead deterministic. After filling m wells of a PCR plate with inactive
probe at known C (and appropriate solvation environment) and measuring Fi,w after
each i ≥ 1, f −

i,w can be calculated pointwise from (45) by division. However, to get a

more realistic estimate of each f −
i,w, the experiment can be repeated with q different

plates having a total probe concentration C1 < · · · < Cq in all m wells. With

C :=
(
C1, . . . ,Cq

)�
,

these experiments yield the measurements

Fi,w :=
(
F1
i,w, . . . , Fq

i,w

)�

for each cycle i and well w. Under the assumption that
F j
i,w

C j
for j = 1 to q are i.i.d.

to a normal distribution, we can compute f −
i,w via

f ±
i,w = argmin

f
‖Fi,w − f C‖2 = F�

i,wC

C�C
. (46)
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Fig. 4 Total number of cycles
and wells for all plates (count,
vertical axis) possessing values
of σ±

i,w/ f ±
i,w in a certain interval

(bin, horizontal axis). The bin
widths are obtained from the
Freedman–Diaconis rule. All
counts for σ−

i,w/ f −
i,w > 0.022

correspond to w = 2 (well A2,
see Fig. S2 and Table S2 in the
SI)

The same procedure can be used to calculate f +
i,w after performing the identical exper-

iments with active probe instead of inactive probe. The standard deviation in f ±
i,w can

be estimated pointwise by

σ±
i,w = ‖Fi,w − f ±

i,wC‖√
q − 1

. (47)

Using hydrolysis probes, we selected the fluorophore (‘F’ in Fig. 3) to represent
the active probe. We used q = 4 concentrations for the active probe, and q = 3
concentrations for the inactive probe. Additional details of the experimental procedure
can be found in Appendix A. Visual comparisons between themodel and experimental
data can be found in Figs. S1 to S96 in the Supplementary Information (SI). The
pointwise values of f ±

i,w and σ±
i,w are tabulated in Tables S1 to S96 of the SI.

To assess the validity of approximating themeasuredfluorescence by f ±
i,wC for each

cycle i and well w, the coefficient of variation, or
σ±
i,w

f ±
i,w

, was calculated. A histogram

of all values (i.e., all n cycles, all m wells, and all q plates) for each probe species is
depicted in Fig. 4. For the active probe, the coefficient of variation is often very small,
typically much less than 0.01. For the inactive probe, the coefficient of variation can
be larger but is still often less than 0.02. This is an indication that the model is realistic.

Having validated the use of the Beer’s Law analog in describing the fluorescence,
we used the molar-fluorescence parameters in Fig. 5 to assess how the background
bi,w and incremental increase di,w change with cycle i (for a fixed well w). Here,
we see that bi,w is not a linear function of i . In fact, for several w, bi,w possesses a
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Fig. 5 Background (top) and incremental increase (bottom) as a function of cycle i for a selection of eight
different wells (colors, see legend) with C = 0.125 pmol/L and V = 20 μL. The partially transparent
shadings at each i depict an estimate of a 95 % confidence interval (Color figure online)

maximum in cycle around i = 2 or i = 3. The decreases in bi,w with increasing i are
attributed to result from photobleaching.

Since thefluorescence of an active probe is larger than thefluorescence of an inactive
probe, di,w is positive. Figure 5 also illustrates that di,w is not independent of cycle;
instead it often increases with i . This reveals another source of systematic error, as
most models assume that di,w is independent of cycle (see, e.g., Ruijter et al. (2009),
Equation (4); Lievens et al. (2012), Equation (7); Liu and Saint (2002), Equation (2)).

3.3 Calculation of Fluorescence Profiles

Having calculated f −
i,w and f +

i,w pointwise through (46), we leverage (40) with (8),
(13), (24), (26), and (41) to computefluorescence curveswith uncertainty.Weprescribe
common values for assay parameters C , V , p̄, and R and assume E [I ] is known.
However, we also need to specify the relationship between Var [I ] and E [I ], as well
as the distribution of each Fi,w.

We will assume for simplicity that

Var [I ] = χE [I ] (48)
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Fig. 6 Fluorescence curves calculated from (40) with (8), (13), (24), (26), and (41) for w = 13. Each
subplot is associated with a different input copy-numberE [I ], as depicted in each bottom-left corner, while
all subplots have C = 0.125 pmol/L, V = 20 μL, p̄ = 0.9, and R = 1. The initial distribution is taken as
Case D with (48) and χ = 1. The light-grey shadings at each i depict the region between min

1≤w≤96
E
[
Fi,w

]
and max

1≤w≤96
E
[
Fi,w

]

for some constant χ > 0. If we make the conventional assumption (Nedelman et al.
1992; Sundberg et al. 2010; Tellinghuisen and Spiess 2015; Ruiz-Villalba et al. 2021)
that I is a Poisson random-variable,3 then χ = 1. However, (48) can also correspond
to different probability distributions. If I obeys a negative binomial distribution with
probability of success ϕ ∈ (0, 1), for example, then χ = 1/ϕ > 1.

Our assumption on the distribution of each Fi,w is rooted in the characteristic
values of the fluorescence parameters bi,w and di,w. As Fig. 5 demonstrates that bi,w
and di,w are typically around 1 and 10−6, respectively, this implies with (40a) that
E [�Xi ] should be more than 106 forE

[
Fi,w

]
> bi,w. That is, the expected number of

successful Bernoulli trials over all i cycles should bemore than 106 for the fluorescence
to reach levels above background. With such a large sample size, it is natural to invoke
the central limit theorem and assume that Fi,w obeys a normal distribution with mean
E
[
Fi,w

]
from (40a) and variance Var

[
Fi,w

]
from (40b).

In Fig. 6, fluorescence curves are computed with uncertainty for ds-DNA for w =
13. DifferentE [I ] ranging from 64 (top-left subplot) down to 4 (bottom-right subplot)
are investigated. The expected fluorescence depicts behavior that is characteristic of
the background and exponential phase observed in typical measurements. During the

3 There is some limited experimental evidence for assuming that I is a Poisson random-variable (Beer
et al. 2007); however, its validity is challenging to assess experimentally. (If the initial number of DNA
strands could be easily measured, there would be no need for qPCR.) In the future, it would be interesting
to compare (48) to a result obtained from error propagation for a conventional experimental procedure (see,
e.g., Hedges (2002)).
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initial cycles, the term bi,w is much larger than di,wE [�Xi ] and only small changes in
fluorescence are observed. Here, the fluorescence is in the background regime. After
more cycles are performed, however, the expected value of fluorescence increases
exponentially with cycle. The change inE

[
Fi,13

]
withE [I ] is also in line with typical

trends. AsE [I ] is decreased, the expected value of the fluorescence in the exponential
phase shifts to the right. In other words, more cycles are required to reach the same
expected fluorescence value.

This approach provides quantitative estimates of sources and magnitudes of uncer-
tainty in different regimes, which are difficult to determine from replicate experiments
alone. For large E [I ] and small i , the well-to-well variation in expected value (light-
grey, shaded regions in Fig. 6) is larger or comparable to the error in fluorescence
in each well. As such, spatial variation has a significant impact on the error. After
many cycles have been completed, on the other hand, the uncertainty in fluorescence
is strongly dependent on the expected initial copy-number, increasing drastically with
decreasing E [I ]. At E [I ] = 4, the fluorescence does not reach values that are larger
than the background fluorescence by an amount that is statistically significant (for
κ = 3). This observation suggests that quantifying the uncertainty in fluorescence can
provide limitations on the measurement.

3.4 Limit of Detection

After performing n PCR cycles, the fluorescence produced by PCR is only useful if
it is larger than background levels by a statistically significant amount. Requiring the
increase to be at least some 0 < κ < ∞ standard deviations, this amounts to the
constraint

E
[
Fn,w

]− κ

√
Var
[
Fn,w

] ≥ bn,w, (49)

for some well w. Equation (49) describes a feasible region of design space for a real-
time PCR assay. It can be considered to depend on n, bn,w, dn,w, p̄, R, r , E [I ], and
Var [I ] through (8), (13), (24), (26), and (41). However, (49) can be further simplified
by substituting (40) and rearranging, leading to

CV [�Xn] ≤ 1

κ
,

an expression that is no longer dependent on w. Since CV [�Xn] ≥ 0 and κ > 0, it
follows that

CV [�Xn]
2 ≤ 1

κ2 . (50)

In addition, since

CV [�Xn]
2 = Var [Xn] + Var [X0] − 2Cov [Xn, X0]

E [Xn]2 − 2E [Xn]E [X0] + E [X0]2
= CV [Xn]

2 + O
(
λ−n
1

)
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by (13), (28), and (41), and n typically ranges from 35 to 50, the error in approximating
CV [�Xn]2 by CV [Xn]2 is extremely small, often less than machine precision. As a
result, the left-hand-side of (50) is expressed as the term on the right-hand-side of (32),
or

α (R)CV [I ]2 + β (R, p̄, r)

E [I ]
≤ 1

κ2 , (51)

where α and β are defined in (33) for Case D, where the input is ds-DNA; Case
RF, where the input is fs-RNA; and Case RR, where the input is rs-RNA. If we let I
satisfy (48), Equation (51) can be rearranged to

E [I ] ≥ (χα + β) κ2. (52)

The limit of detection, L , or the smallest expected-initial-copy-number that can be
detected reliably, is then

L = min
{
y ∈ N | y ≥ (χα + β) κ2

}
. (53)

The largest coefficient of variation in I that can be detected, M , is estimated from (53)
and (48), or

M :=
√

χ

L
. (54)

To compute typical values of L andM , we evaluated them as in (53) and (54) with χ =
1, κ = 3, for 100 equally-spaced p̄ ∈ [0.8, 0.99], R ∈ [0.9, 1.1], and r ∈ [0.2, 0.99]
(including endpoints). For I representing ds-DNA (Case D), we find that L is either
5 or 6, corresponding to M of 0.447 and 0.408, respectively. For I representing RNA
as in Case RF or Case RR, L ranges between 9 and 52, corresponding to M of 1/3 and
0.139, respectively. The range of L is the same for fs-RNA and rs-RNA.

4 Conclusions and FutureWork

In this work, we presented a newmodel for fluorescence in real-time PCR that reduced
bias and quantified uncertainty. Distinguishing between complementary strands pro-
vided a stoichiometric description of fluorescence reported by hydrolysis probes and
permitted application to initial conditions encountered in RT-qPCR. Viewing the fluo-
rescence as aBeer’s Law analog enabled the backgroundfluorescence to be determined
without extrapolation or assuming a certain relationship with cycle. It also allowed for
measurement and calculation of background fluorescence without adjusting amplifi-
cation data. Incorporating the variance in copy number into the fluorescence model
enabled quantification of fluorescence uncertainty and analytical expressions for the
limit of detection.
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In addition to their practical utility, the two-type branching-process and repurposed
fluorescence-model provided new intuition on the physics and chemistry in PCR. At
short times, there is a lag in exponential growth (usually at most 5 cycles) as the ratio
of expected strand counts changes from its initial to critical value, R. The quantity R
represents the square root of the ratio of the two synthesis efficiencies (see (3)). In
constrast to a previous report investigating deterministic models, we found that the
initial composition only impacts the dynamics after the lag phase if R �= 1.

The variance in the fluorescence is dominated by a term that increases exponentially
by twice the factor of the expected value. This explains, in part, why quantification
by end-point PCR is not reproducible. The three terms dominating the variance were
attributed to arise from the initial variance (ν1,1, see (29a)), imperfect amplification
(η(1)

1,1, see (29b)), and deviation in directional efficiencies (i.e., R �= 1; seeη
(2)
1,1 in (29c)).

The fluorescence model for hydrolysis probes demonstrated that the background flu-
orescence originates from the molar fluorescence of the inactive probe times the total
concentration of probe. The incremental increase in fluorescence is proportional to
the difference in molar fluorescence between active and inactive probe and, like the
background fluorescence, is neither independent of cycle nor a linear function of cycle.

The stochastic view of PCR explains, in part, why deterministic methods that use
reaction-specific amplification probabilities are generally less accurate (Ruijter et al.
2013). This is because, for each well w and cycle i , Ni,w/Ni−1,w �= 1 + p (see
Equation (5)). Even if R = 1 and Ni,1, . . . , Ni,m are independent and distributed
identically to Ni for each i , this is not necessarily true because not every realization
of a random variable is equal to its expected value.

While this work applied the stochastic model of PCR to the fluorescence reported
by hydrolysis probes, it can readily be extended to other chemistries. For example, for
probes that anneal to forward-stranded DNA, (37) instead becomes

Fi,w = bi,w + di,wXi−1,w.

For these probes, the fluorescence is measured during the annealing portion of each
cycle where only i − 1 cycles of PCR have been completed.

To capture the fluorescence reported by DNA-binding dyes, on the other hand,
an extension to the model is needed. This is because the amount of dye bound to a
DNA strand depends on the total amount of DNA present in solution (this includes
DNA that is not template, like primers (Ruijter et al. 2009)). Application to fluorescent
dyes represents an interesting direction for future generalizations of the fluorescence
model.

Finally, our approach in this work focused on quantifying the dynamics and uncer-
tainty of fluorescence when the initial amount of each complementary strand is known,
as well as their amplification probabilities. (That is, we assumed that E [I ], Var [I ], p̄,
R, and r were known.) However, the ultimate goal of monitoring the kinetics of PCR
by fluorescent probes is to infer E [I ], the expected input number. As such, it is of
interest to extend the approach to UQ-PCR, or uncertainty quantification of the initial
amount of DNA. To this end, another direction for future work is the investigation of
the probabilistic nature of PCR in backwards time (see Fig. 7).
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oror

Current cycle

Previous cycle

Fig. 7 Conceptualization of probabilistic view of PCR in backwards time. Each ds-DNA complex present
after i cycles have been completed may have originated from a forward strand or a reverse strand. Each
complex may also be identical to a ds-DNA complex present at the end of the previous cycle
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Appendix A Experimental

Reagents were obtained from suppliers for use in experiments. A DNA suspension
buffer (TE−4) of pH 8.0 with 10 mmol/L Tris and 0.1 mmol/L EDTA was obtained
from Teknova (Hollister, CA). 6-Carboxyfluorescein (6-FAM), single isomer, was
purchased in solid form from Thermo Fisher Scientific (Waltham, MA). The working
solution of 6-FAM was prepared by dissolving 10.1 mg 6-FAM in 1.75 mL of abso-
lute ethanol (Sigma-Aldrich, St. Louis, MO). Subsequently, 10.0 μL of the ethanolic
solution was dissolved in 500mL of TE−4. A TaqMan minor groove binder probe
with non-fluorescent quencher (Applied Biosystems, Waltham, MA), possessing the
sequence 5′−ACCCCGCATTACGTTTGGTGGACC−3′ and reporter (6-FAM) of the
National Center for Immunization and Respiratory Diseases (U.S.). Division of Viral
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Diseases (2020) 2019-nCoV_N1 assay, was obtained from Thermo Fisher Scientific.
Working solutions of probe were prepared by adding TE−4 to a portion of the stock
solution to yield a solution of concentration 5 μmol/L probe.

In a typical experiment, a solution was prepared with 25 vol. % TE−4 at a specific
concentration of either 6-FAM (active probe) or TaqMan probe (inactive probe). After
mixing, 20μLwas transferred into each well of a 96-well plate. The plate was covered
with adhesive film and centrifuged. After assessing that air bubbles were not visible,
the plate was placed in an Applied Biosystems 7500 HID Real-Time PCR instrument.
The thermal cycling protocol consisted of a 2min holding stage at 55 ◦C (328 K),
followed by 45 cycles. Each cycle consisted of 30 s at 55 ◦C (328 K), followed by 3s
at 95 ◦C (368 K). Data collection occurred during the 55 ◦C step in each cycle. The
raw data through filter 1 was exported with HID Real-Time PCR Analysis Software,
Version 1.2 (AppliedBiosystems). The fluorescence valueswere divided by 106 before
subsequent analysis.

Appendix B Extended Derivations

B.1 Derivation of (24) from (23)

Consider some B ∈ R
2×2. From (12), we can write

Ai B
(
A�)i =

⎛
⎝ 2∑

j=1

λij x j z�j

⎞
⎠ B

(
2∑

k=1

λik zkx
�
k

)

=
2∑
j=1

2∑
k=1

(
λ jλk

)i x j z�j Bzkx�
k ,

=
2∑
j=1

2∑
k=1

(
λ jλk

)i T j,k (B) , (B1)

where T j,k : R2×2 �→ R
2×2 is the linear operator

T j,k (B) = x j z�j Bzkx�
k =

(
z�j Bzk

)
x j x�

k . (B2)

Application of (B1) to (23) leads to

Var [U i ] =
2∑
j=1

2∑
k=1

(
λ jλk

)i T j,k (Var [U0])

+
2∑
j=1

2∑
k=1

2∑
�=1

i−1∑
q=0

λ
q
�

(
λ jλk

)i−1−q T j,k (K �) . (B3)
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For each b ∈ {λ21, λ1λ2, λ22}, the geometric series in (B3) can be simplified via

i−1∑
q=0

λ
q
�b

i−1−q = bi−1
i−1∑
q=0

(
λ�

b

)q
= bi−1

⎛
⎜⎜⎜⎝
1 −

(
λ�

b

)i

1 − λ�

b

⎞
⎟⎟⎟⎠ = bi − λi�

b − λ�

.

This admits the expression

Var
[
U i
] =

2∑
j=1

2∑
k=1

(
λ jλk

)i T j,k (Var [U0]) +
2∑
j=1

2∑
k=1

2∑
�=1

((
λ jλk

)i − λi
�

λ jλk−λ�

)
T j,k (K�) ,

=
2∑
j=1

2∑
k=1

(
λ jλk

)i T j,k

⎛
⎝Var [U0] +

2∑
�=1

K�

λ jλk − λ�

⎞
⎠

−
2∑
j=1

2∑
k=1

2∑
�=1

λi�T j,k

(
K�

λ jλk − λ�

)
. (B4)

Since, from (25) and (B2),

⎧⎪⎨
⎪⎩

T j,k (Var [U0]) =ν j,kx j x�
k ,

T j,k

(
K �

λ jλk − λ�

)
=η�

j,kx j x�
k ,

it is evident that (B4) is identical to (24).

B.2 Derivation of (41)

In this section, the derivation of (41) is completed by investigating the cross-covariance
matrix, defined as

K [X,Y ] = E

[
XY�]− E [X]E [Y ]�

for any two random vectors X and Y . Notice that K [X, X] = Var [X].
From the law of total expectation,

E [U i ]E [U0]
� = E

[
E
[
U i | U i−1

]]
E [U0]

� = AE
[
U i−1

]
E [U0]

� ,

and

E

[
U iU�

0

]
=E

[
E

[
U iU�

0 | U i−1,U0

]]
= E

[
E
[
U i | U i−1

]
U�

0

]

=AE
[
U i−1U�

0

]
.
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The latter expression follows because U i and U0 are independent when conditioned
on U i−1. Thus,

K [U i ,U0] =AK [U i−1,U0
] = AiVar [U0]

=
2∑
j=1

λij x j z�j Var [U0]

=
2∑
j=1

λij x j z�j
(
Var [X0] 0

0 Var [Y0]

)
,

where the second, third, and fourth step follow from induction, Equation (12), and the
independence of X0 and Y0, respectively. In particular, it follows that

Cov [Xi , X0] =e�
1 K [U i ,U0] e1

=e�
1

⎛
⎝ 2∑

j=1

λij x j z�j

⎞
⎠ e1Var [X0]

=Var [X0]

2

(
λi1 + λi2

)
,

which is the same as (41).
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