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Abstract
It is widely acknowledged that vaccinating at maximal effort in the face of an ongoing
epidemic is the best strategy to minimise infections and deaths from the disease.
Despite this, no one has proved that this is guaranteed to be true if the disease follows
multi-group SIR (Susceptible–Infected–Recovered) dynamics. This paper provides a
novel proof of this principle for the existing SIR framework, showing that the total
number of deaths or infections from an epidemic is decreasing in vaccination effort.
Furthermore, it presents a novel model for vaccination which assumes that vaccines
assigned to a subgroup are distributed randomly to the unvaccinated population of
that subgroup. It suggests, using COVID-19 data, that this more accurately captures
vaccination dynamics than the model commonly found in the literature. However,
as the novel model provides a strictly larger set of possible vaccination policies, the
results presented in this paper hold for both models.

Keywords Vaccination · Epidemiology · Epidemics · SIR Modelling

1 Introduction

The COVID-19 pandemic has illustrated the importance of quickly implementing
vaccination policies which target particular groups within a population (Fitzpatrick
and Galvani 2021). The difference in final infections between targeted policies and
uniform distribution to the entire population can be significant (Castro and Singer
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2021; Estadilla et al. 2021) and so it is important that the models underlying these
decisions provide realistic predictions of the outcomes of different policies.

One of the most commonly used models to forecast epidemics is the multi-group
SIR (Susceptible–Infected–Recovered) model (Acemoglu et al. 2021; Kuniya 2019;
Ram and Schaposnik 2021). This model divides the population into different groups
based on characteristics such as age or occupation. Each group is then further sub-
divided into categories of susceptible, infected and recovered.Where vaccination does
not give perfect immunity, further sub-categorization based on vaccination status can
also be used (Kuga and Tanimoto 2018), as will be done in this paper.

While many other approaches have been developed either by adding compartments
to the SIR framework (Moore et al. 2021) or using completely different models such
as networks (Chen and Sun 2014) or stochastic simulations (Ball and Lyne 2002), the
multi-group SIRmodel remains popular because of its comparatively small number of
parameters and its relatively simple construction and solution. In this paper, attention
will thus be restricted to the multi-group SIR model, although it would be beneficial
for future work to consider a wider range of disease models.

There are two general frameworks that are used to model optimal vaccination poli-
cies in a resource-limited setting. The first, used in papers such as Hill and Longini Jr
(2003) and Becker and Starczak (1997), seeks to reduce the reproduction number,
R0 of the epidemic as much as possible by vaccinating before infections arrive in a
population. It is simple to show that in this case, one should use all of the vaccinations
available, and so this problem will not be considered further in this paper.

The second framework, used in papers such as Acemoglu et al. (2021) and Hansen
and Day (2011) aims to minimise the total cost of an epidemic. This is the framework
that will be discussed in this paper. The “cost” of an epidemic is, in general, defined
to be the number of deaths (or equivalently, infections), with many papers also con-
sidering the cost of vaccination alongside the cost of other control measures, such as
isolation, lockdown or treatment (Fu et al. 2022).

One important principle which underlies all of these vaccination policies is the
acceptance that giving people their first dose of vaccine as soon as possible reduces
the number of infections. Of course, this only holds when the timescale considered is
sufficiently short for effects such as waning immunity and disease seasonality to be
negligible, and amore complicated frameworkwould be needed tomodel these effects.
However, the acceptance of at least short-termoptimality ofmaximal vaccination effort
has been highlighted in the COVID-19 pandemic response, as countries began their
vaccination programs as soon as vaccines became available (Mathieu et al. 2021).

To the best of the authors’ knowledge, no one has provided a mathematical proof
that in a general, multi-group SIR model with imperfect vaccination, it is always
best to vaccinate people as early as possible. Of course, it is not difficult to create a
conceptually sound justification—vaccinating more people means that fewer people
will catch the disease which will reduce the total number of infections. However, the
SIR model is an approximation of the process of a disease spreading, and so it is
important that it obeys this principle for all physical parameter values and vaccination
policies.

Some special cases of the theorem presented in this paper have been previously
proved in the literature. In particular, a significant number of papers have considered

123



Optimality of Maximal-Effort Vaccination Page 3 of 71 73

the optimal vaccination policy for a homogeneous population, with Abakuks (1972)
first proving that, in this case, it is optimal to vaccinate atmaximal effort (if one ignores
the cost of vaccination). This proof held for vaccination policies that were finite sums
of point mass “impulse” vaccinations, and has been generalised by papers such as
Hansen and Day (2011), Zaman et al. (2008), Morton and Wickwire (1974) and Zhou
et al. (2014) to a much wider class of vaccination policies, although the proof was
still restricted to a single group and to perfect vaccination. Moreover, Hansen and Day
(2011) notes that the case of imperfect vaccination (where vaccinated individuals can
still get infected, although at a lower rate) remained a topic of open investigation, and
so it can not easily be solved using the same methods presented in these papers. A
slight extension is made in Duijzer et al. (2018) where it is shown that maximal effort
is optimal in the case of perfect vaccination of any number of disconnected groups,
but the full problem is still far from understood.

The general method of proof in the literature relies on Pontryagin’s Maximum
Principle, which is difficult to apply to multi-group models due to the more complex
structure of the equations. It is simple to characterise the solution in terms of the
adjoint variables, as is done in Zhang et al. (2020) and Zavrakli et al. (2021) for a
two-group model with imperfect vaccination, in Boutayeb et al. (2021) for a general
n-group model with perfect vaccination and in Lee et al. (2012) for a six-group model
with imperfect vaccination. However, determining whether this solution corresponds
to the maximal effort solution in the case of zero vaccination cost requires the analysis
of the adjoint ODE system, which is often just as complicated as the original disease
model. In particular, the fact that vaccinated people need to be no more infectious, no
more susceptible and be infected for no more time than unvaccinated people means
that any analysis of the adjoint system would be complicated, as the properties of all
the constituent parameters would need to be used.

Thus, in this paper, a novel approach is developed. Rather than attempting to use the
general optimal control theory methodology, the specific structure of the SIR equation
system is exploited. Using this, an inequality is derived which shows that if a given
vaccination policy, Ũ vaccinates each individual at least as early as another vaccination
policy, U , then the latter policy will lead to at least as many deaths (or equivalently,
infections) as the former. As well as providing a constraint on the optimal solution,
this theorem also highlights important structural properties of the model, as it shows
that the number of deaths is everywhere non-increasing in the vaccination rates, rather
than this just holding near the optimal solutions.

Also introduced in this paper is a more general model of vaccination than the one
normally used in the literature. The one that is typically used (in almost all papers cited
in this work such as Hansen andDay (2011), Zaman et al. (2008) andKar and Batabyal
(2011)) models decreasing vaccination uptake by assuming that the total number rate
of people being vaccinated is the product of a vaccination rate and the proportion of
susceptible people in the population. The model introduced in this paper allows for
more flexibility in modelling the demand. However, the standard vaccination model
is a special case of the general model introduced here, and so the theoretical results
proved in this paper can be used by those following the standard model.

Alongside proving that the final infected, recovered and dead populations are
non-increasing with increased and earlier vaccination effort, some cautionary contra-
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dictions to perhaps intuitive conjectures are also provided which show the importance
of mathematical proof instead of simply intuition. In particular, it is shown that
increased vaccination (under this model) can lead to, at a fixed finite time of the
simulation, higher infection rates or a higher death count, despite the longer-term bet-
ter performance of this policy. Indeed, it is results similar to these which make the
proof of the optimality of maximal effort difficult, as it means that one must be very
careful when constructing the inequalities that do hold for all models.

2 Modelling

2.1 Disease Transmission andVaccinationModel

Suppose that the population is divided into n subgroups, such that population of people
in group i is Ni and define

N :=
n∑

i=1

Ni .

Define the compartments of people as follows, for i = 1, ..., n:

Si := Number of people that are in group i , are susceptible, and are unvaccinated,

Ii := Number of people that are in group i , are currently infected, and

were infected while unvaccinated ,

Ri := Number of people that are in group i , are recovered or dead, and

were infected while unvaccinated,

SVi := Number of people that are in group i , are susceptible and are vaccinated,

I Vi := Number of people that are in group i , are infected

and were infected after being vaccinated,

RV
i := Number of people that are in group i , are recovered or dead

and were infected after being vaccinated.

This paper introduces a more general and flexible framework for vaccination, which is
motivated as follows. It is assumed that there is a record of people who have received
a vaccination and that protection from vaccination does not decay over time, so that
no one is vaccinated more than once. Thus, if a total number, Ui (t)dt , of people in
group i are given vaccines in a small time interval (t, t + dt), and these vaccines are
distributed randomly to the unvaccinated population in group i , the total population
of susceptibles given vaccines in group i is

Ui (t)dt × P

(
A person in group i is in Si | A person is in group i is unvaccinated

)
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which is equal to

Ui (t)dt Si (t)

Ni − ∫ t0 Ui (s)ds
,

as
∫ t
0 Ui (s)ds is the total population that are in group i and have been vaccinated before

time t . For the remainder of this section, this vaccination model will be referred to as
the “general” model
This results in the following model, based on SIR principles

dSi
dt

= −
n∑

j=1

(β1
i j I j + β2

i j I
V
j )Si − Ui (t)Si

Ni − Wi (t)
, (1)

d Ii
dt

=
n∑

j=1

(β1
i j I j + β2

i j I
V
j )Si − μ1

i Ii ,

dRi

dt
= μ1

i Ii ,

dSVi
dt

= −
n∑

j=1

(β3
i j I j + β4

i j I
V
j )SVi + Ui (t)Si

Ni − Wi (t)
,

d I Vi
dt

=
n∑

j=1

(β3
i j I j + β4

i j I
V
j )SVi − μ2

i I
V
i ,

dRV
i

dt
= μ2

i I
V
i , (2)

where

Wi (t) :=
∫ t

0
Ui (s)ds.

Here, β1
i j represents transmission from the unvaccinated members of group j to the

unvaccinated members of group i , β2
i j represents transmission from vaccinated mem-

bers to unvaccinated members, β3
i j represents transmission from vaccinated members

to unvaccinatedmembers and β4
i j represents transmission from vaccinatedmembers to

vaccinatedmembers. Additionally,μ1
i represents the infectious period of unvaccinated

infected members in group i while μ2
i represents the infectious period of vaccinated

members. Note that the superscript denotes different parameter values, so that β2
i j is

not necessarily the square of β1
i j .

To ensure that vaccination is “locally effective” (that is, a vaccinated individual is
no more likely to transmit or be infected by the disease, and is infectious for no longer
than an unvaccinated individual in the same subgroup), and that the parameters are
epidemiologically feasible, the following constraints are imposed:
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β1
i j ≥ β2

i j , β
3
i j ≥ β4

i j ≥ 0 and μ2
i ≥ μ1

i > 0

Note that there is no constraint on the ordering of β2
i j and β3

i j . It is assumed for
convenience that all variables except the Si and Ii are initially zero. Finally, we assume
that all initial conditions are non-negative.

Ultimately, the objective of the vaccination programwill be to minimize a weighted
sum of the total infections in each group—that is

n∑

i=1

pi (Ri (∞) + κi R
V
i (∞)).

Here pi is the weighting of a member of group i who is infected before being vacci-
nated, while piκi is the weighting of a member of group i who is infected after being
vaccinated. These parameters could be chosen to capture one of a range of objec-
tives, such as minimizing deaths, minimizing hospitalisations, or minimizing total
infections. Again assuming “local effectiveness” of the vaccination, it is imposed that
κi ≤ 1, as vaccination should not increase the severity of the infection.

The equations (1)–(2) sum to zero on the right-hand side, and so for each i ,

Si (t) + Ii (t) + Ri (t) + SVi (t) + I Vi (t) + RV
i (t) = Ni ∀t ≥ 0. (3)

It will be assumed that the populations and parameters have been scaled such that
N = 1, Finally, it is assumed that

Wi (t) ≤ Ni ∀t ≥ 0 and Wi (t) = Ni ⇒ Ui (t)Si
Ni − Wi (t)

= 0.

to ensure feasibility of the vaccination policies.

2.2 Comparison to the StandardVaccinationModel

A more common model of vaccination in the literature is the “standard” vaccination
model (Hansen and Day 2011; Zaman et al. 2008; Kar and Batabyal 2011), where
Eq. (1) becomes

dSi
dt

= −
n∑

j=1

(β1
i j I j + β2

i j I
V
j )Si −U∗

i (t)Si ,

Here,U∗
i (t) is the vaccination rate in this model. In general,U∗

i (t) is constrained such
that U∗

i (t) ≤ Ui (t) for some function Ui (t)
The U∗

i (t)Si term seeks to capture the fact that vaccination uptake will decrease
even if the vaccination “effort” (or, equivalently, the doses available) remains constant.
However, the rate at which uptake decreases is fixed by the model. For example, if the
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vaccination effort U∗
i (t) was equal to a constant Ui and was much quicker than the

rate of infection, then the leading order equation is

dSi
dt

= −Ui Si ⇒ Si (t) = Si (0)e
−Ui t

and hence

dSi
dt

= −Ui Si (0)e
−Ui t

which means that vaccination uptake decreases exponentially. Even for some human
pandemics, such as COVID-19, where demand remained high until a large proportion
of the population had been vaccinated, as shown in Ritchie et al. (2020), such a model
may be inappropriate.

The general vaccinationmodel provides substantiallymore flexibility. For example,
it is possible for a group to be completely vaccinated in the general case, whereas this
is impossible in the standard case (while one may never be able to fully vaccinate
a human population, it would be possible, for example, in a group of animals on a
farm). Moreover, by bounding the vaccination rate Ui (t) above by some function of
vaccination demand Ki (W (t), t), decreasing vaccination uptake can still be modelled.

2.3 Recovery of the StandardModel

The standard model is a special case of the general model, meaning that the results of
this paper are applicable to both frameworks. To show this, one can solve the equation

Ui (t)

Ni − Wi (t)
= U∗

i (t) ⇒ d

dt

(
log(Ni − Wi (t)) + W ∗

i (t)

)
= 0, (4)

where

W ∗
i (t) :=

∫ t

0
U∗
i (s)ds.

Thus, by integrating (4), and noting that W ∗
i (0) = Wi (0) = 0

log(Ni − Wi (t)) + W ∗
i (t) = log(Ni )

and so

Wi (t) = Ni (1 − e−W ∗
i (t)).

The constraint U∗
i (t) ≤ Ui is equivalent to Ui (t) ≤ (Ni − Wi (t))Ui and so this can

also be represented in the general model. Thus, given any standard vaccination policy
U∗, it can be replaced by a general policy U (although the converse does not hold as
Wi (t) = Ni requires W ∗

i (t) = ∞).
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Moreover, note thatW ∗
i (t) is increasing inWi (t). Thus, if a pair of general policies

U and Ũ satisfyWi (t) ≤ W̃i (t) then this inequality is preserved by the corresponding
standard policies asW ∗

i (t) ≤ W̃ ∗
i (t). This property means that the theorems proved in

this paper will hold for both models (as they will be proved using the general model).

3 Optimisation Problem

Now that the model has been formulated, it is possible to set up the optimisation
problem that will be considered in the remainder of this paper.

3.1 Constraints on Ui(t)

In order to assist the proof of the theorems, it is necessary to make some (unrestrictive)
assumptions on the vaccination rates, Ui (t).

Firstly, there are the physical constraints that for each i ∈ {1, ..., n}

Ui (t) ≥ 0 and
∫ t

0
Ui (s)ds ≤ Ni ∀t ≥ 0. (5)

It is also necessary thatUi (t) is within the class of functions such that solutions to the
model equations exist and are unique. Discussion of the exact conditions necessary
for this to hold is outside the scope of this paper. However, from the Picard-Lindelöf
Theorem (Collins 2006), a sufficient condition for this is that Ui (t) is a piecewise
Lipschitz continuous function. While this is not a necessary condition, this illustrates
that this assumption will hold for a large class of functions. However, it will be helpful
throughout the course of the proof to explicitly assume two conditions on Ui (t) -
namely, that it is bounded and that it is Lebesgue integrable on 	 for each i .

For the remainder of this paper, define the set of feasible vaccination policies, C , is
the set of functions U satisfying (5) such that unique solutions to the model equations
exist with these functions as the vaccination policy and such that eachUi (t) is bounded
and Lebesgue integrable on 	.

3.2 Optimisation Problem

The aim is to choose the vaccination policy U ∈ C such that the total number of
deaths (or any linear function of the infections in each subgroup) is minimised while
meeting additional constraints on vaccine supply and vaccination rate. It is assumed
that the maximal rate of vaccination at time t is A(t) and that there is a total (non-
decreasing) supply of B(t) vaccinations that has arrived by time t . Thus, for each i ,
Ui (t) is constrained to satisfy

n∑

i=1

Ui (t) ≤ A(t) and
n∑

i=1

Wi (t) ≤ B(t).
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As previously discussed, it is assumed that each infection of unvaccinated people in
group i is weighted by some pi and that the infection is no more serious for those that
have been vaccinated, so that the weighting of an infection of a vaccinated person in
group i is piκi , where κi ≤ 1. Thus, the objective function is

H(U) :=
n∑

i=1

pi

(
Ri (∞) + κi R

V
i (∞)

)

where, for example

Ri (∞) = lim
t→∞(Ri (t)).

Note these limits exist as Ri is non-decreasing and bounded by Lemma C.3. Hence,
the optimisation problem is

min

{ n∑

i=1

pi

(
Ri (∞) + κi R

V
i (∞)

)
:

n∑

i=1

Ui (t) ≤ A(t),
n∑

i=1

Wi (t) ≤ B(t) ∀i, t ...

and U ∈ C

}
. (6)

4 Main Results

The main results of this paper are as follows. Firstly, it is shown that the objective
function is non-increasing in vaccination effort.

Theorem 1 Suppose that U, Ũ ∈ C. Suppose further that for each i ∈ {1, ..., n} and
t ≥ 0

∫ t

0
Ui (s)ds ≤

∫ t

0
Ũi (s)ds

Then

H(U) ≥ H(Ũ).

Then, it is shown that if an optimal solution exists, there is an optimal maximal effort
solution.

Theorem 2 Suppose that B is differentiable, and that there is an optimal solution U
to (6). Then, define the function

χ(t) :=
{

A(t) if
∫ t
0 χ(s)ds < B(t)

min(A(t), B ′(t)) if
∫ t
0 χ(s)ds ≥ B(t)
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and suppose that χ(t) exists and is bounded. Then, there exists an optimal solution Ũ
to the problem (6) such that

n∑

i=1

W̃i (t) = min

(∫ t

0
χ(s)ds, 1

)
. (7)

Moreover, if χ(t) is continuous almost everywhere, there exists an optimal solution Ũ
such that

n∑

i=1

Ũi (t) =
{
χ(t) if

∫ t
0 χ(s)ds < 1

0 otherwise

It is perhaps concerning to the reader that the existence of χ is left as an assumption
in this theorem. However, while the exact conditions on its existence are beyond the
scope of this paper, it certainly exists for a wide class of functions A(t) and B(t), as
proved in Lemma B.11.

Finally, it is shown that this principle still holds if the cost of vaccination is con-
sidered.

Theorem 3 Under the assumptions of Theorem 2, consider a modified objective func-
tionH given by

H(U) = H(U) + F(W(∞))

for any function F. Then, with χ defined to be the maximal vaccination effort as in
Theorem 2, there exists an optimal solution Ũ such that, for some τ ≥ 0

n∑

i=1

W̃i (t) =
⎧
⎨

⎩

∫ t
0 χ(s)ds if t ≤ τ

Wi (τ ) otherwise
.

Moreover, if χ is continuous almost everywhere, then there is an optimal solution Ũ
such that

n∑

i=1

Ui (t) =
{
χ(t) if t ≤ τ

0 otherwise
.

5 Sketch Proof

The full proofs ofTheorems1, 2 and3 canbe found inAppendixA,with supplementary
lemmas found inAppendixB andC.However, this section provides a high-level sketch
of the main arguments.
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5.1 Bounds on the Inter-Group Infectious Forces

Define

Ki j (t) = β1
i j

μ1
j

R j (t) + β2
i j

μ2
j

RV
j (t)

and

Li j (t) := β3
i j

μ1
i

R j (t) + β4
i j

μ2
i

RV
j (t).

Ki j (t) can be interpreted as the total infectious force up to time t from the members
of group j on the unvaccinated members of group i as

Ki j (t) =
∫ t

0
(β1

i j I j (t̃) + β2
i j I

V
j (t̃))dt̃ .

Similarly, Li j (t) can be interpreted as the total infectious force up to time t from the
members of group j on the vaccinated members of group i .

The first part of the proof shows that increasing the vaccination effort will decrease
these infectious forces. To facilitate the proof, some extra assumptions are made on
the parameters (which will be removed in subsequent propositions).

Proposition 1 Suppose thatUi (t) and Ũi (t) are right-continuous step functions.More-
over, suppose that

β1
i j > β3

i j > 0 ∀i, j ∈ {1, ..., n},
Si (0)Ii (0) > 0 ∀i ∈ {1, ...n}.

and that

Wi (t) < Ni ∀t ≥ 0 and ∀i ∈ {1, ..., n}
Then,

Ki j (t) ≥ K̃i j (t) and Li j (t) ≥ L̃i j (t) ∀t ≥ 0. (8)

This proposition is proved by contradiction in two parts. Firstly, a time T is introduced,
which is the infimum of the times where at least one of Ki j (t) < K̃i j (t) or Li j (t) <

L̃i j (t) for some i and j . As the infectious forces do not satisfy this condition in [0, T ],
one can show that, necessarily, they must all have been equal in [0, T ], which means
that one must have Wi (t) = W̃i (t) for all t ∈ [0, T ].

From here, the proof can proceed by a short-time linearisation, considering the
small interval [T , T + δ]. The condition onUi and Ũi being step functions allows for
them to be considered constant in this interval. It can then be shown that (8) must hold
in [T , T + δ], which contradicts the definition of T and completes the proof.
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5.2 A Proof for a Restricted Parameter and Policy Set

Proposition 1 can be extended to prove the result of Theorem 1 under the more restric-
tive set of conditions it introduced.

Proposition 2 Under the conditions of Proposition 1, for any t ≥ 0 and i ∈ {1, ..., n}

Ii (t) + I Vi (t) + Ri (t) + RV
i (t) ≥ Ĩi (t) + Ĩ Vi (t) + R̃i (t) + R̃V

i (t)

and

Ri (t) ≥ R̃i (t).

Moreover, for any λ ∈ [0, 1]

Ri (∞) + λRV
i (∞) ≥ R̃i (∞) + λR̃V

i (∞)

and hence, the objective function is lower for Ũ , provided the conditions of Proposition
1 are met.

This comes from finding Si + SVi in terms of Ki j , Li j and W , and showing that
Si + SVi ≤ S̃i + S̃Vi —that is, that more people were infected in the Ui case. Taking
limits, and using a similar approach to consider the number of unvaccinated infections
then shows the required result.

5.3 Generalisation

This result can be generalised to the original set of parameters and vaccination policies
by using the continuous dependence of the number of infections on the parameters
and the vaccination policy.

From here, it is simple to weaken the inequalities on the parameters introduced in
Proposition 1. The treatment of the vaccination policies requires more care, as it is not
necessarily true that a Lebesgue intergrable U can be approximated by step functions.
However, its integral, W , can be approximated by the integral of step functions, and
this allows the result of Proposition 2 to be generalised to Theorem 1.

5.4 Theorem 2

Theorem 2 is proved as follows. Firstly, one can show that, for any vaccination policy
U and t ≥ 0,

min

(∫ t

0
χ(s)ds, 1

)
≥
∫ t

0

n∑

i=1

Ui (s)ds,

using the definition of χ in terms of the constraints on U . This means that the total
rate of vaccination given by Ũ is at least as high as that given by U .
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One can then show that χ(t) ≤ A(t)

∫ t

0
χ(s)ds ≤ B(t)

which means that Ũ satisfies the vaccination constraints.
From here, one can transform any optimal vaccination policy U into suitable Ũ .

Initially, the quantities W̃i (t) are constructed. The details of this are left to the appendix
but the general principle is that the policy U is compressed in time so that the total

number of vaccinations given out matches min

(∫ t
0 χ(s)ds, 1

)
. It may also be neces-

sary to add additional vaccinations if the overall total differs—these can be assigned
in proportion to the number of unvaccinated people in each group.

This construction ensures that the feasibility constraints W̃i ≤ Ni are satisfied.
Moreover, one can show that W̃i is Lipschitz continuous, which allows for the
construction of a derivative Ũi which integrates to W̃i . Finally, one can show that
W̃i (t) ≥ Wi (t), meaning that, by Theorem 1, Ũ must also be an optimal vaccination
policy.

5.5 Theorem 3

The proof of Theorem 3 then follows from a similar construction to Theorem 2—the
only difference is that no additional vaccinations are assigned by Ũ compared to U .

6 Limitations of Theorem 1

It is helpful to consider the limitations of Theorem 1, as it does not prove that every
conceivable cost function is non-increasing in vaccination effort. This will be illus-
trated through some examples based on theoretical COVID-19 outbreaks in the United
Kingdom.

Using the work of Prem et al. (2017), one can split the UK into 16 age-groups
(comprising five-year intervals from 0 to 75 and a group for those aged 75+) which
mix heterogeneously. The contact matrices estimated in Prem et al. (2017) allow for
the construction of a matrix β∗, which will be proportional to each of the matrices βα

in the model.
As illustrated in Liu et al. (2020), estimation of the basic reproduction number R0

for COVID-19 is complicated, and a wide range of estimates have been produced. For
the examples in this paper, a reproduction number of 4 will be used, meaning that β1

will be scaled so that the largest eigenvalue of the matrix given by

Mi j = β1
i j Ni

μ1
i
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is equal to 4. Note that the population of each group N—normalised to have total sum
1—is taken from (UN2019).Moreover, based on the estimates in Ram and Schaposnik
(2021), the value of μ1

i and, in the first example, μ2
i will be set equal to

1
14 .

To model the effectiveness of vaccination, the estimates of Dean and Halloran
(2022) will be used so that β2 = 0.77β1, (modelling the reduction in infectiousness),
β3 = 0.3β1 (modelling the reduction in susceptibility) and β4 = 0.77 × 0.3 ×
β1 (assuming these effects are independent). Finally, the initial conditions used are
Si (0) = (1−10−4)Ni and Ii (0) = (10−4)Ni for each i , modelling a casewhere 0.01%
of the population is initially infected. It should be emphasised however, that this model
has purely been made for illustrative purposes and substantially more detailed fitting
analysis would be required to use it for forecasting COVID-19 in the UK.
In both the subsequent examples, it will be assumed that 0.5% of the population is
vaccinated homogeneously each day in the vaccination case. This will be compared
to a case with no vaccination.

6.1 Infections Are Not Decreasing For All Time

While the overall number of infections will decrease as vaccination effort increases,
the infections at a particular point in time will not. Figure1 shows that the effect of
vaccination is both to reduce, but also delay the peak of the infections. This is an
important consideration when deciding vaccination policy, as increasing infections
at a time in the year when hospitals are under more pressure could have negative
consequences, and so it is important not to simply assume that vaccination will reduce
all infections at all times.

6.2 Deaths Are Not Decreasing For All Time

Perhaps most surprisingly, the total deaths in the epidemic may at some finite times
(although not at t = ∞) be higher when vaccination occurs, at least under the assump-
tions of the SIR model. This is a rarer phenomenon, but is possible if vaccination
increases the recovery rate as well as decreasing infectiousness.

For illustrative purposes, suppose that vaccination doubles the recovery rate (so
that μ2

i = 1
7 ) and has no effect on mortality rates. Then, using Bonanad et al. (2020)

to get age-dependent mortality rates for COVID-19, Fig. 2 shows that initially, the
number of deaths is higher in the case of vaccination. This occurs because the higher
value of μ2 means that vaccinated people move more quickly to the RV compartment
than their unvaccinated counterparts and so, while they will infect fewer people, when
the number of infections is comparable in the early epidemic, this means that more
people will die. Indeed, this property can still hold if vaccination reduced mortality
rates (although this reduces the already small difference between the two further—in
this example, one needs κi � 0.9999 for deaths to ever be lower in the non-vaccinated
case).

Of course, this is not a realistic reflection of the course of an epidemic—the reason
for μ2 being higher is that vaccinated people are likely to get less ill rather than
dyingmore quickly—but it illustrates a potential limitation of the SIR framework. One
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Fig. 1 A comparison of the total infections over time for a simulated COVID-19 epidemic in the UK,
depending on whether a uniform vaccination strategy of constant rate is used

possibleway to avoid this problemwould be to split the recovered compartment up into
the truly recovered and dead subsections. Then, vaccination could increase the speed
at which infected members of the population moved to the recovered compartment,
but not the speed at which they moved to the dead compartment. This would remove
the possibility of seeing the counter-intuitive behaviour of Fig. 2.

7 Discussion

It is comforting that the multi-group SIR model does indeed satisfy the condition that
the final numbers of infections and deaths are non-increasing in vaccination effort. This
shows the importance of ensuring that vaccinations are available as early as possible
in a disease outbreak. To achieve this, it is important that good plans for vaccine roll-
out and supply chains are available in advance of them being needed to ensure that
maximum benefit from the vaccination program is obtained.

For n > 1, there are, of course, many possible maximal-effort vaccination policies.
The results of this paper, in effect, reduce the dimension of the space of possible
vaccination policies from n to n−1, as one can assume that an optimal policy satisfies
the condition (7) in Theorem 2. However, choosing the correct groups to prioritise is
still of crucial importance and can have a substantial impact of the effectiveness of
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Fig. 2 The difference between proportion of the population that has died by each time t in the case of
vaccination and non-vaccination. Positive values indicate that the deaths are higher in the non-vaccination
case

the vaccination campaign (Fitzpatrick and Galvani 2021). Applying similarly rigorous
techniques to finding the optimal vaccination policy is beyond the scope of this paper,
although we extended the results of this paper to apply asymptotic techniques to
understand the behaviour of the optimal solution under certain special cases in Penn
and Donnelly (2023).

However, there are limitations to these results. Indeed, while the final numbers of
infections and deaths are guaranteed to decrease, this is not necessarily true at a given
finite time. In particular, vaccination can move the peak of the epidemic, and so it is
important to consider the consequences of this, particularly if only a small number of
lives are saved by vaccination.

Moreover, while this has not been discussed in this paper, it is also important to
emphasise that these results only apply if vaccine efficacy does not decay over time.
Indeed, if vaccination efficacy does decay significantly, then vaccinating the most
vulnerable groups in a population very early may be worse than vaccinating them
later, unless booster jabs are available. If the main epidemic occurs long after the
vulnerable have been vaccinated, their immunity may have worn off significantly by
the time that the majority of disease exposure occurs. Thus, in this case amore detailed
analysis would be needed to determine the optimal vaccination rate.
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The authors believe that futuremodels for optimal vaccination should consider using
the more general vaccination model introduced in this paper. This allows for greater
flexibility in modelling the effect of decreasing demand. Of course, this modified
model is slightly more complicated, and care needs to be taken to avoid numerical
instabilities arising from the removable singularity in the Ui Si

Ni−Wi
term whenWi → Ni .

However, it has been shown that many of the standard properties of SIR models, and
indeed the results of this paper, still hold for this model, and so these extra technical
difficulties appear to be a small price to pay for the significantly increased accuracy
and potentially large difference between the optimal solutions for the two models.

The results of this paper could be extended to cover a wider range of disease models
that are currently being used in the literature. In particular, the next step could be to
prove the results for SEIR (Susceptible-Exposed-Infected-Recovered) models, and
indeed models with multiple exposed compartments for each subgroup. This would
help to build a general mathematical theory of maximal-effort vaccination that would
provide evidence for the reliability of contemporary epidemiological modelling.

8 Conclusion

The results of this paper are summarised below:

• Vaccinating at maximal effort is optimal for a multi-group SIR model with non-
decaying vaccination efficacy.

• The general vaccination model introduced in this paper provides greater flexibility
in modelling the effect of decreasing vaccination uptake.

• While vaccinating at maximal effort gives optimality, there can be finite times at
which, according to the SIR model, infections or deaths are higher if vaccination
has occurred.
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A Proofs of Theorems 1, 2 and 3

Before beginning the main proof, it is helpful to note some fundamental results about
the SIR equations that will be used throughout. Namely, for each i ∈ {1, ..., n} and
t ≥ 0

0 ≤ Si (t), Ii (t), Ri (t), S
V
i (t), I Vi (t), RV

i (t) ≤ Ni

and

lim
t→∞(Ii (t)) = lim

t→∞(I Vi (t)) = 0.

These results are proved in Lemmas C.3 and C.4.
It is first useful to define

Ki j (t) = β1
i j

μ1
j

R j (t) + β2
i j

μ2
j

RV
j (t)

and

Li j (t) := β3
i j

μ1
i

R j (t) + β4
i j

μ2
i

RV
j (t).

Then, the following propositions hold.

A.1 An Inequality for Kij and Lij

Note that the proof of this proposition requires a significant amount of algebra, and
the majority of it has hence been left to lemmas which can be found in Appendix B.
However, the key logic of the proof will be presented here.

Also, note that in this paper, a step function is defined to be a function that is
piecewise constant on any bounded interval of 	. Thus, it may have infinitely many
discontinuities, but only finitely many in any bounded interval. This differs from the
definition used in some other papers (which impose that a step function is piecewise
constant on 	).

Proposition A.1.1 Suppose that Ui (t) and Ũi (t) are right-continuous step functions.
Moreover, suppose that

β1
i j > β3

i j > 0 ∀i, j ∈ {1, ..., n},
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i (0)Ii (0) > 0 ∀i ∈ {1, ...n}.

and that

Wi (t) < Ni ∀t ≥ 0 and ∀i ∈ {1, ..., n}

Then,

Ki j (t) ≥ K̃i j (t) and Li j (t) ≥ L̃i j (t) ∀t ≥ 0.

Proof Suppose that the proposition does not hold. Hence, one can define

T := inf
{
t : Ki j (t) < K̃i j (t) or Li j (t) < L̃i j (t) for some i, j ∈ {1, ..., n}

}
.

Then, there exists some b ∈ {1, .., n} and some real constants κ and η such that the
following system of inequalities holds at time T :

Sb(T ) + SVb (T ) ≤ S̃b(T ) + S̃Vb (T ), (9)

Ib(T ) + Rb(T ) ≥ Ĩb(T ) + R̃b(T ) (10)

Rb(T ) ≥ R̃b(T ), (11)

Rb(T ) + κRV
b (T ) ≤ R̃b(T ) + κ R̃V

b (T ), (12)

Ib(T ) + ηI Vb (T ) ≤ Ĩb(T ) + η Ĩ Vb (T ), (13)

0 ≤ κ ≤ η ≤ 1. (14)

The derivations of inequalities (9) - (14) are found in Lemmas B.2–B.5. Moreover,

Sb(T ) + Ib(T ) + Rb(T ) + SVb (T ) + I Vb (T ) + RV
b (T )

= S̃b(T ) + Ĩb(T ) + R̃b(T ) + S̃Vb (T ) + Ĩ Vb (T ) + R̃V
b (T ), (15)

which comes from (3). Note that (12) in fact holds to equality in this case, but this is
not necessary for the proof (and later, the same system will be considered where such
an equality is not guaranteed).

By Lemma B.6, the system (9)–(15) implies that

Ib(T ) + Rb(T ) = Ĩb(T ) + R̃b(T ), (16)

I Vb (T ) + RV
b (T ) = Ĩ Vb (T ) + R̃V

b (T ), (17)

Sb(T ) + SVb (T ) = S̃b(T ) + S̃Vb (T ), (18)

If T > 0, then Lemma B.7 can be used to show that

Wk(t) = W̃k(t) ∀t ∈ [0, T ] and ∀k ∈ {1, ..., n}
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while if T = 0 then this is immediate. Thus, the two ODE systems are the same up to
time T , which means that all variables (in all groups) are equal at time T .

From this point, the proof of Proposition A.1.1 can be completed by considering
the behaviour of the system at time T + δ for small δ. For sufficiently small δ, Ui (t)
and Ũi (t) are constant on [T , T + δ] (as they are step functions) and this condition on
δ will be assumed for the remainder of this proof

Define functions 

f
i to be



f
i (t) := fi (T + t) − f̃i (T + t) for f ∈ {S, I , R, SV , I V , RV ,W }

and note that



f
i (0) = 0 ∀ f ∈ {S, I , R, SV , I V , RV ,W }.

Then, by Lemma B.8, for t ∈ [0, δ] and any real numbers x and y

x

μ1
i


R
i + y

μ2
i


RV

i = t3Si (T )(Ui (T ) − Ũi (T ))

6(Ni − Wi (T ))

⎡

⎣x
n∑

j=1

(K ′
i j (T )) − y

n∑

j=1

(L ′
i j (T ))

⎤

⎦+ O(δ4).

Hence, by Lemma B.9,

n∑

j=1

Ki j (t) ≥
n∑

j=1

K̃i j (t) ∀t ∈ [0, T + δ] (19)

and

n∑

j=1

Li j (t) ≥
n∑

j=1

L̃i j (t) ∀t ∈ [0, T + δ] (20)

for sufficiently small δ.
Now, by the definition of T , there exists some t in [T , T + δ] such that, for some

a, b

Kab(t) < K̃ab(t) or Lab(t) < L̃ab(t).

Indeed, from Lemma B.10, there exists some t ∈ (T , T + δ) such that

Rb(t) + κRV
b (t) < R̃b(t) + κ R̃V

b (t) and Ib(t) + ηI Vb (t) ≤ Ĩb(t) + η Ĩ Vb (t)

(21)

for some

0 ≤ κ ≤ η ≤ 1. (22)

123



Optimality of Maximal-Effort Vaccination Page 21 of 71 73

Now, byLemmasB.2–B.4 (which only require the properties (19) and (20)), the system
of inequalities (9)–(11) holds for group b at time t . These can be combined with (21),
(22) and (15) to use Lemma B.6, showing

ηI Vb (t) + κRV
b (t) = η Ĩ Vb (t) + κ R̃V

b (t) (23)

Ib(t) + Rb(t) = Ĩb(t) + R̃b(t). (24)

By adding the inequalities in (21) together,

Rb(t) + κRV
b (t) + Ib(t) + ηI Vb (t) < R̃b(t) + κ R̃V

b (t) + Ĩb(t) + η Ĩ Vb (t).

Then, (23) and (24) show that this must in fact be an equality which is a contradiction.
Thus, t cannot exist. This provides a contradiction to the definition of T , and hence
finishes the proof of Proposition A.1.1.
It is now possible to prove Theorem 1 under the extra restrictions given Proposi-
tion A.1.1. �


A.2 A Proof for a Restricted Parameter and Policy Set

Proposition A.2.1 Under the conditions of Proposition A.1.1, for any t ≥ 0 and i ∈
{1, ..., n}

Ii (t) + I Vi (t) + Ri (t) + RV
i (t) ≥ Ĩi (t) + Ĩ Vi (t) + R̃i (t) + R̃V

i (t)

and

Ri (t) ≥ R̃i (t).

Moreover, for any λ ∈ [0, 1]

Ri (∞) + λRV
i (∞) ≥ R̃i (∞) + λR̃V

i (∞)

and hence, the objective function is lower for Ũ , provided the conditions of Proposi-
tion A.1.1 are met.

Proof Note that, by Proposition A.1.1,

Ki j (t) ≥ K̃i j (t) and Li j (t) ≥ L̃i j (t) ∀t ≥ 0

and hence, by Lemma B.2, for each i ∈ {1, ..., n}

Si (t) + SVi (t) ≤ S̃i (t) + S̃Vi (t).

Combining this with the conservation of population Eq. (15), shows that

Ii (t) + I Vi (t) + Ri (t) + RV
i (t) ≥ Ĩi (t) + Ĩ Vi (t) + R̃i (t) + R̃V

i (t)
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as required. Now, taking t → ∞ and noting that the infections tend to zero by
Lemma C.4 gives

Ri (∞) + RV
i (∞) ≥ R̃i (∞) + R̃V

i (∞).

Moreover, by Lemma B.4, for any t ≥ 0 and i ∈ {1, ..., n}

Ri (t) ≥ R̃i (t)

as required. Also, taking t → ∞ shows that

Ri (∞) ≥ R̃i (∞).

Thus, for any λ ∈ [0, 1]

Ri (∞) + λRV
i (∞) = (1 − λ)Ri (∞) + λ(Ri (∞) + RV

i (∞))

≥ (1 − λ)R̃i (∞) + λ(R̃i (∞) + R̃V
i (∞))

= R̃i (∞) + λR̃V
i (∞)

as required. �

By summing the i inequalities at t = ∞ from Proposition A.2.1 (and using λ = κi ),
Theorem 1 holds under the additional conditions given in Proposition A.1.1. Note
that the closure of the set of parameters, initial conditions and vaccination policies
which satisfy these conditions is the original set specified in Theorem 1. Thus, one
can generalise the result with the help of the following proposition.

A.3 Continuous Dependence

Proposition A.3.1 Define the set of functions

F :=
{
Si (t; ε), Ii (t; ε), Ri (t; ε), SVi (t; ε), I Vi (t; ε), RV

i (t; ε) : i ∈ {1, ..., n}, ε, t ≥ 0

}
,

where for each fixed ε, these functions solve the model equations with parameters

P =
{
βα
i j (ε), μ

γ

i (ε) : i, j ∈ {1, ..., n}, α ∈ {1, 2, 3, 4}, γ ∈ {1, 2} and ε ≥ 0

}
,

initial conditions

I =
{
f (0; ε) : i ∈ {1, ..., n}, f ∈ F and ε ≥ 0

}

and vaccination policy U(t; ε). Suppose that

|p(ε) − p(0)| ≤ ε ∀p ∈ P,
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| fi (0; ε) − fi (0; 0)| ≤ ε ∀ f ∈ F

and that

|Wi (t, ε) − Wi (t, 0)| < ε ∀t ≥ 0.

Moreover, suppose that for each i ∈ {1, ..., n} and ε ≥ 0,

Ui (s; ε) ≥ 0 and
∫ t

0
Ui (s; ε)ds ≤ Ni ∀t ≥ 0.

Then, for each δ > 0 and each T > 0 there exists some η > 0 (that may depend on T
and δ) such that

ε ∈ (0, η) ⇒ | f (t; ε) − f (t; 0)| < δ ∀ f ∈ F and ∀t ∈ [0, T ]

Proof The proof is simple but algebraically dense and so is left to Lemma C.8 in the
appendices.

This now allows a proof of Theorem 1 to be formed. �


A.4 Theorem 1

Theorem 1 Suppose that U, Ũ ∈ C. Suppose further that for each i ∈ {1, ..., n} and
t ≥ 0

∫ t

0
Ui (s)ds ≤

∫ t

0
Ũi (s)ds.

Then

H(U) ≥ H(Ũ).

Proof Define the parameters βa
i j (ε) and μa

i (ε) by

βa
i j (ε) = βa

i j + ε

a
and μa

i (ε) = μa
i .

This means that, for any ε > 0, these parameters satisfy the conditions of Proposi-
tions A.1.1 and A.2.1. Define, for ε < 1, the initial conditions

Si (0; ε) =
⎧
⎨

⎩

Si (0; 0) if Si (0; 0), Ii (0; 0) > 0
Si (0; 0) + εNi if Si (0; 0) = 0
Si (0; 0) − εNi if Ii (0; 0) = 0

and

Ii (0; ε) = Ni − Si (0; ε).
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Then, the conditions of PropositionsA.1.1 andA.2.1 aremet by these initial conditions
for any ε > 0.

Now, define the set of points

σ(ε) :=
{
nε : n ∈ N≥0

}
.

Then, define W ∗
i (t; ε) to be the first order approximation to the functionWi (t; ε) :=

max(Wi (t), Ni − ε) using the points of σ(ε). That is, for each t define

K (t; ε) := inf

{
m : m ∈ σ(ε) and m ≥ t

}

and

k(t; ε) := sup

{
m : m ∈ σ(ε) and m ≤ t

}

Note that, as σ(ε) is nowhere dense, one must have

k(t; ε), K (t; ε) ∈ σ(ε) and k(t; ε) ≤ t ≤ K (t; ε)

Then, define

W ∗
i (t; ε) = (t − k(t; ε))Wi (k(t; ε); ε) + (K (t; ε) − t)Wi (K (t; ε); ε).

Thus, as k and K are constant on any interval not containing a point in σ(ε), W ∗
i is

linear on any interval not containing a point of σ(ε) and so its derivative is a step
function. �

Now, note that, for each t

|Wi (t; ε) − Wi (t)| ≤ ε

and, moreover,

t ∈ S ⇒ W ∗
i (t; ε) = Wi (t; ε).

Also, as Ui is bounded, each Wi (and hence each Wi ) are Lipschitz continuous with
some Lipschitz constant L . Moreover, each W ∗

i is continuous and is differentiable in
each interval (k(t; ε), K (t; ε))with amaximal (uniformly bounded) gradient ofUi (t),
meaning that W ∗

i is also Lipschitz continuous with Lipschitz constant L .
It can now be shown that |Wi (t) − W ∗

i (t; ε)| is uniformly bounded in t . For each
t ≥ 0, one can find an element s ∈ σ(ε) such that |t − s| < ε. Then,

|Wi (t) − W ∗
i (t; ε)| ≤ |Wi (t) − Wi (s)| + |Wi (s) − W ∗

i (s; ε)| + |W ∗
i (s; ε) − W ∗

i (t; ε)|

123



Optimality of Maximal-Effort Vaccination Page 25 of 71 73

≤ Lε + |Wi (s) − Wi (s; ε)| + Lε

≤ (2L + 1)ε

and so W ∗
i converges uniformly to Wi . The same results hold for the analogously

defined W̃ ∗
i . Then, note that, as W̃i (t) ≥ Wi (t), it must be that W̃i (t; ε) ≥ Wi (t; ε).

Thus, it follows that W̃ ∗
i (t; ε) ≥ W ∗

i (t; ε).
This means that Proposition A.2.1 can be used. Define using stars the variables that
come from the U∗ and Ũ

∗
policies. Then, from Proposition 2, for each t ≥ 0, ε > 0

and i ∈ {1, ..., n}

I ∗
i (t; ε) + I Vi

∗(t; ε) + R∗
i (t; ε) + RV

i
∗(t; ε) ≥ Ĩ ∗

i (t; ε)

+ Ĩ Vi
∗(t; ε) + R̃∗

i (t; ε) + R̃V
i

∗(t; ε)

and

R∗
i (t; ε) ≥ R̃∗

i (t; ε).

Then, taking ε → 0 and using Proposition A.3.1 (noting that the perturbations to the
parameters, initial conditions and vaccination policies are all bounded by a constant
multiple of ε) shows that

Ii (t) + I Vi (t) + Ri (t) + RV
i (t) ≥ Ĩi (t) + Ĩ Vi (t) + R̃i (t) + R̃V

i (t)

and

Ri (t) ≥ RV
i (t).

Then, the result follows using the same logic as in the proof of Proposition A.2.1.

A.5 Theorem 2

Theorem 2 Suppose that B is differentiable, and that there is an optimal solution U
to (6). Then, define the function

χ(t) :=
{

A(t) if
∫ t
0 χ(s)ds < B(t)

min(A(t), B ′(t)) if
∫ t
0 χ(s)ds ≥ B(t)

and suppose that χ(t) exists and is bounded. Then, there exists an optimal solution Ũ
to the problem (6) such that

n∑

i=1

W̃i (t) = min

(∫ t

0
χ(s)ds, 1

)
.
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Moreover, if χ(t) is continuous almost everywhere, there exists an optimal solution Ũ
such that

n∑

i=1

Ũi (t) =
{
χ(t) if

∫ t
0 χ(s)ds < 1

0 otherwise

Proof Suppose that U is an optimal vaccination policy. To begin, it will be shown that
the total vaccination rate χ is indeed a maximal-effort vaccination policy (in the sense
that, at each time t∗, it is impossible to have given out more vaccines than a policy
with total overall rate χ(t)). �


Claim: min

(
1,
∫ t
0 χ(s)ds

)
≥ ∫ t0

∑n
i=1Ui (s)ds for all t > 0

Proof Consider any time t ≥ 0 such that

∫ t

0
χ(s)ds < 1

and define the set

T :=
{
s ≤ t :

∫ s

0
χ(k)dk ≥ B(s)

}
.

Suppose that T = ∅. Then,

χ(s) = A(s) ∀s ≤ t

and so

∫ t

0
χ(s)ds =

∫ t

0
A(s)ds ≥

∫ t

0

n∑

i=1

Ui (s)ds.

Moreover, suppose that T �= ∅ and define

τ := sup(T ).

Then,

∫ τ

0
χ(s)ds ≥ B(τ ) ≥

∫ τ

0

n∑

i=1

Ui (s)ds

and

∫ t

τ

χ(s)ds =
∫ t

τ

A(s)ds ≥
∫ t

τ

n∑

i=1

Ui (s)ds
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so that

∫ t

0
χ(s)ds ≥

∫ t

0

n∑

i=1

Ui (s)ds.

Thus, this holds in all cases for
∫ t
0 χ(s)ds < 1. Finally, suppose that

∫ t

0
χ(s)ds ≥ 1.

Then, one has

min

(
1,
∫ t∗

0
χ(s)ds

)
= 1 =

n∑

i=1

Ni ≥
∫ t∗

0

∑

i=1

Ui (s)ds

and so the claim is proved. �

It is now important to show that χ gives a feasible vaccination rate. Note that

χ(t) ≤ A(t) by definition.
Claim:

∫ t
0 χ(s)ds ≤ B(t) for all t ≥ 0.

Proof Suppose, for a contradiction, that there exists a t such that

∫ t

0
χ(s)ds > B(t).

Then, define

σ := sup

{
s ≤ t :

∫ t

0
χ(s)ds ≤ B(t)

}

whichmust exist (as
∫ 0
0 χ(s)ds ≤ B(0)) and satisfy σ < t , by continuity of

∫ t
0 χ(s)ds

and B(t). Note that

s ∈ (σ, t) ⇒ χ(s) ≤ B ′(s)

and so
∫ t

0
χ(s)ds ≤

∫ σ

0
χ(s)ds +

∫ t

σ

B ′(s)ds ≤ B(σ ) + (B(t) − B(σ )) = B(t),

which is a contradiction. Thus,

∫ t

0
χ(s)ds ≤ B(t) ∀t ≥ 0

as required. �
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Now, one can create a new optimal vaccination policy with total rate given by χ .
Define

q(t) =

⎧
⎪⎪⎨

⎪⎪⎩

inf

{
s : ∫ s0

∑n
j=1Uj (k)dk = ∫ t0 χ(k)dk

}
if this exists

∞ otherwise

so that q(t) represents the earliest time at which χ(t) vaccines were administered by
the U policy. By continuity of the integral, this means that

n∑

i=1

Wi (q(t)) =
∫ q(t)

0

n∑

j=1

Uj (k)dk =
∫ t

0
χ(s)ds.

Define further

Q := sup{t : q(t) < ∞} and q∞ := lim
t→Q

(q(t))

so that Q is the earliest time at which all of the vaccines given out by the U policy
could have been administered. Note that both Q and q∞ may be infinite. By taking
the limit t → Q, and noting the left-hand side is bounded by 1,

∫ q∞

0

n∑

j=1

Uj (k)dk =
∫ Q

0
χ(k)dk

Then, the integral of the new vaccination policy, W̃ is given by

W̃i (t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Wi (q(t)) if t < Q

Wi (q∞) + (Ni−Wi (q∞))
∫ t
Q χ(s)ds

1−∑n
i=1 Wi (q∞)

if
∫ t
0 χ(s)ds < 1 and t ≥ Q

Ni if
∫ t
0 χ(s)ds ≥ 1 and t ≥ Q

.

This is well-defined as

n∑

i=1

Wi (q∞) = 1 ⇒
∫ Q

0
χ(s)ds = 1

and so, in this case, the second part of the definition of χ is never used. It is important
to establish for feasibility that each Wi is bounded by Ni .

Claim: W̃i (t) ≤ Ni for all t ≥ 0 and all i ∈ {1, ..., n}.

123



Optimality of Maximal-Effort Vaccination Page 29 of 71 73

Proof If t < Q, then Wi (q(t)) ≤ Ni for all t < Q by feasibility of U . Otherwise, if
t ≥ Q and

∫ t
0 χ(s)ds < 1, then one has

Wi (q∞) + (Ni − Wi (q∞))
∫ t
Q χ(s)ds

1 −∑n
i=1 Wi (q∞)

≤ Wi (q∞) + (Ni − Wi (q∞))(1 − ∫ Q
0 χ(s)ds)

1 −∑n
i=1 Wi (q∞)

= Wi (q∞) + (Ni − Wi (q∞))(1 −∑n
i=1 Wi (q∞))

1 −∑n
i=1 Wi (Q)

= Ni

while if
∫ t
0 χ(s)ds ≥ 1 then the result is immediate.

The optimisation problem is framed in terms ofU rather thanW , and so it is important
to show that there is some Ũ that integrates to W̃ . One can do this by proving the
Lipschitz continuity of W̃i for each i . �

Claim: W̃i (t) is Lipschitz continuous for each i ∈ {1, ..., n}
Proof Note that for s, t < Q, if M is a bound for χ (which is assumed to exist)

|W̃i (t) − W̃i (s)| =
∣∣∣∣
∫ q(t)

q(s)
Ui (k)dk

∣∣∣∣

≤
∣∣∣∣
∫ q(t)

q(s)

n∑

j=1

Uj (k)dk

∣∣∣∣

=
∣∣∣∣
∫ t

s
χ(k)dk

∣∣∣∣

≤ |t − s|M

Moreover, if s, t > Q and
∫ t
0 χ(k)dk,

∫ s
0 χ(k)dk < 1, then

|W̃i (t) − W̃i (s)| ≤
∣∣∣∣
(Ni − Wi (q∞))

∫ t
s χ(s)ds

1 −∑n
i=1 Wi (q∞)

∣∣∣∣ ≤ M

∣∣∣∣
(Ni − Wi (q∞))

1 −∑n
i=1 Wi (q∞)

∣∣∣∣|t − s|

and if s, t > Q and
∫ t
0 χ(k)dk,

∫ s
0 χ(k)dk ≥ 1, then W̃i (t) = W̃i (s). The intermediate

cases (where s and t correspond to different cases in the definition of χ ) can be proved
by combining these bounds.
This means that (for each i) there exists a Lebesgue integrable function Ũi (t) such
that

dW̃i

dt
= Ũi (t) almost everywhere

and, for all t ≥ 0

∫ t

0
Ũi (s)ds = W̃i (t)

123



73 Page 30 of 71 M. J. Penn, C. A. Donnelly

A proof of this (for the broader class of absolutely continuous functions) can be found
in Bárcenas (2000). One can set Ũi (t) to be zero for any t such that W̃i (t) is not
differentiable. Thus, noting that, where it is differentiable, the derivative of W̃i is
bounded by its Lipschitz constant, Ũi (t) is bounded as required.

Note that, in all cases (as
∑n

i=1 Ni = 1)

n∑

i=1

W̃i (t) = min

(∫ t

0
χ(s)ds, 1

)

and so W̃ does correspond to a maximal vaccination rate. If χ(t) is continuous almost
everywhere, then one can differentiate this relationship at t where each W̃i is differ-
entiable and χ is continuous to show that

∑n
i=1Ui (t) = χ(t). The complement of

this set must have zero measure (as it is the finite union of zero measure sets), and
so, in this case, one can change the values of each Ui (t) so that

∑n
i=1Ui (t) = χ(t)

everywhere without changing the value of W . �

Claim: W̃i (t) ≥ Wi (t) for all i ∈ {1, ..., n} and t ≥ 0

Proof Note that, by maximality of χ , for t < Q,

n∑

j=1

W̃i (t) =
n∑

j=1

Wj (q(t)) =
∫ t

0
χ(s)ds ≥

n∑

j=1

Wj (t)

If q(t) ≥ t , then Wi (q(t)) ≥ Wi (t) for each i . If q(t) < t , then it is necessary that
Wi (q(t)) = Wi (t) for each i as Wi is non-decreasing. Thus, Wi (q(t)) ≥ Wi (t) for all
i and for all t < Q.
If t > Q and

∫ t
0 χ(s)ds < 1, then

W̃i (t) ≥ Wi (q∞) (25)

Now, by definition of Q, it is necessary that

∫ t

0
χ(k)dk ≥

∫ ∞

0

n∑

j=1

Uj (k)dk ∀t > Q

as otherwise, there must exist some t > Q and some s < ∞ such that

∫ t

0
χ(k)dk =

∫ s

0

n∑

j=1

Uj (k)dk

which means that q(t) < ∞. Thus, by continuity, for all τ ∈ (0, t), there exists some
s such that

∫ τ

0
χ(k)dk =

∫ s

0

n∑

j=1

Uj (k)dk
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which means Q ≥ t , which is a contradiction.
Thus, by taking t → Q,

∫ q∞

0

n∑

i=1

Ui (k)dk =
∫ Q

0
χ(k)dk ≥

∫ ∞

0

n∑

j=1

Uj (k)dk

and so
∫ ∞

q∞
Uj (k)dk = 0 ⇒ Wi (t) = Wi (q∞) ∀i ∈ {1, ..., n} and ∀t ≥ q∞

Thus, using (25),

W̃i (t) ≥ Wi (t).

Finally, if t > Q and
∫ t
0 χ(s)ds ≥ 1, then W̃i (t) = Ni ≥ Wi (t). Thus, for all t and i ,

W̃i (t) ≥ Wi (t)

as required.
Thus, by Theorem 1, it is necessary that

H(U) ≥ H(Ũ)

and hence, by the optimality of U , Ũ is optimal as required. �


A.6 Theorem 3

Theorem 3 Under the assumptions of Theorem 2, consider a modified objective func-
tionH given by

H(U) = H(U) + F(W(∞))

for any function F. Then, with χ defined to be the maximal vaccination effort as in
Theorem 2, there exists an optimal solution Ũ such that, for some τ ≥ 0

n∑

i=1

W̃i (t) =
⎧
⎨

⎩

∫ t
0 χ(s)ds if t ≤ τ

Wi (τ ) otherwise
.

Moreover, if χ is continuous almost everywhere, then there is an optimal solution Ũ
such that

n∑

i=1

Ui (t) =
{
χ(t) if t ≤ τ

0 otherwise
.
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Proof This follows directly from the proof of Theorem 2. One can again define Ũ in
the interval (0, Q) (where Q is defined in the proof of Theorem 2) such that

H(U) ≥ H(Ũ) and
∫ t

0

n∑

i=1

Ũi (s)ds =
∫ t

0
χ(s)ds ∀t < Q

with the only difference being that now

Ũi (t) = 0 ∀t ≥ Q.

Thus, as shown in the proof of Theorem 2,

W(∞) = W(q∞) = W̃(Q) = W̃(∞)

and so

H(U) ≥ H(Ũ),

which means Ũ is optimal as required. �


B Supplementary Lemmas For Propositions A.1.1 and A.2.1 and
Theorem 2

For the proofs of these lemmas, it is helpful to recall the following definitions of the
following variables, which will be extensively used.

Ki j (t) = β1
i j

μ1
j

R j + β2
i j

μ2
j

RV
j ,

Li j (t) := β3
i j

μ1
i

R j + β4
i j

μ2
i

RV
j

and

� :=
{
i : ∃t ≥ 0 s.t. Ii (t) > 0 or I Vi (t) > 0

}
.

Moreover, note that, under the assumptions of Proposition A.1.1 and A.2.1, eachUi (t)
is a step function and is therefore piecewise smooth in each bounded interval. Thus,
in particular, the derivatives of each of the model variables (and indeed, the derivative
of Wi (t)) are piecewise continuous in each bounded interval, meaning that each of
the model variables is piecewise continuously differentiable in each bounded interval.
This means that integration by parts can be performed (in a bounded interval), as will
be done extensively throughout the proofs of these lemmas.
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B.1 Lemma B.1

Lemma B.1 Suppose that f (t) is a non-increasing, non-negative, continuous and
piecewise continuously differentiable function and that the continuous and piece-
wise continuously differentiable functions g(t) and h(t) satisfy g(0) = h(0) and
g(t) ≤ h(t) for all t ≥ 0. Then,

∫ t

0
g′(s) f (s)ds ≤

∫ t

0
h′(s) f (s)ds.

Proof This follows from integrating by parts:

∫ t

0
g′(s) f (s)ds = g(t) f (t) − g(0) f (0) −

∫ t

0
g(s) f ′(s)ds

= g(t) f (t) − h(0) f (0) +
∫ t

0
g(s)| f ′(s)|ds

≤ h(t) f (t) − h(0) f (0) +
∫ t

0
h(s)| f ′(s)|ds

≤ h(t) f (t) − h(0) f (0) −
∫ t

0
h(s) f ′(s)ds

=
∫ t

0
h′(s) f (s)ds

as required. �


B.2 Lemma B.2

Lemma B.2 Suppose that

n∑

j=1

Ki j (t) ≥
n∑

j=1

K̃i j (t) and
n∑

j=1

Li j (t)

≥
n∑

j=1

L̃i j (t) ∀i ∈ {1, ..., n} and t ∈ [0, T ].

Then,

Si (t) + SVi (t) ≤ S̃i (t) + S̃Vi (t) ∀t ∈ [0, T ].

Proof To reduce notation in this proof, define

K(t) :=
n∑

j=1

Ki j (t) and L(t) :=
n∑

j=1

Li j (t)
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Note that

d

dt
(Si + SVi ) = −

n∑

j=1

(
β1
i j I j + β2

i j I
V
j

)
Si −

n∑

j=1

(
β3
i j I j + β4

i j I
V
j

)
SVi

= −
n∑

j=1

(
β3
i j I j + β4

i j I
V
j

)
(Si + SVi )...

−
n∑

j=1

(
(β1

i j − β3
i j )I j + (β2

i j − β4
i j )I

V
j

)
Si .

Thus,

−
n∑

j=1

(
(β1

i j − β3
i j )I j + (β2

i j − β4
i j )I

V
j

)
Si = d

dt
(Si + SVi )...

+
n∑

j=1

(
β3
i j I j + β4

i j I
V
j

)
(Si + SVi )

= d

dt

(
(Si + SVi )eL(t)

)
e−L(t).

This means that

Si (t) + SVi (t) = e−L(t)

⎡

⎣Si (0) −
∫ t

0
eL(s)

n∑

j=1

(
(β1

i j − β3
i j )I j + (β2

i j − β4
i j )I

V
j

)
Si ds

⎤

⎦

= Si (0)

[
e−L(t) −

∫ t

0
eL(s)−K(s)−L(t)(K′(s) − L′(s))

(
Ni − Wi (s)

Ni

)]
ds.

Now, one can see that, as 0 ≤ Wi (s) ≤ Ni ,

0 ≤ Ni − Wi (s)

Ni
≤ 1 ∀s ≥ 0

and hence

e−L(t) = 1 −
∫ t

0
L′(s)e−L(s)ds ≤ 1 −

∫ t

0
L′(s)e−L(s)

(
Ni − Wi (s)

Ni

)
ds.

Now, this means that

Si (t) + SVi (t)

≤ Si (0) − Si (0)
∫ t

0

[
L′(s)e−L(s)
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+ eL(s)−K(s)−L(t)
n∑

j=1

(
K′(s) − L′(s)

)](
Ni − Wi (s)

Ni

)
ds.

This allows the use of Lemma B.1. Firstly, note that, as K′(s) ≥ L′(s) ≥ 0 and
W̃i (s) ≥ Wi (s), one has

Si (t) + SVi (t)

≤ Si (0) − Si (0)
∫ t

0

[
L′(s)e−L(s)

+ eL(s)−K(s)−L(t)
n∑

j=1

(
K′(s) − L′(s)

)](
Ni − W̃i (s)

Ni

)
ds.

Moreover,

∫ t

0

[
L′(s)e−L(s) + eL(s)−K(s)−L(t)

n∑

j=1

(
K′(s) − L′(s)

)]
ds

= 1 − e−L(t) + e−L(t) − e−K(t)

= 1 − e−K(t)

≥ 1 − e−K̃(t)

≥
∫ t

0

[
L̃′(s)e−L̃(s) + eL̃(s)−K̃(s)−L̃(t)

n∑

j=1

(
K̃′(s) − L̃′(s)

)]
ds

and Ni − Wi (s) is non-increasing in s. Thus, by Lemma B.1, with

g(s) = 1 − e−L(s) + e−L(t) − eL(s)−K(s)−L(t),

h(s) defined as the tilde version of g(s), and f (s) := Ni − Wi (s), one has

∫ t

0

[
L′(s)e−L(s) + eL(s)−K(s)−L(t)

n∑

j=1

(
K′(s) − L′(s)

)](
Ni − W̃i (s)

Ni

)
ds

≥
∫ t

0

[
L̃′(s)e−L̃(s) + eL̃(s)−K̃(s)−L̃(t)

n∑

j=1

(
K̃′(s) − L̃′(s)

)](
Ni − W̃i (s)

Ni

)
ds.

(26)

Thus, (as this integral is multiplied by -1 in (26)), combining this with (26) gives

Si (t) + SVi (t) ≤ S̃i (t) + S̃Vi (t) ∀t ∈ [0, T ]
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as required �


B.3 Lemma B.3

Lemma B.3 Suppose that

n∑

j=1

Ki j (t) ≥
n∑

j=1

K̃i j (t) ∀i ∈ {1, ..., n} and t ∈ [0, T ].

Then

Ii (t) + Ri (t) ≥ Ĩi (t) + R̃i (t) ∀t ∈ [0, T ].

To begin, one can write the equation for Si as

1

Si

dSi
dt

= −
n∑

j=1

(K ′
i j (t)) − Ui

Ni − Wi

and hence, integrating

ln(Si (t)) − ln(Si (0)) = −
n∑

j=1

Ki j (t) + ln(Ni − Wi (t)) − ln(Ni )

which implies

Si (t) =
(
Si (0)(Ni − Wi (t))

Ni

)
e−∑n

j=1 Ki j (t)

Using this result shows that

d

dt
(Ii + Ri ) =

n∑

j=1

(
β1
i j I j + β2

i j I
V
j

)
Si

=
n∑

j=1

K ′
i j (t)Si

=
[ n∑

j=1

K ′
i j (t)

](
Si (0)(Ni − Wi (t))

Ni

)
e−∑n

j=1 Ki j (t),

Thus,

Ii (t) + Ri (t) = Ii (0) +
∫ t

0

[ n∑

j=1

K ′
i j (s)

](
Si (0)(Ni − Wi (s))

Ni

)
e−∑n

j=1 Ki j (s)ds
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≥ Ĩi (0) +
∫ t

0

[ n∑

j=1

K ′
i j (s)

](
Si (0)(Ni − W̃i (s))

Ni

)
e−∑n

j=1 Ki j (s)ds,

(27)

using the fact that the initial conditions are the same in both cases and that Wi ≤ W̃i .
Now, one can use the results of Lemma B.1 with

g(t) = 1 − exp

(
−

n∑

j=1

Ki j (t)

)
, h(t) = 1 − exp

(
−

n∑

j=1

K̃i j (t)

)

and f (t) = (Ni − W̃i (t)), noting that

∫ t

0

[ n∑

j=1

K ′
i j (s)

]
e−∑n

j=1 Ki j (s)ds = 1 − e−∑n
j=1 Ki j (t)

≥ 1 − e−∑n
j=1 K̃i j (t)

=
∫ t

0

[ n∑

j=1

K̃ ′
i j (s)

]
e−∑n

j=1 K̃i j (s)ds

and that Ni − W̃i (t) is non-increasing. Thus,

Ii (t) + Ri (t) ≥ Ĩi (t) + R̃i (t) ∀t ∈ [0, T ]

as required.

B.4 Lemma B.4

Lemma B.4 Suppose that

n∑

j=1

Ki j (t) ≥
n∑

j=1

K̃i j (t) ∀i ∈ {1, ..., n} and t ∈ [0, T ].

Then,

Ri (t) ≥ R̃i (t) ∀t ∈ [0, T ]

Proof The result of Lemma B.3 can be written as

1

μ1
i

d Ri

dt
+ Ri ≥ 1

μ1
i

d R̃i

dt
+ R̃i ∀t ∈ [0, T ]
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which implies

d

dt

(
Rie

μ1
i t
)

≥ d

dt

(
R̃i e

μ1
i t
)

and hence, after integrating and cancelling exponentials, one finds

Ri (t) ≥ R̃i (t) ∀t ∈ [0, T ]

as required. �


B.5 Lemma B.5

Lemma B.5 Suppose that

T := inf
{
t : Ki j (t) < K̃i j (t) or Li j (t) < L̃i j (t) for some i, j ∈ {1, ..., n}

}

exists. Then, for some b ∈ {1, ..., n}, and some real constants κ and η,

Rb(T ) + κRV
b (T ) = R̃b(T ) + κ R̃V

b (T ),

Ib(T ) + ηI Vb (T ) ≤ Ĩb(T ) + η Ĩ Vb (T )

and

0 ≤ κ ≤ η ≤ 1

Proof Suppose that T exists. Then, by continuity, there exists some a and b such
that Kab(T ) = K̃ab(T ) or Lab(T ) = L̃ab(T ). These can be rearranged to give,
respectively,

Rb(T ) + μ1
bβ

2
ab

μ2
bβ

1
ab

RV
b (T ) = R̃b(T ) + μ1

bβ
2
ab

μ2
bβ

1
ab

R̃V
b (T )

or

Rb(T ) + μ1
bβ

4
ab

μ2
bβ

3
ab

RV
b (T ) = R̃b(T ) + μ1

bβ
4
ab

μ2
bβ

3
ab

R̃V
b (T ).

This can be written as

Rb(T ) + κRV
b (T ) = R̃b(T ) + κ R̃V

b (T ),

where, by the inequality constraints on the βα
i j and μα

i

κ ≤ μ1
b

μ2
b

. (28)
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Moreover, note that

d

dt

(
Rb + κRV

b

)
= μ1

b Ib + β2
abμ

1
b

β1
ab

I Vb

is a continuous function. Thus, if

d

dt

(
Rb + κRV

b

) ∣∣∣∣
t=T

>
d

dt

(
R̃b + κ R̃V

b

) ∣∣∣∣
t=T

,

then there exists some τ > 0 such that

∫ T+τ

T

d

dt

(
Rb(s) + κRV

b (s)

)
ds >

∫ T+τ

T

d

dt

(
R̃b(s) + κ R̃V

b (s)

)
ds ∀t ∈ [0, τ ]

and hence, in particular

Rb(T + t) + κRV
b (T + t) > R̃b(T + t) + κ R̃V

b (T + t) ∀t ∈ [0, τ ],

Thus, it is necessary that there is some b such that

d

dt

(
Rb + κRV

b

) ∣∣∣∣
t=T

≤ d

dt

(
R̃b + κ R̃V

b

) ∣∣∣∣
t=T

so

Ib(T ) + κμ2
b

μ1
b

I V (T ) ≤ Ĩb(T ) + κμ2
b

μ1
b

Ĩ Vb (T ).

This can be written as

Ib(t) + ηI Vb (t) ≤ Ĩb(t) + η Ĩ Vb (t),

where, by (28), the fact that μ2
b ≥ μ1

b, and the non-negativity of all parameters,

0 ≤ κ ≤ η ≤ 1.

as required �


B.6 Lemma B.6

For the purposes of this lemma, it is helpful to recall the inequality system (9)–(15).

Sb(T ) + SVb (T ) ≤ S̃b(T ) + S̃Vb (T ), (7)

Ib(T ) + Rb(T ) ≥ Ĩb(T ) + R̃b(T ) (8)
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Rb(T ) ≥ R̃b(T ), (9)

Rb(T ) + κRV
b (T ) ≤ R̃b(T ) + κ R̃V

b (T ), (10)

Ib(T ) + ηI Vb (T ) ≤ Ĩb(T ) + η Ĩ Vb (T ), (11)

0 ≤ κ ≤ η ≤ 1. (12)

and

Sb(T ) + Ib(T ) + Rb(T ) + SVb (T ) + I Vb (T ) + RV
b (T ) (13)

= S̃b(T ) + Ĩb(T ) + R̃b(T ) + S̃Vb (T ) + Ĩ Vb (T ) + R̃V
b (T ),

Lemma B.6 Suppose that the system (9) - (15) holds for some b ∈ {1, ..., n} and some
T ≥ 0. Then,

ηI Vb (T ) + κRV
b (T ) = η Ĩ Vb (T ) + κ R̃V

b (T )

Ib(T ) + Rb(T ) = Ĩb(T ) + R̃b(T )

I Vb (T ) + RV
b (T ) = Ĩ Vb (T ) + R̃V

b (T )

Sb(T ) + SVb (T ) = S̃b(T ) + S̃Vb (T ).

Proof To begin, note that adding inequalities (9), (12) and (13) gives

Sb(T ) + SVb (T ) + Rb(T ) + κRV
b (T ) + Ib(T ) + ηI Vb (T )

≤ S̃b(T ) + S̃Vb (T ) + R̃b(T ) + κ R̃V
b (T ) + Ĩb(T ) + η Ĩ Vb (T )

and then, using (15) shows that

(κ − 1)RV
b (T ) + (η − 1)I Vb (T ) ≤ (κ − 1)R̃V

b (T ) + (η − 1) Ĩ Vb (T ). (29)

Moreover, adding (12) and (13) shows that

Ib(T ) + ηI Vb (T ) + Rb(T ) + κRV
b (T ) ≤ Ĩb(T ) + η Ĩ Vb (T ) + R̃b(T ) + κ R̃V

b (T )

and then, using (10) shows that

ηI Vb (T ) + κRV
b (T ) ≤ η Ĩ Vb (T ) + κ R̃V

b (T ). (30)
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Now, from the inequality (12) combined with the inequality (11), it must be the case
that

RV
b (T ) − R̃V

b (T ) ≤ 1

κ
(R̃b(T ) − Rb(T )) ≤ 0. (31)

Define

x := RV
b (T ) − R̃V

b (T ) and y := I Vb (T ) − Ĩ Vb (T )

so that the system given by (14), (29), (30) and (31) reduces to

(κ − 1)x + (η − 1)y ≤ 0 (32)

κx + ηy ≤ 0

x ≤ 0

0 ≤ κ ≤ η ≤ 1. (33)

Note first that x = 0 implies that y = 0 as η and (η − 1) have different signs. Thus,
in this case, the inequalities (32) and (33) are in fact equalities.

Suppose instead that x �= 0 (so x < 0). The first two of these inequalities can be
rearranged (noting the signs of the denominators) to give

− (κ − 1)x

(η − 1)
≤ y ≤ −κx

η

and so, as −x > 0,

(κ − 1)

(η − 1)
≤ − y

x
≤ κ

η
. (34)

However, note that

κ < η ⇒ ηκ − η < ηκ − κ

⇒ η(κ − 1) < κ(η − 1)

⇒ κ − 1

η − 1
>

κ

η

and hence, as κ ≤ η, for there to be solutions to the inequality (34), it is necessary
that

κ = η ⇒ −y

x
= 1 ⇒ y = −x .

This means that the inequalities (32) and (33) are satisfied to equality in this and hence,
from before, all cases. Thus, it is necessary that

(κ − 1)RV
b (T ) + (η − 1)I Vb (T ) = (κ − 1)R̃V

b (T ) + (η − 1) Ĩ Vb (T ) (35)
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and

ηI Vb (T ) + κRV
b (T ) = η Ĩ Vb (T ) + κ R̃V

b (T ), (36)

which is the first required equality. Thus, one can once again add the inequalities (12)
and (13) to give

Ib(T ) + Rb(T ) +
[
ηI Vb (T ) + κRV

b (T )

]
≤ Ĩb(T ) + R̃b(T ) +

[
η Ĩ Vb (T ) + κ R̃V

b (T )

]

and so

Ib(T ) + Rb(T ) ≤ Ĩb(T ) + R̃b(T ), (37)

which, combined with (10), shows that

Ib(T ) + Rb(T ) = Ĩb(T ) + R̃b(T ). (38)

Moreover, one can subtract (35) from (36) to get

I Vb (T ) + RV
b (T ) = Ĩ Vb (T ) + R̃V

b (T )

and then, using (15) alongside (37) and (38) shows

Sb(T ) + SVb (T ) = S̃b(T ) + S̃Vb (T )

as required. �


B.7 Lemma B.7

Note that for this lemma, it will be assumed that each Ki j (t) ≥ K̃i j (t), rather than the
inequality simply holding for their sums as before.

Lemma B.7 Under the assumptions of Proposition A.1.1, suppose that the system of
inequalities (9)–(15) holds for some b ∈ {1, ..., n} and some T > 0. Suppose further
that

Ki j (t) ≥ K̃i j (t) ∀i, j ∈ {1, ..., n}.

Then,

Wi (t) = W̃i (t) ∀i ∈ {1, ..., n} and ∀t ∈ [0, T ].
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Proof By Lemma B.6, the system (16)–(18) must hold for b. Now, Equation (27) in
the proof of Lemma B.3 shows that

Ib(T ) + Rb(T ) = Sb(0)

Nb

∫ T

0

[ n∑

k=1

K ′
bk(s)

]
(Nb − Wb(s))e

−∑n
j=1 Kbk (s)ds. (39)

Now, the equality (16) shows

Ib(T ) + Rb(T ) = Ĩb(T ) + R̃b(T )

and hence, after cancelling the non-zero Sb(0) and Nb terms, (39) (and its tilde equiv-
alent) shows that

∫ T

0

[ n∑

k=1

K ′
bk(s)

]
(Nb − Wb(s))e

−∑n
k=1 Kbk (s)ds

=
∫ T

0

[ n∑

k=1

K̃ ′
bk(s)

]
(Nb − W̃b(s))e

−∑n
k=1 K̃bk (s)ds. (40)

Note that, from Lemma C.6, as � = {1, ..., n}

Ĩk(s), Ik(s) > 0 ∀k ∈ {1, ..., n} and s > 0.

Thus,

K ′
bk(t) ≥ β1

bk I j (t) > 0 ∀t > 0.

In particular,

[ n∑

j=1

K ′
bk(s)

]
e−∑n

j=1 Kbk (s) > 0 ∀s ∈ [0, T ].

Moreover, by continuity of K ′
ik (as continuous functions attain their bounds on closed

intervals), there exists some m > 0 such that

[ n∑

k=1

K ′
bk(s)

]
e−∑n

k=1 Kbk (s) > m ∀s ∈ [0, T ].

Hence, as Wb ≤ W̃b

∫ T

0

[ n∑

k=1

K ′
bk(s)

]
(Nb − Wb(s))e

−∑n
k=1 Kbk (s)ds

123



73 Page 44 of 71 M. J. Penn, C. A. Donnelly

=
∫ T

0

[ n∑

k=1

K ′
bk(s)

]
(Nb − W̃b(s) + (W̃b(s) − Wb(s))e

−∑n
k=1 Kbk (s)ds

≥
∫ T

0

[ n∑

k=1

K ′
bk(s)

]
(Nb − W̃b(s))e

−∑n
k=1 Kbk (s)ds + m

∫ T

0
W̃b(s) − Wb(s)ds.

(41)

Finally, as N − W̃b is decreasing and for any t ∈ [0, T ],
∫ t

0

[ n∑

k=1

K ′
bk(s)

]
e−∑n

k=1 Kbk (s)ds ≥
∫ t

0

[ n∑

k=1

K̃ ′
bk(s)

]
e−∑n

k=1 K̃bk (s)ds

one has, by Lemma B.1, setting

g(t) = 1 − e−∑n
k=1 Kbk (t), h(t) = e−∑n

k=1 K̃bk (s)

and f (t) = Nb − W̃b(s),

∫ T

0

[ n∑

k=1

K ′
bk(s)

]
(Nb − W̃b(s))e

−∑n
k=1 Kbk (s)ds

≥
∫ T

0

[ n∑

k=1

K̃ ′
bk(s)

]
(Nb − W̃b(s))e

−∑n
k=1 K̃bk (s)ds

= Ĩb(T ) + R̃b(T )

and so, combining this with (41),

Ib(T ) + Rb(T ) ≥ Ĩb(T ) + R̃b(T ) + m
∫ T

0
W̃b(s) − Wb(s)ds

≥ Ĩb(T ) + R̃b(T ) = Ib(T ) + Rb(T ).

Hence,

∫ T

0
W̃b(s) − Wb(s)ds = 0,

which by continuity means

Wb(t) = W̃b(t) ∀t ∈ [0, T ]

Now, moreover, substituting this back into the equality given in (40) shows that

∫ T

0

[ n∑

k=1

K ′
bk(s)

]
(Nb − Wb(s))e

−∑n
k=1 Kbk (s)ds
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=
∫ T

0

[ n∑

k=1

K̃ ′
bk(s)

]
(Nb − Wb(s))e

−∑n
k=1 K̃bk (s)ds.

Hence, integrating by parts, this shows that

0 = (Nb − Wb(T ))(e−∑n
k=1 Kbk (T ) − e−∑n

k=1 K̃bk (T ))...

+
∫ T

0
Ub(s)(e

−∑n
k=1 Kbk (s) − e−∑n

k=1 K̃bk (s))ds

Now,

n∑

k=1

K̃bk(s) ≥
n∑

k=1

Kbk(s) ∀s ∈ [0, T ]

and so, for equality, it is necessary that

(Nb − Wb(T ))(e−∑n
k=1 Kbk (T ) − e−∑n

k=1 K̃bk (T )) = 0

Thus, as it is assumed that Wb(t) < Nb for all t ≥ 0,

e−∑n
k=1 Kbk (T ) − e−∑n

k=1 K̃bk (T ) = 0

and hence, as Kbk(T ) ≥ K̃bk(T ) for all k ∈ {1, ..., n},

Kbk(T ) = K̃bk(T ) ∀k ∈ {1, ..., n} (42)

Now, suppose that K ′
bk(T ) > K̃ ′

bk for some k. Then, by continuity and the fact that
T > 0, it is necessary that there is some τ ∈ (0, T ) such that

∫ T

T−τ

K ′
bk(s)ds >

∫ T

T−τ

K̃ ′
bk(s)ds

which means that

Kbk(T − τ) < K̃bk(T − τ)

which is a contradiction to the definition of T . Thus, it is necessary that

K ′
bk(T ) ≤ K̃ ′

bk(T ) ∀k ∈ {1, ..., n}. (43)

Dividing (42) by β1
bk/μ

1
k and (43) by β1

bk shows that the inequality system (9)—(15)
holds for each k (as LemmasB.2–B.4 hold for any group) and so, followingLemmaB.6
and the previous work of this proof, it is necessary that

Wk(t) = W̃k(t) ∀t ∈ [0, T ]
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This holds for each k and hence the proof is complete. �


B.8 Lemma B.8

Lemma B.8 Define functions 

f
i to be



f
i (t) := fi (T + t) − f̃i (T + t) for f ∈ {S, I , R, SV , I V , RV ,W }

and suppose that



f
i (0) = 0 ∀ f ∈ {S, I , R, SV , I V , RV ,W }. (44)

Suppose further that the Ui (t) are right-continuous step functions. Then, for t ∈ [0, δ]
in the limit δ → 0, and for any x, y ∈ 	

x

μ1
i


R
i + y

μ2
i


RV

i = t3Si (T )(Ui (T ) − Ũi (T ))

6(Ni − Wi (T ))
⎡

⎣x
n∑

j=1

(K ′
i j (T )) − y

n∑

j=1

(L ′
i j (T ))

⎤

⎦+ O(δ4).

Proof As theUi (t) are step functions, for sufficiently small δ, they are constant on the
interval [T , T + δ], so this will be assumed. Note that, for any i ∈ {1, ..., n} and any
t ≥ 0

∣∣∣∣
dSi
dt

(t)

∣∣∣∣ ≤
∣∣∣∣∣∣

n∑

j=1

Si (t)β
1
i j I j (t)

∣∣∣∣∣∣
+
∣∣∣∣

Si (t)

Ni − Wi (t)
Ui (t)

∣∣∣∣

≤
∣∣∣∣∣∣

n∑

j=1

Niβ
1
i j N j

∣∣∣∣∣∣
+ + |1 ×Ui (t)|

≤ Ui (T ) + C,

where the constant term, C , is independent of t and the vaccination policy. Note the
second line follows from the fact that, as Wi (t) < Ni ,

Si (t)

Ni − Wi (t)
= Si (0)

Ni
exp

⎡

⎣−
n∑

j=1

Ki j (t)

⎤

⎦ ≤ 1.

Similarly, one can show (by increasing the constant C if necessary) that

∣∣∣∣∣
dSVi
dt

(t)

∣∣∣∣∣ ≤ Ui (T ) + C
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∣∣∣∣∣
d I Vi
dt

(t)

∣∣∣∣∣ ,
∣∣∣∣∣
dRV

i

dt
(t)

∣∣∣∣∣ ,
∣∣∣∣
d Ii
dt

(t)

∣∣∣∣ ,
∣∣∣∣
dRi

dt
(t)

∣∣∣∣ ≤ C

∣∣∣∣
dWi

dt
(t)

∣∣∣∣ ≤ Ui (T ).

Then, for t ∈ (0, δ) and f ∈ {S, I , R, SV , I V , RV ,W }

| fi (T + t) − fi (T )| =
∣∣∣∣
∫ T+t

T

d fi
dt

(s)ds

∣∣∣∣ ≤ (C +Ui (T ))δ

so that, in particular

fi (T + t) = fi (T ) + O(δ) ∀ f ∈ {S, I , R, SV , I V , RV ,W }. (45)

Now,

d
S
i

dt
= −

n∑

j=1

(Ki j Si − K̃i j S̃ j ) + SiUi

Ni − Wi
− S̃i Ũi

Ni − W̃i
.

Using (44) and (45), this equation linearises to

d
S
i

dt
(t) = Si (T )(Ui (t + T ) − Ũi (t + T ))

Ni − Wi (T )
+ O(δ).

Noting that

Ui (t + T ) − Ũi (t + T ) = Ui (T ) − Ũi (T ) ∀t ∈ [0, δ]

this means that

d
S
i

dt
= Si (T )(Ui (T ) − Ũi (T ))

Ni − Wi (T )
+ O(δ)

and so (for t < δ)


S
i (t) = t

Si (T )(Ui (T ) − Ũi (T ))

Ni − Wi (T )
+ O(δ2).

Now, one can linearise the equation for 
I
i . Note that

d
I
i

dt
=

n∑

j=1

(K ′
i j Si − K̃ ′

i j S̃i ) + μ1
i (Ii − Ĩi )
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and so, with

Ii (t + T ) = Ii (T ) + O(δ)

and similar expressions for other variables,

d
I
i

dt
= O(δ) ⇒ 
I

i (t) = O(δ2) for t < δ

Now, one can linearise in a different way. Note that

Ĩi (T + t) = Ii (T + t) + O(δ2) and Ĩ Vi (T + t) = I Vi (T + t) + O(δ2)

so

K̃ ′
i j (T + t) = K ′

i j (T + t) + O(δ2).

Thus,

d
I
i

dt
(T + t) =

n∑

j=1

(K ′
i j (T + t)Si (T + t) − K̃ ′

i j (T + t)S̃i (T + t)) + μ1
i 


I
i (T + t) + O(δ2)

= 
S
i (t)

n∑

j=1

(K ′
i j (T + t)) + O(δ2)

= t
Si (T )(Ui (T ) − Ũi (T ))

Ni − Wi (T )

n∑

j=1

(K ′
i j (T ) + O(δ)) + O(δ2)

= t
Si (T )(Ui (T ) − Ũi (T ))

Ni − Wi (T )

n∑

j=1

(K ′
i j (T )) + O(δ2)

and hence


I
i = t2

2

Si (T )(Ui (T ) − Ũi (T ))

Ni − Wi (T )

n∑

j=1

(K ′
i j (T )) + O(δ3).

Thus,

d
R
i

dt
= 
I

i μ
1
i ⇒ 
R

i (t) = μ1
i t

3

6

Si (T )(Ui (T ) − Ũi (T ))

Ni − Wi (T )

n∑

j=1

(K ′
i j (T )) + O(δ4).

Now, note that

d(
S
i + 
SV

i )

dt
= O(δ)
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as this derivative has no explicit dependence on U . Thus, in particular,


S
i + 
SV

i = O(δ2)

and so


SV
i = −t

Si (T )(Ui (T ) − Ũi (T ))

Ni − Wi (T )
+ O(δ2).

Then, as before (as the equation for d Ii
dt is the same as that for

d I Vi
dt , but with SVi instead

of Si , μ1
i instead of μ2

i and Ki j instead of Li j )

d
I V
i

dt
(T + t) = −t

Si (T )(Ui (T ) − Ũi (T ))

Ni − Wi (T )

n∑

j=1

(L ′
i j (T )) + O(δ2),

which means


I V
i = − t2

2

Si (T )(Ui (T ) − Ũi (T ))

Ni − Wi (T )

n∑

j=1

(L ′
i j (T )) + O(δ3)

and hence


RV

i (t) = −μ2
i t

3

6

Si (T )(Ui (T ) − Ũi (T ))

Ni − Wi (T )

n∑

j=1

(L ′
i j (T )) + O(δ4).

Thus,

x

μ1
i


R
i + y

μ2
i


RV

i = t3Si (T )(Ui (T ) − Ũi (T ))

6(Ni − Wi (T ))
⎡

⎣x
n∑

j=1

(K ′
i j (T )) − y

n∑

j=1

(L ′
i j (T ))

⎤

⎦+ O(δ4)

as required. �


B.9 Lemma B.9

Lemma B.9 Suppose that

T := inf
{
t : Ki j (t) ≥ K̃i j or Li j (t) ≥ L̃i j (t) for some i, j ∈ {1, ..., n}

}
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exists. Define functions 

f
i to be



f
i (t) := fi (T + t) − f̃i (T + t) for f ∈ {S, I , R, SV , I V , RV ,W }

and suppose that



f
i (0) = 0 ∀ f ∈ {S, I , R, SV , I V , RV ,W }.

Suppose further that the Ui (t) are right-continuous step functions,� = {1, ..., n} and
that

β1
i j > β3

i j > 0 and Ii (0) > 0 ∀i, j ∈ {1, ..., n}.

Then,

n∑

j=1

Ki j (t) ≥
n∑

j=1

K̃i j (t) ∀t ∈ [0, T + δ]

and

n∑

j=1

Li j (t) ≥
n∑

j=1

L̃i j (t) ∀t ∈ [0, T + δ],

for sufficiently small δ.

Proof By Lemma B.8, with x = β1
li and y = β2

li for some l ∈ {1, ..., n}

β1
li

μ1
i


R
i + β2

li

μ2
i


RV

i = t3Si (T )(Ui (T ) − Ũi (T ))

6(Ni − Wi (T ))
⎡

⎣β1
li

n∑

j=1

(K ′
i j (T )) − β2

li

n∑

j=1

(L ′
i j (T ))

⎤

⎦+ O(δ4).

Now, as β1
li ≥ β2

li , β
1
li > 0 and K ′

i j (t) and L ′
i j (t) are non-negative

β1
li

n∑

j=1

(K ′
i j (T )) − β2

li

n∑

j=1

(L ′
i j (T )) ≤ 0 ⇒

n∑

j=1

(K ′
i j (T )) ≤

n∑

j=1

(L ′
i j (T )). (46)

Noting that

K ′
i j (T ) ≥ L ′

i j (T ) ∀ j ∈ {1, ..., n},
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(46) requires

K ′
i j (T ) = L ′

i j (T ) ∀ j ∈ {1, ..., n}

which, from the definitions of K ′ and L ′ requires

β1
i j I j (T ) + β2

i j I
V
j (T ) = β3

i j I j (T ) + β4
i j I

V
j (T ).

Thus, as I j (T ) > 0 (as � ∈ {1, ..., n}) and β2
i j I

V
j (T ) ≥ β4

i j I
V
j (T ), it is necessary

that

β1
i j ≤ β3

i j ,

which is a contradiction. Thus,

β1
i j

n∑

j=1

(K ′
i j (T )) − β2

i j

n∑

j=1

(L ′
i j (T )) > 0

which means

Si (T )Ui (T ) < Si (T )Ũi (T ) ⇒ β1
i j

μ1
i


R
i + β2

i j

μ2
i


RV

i = −Cδ3 + O(δ4)

for some positive constant C . Now, if

Si (T )Ui (T ) > Si (T )Ũi (T )

then, necessarily, Ui (T ) > Ũi (T ). Thus, as 
W
i (0) = 0, one will have

Wi (T + t) > W̃i (T + t)

for sufficiently small t , which is a contradiction. Moreover, if

Si (T )Ui (T ) = Si (T )Ũi (T ) ∀i ∈ {1, ...n}

then the vaccination policies are the same in the interval [T , T +δ], as for each i , either
Si (T ) = 0 (in which case there is nomore vaccination in group i soUi (T ) = Ũi (T ) =
0) or Ui (T ) = Ũi (T ). Thus, the disease trajectories are the same, which contradicts
the definition of T , as then Ki j (T + t) = K̃i j (T + t) and Li j (T + t) = L̃i j (T + t)
for all t ∈ [0, δ].

Now, note that

n∑

i=1

Kli (t) −
n∑

i=1

K̃li (t) =
n∑

i=1

(
β1
li

μ1
i


R
i + βli2

μ2
i


RV

i

)
= −

n∑

i=1

Eiδ
3 + O(δ4),
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where Ei > 0 if Ui (T ) < Ũi (T ) and Ei = 0 otherwise. Thus, in particular

n∑

i=1

Ei > 0

and hence

n∑

i=1

Kli (t) −
n∑

i=1

K̃li (t) = −
n∑

i=1

Eiδ
3 + O(δ4) < 0

for sufficiently small δ. Thus,

n∑

j=1

Ki j (t) ≥
n∑

j=1

K̃i j (t) ∀t ∈ [0, T + δ]

and, by identical arguments (using x = β3
li and y = β4

li in Lemma B.8)

n∑

j=1

Li j (t) ≥
n∑

j=1

L̃i j (t) ∀t ∈ [0, T + δ]

as required. �


B.10 Lemma B.10

Lemma B.10 Suppose that

T := inf
{
t : Ki j (t) < K̃i j (t) or Li j (t) < L̃i j (t) for some i, j ∈ {1, ..., n}

}
.

Then, for any δ > 0, there exists some t ∈ (T , T + δ) and some real parameters
0 ≤ κ ≤ η ≤ 1 such that

Rb(t) + κRV
b (t) < R̃b(t) + κ R̃V

b (t) and Ib(t) + ηI Vb (t) ≤ Ĩb(t) + η Ĩ Vb (t).

Proof Firstly, note that by the definition of T , for each δ > 0, there must exist i, j ∈
{1, ..., n} and t ∈ (0, δ) such that

Ki j (T + t) < K̃i j (T + t) or Li j (T + t) < L̃i j (T + t).

That is, there is some b ∈ {1, .., n} such that

Rb(T + t) + κRV
b (T + t) < R̃b(T + t) + κ R̃V

b (T + t) (47)
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where

κ ≤ μ1
b

μ2
b

.

Note that

μ1
b Ib(t) + κμ2

b I
V
b (t) = d

dt

(
Rb(t) + κRV

b (t)
)

.

Now, define



f
i (t) := fi (T + t) − f̃i (T + t) ∀ f ∈ {I , I V , R, RV }

and

τ := sup{s ∈ [0, t] : 
R
b (s) + κ
RV

b (s) ≥ 0}

which exists as 
R
b (0) + κ
RV

b (0) = 0. Note that τ < t by (47). Note also that by
continuity, it is necessary that


R
b (τ ) + κ
RV

b (τ ) = 0.

Now, by the mean value theorem (as
R
b +κ
RV

b is continuously differentiable), there
exists an s in the non empty interval (τ, t) such that

μb
1


I
b(s) + κμ2

b

I V
b (s) = 1

t − τ

[
(
R

b (t) + κ
RV

b (t)) − (
R
b (τ ) + κ
RV

b (τ ))

]

= 1

t − τ

[

R

b (t) + κ
RV

b (t)

]

< 0

while also


R
b (s) + κ
RV

b (s) < 0,

by definition of τ . Thus, defining η := κ
μ2
b

μ1
b

≤ 1,


R
b (s) + κ
RV

b (s) < 0 
I
b(s) + η
I V

b (s) ≥ 0 and 0 ≤ κ ≤ η ≤ 1

as required. �
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B.11 Lemma B.11

Lemma B.11 Consider two non-negative functions A(t) and B(t) such that B(t) is
non-decreasing and differentiable with a Lebesgue integrable derivative B ′(t) satis-
fying

∫ t

0
B ′(s)ds = B(t) − B(0) ∀t ≥ 0.

Suppose further that for each T ≥ 0, one can partition the interval [0, T ] into a finite
number of subintervals SA

1 , ..., SA
m and SB

1 , ..., SB
k such that

s ∈
m⋃

i=1

SA
i ⇔ A(s) > B ′(s)

Then, there exists a unique function χ(t) for t ≥ 0 such that

χ(t) :=
{

A(t) if
∫ t
0 χ(s)ds < B(t)

min(A(t), B ′(t)) if
∫ t
0 χ(s)ds ≥ B(t)

Proof χ can be constructed for each of the subintervals SA
i and SB

i . Note first that,

t ∈ SB
i ⇒ B ′(t) ≥ A(t) ⇒ χ(t) = A(t)

Now, suppose that t ∈ SA
i for some i . Then, as SA

i is an interval, one can suppose
SA
i = [ci , di ]. Define

τ := inf

({
s ∈ SA

i : B(s) ≤
∫ ci

0
χ(u)du +

∫ s

ci
A(u)du

}
∪ {di }

)
.

If τ = di , then one has (uniquely) χ(t) = A(t) in SA
i . Otherwise, one has (again

uniquely)

χ(t) = A(t) ∀t ∈ [ci , τ ] and χ(t) = B ′(t) ∀t ∈ [τ, di ]
Uniqueness can be demonstrated as follows. If χ(t) = B ′(t) for some t ∈ [ci , τ ], then
it is necessary (as A(t) > B ′(t) so χ(t) �= A(t) in this case)

∫ t

0
χ(s) ≥ B(t)

As A(t) ≥ B ′(t) in SA
i , so χ(t) is bounded by A(t), the previous inequality can be

extended to give

B(t) ≤
∫ t

0
χ(s) ≤

∫ ci

0
χ(u)du +

∫ s

ci
A(u)du
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which contradicts the definition of τ . A similar argument stands to prove uniqueness
in [τ, di ].
Thus, χ is uniquely defined in each of the finite number of intervals and hence in
[0, T ] for each T and hence, it is uniquely defined for all t as required. �


C Results on the SIR Equations

This section presents a variety of results on the SIR equations which are used in the
proofs of the theorems in this paper. Many of them are well-known and widely used
in the literature, but this appendix aims to provide a source of formal definitions and
proofs of these results.

Before the results can be proved, it is necessary to establish two lemmas on differ-
ential equations.

C.1 Lemma C.1

Lemma C.1 Suppose that H(t) is a continuous non-negative n × n matrix for t ≥ 0
and that a ∈ 	n. Then, suppose that a function u : 	 → 	n satisfies

u(t) ≤ a +
∫ t

0
H(s)u(s)ds ∀t ≥ 0.

Then,

u(t) ≤
(
1 +

∫ t

0
V (t, s)H(s)ds

)
a,

where the matrix V (t, s) satisfies

V (t, s) = In +
∫ t

s
H(k)V (k, s)dk

and In is the n × n identity matrix.

Proof This theorem is a special case of the theorem proved in Chandra and Davis
(1976) where (in the notation of Chandra and Davis 1976), x , y and z have been
replaced by t , s and k respectively, G(t) has been set to be the identity matrix and x0

has been set to zero. �


C.2 Lemma C.2

Lemma C.2 Consider a continuous, time-dependent, matrix A(t) which satisfies

A(t)i j ≥ 0 ∀t ≥ 0 and ∀i �= j
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and a constant matrix B that satisfies

Bi j ≥ 0 ∀t ≥ 0 and ∀i �= j .

Then, suppose that each element of A(t) is non-increasing with t and that

A(t)i j ≥ Bi j ∀t ≥ 0 and ∀i �= j .

Moreover, define a non-negative initial condition v and suppose that y and z solve the
systems

d y
dt

= A(t) y and
d z
dt

= B z

with

y(0) = z(0) = v ≥ 0.

Then,

y(t) ≥ z(t) ≥ 0 ∀t ≥ 0.

Proof To begin, define

μ := min
i

(
Bii

)

so that, defining

A∗(t) := A(t) + μI and B∗ := B + μI ,

where I is the identity matrix, A∗ and B∗ are non-negative matrices. Moreover, note
that

d y
dt

+ μ y = A∗(t) y

and so

e−μt d

dt

(
eμt y

) = A∗(t) y.

Thus, define

y∗(t) := eμt y(t)
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so

d y∗

dt
= A∗(t) y∗.

Similarly, defining

z∗(t) := eμt z(t)

gives

d z∗

dt
= B z∗

while, moreover,

y∗ ≥ z∗ ⇔ y ≥ z and z∗ ≥ 0 ⇔ z ≥ 0.

Thus, it is simply necessary to prove that the results of this lemma hold when A(t)
and B are non-negative matrices.
Now, it is helpful to note that, as the off-diagonal entries of A(t) and B are non-
negative, the two differential systems are totally positive (Schwarz 1970). Thus, in
particular, as v is non-negative,

y(t), z(t) ≥ 0 ∀t ≥ 0,

which proves one of the required inequalities. Now, one can also note that

d

dt

(
y − z

)
= A(t) y − B z.

As A(t) is assumed to be non-negative, and y is non-negative,

d

dt

(
y − z

)
≥ B( y − z).

Defining ζ := z − y and integrating gives

ζ (t) ≤
∫ t

0
B(s)ζ (s)ds,

noting that ζ = 0. Hence, by Lemma C.1, one has

ζ (t) ≤ 0 ⇒ y ≥ z

as required. �
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C.3 Lemma C.3

Lemma C.3 Define the set of functions

Fi (t) :=
{
Si (t), Ii (t), Ri (t), S

V
i (t), I Vi (t), RV

i (t)

}
.

Then, for all t ≥ 0 and i ∈ {1, ..., n},

0 ≤ f ≤ Ni ∀ f ∈ Fi (t).

Proof Noting that

∑

f ∈Fi (t)

f = Ni ,

it is simply necessary to show that (for each t and i)

f (t) ≥ 0 ∀ f (t) ∈ Fi (t).

Now, note that

dSi
dt

= −
n∑

j=1

(β1
i j I j + β2

i j I
V
j )Si − Ui (t)Si

Ni − Wi (t)
,

which means

d

dt

(
Si exp

⎡

⎣−
n∑

j=1

(
β1
i j

μ1
j

R j + β2
i j

μ2
j

RV
j ) − ln(Ni − Wi )

⎤

⎦
)

= 0

and hence (using the initial conditions)

Si (t) = Si (0)(Ni − Wi (t))

Ni
exp

(
−

n∑

j=1

[
β1
i j

μ1
j

R j + β2
i j

μ2
j

RV
j

])
.

As Wi (t) ≤ Ni by construction, this means that

Si (t) ≥ 0 as required.

Now, note that

dSVi
dt

= −
n∑

j=1

(β3
i j I j + β4

i j I
V
j )SVi + Ui (t)Si

Ni − Wi (t)
≥ −

n∑

j=1

(β3
i j I j + β4

i j I
V
j )SVi
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so that

d

dt

(
SVi exp

⎡

⎣
n∑

j=1

(
β3
i j

μ1
j

R j + β4
i j

μ2
j

RV
j

)⎤

⎦
)

≥ 0,

which means (as SVi (0) = 0)

SVi (t) exp

⎡

⎣
n∑

j=1

(
β3
i j

μ1
j

R j (t) + β4
i j

μ2
j

RV
j (t)

)⎤

⎦ ≥ 0

and hence

SVi (t) ≥ 0 as required.

Now, define the vector

y :=
(

I
IV

)

Then, one can rewrite the equations for Ii and I Vi in the form

d y
dt

= M(S(t), SV (t)) y

for some matrix M , where, from the previous results

Mi j ≥ 0 ∀i �= j .

Thus, from Lemma C.2,

y(t) ≥ 0 ∀t ≥ 0.

Then,

dRi

dt
= μ1

i Ii ≥ 0 so Ri (t) ≥ 0

and similarly,

RV
i (t) ≥ 0

and so the proof is complete. �
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C.4 Lemma C.4

Lemma C.4 For each i ,

lim
t→∞(Ii (t)) = lim

t→∞(I Vi (t)) = 0.

Proof Firstly, suppose

lim
t→∞ (inf {Ii (s) : s ≥ t}) = Q,

noting this infimum exists as Ii is bounded below by 0, and the limit exists as the
sequence of infima given s ≤ t is non-decreasing and bounded above by Ni . If Q �= 0,
there exists some m > 0 and some t such that for all s ≥ t

Ii (s) ≥ m ⇒ dRi

dt
(s) ≥ mμ1

i ⇒ Ri

(
t + 2Ni

mμ1
i

)
> Ni

which contradicts Lemma C.3. Thus, Q = 0 and so there exists some sequence tn
such that

lim
n→∞(tn) = ∞ and lim

n→∞(I (tn)) = 0. (48)

Now note that Si (t) is non-increasing and bounded and that Ri (t) and (SVi (t) +
I Vi (t) + RV

i (t)) are non-decreasing and bounded. Thus, their limits as t → ∞ must
exist and be finite, so in particular

lim
t→∞(Ii (t)) = lim

t→∞(Ni − Si (t) − Ri (t) − SVi (t) − I Vi (t) − RV
i (t))

must exist. Thus, by (48), the only possible limit is 0 so

lim
t→∞(Ii (t)) = Q = 0

as required. By noting that Si (t) + SVi (t) is non-increasing and that Ii (t) + Ri (t) and
RV
i (t) are non-decreasing, an identical argument shows that

lim
t→∞(I Vi (t)) = 0. �


C.5 Lemma C.5

Lemma C.5 Suppose that Ii (t) > 0 for some t ≥ 0 and some i ∈ {1, ..., n}. Then,

Ii (s) > 0 ∀s > t .

An analogous result holds for I Vi (t).
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Proof Note that

d Ii
dt

≥ −μ1
i Ii

and so

d

dt

(
eμ1

i t Ii (t)
)

≥ 0

which means, for any s > t

eμ1
i s Ii (s) ≥ eμ1

i t Ii (t)

and hence

Ii (s) > 0

as required. The same argument then works for I Vi (t) as well (with a μ2
i instead of a

μ1
i ). �


C.6 Lemma C.6

Lemma C.6 Define

� :=
{
i : ∃t ≥ 0 s.t. Ii (t) > 0 or I Vi (t) > 0

}
.

Moreover, define

�0 := {i : Ii (0) > 0}

and the n by n matrix M by

Mi j = Si (0)β
1
i j .

Then, define the connected componentC of�0 in M as follows. The index i ∈ {1, ..., n}
belongs to C if any only if there is some sequence a1, ..., ak such that

a j ∈ {1, ..., n} ∀ j ∈ {1, ..., k},
Ma1,a2Ma2,a3 ..., Mak−1ak > 0

and

a1 = i and ak ∈ �0.
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Then,
(a) i ∈ C ⇒ Ii (t) > 0 ∀t > 0.
(b) � = C ∪ �0.
Thus, in particular,

i ∈ C ∪ �0 = � ⇔ I (t) > 0 ∀t > 0.

Proof (a): The proof will proceed by induction. For k ≥ 1, define Pk is the set of
elements of C that are connected to an element of �0 by a sequence of length at most
k. Then, note that

Pk ⊆ Pk+1 ∀k ≥ 1

and

Pn2 = C

as there are n2 elements in M . (Thus, if i ∈ C then there must be a sequence of length
at most n2 connecting i with an element in �0 as any loops can be ignored.)

The inductive hypothesis is that

i ∈ Pk ⇒ Ii (t) > 0 ∀t > 0.

The explanation of the base case will be left until the end of the proof. Suppose that
this claim holds for some k ≥ 0. If Pk+1 = Pk , then

i ∈ Pk+1 ⇒ i ∈ Pk ⇒ Ii (t) > 0 ∀t > 0

and so the inductive step is complete. Otherwise, consider any i ∈ Pk+1/Pk . Then,
there exists some j such that

Mi j > 0 and j ∈ Pk .

Thus, by continuity, for sufficiently small τ ,

t < τ ⇒ Si (t)β
1
i j > 0

and indeed, by Boundedness Theorem, there exists some χ > 0 such that

Si (t)β
1
i j > χ ∀t ∈ [0, τ ].

Now, choose any ε ∈ [0, τ ]. By Boundedness Theorem, Ii (t) achieves is bounded and
achieves its maximum, θε in the interval [0, ε]. Moreover, θε > 0 as Ii (t) > 0 in (0, ε)
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by assumption. Thus, by continuity, there exists some non-empty region (δε,
ε) such
that

t ∈ (δε,
ε) ⇒ Ii (t) >
θε

2
.

Thus, in particular

∫ ε

0
Si (t)β

1
i j I j (t)dt ≥ χ

∫ 
ε

δε

I j (t)dt ≥ χθε

2
(
ε − δε) > 0.

Now, note that

d Ii
dt

≥ Si (t)β
1
i j I j (t) − μ1

i Ii (t).

Suppose for a contradiction that Ii (t) = 0 for all t ∈ [0, ε]. Then,

d Ii
dt

≥ Si (t)β
1
i j I j (t) ⇒ Ii (ε) ≥ Ii (0) + χMε

2
(
ε − δε)

and hence,

Ii (ε) > 0,

which is a contradiction. Thus, there exists a t ∈ [0, ε] such that Ii (t) > 0 and hence,
by Lemma C.5,

Ii (t) > 0 ∀t ∈ [ε,∞).

Thus, as ε was any constant in the region (0, τ ), and τ > 0, this means that

Ii (t) > 0 ∀t > 0

as required.
Finally, note that the base case k = 1 can be proved in exactly the same way, except
now j ∈ �0 (but this still means that I j (t) > 0 for all t > 0 by Lemma C.5), and so
(a) has been proved.
(b): The previous work has shown that

C ⊆ �.

Hence, as clearly �0 ⊆ �, this means that

C ∪ �0 ⊆ �
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and so it suffices to prove that

� ⊆ C ∪ �0.

That is, it suffices to prove

i /∈ C ∪ �0 ⇒ Ii (t) = I Vi (t) = 0 ∀t ≥ 0.

To check that this solution satisfies the equations, one notes that, in this case, if
i /∈ C ∪ �0, then

d Ii
dt

=
n∑

j=1

Si (t)β
1
i j I j (t) +

n∑

j=1

Si (t)β
2
i j I

V
j (t) − μIi (t)

=
∑

j∈C∪�0

Si (t)β
1
i j I j (t) +

∑

j∈C∪�0

Si (t)β
2
i j I

V
j (t)

and, similarly,

d I Vi
dt

=
∑

j∈C∪�0

SVi (t)β3
i j I j (t) +

∑

j∈C∪�0

Si (t)β
4
i j I

V
j (t),

as I j (t) = I Vj (t) = 0 for all j /∈ C ∪ �0.

Now, suppose that i /∈ C ∪ �0 and j ∈ C ∪ �0. Then, by definition of C , this
means that

Mi j = Si (0)β
1
i j = 0 ∀ j ∈ C ∪ �0

and hence, as Si is non-increasing and non-negative

Si (t)β
1
i j = 0 ∀ j ∈ C ∪ �0.

Now, as β1
i j ≥ β2

i j ≥ 0, this means that

Si (t)β
2
i j = 0 ∀ j ∈ C ∪ �0

so that

∑

j∈C∪�0

Si (t)β
1
i j I j (t) +

∑

j∈C∪�0

Si (t)β
2
i j I

V
j (t) = 0,

which means

d Ii
dt

= 0 as required.
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Moreover, as SVi (0) = 0, it is necessary that

(Si (0) + SVi (0))β1
i j = 0 ∀ j ∈ C ∪ �0

so, as (Si + SVi )β1
i j is non-increasing and non-negative

(Si (t) + SVi (t))β1
i j = 0 ∀ j ∈ C ∪ �0

and hence, as Si (t) is non-negative

(SVi (t))β1
i j = 0 ∀ j ∈ C ∪ �0.

Thus, as β1
i j ≥ β3

i j ≥ β4
i j ≥ 0, one has

∑

j∈C∪�0

SVi (t)β3
i j I j (t) +

∑

j∈C∪�0

Si (t)β
4
i j I

V
j (t) = 0

and hence

d I Vi
dt

= 0 as required.

Then, one can separately solve the system for all j ∈ C∪�0 as the equations will now
be independent of any indices i /∈ C ∪ �0 (as they only depend on these indices via
the Ii and I Vi terms, which are identically zero). Thus, by the uniqueness of solution,
one must have

i ∈ C ∪ �0 ⇒ Ii (t) = I Vi (t) = 0 ∀t ≥ 0

and hence part (b) is proved. Thus, the lemma has been proved. �


C.7 Lemma C.7

Lemma C.7 Consider a set C = [a1, b1] × [a2, b2] × ... × [an, bn] that is a Cartesian
product of real intervals. Suppose that f : 	n → 	 is differentiable with bounded
derivatives in C. Then, f is Lipschitz continuous on C - that is, there exists some
L > 0 such that

| f (x) − f ( y)| ≤ L
n∑

i=1

|xi − yi | ∀x, y ∈ C .

Proof Note that, by assumption, for each i ,

∂ f

∂xi
is bounded in C,
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so define the global bound for all i to be M. Choose some x, y ∈ C . Define the points
pk ∈ C for k = 0, 1, ..., n by

pki =
{
yi if i ≤ k
xi otherwise

and define the curve γi to be the straight line joining the point pi−1 to the point pi .
As C is a product of intervals, the γi lie entirely in C .

Define � to be the union of the curves γi , so that � joins p0 = x to pn = y. Then

| f (x) − f ( y)| =
∣∣∣∣
∫

�

∇ f · dx
∣∣∣∣

=
∣∣∣∣

n∑

i=1

∫

γi

∇ f · dx
∣∣∣∣

=
∣∣∣∣

n∑

i=1

∫ s=yi

s=xi

∂ f

∂xi
( pi−1 + (s − xi )ei )ds

∣∣∣∣

≤
n∑

i=1

∣∣∣∣
∫ s=yi

s=xi

∂ f

∂xi
( pi−1 + (s − xi )ei )ds

∣∣∣∣

≤
n∑

i=1

sup
s∈C

∣∣∣∣
∂ f

∂xi
(s)

∣∣∣∣ |yi − xi |

≤ M
n∑

i=1

|yi − xi |

where ei is the ith canonical basis vector. Hence, the required Lipschitz continuity
holds with M = L . �


C.8 Lemma C.8

Lemma C.8 Define the set of functions

F :=
{
Si (t; ε), Ii (t; ε), Ri (t; ε), SVi (t; ε), I Vi (t; ε), RV

i (t; ε) : i ∈ {1, ..., n}, ε, t ≥ 0

}
,

where for each fixed ε, these functions solve the model equations with parameters

P =
{
βα
i j (ε), μ

γ

i (ε) : i, j ∈ {1, ..., n}, α ∈ {1, 2, 3, 4}, γ ∈ {1, 2} and ε ≥ 0

}
,

initial conditions

I =
{
f (0; ε) : i ∈ {1, ..., n}, f ∈ F and ε ≥ 0

}
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and vaccination policy U(t; ε). Suppose that

|p(ε) − p(0)| ≤ ε ∀p ∈ P,

| fi (0; ε) − fi (0; 0)| ≤ ε ∀ f ∈ F

and that

|Wi (t, ε) − Wi (t, 0)| < ε ∀t ≥ 0.

Moreover, suppose that for each i ∈ {1, ..., n} and ε ≥ 0,

Ui (s; ε) ≥ 0 and
∫ t

0
Ui (s; ε)ds ≤ Ni ∀t ≥ 0.

Then, for each δ > 0 and each T > 0 there exists some η > 0 (that may depend on T
and δ) such that

ε ∈ (0, η) ⇒ | f (t; ε) − f (t; 0)| < δ ∀ f ∈ F and ∀t ∈ [0, T ]

Proof To begin, it is helpful to note that, by Lemma C.3,

f (t; ε) ∈ [0,max(Ni )] ∀ f ∈ F and t ≥ 0

and that, by assumption on the feasibility of Ui

W (t; ε) ∈ [0,max(Ni )] ∀t ≥ 0.

Moreover, as the parameter values converge, it can be assumed that

p(ε) ∈ [α, β] ∀ε ≥ 0 and p ∈ P

for some α, β ≥ 0. Moreover, it can be assumed that, as each μa
i > 0, there is some

γ > 0 such that μa
i (ε) > γ for all ε ≥ 0.

However, there is no condition on the maximal difference (at a point) between
Ui (t; ε) and Ui (t; 0). To avoid this problem, it is helpful to consider the variable
SOi := Si + SVi instead of SVi . Then, the equations for Si and SOi can be written as

Si (t; ε) = Si (0)(Ni − Wi (t; ε))

Ni
exp

⎡

⎣−
n∑

j=1

(
β1
i j (ε)R j (t; ε)

μ1
j (ε)

+ β2
i j (ε)R

V
j (t; ε)

μ2
j (ε)

)⎤

⎦

dSOi (t; ε)

dt
= −

n∑

j=1

[ (
β1
i j (ε)I j (t; ε) + β2

i j (ε)I
V
j (t; ε)

)
Si (t; ε)

]

−
n∑

j=1

[ (
β3
i j (ε)I j (t; ε) + β4

i j (ε)I
V
j (t; ε)

)
(SOi (t; ε) − Si (t; ε))

]
.
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Then, one can define

v := (SO , I, IV , R, RV )T

and p(ε) to be a vector of the elements of P at some ε ≥ 0. Then, (substituting for
S), the model equations can be written in the form

dv(t; ε)

dt
= �(v(t; ε),W(t; ε), p(ε))

where � is a smooth function. Thus, from Lemma C.7, there exists some constant L
such that, for v, W and p within the closed bounded feasible set of values and any
j ∈ {1, ..., 5n},

|�(v,W , p) j − �(v∗,W∗, p∗) j |

≤ L

⎛

⎝
5n∑

i=1

|vi − v∗
i | +

n∑

i=1

|Wi − W ∗
i | +

4n2+2n∑

i=1

|pi − p∗
i |
⎞

⎠ .

Thus, in particular, this means that

d

dt

(
|v j (t; ε) − v j (t; 0)|

)
≤
∣∣∣∣
d

dt

(
v j (t; ε) − v j (t; 0)

)∣∣∣∣

≤
∣∣∣∣�(v(t; ε),W(t; ε), p(ε))i − �(v(t; 0),W(t; 0), p(ε))i

∣∣∣∣

≤ L

( 5n∑

i=1

|vi (t; ε) − vi (t; 0)| +
n∑

i=1

|Wi (t; ε) − Wi (t; 0)|...

+
4n2+2n∑

i=1

|pi − p∗
i |
)

.

Now, adding these 5n inequalities together, one seems that

d

dt

( 5n∑

i=1

|vi (t; ε) − vi (t; 0)|
)

≤ 5nL

⎛

⎝
5n∑

i=1

|vi (t; ε) − vi (t; 0)| +
n∑

i=1

|Wi (t; ε) − Wi (t; 0)| +
4n2+2n∑

i=1

|pi − p∗
i |
⎞

⎠

and hence

5n∑

i=1

[
d

dt

(
e−5nLt |vi (t; ε) − vi (t; 0)|

)]
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≤ 5nLe−5nLt

⎛

⎝
n∑

i=1

|Wi (t; ε) − Wi (t; 0)| +
4n2+2n∑

i=1

|pi − p∗
i |
⎞

⎠

≤ (15n2 + 20n3)Lεe−5nLt .

Thus, integrating (and using the fact that the initial conditions differ by at most ε)

e−5nLt
5n∑

i=1

|vi (t; ε) − vi (t; 0)| ≤
5n∑

i=1

|vi (0; ε) − vi (0; 0)| + (3n + 4n2)ε(1 − e−5nLt )

≤ 5nε + (3n + 4n2)ε(1 − e−5nLt )

which means

5n∑

i=1

|vi (t; ε) − vi (t; 0)| ≤ 5nεe5nLt + (3n + 4n2)ε(e5nLt − 1)

and hence, for each i ∈ {1, ..., 5n}

|vi (t; ε) − vi (t; 0)| ≤ 5nεe5nLt + (3n + 4n2)ε(e5nLt − 1).

The right-hand side is non-decreasing in t (as L > 0) so, taking

ε <
δ

5ne5nLt + (3n + 4n2)(e5nLt − 1)

ensures that the required inequalities hold for I , IV , R and RV for all s ≤ t . Now,
note also that Si (t; ε) is a smooth function of Wi (t; ε), v(ε), Si (0; ε) and p so that
there exists an L ′ such that

|Si (t; ε) − Si (0; ε)| < L ′
( 5n∑

i=1

|vi − v∗
i | +

n∑

i=1

|Wi − W ∗
i |...

+
4n2+2n∑

i=1

|pi − p∗
i | + |Si (0; ε) − Si (0; 0)|

)

< L ′ε
[
5ne5nLt + (3n + 4n2)(e5nLt − 1) + (3n + 4n2) + 1

]

:= χ(t)ε

and so, as χ(t) is non-decreasing in t , taking

ε <
δ

χ(t)
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gives the required inequalities for S for all times s ≤ t . Finally, note that

|SVi (t; ε) − SVi (t; 0)| = |SOi (t; ε) − SOi (t; 0) − Si (t; ε) + Si (t; 0)|
≤ |SOi (t; ε) − SOi (t; 0)| + |Si (t; ε) − Si (t; 0)|
≤ +5nεe5nLt + (3n + 4n2)ε(e5nLt − 1) + εχ(t)

and so, as the right-hand side is increasing in t , taking

ε <
δ

5ne5nLt + (3n + 4n2)(e5nLt − 1) + χ(t)

gives the required inequalities for SV for all times s ≤ t and hence completes the
proof. �
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