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Abstract
Multiple sclerosis (MS) is an autoimmune, neurodegenerative disease that is driven by
immune system-mediated demyelination of nerve axons. While diseases such as can-
cer, HIV, malaria and even COVID have realised notable benefits from the attention of
the mathematical community, MS has received significantly less attention despite the
increasing disease incidence rates, lack of curative treatment, and long-term impact
on patient well-being. In this review, we highlight existing, MS-specific mathematical
research and discuss the outstanding challenges and open problems that remain for
mathematicians. We focus on how both non-spatial and spatial deterministic models
have been used to successfully further our understanding of T cell responses and treat-
ment in MS. We also review how agent-based models and other stochastic modelling
techniques have begun to shed light on the highly stochastic and oscillatory nature
of this disease. Reviewing the current mathematical work in MS, alongside the biol-
ogy specific to MS immunology, it is clear that mathematical research dedicated to
understanding immunotherapies in cancer or the immune responses to viral infections
could be readily translatable to MS and might hold the key to unlocking some of its
mysteries.
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BBB Blood brain barrier
RRMS Relapsing remitting multiple sclerosis
PPMS Primary progressive multiple sclerosis
SPMS Secondary progression multiple sclerosis
EBV Epstein Barr virus
MRI Magnetic resonance imaging
CEL Contrast enhancing lesion
EDSS Expanded disability status scale
Tregs Regulatory T cells
Teff Effector T cells
DMT Disease modifying therapy
IFN Interferon
ODE Ordinary differential equation
BST Biochemical systems theory
RNFL Retinal nerve fibre layer
PDE Partial differential equation
SDE Stochastic differential equation
ABM Agent based model
PN Petri net
PCA Principal component analysis
ORC Ollivier–Ricci curvature

1 Introduction

Multiple sclerosis (MS) is a disease of the central nervous system (CNS), brain, retina,
and spinal cord, in which the immune system attacks protective coating around nerve
axons known as myelin (Dendrou et al. 2015; Hemmer et al. 2015) (Fig. 1a). Destruc-
tion of the myelin, also referred to as demyelination, exposes nerve axons and disrupts
the ability for signals to travel along these axons causing sensory and visual impair-
ments, loss of motor skills and cognitive deficits (Dendrou et al. 2015). Worldwide,
more than 2.8 million people have MS and most patients will develop substantial dis-
ability during the course of their diseases (Hemmer et al. 2015). MS prevalence and
incidence is increasing globally with a significant increase in the proportion of women
diagnosed (Fig. 1b–d). Unfortunately, there is still no curative treatment for MS, and
the treatments that do exist are not always effective.

For some time now, mathematical descriptions of diseases have been used to
improve our understanding of disease origins and potential treatment avenues. Of
particular note and relevance are mathematical models in the fields of oncology (Vic-
tori and Buffa 2019; West et al. 2022; Bull and Byrne 2022; Engeland et al. 2022;
Craig et al. 2020; Altrock et al. 2015; Byrne 2010; Araujo and McElwain 2004), and
virology (Smith 2018; Goyal et al. 2019; Perelson 2002; Handel et al. 2018) which
have recently started to focus heavily on the immunological aspects of the associ-
ated diseases. Despite the multitude of mathematical research capturing the immune
response to diseases, there is a significant lack of translation of this research into
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Fig. 1 MSdisease, prevalence, incidence, andmathematical publication interest. aMyelin coating of neurons
is degraded in MS patients resulting in demyelination and eventual axonal loss. Destruction of myelin
disrupts the ability for signals to transmit along nerve axons. b Downloading prevalence data from the MS
Atlas (atlasofms.org) and considering only countries with recorded values of prevalence for 2008, 2013
and 2020, the gradient of a line of best fit has been used to colour countries by the rate of change in
MS prevalence. The prevalence of MS is the number of individuals with the disease divided by the total
population. Note that countries may have obtained values > 3 and < -3 and any countries missing either have
no data or data for only one or two years. Most countries have an increasing disease prevalence (orange to
red). c Box plots demonstrating the increasing prevalence of MS over time. Data were compared using a
paired sample t-test with a 5% significance and all were found to be significant. d Incidence of MS in South
EastWales over 22 years plotted by gender (Hirst et al. 2009). Incidence in females is increasing compared to
males. e PubMed query comparison for mathematical models of leukaemia to models of multiples sclerosis.
PubMed query for “Mathematical model” AND (“leukemia” OR “leukaemia”) in light blue. PubMed query
for “Mathematical model” AND “multiple sclerosis” in dark blue (Color figure online)
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understanding autoimmune disease such as MS. According to a PubMed query (from
2023), there have been 47 papers published describing mathematical models of MS
(Fig. 1e). Over 2.8 million people worldwide have MS (Walton et al. 2020), which
is comparative with leukemia, which has over 2.43 million cases (Wang et al. 2022).
Comparing the mathematical modelling publication rate for these diseases we see
some disparity between the volume of publications. This could be attributed to many
factors, for example differences in fatality rate or our understanding of the disease
itself. Through rigorously scouring the literature, we classified the modelling of MS
into 38 articles that model some aspect of theMS disease usingmathematics (Table 1),
and an additional 17 that we classified as ‘other’ mathematical or statistical attempts
to assist in MS understanding (Table 2). This gave a total of 55 articles, slightly more
than was found by the PubMed query. This culmination of work is underwhelming
considering the disease impact. Despite this, the collection of mathematical modelling
work into MS to date, has made significant impact and illustrates that mathematical
models of this disease are both possible and incredibly insightful.

Villoslada and Baranzini (2012) published a “call-to-arms” for the data-science
community detailing the opportunities for systems biology to have a major impact on
the discovery of biomarkers for a better understanding and diagnosis of MS. More
recently in Coggan et al. (2015), discussed the potential for computer modelling in
furthering our understanding of demyelinating diseases. Following this, in Pappalardo
et al. (2018) published a short review of the efforts from the computational modelling
world to understand MS from the context of genetics. Building upon this, the current
review aims to serve as a “call-to-arms” for the mathematical modelling community
to the open problems for mathematicians in MS.

In this review, we discuss the current success of mathematical research into MS
by considering four fundamental mathematical model types: deterministic spatially
homogeneous, deterministic spatially inhomogeneous, stochastic spatially homoge-
neous and stochastic spatially inhomogeneous. We also discuss some of the ingenious
ways in which mathematical and statistical methods have been applied toMS data.We
broadly classify these works into four disease scales: population, systemic, CNS and
cellular; and highlight the work that has been done at each level. We end by presenting
the areas which remain open for mathematicians.

2 Brief Overview of MS Biology

The immunology of MS is complex and there are still many open questions about the
immune pathways involved in the onset and progression of this disease. MS patho-
physiology is characterised by the formation of lesions in the CNS. These lesions are
caused by immune cell infiltration across the blood–brain barrier (BBB) that promotes
neuroinflammation, demyelination (destruction of myelin sheaths), and neuroaxonal
degeneration, leading to disruption of neuronal signalling and brain volume changes
(Dendrou et al. 2015). We briefly describe below the general immunology of MS
relevant to that which has been modelled by the mathematical community. We point
readers to other review articles of MS immunology for more in-depth descriptions
(Dendrou et al. 2015; Hemmer et al. 2015; Attfield et al. 2022; Arneth 2019; Sospedra
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Table 1 Mathematical modelling work investigating MS

Reference Year Model Data Scale Overview

Balestrino (2009) 2009 ODEs – Systemic System of ODEs was used
to test the likelihood of
point mutation in gene
PTPRC as a cause for
cytokine imbalances

Broome and
Coleman (2011)

2011 ODEs – Cellular Presented a Biochemical
Systems Theory model
using ODEs to test drug
action in MS patients

Pertsovskay et al.
(2013)

2013 ODE in vitro Systemic A kinetic model identified
the role of signalling
feedback in relation to
IFN-β treatment for MS

Zhang et al. (2014) 2014 ODE – Cellular Dynamical systems theory
for a model of Tregs
proved recurrent MS
arises from a Hopf
bifurcation

Kotelnikova et al.
(2017)

2017 ODE EDSS CNS,
systemic

ODE model for axon
myelination matched to
patient EDSS scores was
able to explain disease
heterogeneity

Kanna et al. (2017) 2017 ODE – Systemic A model for anti- and
pro-inflammatory
components was able to
predict all subtypes of MS

Montolío et al.
(2019)

2019 ODEs Clinical
data

CNS ODE model relating retinal
thickness to EDSS
suggested thinning occurs
before the appearance of
symptoms

Elettreby and
Ahmed (2020)

2020 ODE – CNS Stability analysis of a
system identified
necessary conditions for
MS recurrence

Zhang and Yu
(2021)

2021 ODEs – Cellular Showed the presence of
limit cycles in a
simplified model of
Teff-Treg interactions

Frascoli et al.
(2022)

2022 ODE Clinical
data

Population A model of population
response to DMT fit to
clinical relapse
measurements, captured
the effect of uncertainty
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Table 1 (continued)

Reference Year Model Data Scale Overview

Akaishi et al.
(2018)

2018 Logistic
map

– Systemic A logistic map chaos model
was used to explain the
disseminated patterns in
time and space of MS

Khonsari and
Calvez (2007)

2007 PDE Clinical
data

CNS Proposed a chemotactic
model to capture
homogeneous concentric
demyelination in Baló’s
sclerosis

Calvez and
Khonsari (2008)

2008 PDE – CNS Adding macrophage
recruitment to (Khonsari
and Calvez 2007)
provided a link between
disease aggressivity and
spatial patterns

Lombardo et al.
(2017a)

2017 PDE – CNS Generalising the models in
Khonsari and Calvez
(2007), Calvez and
Khonsari (2008), a Turing
instability was found for
chemotactic coefficient
values

Bilotta et al. (2019) 2018 PDE – Cellular Classified bifurcation of
radially symmetric
version of Lombardo et al.
(2017b) for the formation
of concentric patterns

Bilotta et al. (2018) 2018 PDE – Cellular Investigated the stability of
the model in Lombardo
et al. (2017b) through a
zigzag and Eckhaus
instability

Koch et al. (2020) 2019 PDE MRIs Systemic,
CNS

Proposed a PDE model to
learn capillary leakage
from MRI data

Hu et al. (2020) 2020 PDE – Cellular Proved the boundedness
and global existence of
solutions to the
chemotaxis model
(Lombardo et al. 2017b)
and study its stability

Desvillettes et al.
(2021)

2010 PDE – Cellular Stability analysis of a
reaction–diffusion system
showed the appearance of
Turing patterns

Desvillettes and
Giunta (2021)

2020 PDE – Cellular In the one-dimensional case
of Lombardo et al.
(2017b), weak solutions
were obtained for initial
data
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Table 1 (continued)

Reference Year Model Data Scale Overview

Moise and
Friedman (2021)

2021 PDE Clinical
data

CNS System of PDEs described
MS plaque growth and
exploring treatment
combinations

de Paula et al.
(2023)

2023 PDE – CNS Studies the influence of
innate and adaptive
immune responses using a
two compartment PDE
model

Vélez de
Mendizábal et al.
(2011)

2011 SDE CELs Cellular,
Systemic

Using a system of SDEs,
concluded that relapsing
dynamics derive from
Teff-Treg interactions

Bordi et al. (2013) 2013 SDE Clinical
data

Systemic An SDE model explained
the occurrences of
relapses and remissions
and time spent in either
state

Martinez-Pasamar
et al. (2013)

2013 SDE in vitro Cellular Fitting the SDE in Vélez de
Mendizábal et al. (2011)
to flow cytometry for Teff
and Treg provided insight
into oscillatory dynamics
of MS

Pernice et al.
(2020)

2020 SSA Clinical
data

CNS,
systemic

Lymph node, blood vessels
and CNS were simulated
using a SSA to reproduce
RRMS characteristics

Mohan et al. (2008) 2008 Random
graph

– CNS A 2D spatial representation
of MS disease spread was
built using a randomly
generated graph

Thamattoor Raman
(2012)

2012 Random
graph

– CNS Extending the model in
Mohan et al. (2008), a
random graph network
was able to capture lesion
growth and arrest
scenarios

Pernice et al.
(2018)

2018 Petri net Systemic Description of a Petri Net
model to understand
Daclizumab treatment of
MS

Pernice et al.
(2019a)

2019 Petri net Systemic Applied a Latin hypercube
sampling to Pernice et al.
(2018) to reproduce real
behaviours of healthy and
MS subjects
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Table 1 (continued)

Reference Year Model Data Scale Overview

Pernice et al.
(2019b)

2019 Petri net – Systemic Used model by Pernice
et al. (2018) to
characterise the effects of
Daclizumab treatment on
RRMS patients

Pennisi et al. (2013) 2013 ABM – Cellular,
systemic

ABM of the dynamics of
RRMS and Teff-Treg
cross balancing in
genetically predisposed
individuals

Pappalardo et al.
(2014)

2014 ABM – Cellular Extending the model in
Pennisi et al. (2015), they
investigated the positive
effects of Vitamin D in
MS patients

Pennisi et al. (2015) 2015 ABM – Cellular,
CNS

Extended the model in
Pappalardo et al. (2014)
to capture the BBB and
suggesting new strategies
for treatments in MS
patients

Pappalardo et al.
(2014)

2020 ABM – Cellular,
systemic

Used the computational
model called UISS-MS
treatment with DMDs

Pennisi et al. (2020) 2020 ABM – Systemic The model in Pennisi et al.
(2015) is used to provide
insight into the effects of
daclizumab for MS
patients

Russo et al. (2022) 2021 ABM – Cellular,
systemic

Used the computational
model UISS-MS to
predict relapsing

Russo and Italia
(2021)

2021 ABM – Cellular Sensitivity analysis of the
UISS-MS (Pappalardo
et al. 2014) to understand
importance of
oligodendrocytes and
vitamin D

Sips et al. (2022) 2022 ABM Clinical
data

Population An in silico clinical trial
platform known as MS
TreatSim is developed to
simulate RRMS patients

The references have been classified by which scale was modelled when considering the following scales:
cellular, CNS, systemic, and population. Despite our best efforts, we acknowledge that this exhaustive list
may not capture all existing works
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Table 2 Other relevant MS papers with mathematical or data science techniques

References Year Model Data Scale Overview

Crigger (1996) 1996 Causal inference Clinical
data

Population Adaptation to the
uncertainty of MS in
women was
examined with a
causal model

Goodin (2016) 2009 Causal inference – Population A causal scheme to
explain MS
pathogenesis
considering genetic
and environmental
factors

Sepasian et al.
(2014)

2014 Bayesian model MRI CNS Bayesian framework
measured lesion
change in MRI and
detected resolving
lesions

Bejarano et al.
(2011)

2011 Computational
classifiers

MRI CNS Constructed
computational
classifies (Bayesian,
neural networks) to
find correlates of
clinical end points

Meier and
Guttmann
(2006)

2006 Deterministic MRI CNS Deterministic model
for lesion formation
and decline over time
matched to 997 MRI
examinations

Stepanov et al.
(2012)

2012 Deterministic Clinical
data

Population A mathematical model
to correctly classify
and identify
impairment of
learning in MS
patients

Esteban et al.
(2007)

2007 Fractal
dimension

MRI CNS Assessed the
usefulness of Fractal
dimension in the
measurement of
white matter
abnormalities

Roura et al.
(2021)

2021 Fractal
dimension

MRI CNS Fractal dimension was
demonstrated to
identify patients at
risk of increased
disability over 5 years
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Table 2 (continued)

References Year Model Data Scale Overview

Karaca et al.
(2015)

2014 Linear model Clinical
data

Population Linear model fit to
patient lesion
location and EDSS
score to diagnose MS
features

Tommasin et al.
(2018)

2018 Linear model Clinical
data

Population EDSS and
structural/functional
relationships
captured with linear
model

Bernardo-Faura
et al. ( 2021)

2021 Logical model EAE,
clinical
data

Systemic Network model used to
uncover features of
drug-signalling
networks in MS
patients

Gulati et al.
(2015)

2015 Mixed-effects CELs Population Effect of IFN β-1b
evaluated in patients
with RRMS using a
mixed-effects model

Velez de
Mendizabal
et al. (2013)

2013 Mixed-effects Clinical
data,
CELs

Population Non-linear mixed
effects model was
used to analyse CEL
progression and
capture patient
variability

Kohanpour et al.
(2019)

2020 Robust Fuzzy
Sliding

– Systemic A fuzzy sliding model
controlled was
designed for the state
space model of MS in
Kannan et al. (2017)

Goodin (2016) 2016 Probabilistic
model

– Population Determines the
likelihood of
developing MS from
genetic
predisposition vs
environmental events

Bielekova et al.
(2005)

2005 Stratification
algorithm

MRI CNS MRI-based
stratification
algorithm separates
patients into
clinically meaningful
subgroups
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Table 2 (continued)

References Year Model Data Scale Overview

Bol et al. (2010) 2010 Structural
equation

EDSS Population A structural
cognitive-behavioural
model explained
fatigue and physical
disability in MS
patients

Hu et al. (2022) 2020 Structured
functional
PCA

MRI CNS Proposed a method for
capturing temporal
and spatial
characteristics of
lesion in MRI
sequences

Krieger et al.
(2016)

2016 Topographical
model

– CNS Model for real-time
depiction of disease
course and prognosis
from clinical/MRI
data

The references have been classified according to which scale was modelled when considering four main
scales: cellular, CNS, systemic, and population. This represents to the best of our knowledge an exhaustive
list, although there may be articles that have been missed despite our efforts

and Martin 2005; Høglund 2014; Sellner and Rommer 2020; Lazibat et al. 2018; Li
et al. 2018; Grigoriadis and Pesch 2015).

2.1 Setting the Stage of MS Disease

MSis a chronic inflammatory disease affecting the brain and spinal cord.MSpathology
is characterised by confluent demyelinated areas of the brain and spinal cord that are
called plaques or lesions and indicate a loss of myelin sheath and oligodendrocytes
(a CNS resident cell whose role is to generate myelin, which is an extension of its
membrane) (Dendrou et al. 2015; Kuhn et al. 2019). These lesions can be measured by
magnetic resonance imaging (MRI), making MRIs the primary tool in the diagnosis
and treatment ofMS (Fig. 2a). Active lesions aremost frequently localized in thewhite
matter of the brain, but can also be found in the grey matter (Attfield et al. 2022).

There are three main stages of MS (Fig. 2b): relapsing–remitting (RRMS), primary
progressive (PPMS) and secondary progressive (SPMS). A relapse in MS is a reflec-
tion of an acute focal inflammatory event in the CNS that disrupts neural conduction
by damaging myelinated axons leading to lesions (Vélez de Mendizábal et al. 2011).
Clinical relapses generally last for a month and can be as frequent as one per year.
Within the first few years after diagnosis, most patients experience fluctuations in
clinical presentation or relapses and are considered to be in the RRMS stage (Attfield
et al. 2022). As time goes on, the relentless and persistent cumulation of severe neu-
rological deficits then dominate the remainder of the patient’s lifetime and patients
are either classified as being in the PPMS or the SPMS stage (Dendrou et al. 2015;
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Fig. 2 The immunopathology of MS. a MRI scans are regularly used to identify lesions, known as contrast
enhancing lesions (CELs), seen here as the white areas in the MRI. Most patients have lesions appearing
like those shown in the full MRI, however, a rare form of MS known as Baló’s concentric sclerosis shows
lesions as concentric rings of demyelinated areas. b The main marker of disease progression from relapsing
to progressive MS is the expanded disability status score (EDSS). This score ranges from 0 to 10 and
represents the level of disability an individual patient experiences at a particular point in time. Over the
course of their disease patients undergo relapses in their EDSS score followed by a prolonged period of
progression. These relapses correlate to periods of heightened inflammation in the CNS. c The immunology
of MS is extremely complex and, in this review, we seek to only provide a general overview so as to discuss
the mathematical modelling work that has been done. The main cells considered to reside near or within a
lesion are T cells, monocytes, B cells, microglial cells, macrophages, and oligodendrocytes (oligo.). T cells,
B cells, dendritic cells and monocytes cross the Blood–Brain Barrier (BBB) and infiltrate the white matter
of the brain. Dendritic cells present CNS antigens to T cells, which induces their differentiation into effector
T cells. Effector T cells, B cells and monocytes promote inflammation which results in the demyelination
of neurons. Oligodendrocytes attempt to formmyelin in these demyelinated areas and protect demyelinated
axons from damage (Color figure online)

Attfield et al. 2022). MS disease presentation is extremely heterogeneous across the
population, with significant patient-to-patient variations in clinical manifestations and
the speed at which patients move from one stage to another (Dendrou et al. 2015).
Largely, this is thought to be correlated with the spatiotemporal dissemination of the
demyelination within the CNS, which varies from patient to patient (Dendrou et al.
2015).
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2.2 Causes and Disease Onset

While the exactMS trigger is still debated, there is substantial evidence that an antigen-
specific immune response generated against proteins of the CNS, particularly towards
the myelin sheath, is what leads to the destruction of myelin and heightened inflamma-
tion eventuating in disease diagnosis (Dendrou et al. 2015). For some time, researchers
have put forward the hypothesis that viruses play a role in MS pathogenesis (Oskari
Virtanen and Jacobson 2012; Gilden 2005). Early studies suggested the potential role
of measles virus in MS (Vandvik et al. 1976; Adams and Imagawa 1962) as well as
Epstein-Barr virus (Haahr and Höllsberg 2006). In the last two years, new findings
linking MS incidence with EBV infection have strengthened the belief that EBV is
a precursor to MS development (Attfield et al. 2022; Bjornevik et al. 2022; Bordon
2022; Sollid 2022; Yates 2022), although the discussion around MS disease onset is
still ongoing. For example, recent findings by Ma et al. (2023) found that epsilon
toxin-producing strains of Clostridium perfringens in the gut are able to disrupt the
BBB in mice and contribute to inflammatory demyelination, suggesting a role for this
bacteria in MS. The combination of viral infection, genetic susceptibility and expo-
sure to environmental factors is believed to lead to the eventual onset of MS. The most
common environmental factors linked to MS are Vitamin D deficiency and elevated
estrogen levels (Spanier et al. 2015; Hayes and Spanier 2017; Ramien et al. 2016).

2.3 Immunopathology of MS

Results from immunological, genetic andhistopathological studies ofMSpatients have
shown that the immune system plays a key role in disease initiation and progression
(Hemmer et al. 2015). T and B lymphocytes have long been considered the major
players in MS immunopathology (Sellner and Rommer 2020; Li et al. 2018). Very
early in the disease, patients with RRMS show widespread inflammatory infiltrates,
with most evidence to date identifying populations of CD4 + T cells, CD8 + T cells,
B cells and monocytes within lesions (Fig. 2c). The subsequent destruction of myelin-
producing oligodendrocytes by these cells leads to the formation of acute lesions in
early disease stages.

In this review, we consider T cells can be broadly grouped into effector or regulatory
cell types based on their mechanism of action. Regulatory T cells (Tregs) suppress
disease development through the inhibition of effector T cells (Teffs) (Bar-Or and Dar-
lington 2011). In contrast, Teffs are thought to play a role in heightening inflammation
at the lesion site and increasing myelin degradation and oligodendrocyte death. Both
CD4 + and CD8 + T cells can exhibit effector and regulatory activities and while MS
was long believed to be a CD4 + T cell disease (Kaskow and Baecher-Allan 2018),
CD8 + T cells have been shown to dominate the T cell infiltrates in active MS lesions
(Attfield et al. 2022). B cells and Myeloid cells (macrophages, dendritic cells and
microglial) control T cell activation through antigen-presentation (Filippi et al. 2018).
The binding of antigen to the cell surface activates dendritic cells which communicate
with naïve CD4 + T cells and shape the adaptive immune response (Grigoriadis and
Pesch 2015). Monocytes and macrophages are found in high numbers in the CNS of
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MS patients and thought to activate or control T cell activity at the lesion site (Bar-Or
andDarlington 2011). Two keyCNS-resident cells inMS disease are oligodendrocytes
and microglial. Oligodendrocyte cells are crucial for myelin repair. Microglial are the
tissue-resident macrophages of the CNS, and although their role in MS pathogenesis
is inconclusive it is thought to be in an activation or stimulation role (Attfield et al.
2022).

2.4 Clinical Measurements of MS Disease

MRIs are the primary measurement of patient disease, providing visible locations of
patient lesions.While most patient’s lesions exhibit no discernible, predetermined pat-
tern, in a rare formofMSknown asBaló’s concentric sclerosis (Fig. 2b), demyelination
occurs in striking concentric patterns (Khonsari and Calvez 2007). With increasing
age and disease duration, new focal inflammatory lesions become less frequent in MS
patients, whereas some demyelinated lesions remain chronically active. Often these
focal inflammatory lesion events are denoted contrast enhancing lesions (CELs) on
T1-weighted images and can be counted and tracked over time (Fig. 3). CELs are also
considered markers of BBB breakdown (Bagnato et al. 2003; Campbell et al. 2012).
The BBB is an endothelial cell barrier that restricts immune cell trafficking into the
CNS; however, in patients with MS the BBB can become damaged, thereby allowing
immune cell trafficking into the brain which in turn causes inflammation and subse-
quent demyelination. Another measure of MS clinical outcomes is brain volume loss,
where the rate of brain volume loss correlates with disease severity (Radue et al. 2015;
Stefano et al. 2016). An additional important clinical measurement is the expanded
disability status score (EDSS), which tracks an individual patient’s disability over time
(Fig. 2a).

2.5 Treatment of MS

Current therapeutics available for MS patients are mostly effective for RRMS patients
and can readily reduce the frequency of relapses, yet are seemingly unable to perturb
the pathological processes associated with disease progression (Attfield et al. 2022).
Current management strategies are focused on treating attacks, ameliorating symp-
toms and reducing biological activity through disease-modifying therapies (DMTs)
(Sellner and Rommer 2020; Hauser and Cree 2020). One of the first approved DMTs
was interferon-beta (IFN-β) which is known to reduce the frequency of MS relapses
(Hauser and Cree 2020). Monoclonal antibodies such as natalizumab, and daclizumab
have been developed more recently, and are highly effective in reducing relapses and
slowing disease progress in RRMS (Hauser and Cree 2020; Schippling and Martin
2008). Unfortunately, there is no all-round curative treatment, and patients ultimately
progress regardless of therapy. Furthermore, treatments are ineffective once an indi-
vidual has reached the PPMS or SPMS stage.
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3 The Status of Mathematical Modelling of MS

Despite the small body of mathematical work studying MS (Tables 1 and 2), math-
ematicians have already provided insight at four main scales of MS: population,
systemic, CNS, and cellular (Fig. 3). Investigations that probe questions around
population-level disease dynamics, such as susceptibility and response to treatment,
can be considered “population scale”. In contrast, mathematical models capturing the
systemic intra-patient dynamics, such as lymph node activity and cytokine signalling,
are considered to account for the “systemic scale”. Many models have exclusively
focused on the activity within the CNS, given that is where MS disease presentation
arises, and hence are at the “CNS scale”. Whereas some models have centred around
the “cellular scale”, which considers how individual cells interact with myelinated
axons and other CNS-resident cells.
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ic
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CNS scale

Cellular scale
Immune 
ac�va�on

Fig. 3 MS: a multiscale mathematical modelling problem. MS occurs across multiple scales which we
classify generally as: population, systemic, CNS and cellular. Population scale considers modelling efforts
aimed at understanding the environmental and genetic risk factors associated with developing MS as well
as cohort relapses under drug treatments such as IFN-β (dark blue) and Fingolimod (light blue) (Frascoli
et al. 2022; Roos et al. 2020). Population modelling efforts can benefit from the inclusion of clinical data
such as Expanded Disability Status Scale (EDSS) records (Vélez de Mendizábal et al. 2011; Bagnato et al.
2003). Systemic level modelling takes into account how the lymph nodes and other areas of the body
play a role in MS disease progression and treatment. When considering the CNS (brain and spinal cord),
MRI measurements can be used to determine location and intensity of lesions and obtain a per-patient
measurement for the number of Contrast Enhancing Lesions (CELs) (Vélez de Mendizábal et al. 2011;
Bagnato et al. 2003). Focusing more on the cellular and molecular interactions gives the cellular scale of
modelling. These models may be more concerned with individual cell activity, stimulation, signalling and
myelin regeneration. See Tables 1 and 2 for a full list of models classified to these scales (Color figure
online)
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The earliest mathematical applications to MS can be found in models using causal
inference (Goodin 2009; Ramagopalan et al. 2010; Crigger 1996). Causal inference
and causal models are mathematical techniques used to represent causal relationships
within an individual system or population. Subsequently, these models have been
used to facilitate inferences about causal relationships from MS patient data. Apart
from this, the predominant mathematical work in MS includes spatial and non-spatial
deterministic systems that capture various aspects of the disease aetiology (Vélez de
Mendizábal et al. 2011; Khonsari and Calvez 2007; Frascoli et al. 2022; Martinez-
Pasamar et al. 2013; Kotelnikova et al. 2017; Elettreby and Ahmed 2020; Montolío
et al. 2019; Broome and Coleman 2011; Koch et al. 2020; Lombardo et al. 2017a;
Calvez and Khonsari 2008; Bilotta et al. 2019, 2018; Desvillettes and Giunta 2021;
Hu et al. 2020; Desvillettes et al. 2021; Moise and Friedman 2021). Motivated by the
inherent stochasticity of this disease, stochastic computational models have also been
considered more recently (Pennisi et al. 2015, 2013; Pappalardo et al. 2014, 2018).
To summarise the work that has been done at the different disease scales, we cate-
gorise and discuss the published mathematical modelling studies according to their
overarching mathematical assumptions: non-spatial deterministic, spatial determinis-
tic, non-spatial stochastic and spatial stochastic modelling. Tables 1 and 2 provide an
annotated list of all publications, to the best of our knowledge, using mathematics to
model some aspect of MS.

3.1 Spatially Homogeneous Deterministic Models of MS

Non-spatial (or spatially homogeneous) deterministic mathematical models are reg-
ularly used in mathematical modelling of biological phenomenon when a mean-field
estimate or a well-mixing assumption for the populations of interest is acceptable.
In deterministic models, the focus is on the non-random interactions of the disease,
and predicting average population counts over time, as opposed to spatial densities
(Fig. 4a). These models usually consist of Ordinary Differential Equations (ODEs)
which capture the change in some key aspect of the biology over time. For example,
An ODE system can be used to capture the change in total Myelin M(t) and immune
cells, such as T cells T (t) or macrophages �(t) over time t . ODE models to date
have considered the change in total inflammatory T cells (Broome and Coleman 2011;
Balestrino 2009; Zhang et al. 2014; Zhang and Yu 2021), IFN signalling molecules
(Pertsovskaya et al. 2013) or axon damage (Kotelnikova et al. 2017; Montolío et al.
2019).

One of the earliest instances of an ODEmodel of MS was implemented by Broome
et al. (2011), who used biochemical systems theory (BST) to capture cellular pathways
resulting in oligodendrocytes death (Fig. 2). BST uses ODEs to capture biochemical
processes (Voit 2000) and themodel developed byBroomeet al. consists of 79 indepen-
dent variables, 77 dependent variables and 77 system equations modelling the intricate
aspects of the intracellular death-response network for oligodendrocytes. Their work
highlighted the viability of oligodendrocytes as therapeutic targets and this notion has
recently received attention experimentally (Chen et al. 2019). Broome et al. posited
that their method of locating trigger points in the model that lead to diseased states
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Fig. 4 Summary of mathematical modelling techniques that have been applied to MS. a Generally, there
are four main modelling regimes in mathematical biology: non-spatial deterministic, spatially determinis-
tic, non-spatial stochastic and spatially stochastic regimes. These four regimes usually rely on modelling
techniques such as ODEs, PDEs, SDEs and ABMs. (i) ODEs represent a mean-field approximation to pop-
ulation level dynamics, for example destruction of myelin M(t) occurs by T cells T (t) which are recruited
by macrophages �(t). (ii) Incorporating the spatial location of these cells provides a density of a partic-
ular entity at a position (x, y) and, as such, builds a picture of spatial spread of a lesion in the CNS. (iii)
Given that heterogeneity and variability is evident in MS patient data, particularly Brain Volume Change
(%) (Stefano et al. 2016), capturing that with a deterministic model is not possible, so we introduce noise,
either inherent or explicitly into the ODE model to capture this variability. (iv) Modelling stochasticity in
individual cellular interactions and movements in MS gives rise to ABMs. b Another technique employed
by modellers for MS is random network models, which can be considered a spatially stochastic model
(Mohan et al. 2008; Thamattoor Raman 2012). c Lastly, another technique is Petri net, which is more of a
homogeneous stochastic model (Pernice et al. 2018, 2019a, b) (Color figure online)

could have future merit in the development of MS treatments, although the large num-
ber of unknown variables and parameters could be a challenge for a BST model of
MS.

Moving from Broome et al.’s model (Broome and Coleman 2011) at the molecu-
lar/cellular scale to the CNS scale, to explain the stages of MS disease progression
and recurrence, Elettreby and Ahmed (2020) developed a system of three ODEs for
healthy brain cells x(t), affected brain cells y(t), and a harmful “effector” such as
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immune cells v(t):

dx

dt
= r x(1 − x) − bxv,

dy

dt
= bxv − ay,

dv

dt
= cy − dxv − kv. (1)

Unlike the model by Broome et al., their model was more general in capturing the
disease evolution, where r represented the growth rate of healthy brain cells, b the
rate healthy cells are attacked, a the rate at which affected brain cells die, and k, d
the rate at which the “effector” dies. Conducting a stability analysis, they reproduced
conditions under which stable or oscillatory disease dynamics were obtained. The
oscillations of the model were found to arise due to a mathematical instability and
could be representative of relapses, such as those in RRMS. Their work opens the
door for future analysis and extensions whereby the inclusion of explicit immune
cell actions could help to understand which biological conditions give rise to these
oscillations. In particular, inspiration for extending this model could be taken from
the work by Zhang et al. (2014), who developed a set of four ODEs capturing specific
interactions of CNS immune cells (population v(t) in Eq. (1)): antigen-presenting
cells, Tregs, Teff and antigen.

Taking a slightly different approach but still at the CNS scale, Kotelnikova et al.
(2017) and subsequently Montolío et al. (2019), used ODE systems to capture axon
volume changes over time. Kotelnikova et al. (2017) developed a system of four ODEs
that captured immune attack, alongside demyelination, remyelination and axonal loss.
Unlike Zhang et al. (2014), their model did not explicitly model the action of immune
cells and only captured the change in myelinated axons, demyelinated axons, remyeli-
nation capacity and axon degeneration. Theirmodelwas fit toEDSSdata of a clustered,
longitudinal cohort of 66 MS patients and then validated using EDSS data and brain
volume time series of a second cohort of 120 MS patients. Their work supported the
conceptualisation of MS as a single, progressive disease, with dynamic CNS damage
driving heterogeneity.

With a similar focus on axonmyelination like that byKotelnikova et al. (2017),Mon-
tolío et al. (2019) developed a systemofODEs to relate retinal nerve fibre layer (RNFL)
thickness in MS patients with their EDSS scores. The ODEs captured the evolving
proportions of healthy and damaged axons by their RNFL thickness, alongside axonal
degeneration. Clinical data from 114 ophthalmologically-evaluated patients was clus-
tered through a k-means clustering algorithm and EDSS scores of each cluster were
fit to a probability distribution. This data was used to calibrate the model and then a
further 70 patient measurements were used to validate. They found that RNFL thin-
ning was occurring prior to disability presentation. Unfortunately, their model only
implicitly captured the immune system, and future work could look to better combine
both Kotelnikova et al.’s and Montolío et al.’s models to consider specific cells of the
immune system.
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Moving now to the population-scale, the recent work of Frascoli et al. (2022) devel-
oped a population-level model of RRMS patients under relapse supressing therapies.
The system of ODEs contained three mutually exclusive compartments of patients
in a pre-relapse state, post-relapse state, and currently relapsing state. Their model
considered four parameters capturing the duration of post-relapse, the time needed to
change from pre-relapse to relapse, and the time needed for a patient to move to a
post-relapse status, and the initial number of relapsing patients. Utilisation of existing
density curves of MS relapses allowed for model formulation and calibration, with
four curves of the following immunotherapies selected: interferon beta-1a S.C. (IFN-
β-1a S.C.), interferon beta-1b (IFN-β-1b), natalizumab, and fingolimod. Unlike other
models that strove to capture individual patient disease courses such as that by Kotel-
nikova et al. (2017), themodel reproduced a patient group response to these treatments.
Future work is required in investigating the possible presence of underlying, universal
features of treatment switch dynamics.

3.2 Spatial Deterministic Models of MS

When considering the spatial density of cells or myelin in MS (i.e. the CNS scale
in Fig. 3), modellers often turn to Partial Differential Equations (PDEs) as a means
of determining spatial estimates (Fig. 4). While there have been some PDE driven
investigations ofMS,most centre aroundglobal asymptotic stability analysis ofmodels
relating to the rareMS subtype calledBaló’s concentric sclerosis (Khonsari andCalvez
2007; Lombardo et al. 2017a; Calvez and Khonsari 2008; Bilotta et al. 2019, 2018;
Desvillettes and Giunta 2021; Hu et al. 2020) (Fig. 2). The motivation for spatial
modelling of this MS subtype arises from the concentric rings in lesion growth, which
are reminiscent of Turing patterns or reaction–diffusion problems.While these studies
have provided significant understanding particularly to this subtype of MS, and on
how to analyse chemotactic models of spatial phenomenon, they are yet to provide
insight into the broader disease dynamics. The remaining PDE models of MS, have
considered capillary leakage (Koch et al. 2020) or plaque growth and treatment (Moise
and Friedman 2021), andmost recently (published this year) the interplay of the innate
and adaptive immune responses in the CNS (Paula et al. 2023), highlighting the vast
potential for PDE modellers to provide novel spatial insight into MS.

Khonsari and Calvez were the first to attempt to identify the potential cause of
concentric lesion phenomenon using chemotactic cellularmodels ofMS (Khonsari and
Calvez 2007; Calvez and Khonsari 2008). They developed a PDE model, motivated
by Liesegang rings, which arise from a periodic precipitation process involving three
chemical species,

A + B → D

where B is uniformly distributed and A propagates with a diffusion front. As the
reaction proceeds, consecutive bands of precipitate form (Khonsari and Calvez 2007).
Connecting Liesengang rings to the MS physical system, Khonsari and Calves pro-
posed that a protective substance, secreted by the attacked oligodendrocytes, diffuses
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through the domain preventing demyelination by the activated macrophages which
undergo chemotaxis towards an attraction signal (Khonsari and Calvez 2007; Calvez
and Khonsari 2008). Through their work, they derived the following system which
suggests the appearance of rings caused by chemotactic mechanisms:

∂m

∂t
= D�m + λm(m − m)

︸ ︷︷ ︸

Macrophage front

−∇ · (χm(m − m)∇c)
︸ ︷︷ ︸

Macrophage recruitment

,

∂d

∂t
= F(m)m

(

d − d
)

︸ ︷︷ ︸

Destruction of myelin

,

−ε�c + αc = μd
︸ ︷︷ ︸

Production and diffusion of signal

, (2)

where m is the density of activated macrophages, c is the concentration of attraction
signal and d is the density of destroyed oligodendrocytes. Macrophages undergo dif-
fusion, with diffusion coefficient D and are also undergoing logistic growth at a rate λ

with capacity M , similar to how Elettreby and Ahmed (2020) modelled healthy brain
cell regeneration. Macrophages are also undergoing chemotaxis with bias coefficient
χ . Oligodendrocytes are being destroyed at a rate F(m) and capacity d . Lastly,

√
ε/α

is the approximate range of the signal. While the model can capture Baló’s concentric
sclerosis, it does not account for the slow regeneration of myelin by oligodendrocytes
typical of other MS subtypes. The model presented differs also to the ODE model by
Zhang et al. (2014), who chose to omit explicitly modelling macrophages.

Lombardo et al. (2017a) generalised Khonsari and Calvez’s model above by choos-
ing a different analytical form for the chemotactic sensitivity function describing
macrophage chemotaxis by replacing the quadratic m(m − m) with a hill function
m/(m + m). In addition, they also explicitly modelled the diffusion, production, and
decayof chemokine.Ultimately, theywere able to observe consistencybetweennumer-
ical simulations of both plaque shape and size, and MRI data. Importantly, their work
differed fromKhonsari and Calvez (2007) by supporting concentric ring lesion forma-
tion despite the omission of oligodendrocyte-driven cytokine production. The authors
recognised that white matter heterogeneity limited their numerical simulations, and
that their model overlooked the anti-inflammatory role of cytokines in remyelination.
Numerous later studies then subsequently analysed the global existence of solutions
and stability of Lombardo et al.’s model (Bilotta et al. 2019, 2018; Desvillettes and
Giunta 2021; Hu et al. 2020; Desvillettes et al. 2021).

Distinct from the work by Lombardo et al., Koch et al. (2020) proposed a new
mathematical model to learn capillary leakage coefficients from dynamic suscepti-
bility contrast MRI data. They developed a perfusion model on a subvoxel scale by
including the capillary network structure and derived a transport model for brain
tissue perfusion. In this modelling format, blood vessels represented by a network
of cylindrical segments are embedded into the extravascular space, represented by
a homogenized three-dimensional continuum. They used their model to obtain the
contrast agent concentration distribution in a single MRI voxel during a perfusion.
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Still within the CNS modelling scale, and motivated by a desire to quantify the
implications of treatment timing and combinations of current treatments, Moise and
Friedman (2021) developed a mathematical model of MS plaques. This model was
the first to explicitly quantify the effect on plaque growth of cytokines, macrophages
and T cells as well as drug treatments (IFN-beta, glatiramer acetate, and natalizumab),
although they similarly to Khonsari and Calvez (Khonsari and Calvez 2007; Calvez
andKhonsari 2008) chose tomodel oligodendrocyte activity (see Eq. (2)). Theirmodel
consisted of 15 PDEs which captured all aspects of the cellular immunology of MS in
the CNS. The authors compared their simulations of plaque volume to different sets
of clinical data and showed good qualitative agreement. Their additional exploration
of drug combinations even gave an incidence of decreased initial plaque volume after
270days.While theworkwasnovel in being thefirstmathematicalmodel to account for
plaque geometry, their model restricts plaque geometry to a spherical domain, despite
it being clear from MRIs that plaques are characterised by heterogeneous growth. In
addition, unlike the PDE works of Koch et al. (Koch et al. 2020) and Khonsari and
Calves (2007) and Calvez and Khonsari (2008), their model was much more complex
and detailed in the mechanisms modelled.

3.3 Spatially Homogeneous Stochastic Modelling of MS

Clinical measurements of MS, such as EDSS and CEL measurements, paint a picture
of a highly stochastic temporal disease. For this reason, mathematicians have sought
to investigate how stochastic (noisy) models might explain inter- and intra-patient
variability, whilst considering spatial homogeneity. A range of techniques have been
investigated including stochastic differential equations (SDEs, Fig. 4) (Vélez de Men-
dizábal et al. 2011; Martinez-Pasamar et al. 2013; Bordi et al. 2013), a stochastic
simulation algorithm (Pernice et al. 2020), mixed effects models (Gulati et al. 2015;
Velez de Mendizabal et al. 2013), stochastic symmetric nets (Fig. 4) (Pernice et al.
2018, 2019a, b), in silico clinical trials (Sips et al. 2022), and statistical models (Hu
et al. 2022; Goodin 2016).

To gain insight into the cellular events leading to the relapsing dynamics of MS,
Vélez de Mendizábal et al. (2013) developed a mathematical model of the Teff and
Treg interactions and their effect on healthy myelin. Their model captured these cells
at the CNS and systemic scale. Unlike the models by Pernice et al. (2018) and Moise
and Freidman (2021) who used mass-action or linear reaction terms, the authors chose
to model the interactions between Teff and Treg cell populations using hill functions.
Their model used a system of 6 ODEs with stochastic inputs to capture the natural
stochasticity in immune stimulation. The authors hypothesised that cross-regulation
between Teffs and Tregs coupled with stochastic processes (e.g. infections) was able
to buffer oscillations in the functioning of the immune system, causing the initiation
of an immune response when required. They suggested that irrespective of additional
environmental triggers, weakness in the Teff-Treg feedback loop prompts immune-
mediated RRMS. The authors acknowledged that alongside constraints imposed by
clinical stochasticity and biological unknowns, their work omitted immune response
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aspects such as innate immune activity, which may be crucial for a comprehensive
depiction of MS disease.

With therapeutic implications inmind,Martinez-Pasamer et al. (2013) adapted theT
cellmodel ofVélez deMendizábal et al. (2011) to experimentally validate the postulate
that relapsing–remitting disease behaviour is driven by lymphocyte cross-regulation.
Their version of Vélez de Mendizábal et al. (2011)’s model considered only four
ODEs, omitting the variables for tissue behaviour and focusing only on the immune
cell populations. By analysing Teff, Treg and microglia behaviour obtained from flow
cytometry data, their simulations suggested that Treg activation as a key element
of autoimmune susceptibility of MS. Assessing the role of B-cell depletion induced
by anti-CD20 therapy, they observed that depletion does decrease Teff expansion.
However, B cell depletion also significantly effectedTregswhich resulted inworsening
of the disease. Furthermodel validation using experimental testingwas also suggested,
involving various T cell viability assays. Petri Nets (PNs) are widely recognised to be
a powerful modelling tool for studying biological systems (Marsan et al. 1998; Hardy
and Robillard 2004; Koch 2010). These are bipartitie directed graphs with two types
of nodes, places (circles) and transitions (boxes). Places correspond to state variables
e.g. cell types, and transitions correspond to events, e.g. death (Fig. 4c). A place can
contain a number of tokens and a transition is usually enabled if all places connected
to it have sufficient tokens. Consider in this context a scenario where Treg and Teff
cells are places and transitions correspond to the induction of a state change such as
the killing of Teff cells by Treg cells. The system evolution is given by the firing of an
enabled transition, where a fixed number of tokens are removed from the input place
and added to the output place. In stochastic symmetric petri nets, the firing of each
transition is assumed to occur after a random delay from the enabling time.

Pernice et al. developed a body of work looking at extensions of PNs (Pernice
et al. 2018, 2019a, b, 2020) and implemented a stochastic PN to capture the immune
response in RRMS by considering lymph nodes, blood vessels, Teff, Treg, oligoden-
drocytes and the CNS explicitly. Their modelling of the cellular interactions between
Teff, Treg and oligodendrocyteswas similar to thework ofMoise andFreidman (2021),
however, neither groups modelled the intracellular death responses like Broome and
Coleman (2011). Their simulation results for the administration of daclizumab con-
firmed the importance of timely intervention when attempting to favourably alter
patient disease course through treatments.

Taking a data science driven approach using matrix decomposition, Hu et al. (2022)
used individual lesion voxel intensity trajectories to develop a statistical model using
structural principal component analysis (PCA) for MS lesion evolution. While others
have used a variety of computational methods to extract useful insight from MRIs
(Sepasian et al. 2014; Bejarano et al. 2011; Meier and Guttmann 2006). Hu et al.’s
work was novel in accounting for the multilevel structure of the MRI data when eval-
uating sample properties of hypothesis tests of the effect on lesions of MS therapies.
In addition, this study used the images of 36 patients assessed monthly with either
relapsing remitting or secondary progressiveMS, ultimately indicating significant sta-
tistical differences between lesion evolution of untreated and treated participants. The
authors recognised the limitations of their work due to the unpredictable spatial and
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temporal nature of lesion development creating unbalanced data, for which there is no
existing study of hierarchical hypothesis testing.

3.4 Spatially Stochastic Models of MS

As computational power has increased, our ability to capture biological interactions
as spatially stochastic events, as opposed to mean-field average rates, has evolved.
Agent-based models (ABMs, Fig. 4a) are an exciting computational modelling tool
where individual agents obey certain rules driven by probabilities. Generally, ABMs
in MS consider cells as agents and each cell has a position in either 2 or 3 dimensions
(Pennisi et al. 2015, 2020, 2013; Pappalardo et al. 2014, 2018; Russo et al. 2022;
Russo and Italia 2021).

The first ABM developed to capture MS disease kinetics was designed by Pen-
nisi et al. (2013) to capture the Teff-Treg cross balancing in RRMS in genetically
predisposed individuals using Netlogo (an ABM platform). A 51 × 51 cell grid was
initialised in which agents moved and interacted based on a Von Neumann neighbour-
hood. Their model was later extended by Pennisi et al. (2015) and Pappalardo et al.
(2014) to capture the effects of Vitamin D and different treatment strategies. All the
models by Pennisi et al. (2015, 2013) and Pappalardo et al. (2014), considered vari-
ations of the immunological dynamics of MS at the CNS-scale. Simulating unique
patients through different initial seeds, Pennisi et al. (2015) varied model parameters
to implicitly model treatments. From 900 simulations, consisting of 9 scenarios of
100 patients/seeds, the authors were able to suggest that there is greater treatment
effectiveness from preventing BBB opening than from attempting recovery of BBB
functionality. A minor limitation of this platform is the on-lattice nature of the cellular
movement and interaction rules. Future work could consider extensions of this model
where the complex architecture of white matter is included using diffusion tensor
MRIs.

Further developing the ABM in Pennisi et al. (2015, 2013) and Pappalardo et al.
(2014) to a multiscale multiorgan simulator, i.e. a systemic-scale model of MS, Pap-
palardo et al. (2018) sought to predict the evolution of relapsing MS and investigate
treatment effects in a greater capacity. Prediction robustness was tested by utilising
known predictive factors such as age, vitamin D levels and smoking to simulate poor
prognosis. To inform their model, they obtained MRI lesion load and other features of
six MS patients with heterogeneous relapsing–remitting disease courses. The authors
simulated individual scenarios consistent with each patient’s clinical andMRI history.
Noting its capacity to anticipate relapse timing of two patients, the authors recognised
the distinctive potential of their model in generating personalised outcomes through
specific patient data. They proposed the further development of a model through addi-
tional genetic, immunological, and environmental considerations to ultimately predict
individual patient disease dynamics and inform therapeutic interventions. Interest-
ingly, no ABM to date has been developed that considers the MS disease at the
population level and this could be a useful extension of current models developed
for the COVID-19 pandemic, to investigate the implications of EBV spread.
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Taking a very different approach to agent-based modelling, Mohan et al. (2008)
and Thamattoor Raman (2012) presented a unique method for spatially capturing the
random spread of disease using an undirected, fixed radius random graph G(n, r)
where n were nodes representative of cell bodies (functional units) and edges con-
necting nodes represented axons (connections between function units). Generating
uniformly random placement of nodes in a grid [0, 1] × [0, 1] and imposing connec-
tions between nodes of Euclidean distance < r , damage can be modelled as randomly
spreading throughout the network by initialising some damage in the centre and with
radial distance ROIt=0. Unlike the stochastic spatial models above, this model did not
explicitly model individual immune cell actions, but instead implicitly captured dis-
ease spread through the CNS using a network. Simulating their model, Mohan et al.
(2008) and Thamattoor Raman (2012) found that the spread of the pathologic pro-
cess of MS can be arrested by programmed cell death in the periphery of the lesions.
This is an interesting finding and relates back to the work of others, such as the BST
by Broome and Coleman. (2011), around the importance of understanding the role
of oligodendrocytes in MS. Similar applications of this modelling technique can be
found in the avian influenza epidemic (Kim et al. 2010) and more general studies of
tissue damage (Kim et al. 2009).

3.5 Other Examples of Mathematical and Computational Methods in MS

The above review represents a description of more classical modelling techniques in
widespread use within the mathematical biology community. There are also a number
of studies that have sought to apply less conventional methods to understand MRIs
(Sepasian et al. 2014; Karaca et al. 2015; Roura et al. 2021), EDSS data (Bol et al.
2010) and other MS-related clinical measurements (Tommasin et al. 2018; Krieger
et al. 2016). For example, fractal dimension has been used by authors to analyse
abnormalities in patient MRIs (Roura et al. 2021; Esteban et al. 2007). Roura et al.
(2021) determined the fractal dimension of MRIs from 146 patients with RRMS. In
this context, fractal dimension provides a numerical characterisation of fractal patterns
in the brain, and can thereby provide a measure of brain morphology, which can in
turn detect CNS damage. In particular, the higher the fractal dimension, the more
complex and healthier the brain. From their analysis, these authors concluded that
fractal geometry of the brain could identify patients at risk of increasing their disability
in the next five years.

The robustness of brain structural networks can be estimated from diffusion MRI
data and may extend to patient cognition. Farooq et al. (2020) investigated whether
measures of network robustness can explain cognitive impairment inMSpatients using
the Ollivier-Ricci curvature (ORC) (Sia et al. 2019). The notion of curvature, from
Riemannian geometry, quantifies how geodesic paths converge or diverge. The ORC
captures the notion of network flows of shortest paths via the Wasserstein distance,
wherein a negatively curved edge is a “bottleneck” (Sia et al. 2019). The authors
assessed whether local or global (whole brain) robustness differs between cognitively
impaired and non-impaired patients. Brain structural network robustness and central-
ity showed significant correlations with cognitive impairment. Measures of network
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robustness and centrality also identified specific cortical areas relevant to MS-related
cognitive impairment.

To assesswhetherMS subgroup differences are sustained long term,Bielekova et al.
(2005) used patientMRImarkers of inflammation and axonal damage to design a strat-
ification algorithm. Through a cross sectional analysis of 71 untreated MS patients,
the algorithm divided MS patients into meaningful long-term groups. By testing the
model against a longitudinal cohort of 71 patients, the authors were able to distinguish
four subgroups with persistent MRI measured differences over 8 years. The authors
acknowledged that the chosen MRI markers were not complete measures of MS pro-
cesses, and that future work is required in understanding the mechanisms that produce
the various disease phenotypes.

4 Discussion

Our incomplete understanding of the causes and pathways involved in the onset and
progression of MS limits our ability to effectively treat this complex neurological
disease (Attfield et al. 2022). Mathematical modelling of MS to date has highlighted
the potential impact mathematicians could have in the diagnosis and treatment of
this disease, albeit significantly more work is needed. While diseases such as cancer,
HIV,malaria and evenCOVID-19 garner huge attention frommathematical modellers,
MS has gone relatively unnoticed. Considering that the common element linking the
aforementioned diseases with MS is the immune system, we believe that the time is
ripe for mathematicians to embrace the modelling opportunities presented by MS.

To date, we have seen publications using the four main modelling techniques;
ODEs (Frascoli et al. 2022), PDEs (Moise and Friedman 2021), SDEs (Vélez de
Mendizábal et al. 2011), andABMs (Pennisi et al. 2015); as well as some less common
modelling techniques; fractal dimension (Roura et al. 2021), robust fuzzy sliding door
(Kohanpour et al. 2019) and random graphs (Mohan et al. 2008). We’ve also detailed
models that use MRI data (Koch et al. 2020), EDSS measurements (Kotelnikova et al.
2017), as well as CELs (Gulati et al. 2015). Despite this, there remains significant
work to be done if mathematicians are to have a reliable predicative capacity for MS.
Limitationsmore broadly exist in all neuroimmunology, andwhile somemathematical
modelling has been done on other neurological disorders (Elettreby et al. 2019; Sari
et al. 2020; Santurtún et al. 2016; Menezes et al. 2016) there is still more to do.

Part of this review aims to motivate the mathematical community to fill-in-the-gaps
that are currently missing in the literature. With this in mind, we provide below a list
of challenges and open problems:

• MS disease as an epidemic:With the discovery of the correlation between Epstein
Barr-Virus infection and MS (Attfield et al. 2022; Bjornevik et al. 2022; Bordon
2022; Sollid 2022; Yates 2022), mathematical modelling could help to understand
how the likelihood of disease is correlated with EBV epidemiology.

• MS disease onset origin:Despite the knowledge of the link with EBV, the onset and
origin ofMS disease is largely debated, mathematical modelling of the hypothesises
surrounding disease origin could shed some light on this problem.
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• Early intervention leads to better prognosis: Potent ablation or suppression of
immune cells early in the disease course is associated with reduced long-term
disability in retrospective cohort studies, however, it remains unclear why this is
(Attfield et al. 2022) and mathematical models of systemic immunology of MS
could help.

• Heterogeneous lesion formation: Lesions are largely heterogeneous in shape and
location, and it is unclear which dynamics drive the different spatial distributions
and geometric configurations of lesions.

• Understanding and optimisation of disease treatment: Given the current lack of
curative treatment, the long-term prognosis for MS patients is worsening disease
progression.Canmathematics help us understandwhy the disease progresses despite
intervention, and whether there are other targets in the MS disease network that
might make more effective treatments?

• Spatial model of CNS inflammation:Modelling aimed at investigating the immune
drivers of BBB breakdown and the importance of preserving its functionality in MS
patients could give rise to therapeutic intervention points and increased understand-
ing of disease progression. In addition, it would be valuable to develop models
of cellular interactions in different neuroanatomical areas as we have evidence to
suggest that immune responses in different regions of the CNS can be variable.

• Estrogen andVitaminD:While it is well accepted that VitaminD and estrogen play
a major role in MS susceptibility, there are many questions that remain biologically
surrounding their mechanisms of action.

• Hypothesis testing of MS immunology: testing of MS immunology: There is still
much unknown about MS immunology. More recently there has been a conceptual
shift in understanding the immune pathology of MS, away from a purely T-cell-
mediated model to recognition that B cells have a key role in pathogenesis (Arneth
2019; Hauser and Cree 2020). This has not been investigated using mathematical
modelling.

The above represents the open biological questions mathematicians could attempt
to add insight to, and there are also opportunities to extend existingmathematicalwork.
For example, approaching this disease from an epidemiological modelling perspective
could shed some light on future disease impact on our community by building off
current COVID-19 or other epidemiological models. In addition, within-host models
of MS treatment would greatly benefit from a pharmacokinetic/pharmacodynamic
modelling approach, which seems to be non-existent in the current literature. Lastly,
the ABMs so far have focused on on-lattice cellular dynamics despite the white matter
tracts of the brain being quite heterogeneous. Modelling cellular movement of MS
specific agents in these tracks through off-lattice models may therefore give more
realistic opportunities to understand the dynamics at play.

While there has beenminimal attention from themathematical community afforded
toMScompared to other areas such as cancer, thework that has been done has provided
a firm foundation through which future mathematicians can build upon to provide
disease insight across the multiple scales (Fig. 3). The opportunities for mathematics
to help improve the diagnosis, prognosis and treatment of this disease are vast, and
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mathematics could be the key to answering some of the major unknowns surrounding
MS.
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