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Abstract
A time series is an extremely abundant data type arising in many areas of scientific
research, including the biological sciences. Any method that compares time series
data relies on a pairwise distance between trajectories, and the choice of distance
measure determines the accuracy and speed of the time series comparison. This paper
introduces an optimal transport type distance for comparing time series trajectories that
are allowed to lie in spaces of different dimensions and/or with differing numbers of
points possibly unequally spaced along each trajectory. The construction is based on a
modified Gromov–Wasserstein distance optimization program, reducing the problem
to a Wasserstein distance on the real line. The resulting program has a closed-form
solution and can be computed quickly due to the scalability of the one-dimensional
Wasserstein distance. We discuss theoretical properties of this distance measure, and
empirically demonstrate the performance of the proposed distance on several datasets
with a range of characteristics commonly found in biologically relevant data. We
also use our proposed distance to demonstrate that averaging oscillatory time series
trajectories using the recently proposed FusedGromov–Wasserstein barycenter retains
more characteristics in the averaged trajectorywhen compared to traditional averaging,
which demonstrates the applicability of Fused Gromov–Wasserstein barycenters for
biological time series. Fast and user friendly software for computing the proposed
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distance and related applications is provided. The proposed distance allows fast and
meaningful comparison of biological time series and can be efficiently used in a wide
range of applications.

Keywords Gromov–Wasserstein distance · Time series distance · Optimal transport ·
Biological time series

1 Introduction

Time series, where observations are organized into a discrete, ordered list or tra-
jectory, is one of the most important data types across many biological disciplines,
including genetics (Bar-Joseph et al. 2012), epidemiology (Bhaskaran et al. 2013),
ecology (Turchin and Taylor 1992), and medical sciences (Wei et al. 2005). Compar-
ing biological time series within and between different groups of subjects or different
experimental conditions allows for the identification of features associated with a
group/condition of interest. Any comparison of time series relies on a pairwise dis-
similarity measure between trajectories, with a large body of literature devoted to
various types of pairwise distances1 (see Wang et al. 2013 for a review of distance
measures). A distance measure is required for any type of machine learning task that
quantitatively compares time series (Esling and Agon 2012), such as time series clas-
sification (Abanda et al. 2019) or clustering (Aghabozorgi et al. 2015). Thus, the type
of distance chosen for a particular machine learning task determines the accuracy and
speed of time series comparison (Ding et al. 2008).

Here, we propose a time series distance measure that captures differences in overall
shapes of the trajectories, making the measure applicable to a wide range of biological
time series datasets. This new distance measure is especially suited to time series tra-
jectories whose shapes are indicative of underlying mechanisms or behavior. The idea
behind this construction is to view trajectories in the dataset as separate metric spaces,
and compare these metric spaces with the aid of optimal transport. The general princi-
ple of viewing each member of (any) dataset as its own metric space and then utilizing
optimal transport to compare the metric spaces has been an active area of research in
the past decade, with significant progress achieved in both the theoretical principles
and application of these concepts. The pioneering work of Mémoli (2011) defined a
distance betweenmetric spaces termed theGromov-Wasserstein (GW) distance, which
can be used to distinguish between objects with different shapes. In practical terms,
the construction requires each object in the dataset to be viewed as a separate metric
space under (some) intrinsic distance (gromovization) with some defined measure;
the comparison is made by finding an optimal probabilistic correspondence between
intrinsic distances within each space using these defined measures.

The gromovization principle proves extremely useful when comparing objects that
are not easily embeddable in a common space, which is frequently the case for bio-
logical data due to, for instance, missing data points or observations recorded on

1 Following common practice, we use the term “distance” for any dissimilarity measure between two
trajectories, even if the measure fails to satisfy some aspects of the mathematical definition of distance.
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different time scales. GW comparison frameworks and gromovization have recently
been applied to specific biologically-based problems, including analysis of protein-
protein networks (Xu et al. 2019a, b), alignment of single-cell multi-omics datasets
(Demetci et al. 2022), and determination of protein structures (Weitkamp et al. 2022),
building on recent developments in GW-type constructions (Peyré et al. 2016; Chowd-
hury and Mémoli 2019).

For general time series data, gromovization was recently proposed in Cohen et al.
(2021), where a time series distance termed Gromov dynamic time warping (GDTW)
is defined as the minimal cost of matching intrinsic distances of two trajectories for
all pairs of points inside each trajectory. The matching is performed in a prescribed
manner by finding an optimal alignment matrix whose entries only have values in
{1, 0} (match/no match, respectively). The problem is efficiently solved by a proposed
Frank-Wolfe-type iterative algorithm, and the resulting distance is used in further
applications, in particular for the classical problemof barycenter averaging (Peyré et al.
2016). While our approach is also based on gromovization, our matching principle is
different from Cohen et al. (2021): instead of a binary {1, 0} correspondence, we use
a probabilistic correspondence between measures that we define on the trajectories,
as originally proposed for GW distance construction in Mémoli (2011). Furthermore,
instead of comparing all intrinsic distances of two trajectories as would be done when
computing GW or GDTW, we fix one coordinate in the intrinsic distance function for
each trajectory and only compare intrinsic distances from the start of each trajectory.
This places our construction in a tree Gromov-Wasserstein context, an area of current
active research in mathematics and machine learning (see Section 6 of Le et al. 2021
for further discussion).

We term our construction GWτ (with GW referring to the Gromov-Wasserstein
framework and τ referring to both time series and tree). Assigning each trajectory the
vector of distances from the start of a time series relates GWτ to distance histogram
functions defined for planar curves inBrinkman andOlver (2012) and local distribution
of distancesdefined for anymetric-measure spaces inMémoli (2011). Theprobabilistic
comparison of vectors of intrinsic distances from the start of each trajectory relates our
GWτ distance to the construction proposed in Le et al. (2021) that compares measures
supported on (general) tree metric spaces, termed aligned-root FlowAlign.

The construction of aligned-root FlowAlign is defined in Le et al. (2021) for the
case of discrete measures (and particular choice of the exponent p = 2) as a special
case (and a practical subroutine) of a more general construction FlowAlign. Aligned-
root FlowAlign utilizes the tree structure of measure supports, allowing for efficient
comparison. Constructions in Le et al. (2021) are shown to outperform the alternative
methods in terms of speed and accuracy when applied for comparing tree-supported
measures in problems including prediction of atomization energies of molecules in
quantum chemistry, and classification of documents in machine learning. Our con-
struction GWτ has several distinct properties: it is (1) defined for general measures
rather than discrete ones (and for a general exponent p ∈ [1,∞)), (2) specific to time
series, and (3) computed in linear time in the case when two time series have the same
number of points (and quadratic time when they have a different number of points).
The benefit of property (1) is the potential for statistical inference (such as testing for
similarity between two trajectories) on the true value GWτ between two trajectories,
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based on the empirical version computed from the data. We leave the application of
GWτ for statistical inference for future work. Similar to aligned-root FlowAlign, the
empirical version of GWτ has a closed-form solution; we note that in the specific
case of time series (property (2)), it can be computed even faster than the general case
complexity reported in Le et al. (2021) (property (3)), providing a scalable way to
compare (possibly long) biological time series.

The paper is organized as follows. The Sect. 2 defines GWτ (Definition 1) and its
empirical version for the discrete data case (Definition 2). Theoretical properties of
GWτ and its relation to other constructions in the literature, as well as its computa-
tional complexity in the empirical case, are discussed in Proposition 1 and illustrated
in Example 1 and Fig. 1. A sample application workflow using our GWτ distance to
compare biological trajectories is shown in Fig. 1C. The Sect. 3 provides an empirical
evaluation of the performance of GWτ on time series from three distinct sources: syn-
thetic data, biological model based data, and publicly available datasets of physical
measurements (Sect. 3.1).All of these time series datasets exhibit diverse features com-
monly found in biologically-based data. Further, GWτ is applied to recently collected
quantitative microscopy data (Ignacio et al. 2022) (Sect. 3.2). We demonstrate that
GWτ reliably distinguishes groups of trajectories belonging to different experimental
conditions, in contrast to other commonly used time series distance measures. Finally,
we apply GWτ to show that averaging trajectories of this dataset via Fused Gromov-
Wasserstein (FGW) barycenters (Vayer et al. 2020) produces barycenter curves that
preserve the shape of the trajectories more accurately than the traditional method of
calculatingmean trajectories. This demonstrates the applicability of the FGWbarycen-
ter procedure in the context of biological time series, as first suggested in Vayer et al.
(2020) for general time series case. The results of the paper demonstrate applicability
of GWτ for a wide range of time series analysis tasks and allow fast and meaningful
comparison of biological time series data.

2 Methods

2.1 Notation

We define a trajectory as the image of an injective map 2 f : [a, b] → R
d ,

f : t → (
f1(t), . . . , fd(t)

)
whose coordinate functions f1, . . . , fd are continu-

ously differentiable.3 In this work we consider trajectories in the plane (d = 2)
or in space (d = 3). We leave modeling biological processes with higher dimen-
sional trajectories for future work. Viewing a trajectory as a path in the plane or in
space, we adopt the following convention: the trajectory given by y = h(t) is repre-
sented by the map f : t → (

t, h(t)
)
with image in R

2, and the trajectories given by

2 The map is usually termed (parameterized) curve in mathematical literature (for example, Do Carmo
(2016)).
3 These assumptions ensure that the trajectory is a compact Polish space which is needed for further
discussion.
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t → (
f1(t), f2(t)

)
and t → (

f1(t), f2(t), f3(t)
)
lie inR2 andR3, respectively. 4 The

length of a trajectory is given by
∫ b

a ‖ ḟ (t)‖ dt and corresponds to
∫ b

a

√
1 + h′(t)2 dt ,

∫ b
a

√
f ′
1(t)

2 + f ′
2(t)

2 dt , and
∫ b

a

√
f ′
1(t)

2 + f ′
2(t)

2 + f ′
3(t)

2 dt in three cases, respec-
tively.

By time series we mean a finite ordered list of points {(ti , h(ti )
)}n

i=1 (“1D time
series”), {( f1(ti ), f2(ti )

)}n
i=1 (“2D time series”), and {( f1(ti ), f2(ti ), f3(ti )

)}n
i=1 (“3D

time series”). Time series can be interpreted as a finite collection of points from an
image of an underlying injective map f : t → (

f1(t), . . . , fd(t)
)
, d ∈ {2, 3}. 5 The

length of the time series is given by the sum of lengths of line segments joining the
points, i.e.

∑n−1
i=1 ‖ f (ti+1) − f (ti ))‖.

Throughout, we use the term trajectory for the discrete case of time series as well
to highlight the relation between an observed time series data and possible underlying
map f . We make it clear from the context whether trajectory is assumed discrete or
continuous. We provide more detailed background information and discuss principles
underlying construction of GWτ for the continuous case (Sect. 2.2), followed by def-
inition of GWτ and discussion of properties for both continuous and discrete cases
(Sect. 2.3).

2.2 Background Definitions

A trajectory induced by f : [a, b] → R
d is a metric space with points X := {x ∈

R
d : x = ( f1(t), . . . , fd(t)), t ∈ [a, b]} under the intrinsic distance between any two

points x ′ = f (t1) and x = f (t2), t1 ≤ t2, given by the length of the arc joining the
two points, i. e.

dX (x ′, x) =
∫ t2

t1
‖ ḟ (t)‖ dt (1)

and d(x, x ′) = d(x ′, x). Similarly, for g : [a, b] → R
k ,

dY (y′, y) =
∫ t2

t1
‖ġ(t)‖ dt (2)

resulting in the metric spaces (X , dX ) and (Y , dY ), respectively (Fig. 1A). Note that
the distance function dX (·, ·) is well defined due to injectivity assumption on f made
in Sect. 2.1. In order to compare these metric spaces under the Gromov-Wasserstein
framework, one needs to turn these metric spaces into metric-measure spaces by defin-
ing Borel probability measures μX on X and μY on Y . In practical terms, these
measures essentially serve as “helpers” to make a comparison between (X , dX ) and
(Y , dY ) more computationally tractable, and conceptually they may be interpreted as
markers of importance of certain regions of an underlying space (see the discussion

4 Under this specification, the time coordinate does not explicitly appear in the last two cases, unlike the
first case; we observed that this choice provides the most computationally efficient results.
5 Any given time series, regardless of underlying f (if any), has finitely many points, and hence it is
compact and Polish.
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on p. 440 of Mémoli (2011)). Here we assume that μX and μY are defined on X and
Y as fully supported Borel probability measures.

Equipped with distances andmeasures for each trajectory f and g, we represent the

trajectories as metric-measure spaces f = (X , dX , μX ) and g = (Y , dY , μY ) (which

we denote X and Y ). These spaces can be compared using the p-Gromov-Wasserstein
distance (Mémoli 2011):

GWp(X , Y ) := 1

2
inf

μ∈C(μX ,μY )

(∫

X×Y

∫

X×Y
|dX (x ′, x) − dY (y′, y)|p dμ(x ′, y′)dμ(x, y)

)1/p

(3)

where the constraint set C(μX , μY ) is the set of all couplings between μX and μY , i.e.
the set of all Borel probability measures on a product space X × Y whose marginals
are μX and μY . GWp defines a true distance between equivalence classes (up to
measure-preserving isomorphism) of compact metric-measure spaces (see Theorem
5.1 of Mémoli (2011)) and thus can be used in applications to distinguish objects by
representing them as metric-measure spaces and comparing via Gromov-Wasserstein
distance. The expression (3) can be interpreted as the discrepancy between intrinsic
distances dX (·, ·) on X and dY (·, ·) on Y after the spaces X and Y are aligned in the
best possible way. Larger values of this “best case" discrepancy indicate that it is more
difficult to align the spaces (and hence the spaces are more different), and smaller
values indicate that the spaces are more easily aligned (and hence more similar). Zero
discrepancy indicates that the spaces are isomorphic, i.e. their points are in a 1-to-1
and onto correspondence, and such a correspondence preserves the measures.

Equation (3) results in a non-convex quadratic optimization program. For the case
of a discrete time series, the program in (3) becomes

GWp(X , Y ) = 1

2
inf

μ∈C(μX ,μY )

⎛

⎝
∑

(x,y)∈X×Y

∑

(x ′,y′)∈X×Y

|dX (x ′, x) − dY (y′, y)|p μ(x ′, y′)μ(x, y)

⎞

⎠

1/p

(4)

which can only be solved using local methods with no guarantee of finding the true
global minimum as required by Eq. (4) (Peyré et al. 2019). To overcome this problem,
two main directions are currently taken in the literature: (1) add a regularization term
to the right hand side of Eq. 4 which turns the problem into a sequence of convex
programs (see Peyré et al. 2016 for details), or, (2) replace GW from the general
definition in Eq. (3) by an easier-to-compute entity and demonstrate it works well
with practical data applications. This second approach was taken in Mémoli (2011)
and Chowdhury and Mémoli (2019) for comparison of metric-measure spaces and
measure networks, respectively, where several constructions bounding GW (Eq. 3)
from below were defined, termed Lower Bounds (LB)’s of GW. These lower bounds
result in linear programs (or sequences thereof) that can be solved exactly and in (at
most) polynomial time.

Here we adopt the second approach and propose to replace GW defined in Eq. (3)
by the construction given in Definition 1 that we term GWτ . We provide an empirical
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Fig. 1 IllustrationofGWτ construction and sample applications.Aviewing trajectories (green, toppanel and
red, bottom panel) as metric-measure spaces, we construct the distance GWτ (X , Y ) between them. Pushing
the measures μX and μY forward to R by the functions dX (rX , ·) and dY (rY , ·) results in the equivalence
of GWτ with the easily computable Wasserstein distances between the pushforwards (Proposition 1a).
B illustration of Example 1: sample dataset of four trajectories lying in different dimensions, defined on
different time scales, and having a different number of unequally spaced discrete time points. A distance
matrix graphically summarizes GWτ distances between pairs of trajectories. Trajectories with similar
shapes are found to be similar (cyan), even though they lie in different dimensions. C proposed application
workflow for GWτ , applied in Sect. 3 (Color figure online)

version of GWτ in the case of real-world data (Definition 2), discuss its properties
(Proposition 1) and show a sample computation (Example 1). Figure1 illustrates our
construction and its properties.

2.3 Definition of the Distance GW� Between TwoTrajectories

Definition 1 (GWø, general case) Let f = (X , dX , μX ) and g = (Y , dY , μY ) be
two trajectories we wish to compare. Consider the distance function of two arguments
dX (x ′, x) defined in Eq. (1), and fix the first (WLOG) argument x ′ at the initial point
of the trajectory rX := f (a), producing the function dX (rX , x) of a single argument x ,
representing the distance of a given point x from the start of the trajectory f . Similarly,
rY for dY (rY , y) of the trajectory g. Let

GWτ (X , Y ) := inf
μ∈C(μX ,μY )

(∫

X×Y
|dX (rX , x) − dY (rY , y)|p dμ(x, y)

)1/p

(5)

Notation For notation simplicity, we drop the dependence on p from the name of
GWτ . The dependence on p is implied, and we comment on particular values of p
and its relevance to individual applications.
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Interpretation Expression (5) can be interpreted as measuring discrepancy between
intrinsic distances dX (rX , ·) on X and dY (rY , ·) on Y from the start of each trajec-
tory. A larger discrepancy indicates that intrinsic distances differ more, and hence the
trajectories are thought to be more different for larger values of GWτ .

Note the absence of the factor of 1
2 in the definition of GWτ compared to the

definition of GW . This is merely for ease of interpretation, and this benefit is exploited
in Proposition 1(b).

Definition 2 (GWø, discrete case (empirical version)) In the discrete case, the tra-
jectories are finite metric spaces f = (X , dX , μX ) and g = (Y , dY , μY ) with points

X := {i ∈ R
d : xi = f (ti ), i = 1, . . . , n} (6)

and

Y := {y j ∈ R
k : y j = g(t j ), j = 1, . . . , m} (7)

The distance between any two points x ′ = f (ti ) and x = f (t j ) (WLOG, j ≥ i) is
given by

dX (x ′, x) =
j−1∑

k=i

‖ f (tk+1) − f (tk)‖ (8)

and

dY (y′, y) =
j−1∑

k=i

‖g(tk+1) − g(tk)‖ (9)

respectively6, where ‖ · ‖ denotes the Euclidean distance on R
d (i.e. the distance

between any two points is the length of the polygonal arc between them).
Define the measures on X and Y by

μX =
n∑

i=1

1

n
δxi and μY =

m∑

j=1

1

m
δy j

where δxi denotes the delta function that evaluates to 1 if the data point equals xi and
to 0 otherwise (i.e., we have discrete uniform probability measures).

Let

GWτ (X , Y ) = inf
μ∈C(μX ,μY )

⎛

⎝
∑

(x,y)∈X×Y

|dX (rX , x) − dY (rY , y)|p μ(x, y)

⎞

⎠

1/p

(10)

6 Similarly to the continuous case, the distance functions dX (·, ·) dY (·, ·) are well defined due to injectivity
of f and g assumed in Sect. 2.1.
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Note The measures can be defined as general (rather than uniform) discrete prob-
ability measures μX = ∑n

i=1 aiδxi and μY = ∑m
j=1 b jδy j by weighting the points

along the time series differently according to some criteria suitable for the comparison
of interest (for example, one can place higher weights for more important regions).We
leave the investigation howdifferent choices ofmeasures affect time series comparison
for future work.

Proposition 1 Consider trajectories of the form f = (X , dX , μX ) and g =
(Y , dY , μY ), and let GWτ be as in Definition 1 whose empirical version is given
by Definition 2. Parts (a) - (c) concern both GWτ and its empirical version; parts (d)
and (e) concern the empirical version only.

(a) Metric properties: GWτ (·, ·) is a distance on S := {νX ∈ P(R) : ν =
dX (rX , ·)#μX }, the space of pushforwards of ground measures μX . More pre-
cisely, GWτ (X , Y ) is a Wasserstein distance between measure pushforwards
dX (rX , ·)#μX and dY (rY , ·)#μY .

(b) Relation toGromov-Wassersteindistance:For any pair of trajectories (X , dX , μX )

and (Y , dY , μY ), we have that GW (X , Y ) ≤ GWτ (X , Y ) for any p ∈ [1,∞).
(c) Relation to local distributions of distances from Mémoli (2011): GWτ compares

local distributions of distances at the start of each trajectory via Wasserstein
distance.

(d) Relation to aligned-root FlowAlign from Le et al. (2021): The empirical version
of GWτ (Definition 2) is equivalent to the aligned-root FlowAlign construction
(Le et al. 2021) if each time series is viewed as a tree metric space with a root
given by the starting point of the trajectory and under the choice of p = 2.

(e) Computational complexity: The empirical GWτ given by Definition 2 can be
computed with linear complexity O(N ) if trajectories have equal lengths (N =
n = m) and with quadratic complexity O(N 2) if lengths are unequal (N =
max{n, m}).

Proof of Proposition 1 (a) By Lemma 3.2 of Chowdhury and Mémoli (2019), we have
that GWτ between trajectories (X , dX , μX ) and (Y , dY , μY ) is a Wasserstein dis-
tance between measure pushforwards of μX and μY under the functions dX (rX , ·)
and μY (rY , ·), respectively, i.e.

GWτ (X , Y ) = Wp((dX (rX , ·)#μX , dY (rY , ·)#μY )

Due to the metric properties of a Wasserstein distance (Theorem 7.3 of Villani
(2021)), GWτ defines a valid distance on S.
Note GWτ will vanish for a pair of trajectories that have the same distribution of
intrinsic distances from their starting points (see part (c) for the discussion of such
distributions). Hence, two trajectories with the same distribution of distances from
the start will be indistinguishable by GWτ . This is a common property of pseudo-
distance constructions that only distinguish objects up to an equivalence class
(Mémoli 2011), which is usually sufficient to distinguish the objects of interest
in practical applications (see, for example, section 4 of Chowdhury and Mémoli
2019).
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(b) The proof is provided in Appendix A.
Note Denoting any of the lower bounds on GW from Mémoli (2011) by LB, the
statement implies that L B ≤ GW ≤ GWτ . Thus, if L B is close to GWτ for some
pair of trajectories, the Gromov-Wasserstein distance can be approximated using
the two bounds. In some of our empirical evaluations, we computed the Third
Lower Bound (TLB) fromMémoli (2011) (using custom code that computes exact
solution available in Supplementary Information) between pairs of trajectories
of interest. Further, we numerically computed GW distance for the same pairs of
trajectories using the function “ot .gromov.gromov_wasserstein2” fromPython
Optimal Transport toolbox (Flamary et al. 2021) (code available in Supplementary
Information).We observed that both T L B and GW produce trajectory comparison
results similar to GWτ (with GWτ computed faster than both alternatives), with
T L B ≤ GW ≤ GWτ (data available in Supplementary Information).

(c) Consider distribution functions on R given by

F(ξ) := μX ({x ∈ X : dX (rX , x) ≤ ξ})

and

G(ξ) := μY ({y ∈ Y : dY (rY , y) ≤ ξ})

and note that these functions represent a special case of local distributions of
distances (Definition 5.5 of Mémoli (2011)) at points rX and rY , respectively.
Observe further that the measures on R determined by F and G via assigning
F(b) − F(a) and G(b) − G(a) to intervals [a, b] are precisely the pushforwards
dX (rX , ·)#μX and dY (rY , ·)#μY . Comparing these pushforwards via Wasserstein
distance GWτ (X , Y ) = Wp(dX (rX , ·)#μX , dY (rY , ·)#μY ) can thus be interpreted
as the comparison between local distributions of distances at the start of each
trajectory.

(d) Consider the empirical case where trajectories f = (X , dX , μX ) and g =
(Y , dY , μY ) are time series with finitely many points and with imposed discrete
uniformmeasures as given in Definition 2. View f and g as trees with roots rX and
rY , respectively. Note that the intrinsic polygonal arc length distance along each
trajectory satisfies the definition of a tree metric given in Section 2.1 of Le et al.
(2021), turning each trajectory into a tree metric space. For the choice p = 2, the
empirical GWτ has the form

inf
μ∈C(μX ,μY )

⎛

⎝
∑

(x ′,y′)∈X×Y

|dX (rX , x ′) − dY (rY , y′)|2 μ(x ′, y′)

⎞

⎠

1/2

which is the expression for aligned-root FlowAlign given in Le et al. (2021).
(e) By awell-known result in transportation theory (see, for example, Proposition 2.17

of Santambrogio 2015), since the measures dX (rX , ·)#μX and dY (rY , ·)#μY are
supported on R (namely, their supports are dX (rX , ·) and dY (rY , ·)), the Wasser-
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stein distance between them admits the closed form solution

W p
p ((dX (rX , ·)#μX , dY (rY , ·)#μY ) =

∫ 1

0
|F−1(u) − G−1(u)|p du

where F and G are the distribution functions of measures dX (rX , ·)#μX and
dY (rY , ·)#μY , respectively.
For the empirical case, this integral is given by a formula involving sorted supports
of the twomeasures (Remark 2.28 of Peyré et al. 2019).More precisely, if supports
of the measures have the same sizes (N = n = m) and ordered as z1 ≤ · · · ,≤ zN ,
w1 ≤ · · · ,≤ wN , the Wasserstein distance of interest is given by

W p
p ((dX (rX , ·)#μX , dY (rY , ·)#μY ) = 1

N

n∑

i=1

|zi − wi |p (11)

In general, it requires O(N log(N )) operations to sort the vector of N support
points (Section 5.1 of Knuth 1997), which is reported as a complexity of align-
root FlowAlign in Le et al. (2021) (assuming O(1) complexity for computation
of a single distance). In the specific case of time series, however, the supports
come ordered after computation of the distances dX (rX , ·) and dY (rY , ·). Indeed,
for a time series { f (ti )}N

i=1, computing the vector of distances {dX (rX , xi )}N
i=1

from the start of the trajectory requires N − 1 successive additions of the form
dX (rX , xi )+dX (xi , xi+1). This results in O(N ) complexity for the sorted supports,
followed by O(N ) complexity of computing the summation in Eq. (11), giving
the total O(N ) complexity for the N = n = m case.
If supports have unequal sizes (n 	= m), the expression has the form

W p
p ((dX (rX , ·)#μX , dY (rY , ·)#μY ) =

n∑

i=1

m∑

j=1

λi j |zi − w j |p (12)

where λi j =
(

i
n ∧ j

m − i−1
n ∨ j−1

m

)
· χ{im∧ jn>(i−1)m∨( j−1)n} (Weitkamp et al.

2022). In this case, the complexity of the double summation dominates, giving an
overall asymptotic complexity of O(N 2). �

Example 1 (GWø between trajectories) Consider the four trajectories shown in
Fig. 1B, corresponding to the following shapes: two straight line (3D and 2D, red
lines) and two circular shapes (3D and 2D, green lines). The lines are defined on dis-
crete time points unequally spaced in [0, 2], and circular shapes are defined on discrete
time points unequally spaced in [0, 23π/12]. Individual time points are indicated by
black dots on all trajectories. The exact functional forms underlying these trajectories
are:

f1(t) := 1√
2
(cos t, sin t, t) 3D “circular” shape (helix)

f2(t) := (cos t, sin t) 2D circle
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f3(t) := 1√
3
(t, t, t) 3D line

f4(t) := 1√
2
(t, t) 2D line

For each of the four trajectories f ∈ { fi }4i=1 of length ni , we compute the vector vk of
intrinsic distances from the start of each trajectory rX = f (t1) to a point xk = f (tk),
k = 1, · · · , ni whose kth entry is, according to Eq. (8),

dX (rX , xk) = ‖x2 − rX‖ + ‖x3 − x2‖ + . . . + ‖xk − xk−1‖

(This is done by the function “vec_geo_dist.m” in the software provided for this paper,
see Supplementary Information).

To find GWτ ( fi , f j ), we take the vectors of intrinsic distances v( fi ) and v( f j ) as
computed above, and use the closed form expression from the proof of Proposition 1e
(Eq. 12) giving

GW p
τ ( fi , f j ) =

ni∑

l=1

n j∑

r=1

λlr |zl − wr |p

where λlr =
(

l
ni

∧ r
n j

− l−1
ni

∨ r−1
n j

)
· χ{ln j ∧rni >(l−1)n j ∨(r−1)ni }. The values of {zl}

and {wr } are precisely the entries of v( fi ) and v( f j ) sorted in descending order. If the
trajectories had the same number of points ni = n j = N , the computation would be
even simpler (Eq. 11)

GW p
τ ( fi , f j ) = 1

N

N∑

l=1

|zl − wl |p

Taking the pth root gives the value GWτ ( fi , f j ) for the 4×4 matrix of GWτ pairwise
distances between trajectories. Each entry GWτ ( fi , f j ) of this matrix is computed by
the function “wass_sorted.m” in the software provided for this paper (see Supplemen-
tary Information).

Note that the matrix of GWτ distances is symmetric due to the symmetry of the
Wasserstein distance, and hence only the upper portion needs to be computed.

Remark 1 (Practical note on computation) As Example 1 illustrates, for real-world
data applications, the empirical GWτ given by Definition 2 is computed according to
the closed-form expression (11) (for trajectories of equal length) or (12) (for trajec-
tories of unequal lengths), which are both faster and easier than using the definition
directly.
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3 Results and Discussion

We illustrate the performance of GWτ on various supervised and unsupervised
machine learning tasks using biologically relevant time series datasets with diverse
characteristics. We empirically demonstrate that GWτ is able to distinguish trajecto-
ries that are known to belong to different classes more accurately and/or efficiently
than other commonly used distance measures. We also discuss how and why each
case illustrates our more general claim that GWτ is useful for biological time series
comparison.

While GWτ can potentially be used to compare trajectories that lie in spaces of
different dimensions (see Fig. 1B and Example 1), real-world data applications often
call for a comparison of data from spaces with the same dimensionality. This case is
our focus in this section. We compare GWτ with the most frequently used Euclidean
and Dynamic Time Warping (DTW) distances (Dau et al. 2018; Abanda et al. 2019),
with p = 2 as the exponent for the Euclidean distance, and unconstrained DTW as
computed by the Matlab function dtw. The GWτ distance with exponent p = 2 is
given by Definition 2 and is computed using Proposition 1(a), (e) as a Wasserstein
distance with closed-from expression (Eq. 11 for trajectories of equal sizes, or Eq. 12
for trajectories of unequal sizes). For all applications, we use the workflow outlined
in Fig. 1C.

The results of our empirical evaluations are summarized in Table 1 and Figs. 2, 3, 4,
5, 6 and 7. Table 1 focuses on eight biologically relevant datasets from the UCR Time
Series Classification Archive (Dau et al. 2018), named UCRbio in what follows. Fig-
ures2, 3 and 4 are concerned with synthetic data (which we name StraightAround;
Fig. 2), simulated data from a biological model (3DLotka-Volterra system fromXiao
and Li (2000); Fig. 3), and two biologically relevant publicly available datasets com-
posed of physical data: (CinCECGTorso, and the dataset that we name EEG(UCI);
Fig. 4). Figure5 illustrates how runtimes of our method scale with data complexity
(scalability results). Figures6 and 7 present an analysis of pronuclear movement data
from the early embryo of the nematode worm Caenorhabditis elegans (Ignacio et al.
2022; we name this dataset Wobble). Below we describe each dataset, its biologi-
cal relevance, and show how GWτ outperforms Euclidean and DTW when used for
various clustering and/or classification tasks.

3.1 Empirical Results on Synthetic, Model-Based, and Publicly Available
Real-World Data

UCRbio (Table 1) and general discussion of DTW and Euclidean comparison As a
first result, we report the performance of our distance GWτ in the classical machine
learning task of 1-Nearest Neighbor (1-NN) classification (the description can be
found, for example, in Hastie et al. 2009). We discuss the general features when com-
paring these time series using DTW and Euclidean distance. For this comparison, we
consider eight biologically relevant datasets from the UCR Time Series Classifica-
tion Archive (Dau et al. 2018) with diverse characteristics such as number of classes,
sizes of training and testing sets, lengths of time series, and, most importantly, the
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wide range of trajectory behaviors. The time series in these selected datasets represent
different types of biologically relevant data, including electrocardiogram measure-
ments for different cardiology patients (CinCECGTorso dataset), power spectra of
insect sounds for different classes of insects (InsectWingbeatSound), or image data on
different types of unicellular algae (Adiac).

The goal of classification is to construct a classifier based on the training data with
known class labels (the training set contains several trajectories from each class) that
can accurately predict the class of a given sample from the test data. A classifier is
constructed using pairwise distances between time series, and thus the performance of
any particular classifier is determined by the underlying distance between time series.
As suggested by Dau et al. (2018), we fix the classifier type to 1-NN and report how
a proposed distance performs in this task. While many successful distance measures
are proposed in the literature, no single distance is expected to outperform others on
all datasets; it is noted, however, that Euclidean and DTW distances show very strong
performance on most datasets (Dau et al. 2018). We thus report the results comparing
GWτ to these two distances (Table 1).

The role of a time series distance in 1-NN classification, as well as many other
classification and clustering tasks, is to capture the features of time series that are
indicative of a class label. For an unsupervised clustering task, these labels are not
known but are hoped to bemeaningfully inferred (Hastie et al. 2009).When time series
in different classes have similar behavior up to a shift, it would likely be difficult for
the DTW to distinguish these classes, as DTW aligns regions with similar types of
behavior (see further discussion on this for the StraightAround andCinCECGTorso
cases). However, GWτ is able to distinguish between shifts since a shifted version of a
trajectory has a different distribution of intrinsic distances, and the larger the shift, the
easier it is forGWτ to distinguish between the trajectories, causingGWτ to outperform
DTW (rows 1–2 and 5–8 of Table 1). As time shifts in activity often serve as important
markers of certain biological behavior (Liu et al. 2010) and the identification of sig-
nificant time points along trajectories plays a crucial role in mathematical modeling of
many time-dependent biological processes (McGee and Buzzard 2018), successfully
capturing time shifts as class indicators is a desirable property of an algorithm that
compares biological time series.

Another situation common to biological time series arises when time series within
the same class have similar qualitative behavior, for example, oscillations (Kruse and
Jülicher 2005), but due to slight phase shifts within the class, the time series appear
different andmaybe even similar to an opposite classwith different characteristicswith
respect to features such as oscillation frequency and/or amplitude (see more on this
in the discussion of the 3D Lotka-Volterra data). In these cases, Euclidean distance
may not capture the features responsible for a class label. On the other hand, GWτ

performs well in such cases by looking at the internal distances from the start of each
trajectory. Slightly shifted versions of qualitatively similar trajectories will bematched
by an optimal transport routine producing a small distance between such trajectories.
At the same time, qualitatively different trajectories will have higher values of GWτ

since it is more difficult to match trajectories when their internal distances are very
different. This causes GWτ to outperform Euclidean distance in 1-NN classification
in these cases (Table 1, rows 3–8).
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Next, we demonstrate that GWτ outperforms both DTW and Euclidean distances
for other biological time series datasets when considering common machine learn-
ing problems such as grouping and clustering. As shown in Fig. 1C, clustering can
be distance-based and performed directly on the distance matrix; two such clustering
methods are considered, the k-medoids and hierarchical clustering (Hastie et al. 2009).
Another approach is to first embed the trajectories into the plane viaMultidimensional
Scaling (MDS, see Hastie et al. (2009) for description) using a distance matrix of
interest, and then perform clustering using coordinates of the resulting embedding
(as outlined in Fig. 1C); here we consider k-means clustering of embedded points.
The datasets we chose for this evaluation have a known class label attached to each
trajectory, either specified by a field expert in the real world data case (for the datasets
CinCECGTroso, EEG(UCI), and Wobble dataset of Sect. 3.2) or imposed during
construction of the data in synthetic (StraightAround) and model-based (3D Lotka-
Volterra) cases. For all unsupervised clustering tasks, we pretend to be unaware of
these class labels when grouping the points, and we only apply class labels after clus-
tering to assess the quality of clustering. We emphasize our interest in performance
of a distance with a (fixed) clustering algorithm rather than performance of a cluster-
ing algorithm given the distance; hence, we are not searching for the best clustering
algorithm in each case, but rather using the most common ones to demonstrate how
switching from DTW or Euclidean distance to GWτ can improve the results under a
given clustering procedure.

StraightAround (Fig. 2A) is a synthetic dataset of 3D time series with two types of
behavior (2 classes): starting from the point (1, 1, 1), each trajectory follows a straight
line path to the origin with small Gaussian noise, and some random (Gaussian with
higher variance) excursion either toward the beginning (Class 1) or the end (Class 2)
of the path (30 trajectories in each class defined on a common set of time instances
of length n = m = 300 points). The goal of constructing this data was to illustrate
(in 3D) that GWτ can be used to correctly classify time series datasets when a shift of
activity is indicative of a class label.

CinCECGTorso (Fig. 2B), a two-class version of a UCRbio dataset. Here we con-
sider a test set from UCR dataset CinCECGTorso (Dau et al. 2018), where we chose
two classes (3 and 4 from the original dataset) out of a total of four available. Each class
contains electrocardiogram (ECG) measurements that constitute one heatbeat for the
same patient (343 heatbeats for Class 1 and 345 heatbeats for Class 2, all trajectories
having length n = m = 1639).

As noticed previously in the literature Lubba et al. (2019), the important feature
distinguishing the classes is the slight difference in timing of the peak. This time shift
allows Euclidean distance to outperform both DTW and GWτ in 1-NN classification
on the full four-classUCRbio version. However, for the two-class version of the data,
the Euclidean distance performs weaker in the embedding task than GWτ (with DTW
still remaining a weaker alternative).

Remark 2 For both synthetic and real data of Fig. 2, we plot the linear SVM classifier
(Hastie et al. 2009) for the embedded points merely to illustrate that they can be
easily linearly separated. We do not use this constructed classifier for any further
classification, and we leave investigation of its performance for future study.
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Fig. 2 GWτ performance in embedding and subsequent separation of classes in comparison to dynamic
time warping (DTW) and Euclidean distances: synthetic and real world data (synthetic data is constructed
to resemble real data characteristics in higher dimensions). The GWτ distance matrix is used to embed time
series from synthetic (A) and real (B) data (Left panel) into the plane, allowing for accurate separation of
classes (right panel). It is more difficult to separate classes when embedding is performed with DTW or
Euclidean distances in comparison to GWτ distance (Color figure online)

3D Lotka-Volterra (Figure 3) is a simulated dataset based on the model from Xiao
and Li (2000). The model is a specific case of a three-dimensional Lotka-Volterra
system constructed to illustrate the bifurcation dynamics leading to limit cycles in
different parameter regimes (model equations are given in Appendix B). Here we
consider three parameter regimes that give rise to our three classes of trajectories
corresponding to starting in a proximity to the following steady states: stable focus at
(1, 1, 1) (Class 1), unstable focus at (1, 1, 1) (Class 2), and unstable node at (0, 0, 0)
(class 3), with 20 trajectories in each class corresponding to randomly sampled initial
conditions (each trajectory is n = m = 1000 points in length).

We now pretend to be unaware of class labels and consider an unsupervised task
of clustering the trajectories based on the distance matrices given by GWτ , DTW, and
Euclidean distances between trajectories. We perform hierarchical (single linkage)
clustering (see Hastie et al. (2009) for the description) of trajectories with dissimilarity
between trajectories givenbyEuclidean,DTW, andGWτ distances. Further,we subject
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Fig. 3 GWτ performance in hierarchical clustering in comparison to Euclidean and dynamic time warping
(DTW) distances: model simulation data. A top: simulated data from the three dimensional Lotka–Volterra
system fromXiao and Li (2000). Three classes correspond to solution trajectories when starting in proximity
to a stable focus (1, 1, 1) (Class 1), an unstable focus (1, 1, 1) (Class 2) or an unstable node (0, 0, 0) (Class
3), with 20 trajectories in each class corresponding to random initial conditions (one trajectory from each
class is shown). Bottom: randomly rotated data (one trajectory from each is shown). B hierarchical (single
linkage) clustering dendrograms constructed using Euclidean, DTW, and GWτ distances as dissimilarity
measures between trajectories for original data (top) and “rotation-corrupted” data (bottom). Note poor
performance of Euclidean distance in both cases, and rapid decrease in performance of DTW distance
when rotational noise is introduced. The performance of GWτ is high in both cases (Color figure online)

the data to random rotations in 3D space and demonstrate strong performance of GWτ

for both unperturbed and perturbed data, in contrast to Euclidean and DTW distances.
EEG(UCI) (Fig. 4) Our last summary result concerns the publicly available dataset

from the UCI machine learning repository (Dua and Graff 2017). We used the dataset
coded as smni97_eeg_data.tar.gz that can be downloaded following the link https://
archive.ics.uci.edu/ml/datasets/eeg+database. The dataset provides electroencephalo-
gram (EEG) measurements for two patients: one diagnosed with alcoholism (class 1)
and one control (class 2). Data on 10 time series corresponding to 10 repetitions of the
experiment is available for each class, with 64 different channels corresponding to 64
electrodes (non-invasively) attached to a patients’ scalp (each time series has length
n = m = 256).

We again pretend to be unaware of class labels, and we subject the data to an
unsupervised task of clustering the trajectories in each of the 64 channels into two
clusters, hoping that each cluster would contain 10 trajectories corresponding to the
same patient. Similar to previous examples,GWτ provides distancematrices that allow
for meaningful clustering, either using the distance matrix directly in the hierarchical
clustering case, or embedding the data into the plane via MDS and subjecting the
embedded data to k-means using the 2D coordinates of the embedding.
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Fig. 4 GWτ performance on embedding and clustering: real world data. A electroencephalogram (EEG)
data on selected three EEG channels (out of total 64 available in the dataset; Dua and Graff (2017)):
10 trajectories in each class represent EEG response to a stimulus for an alcoholic (magenta, Class 1)
vs. non-alcoholic (blue, Class 2) patient. B Embeddings of the data into the plane using GWτ distance
matrices and results of k-means clustering in the embedded space.C hierarchical cluster (complete linkage)
dendrograms using GWτ distance matrices. D k-means clustering results on embedded data (such as in
panel B): reporting number of channels (out of 64 total) with small (≤ 2) and large (> 6) number of
incorrectly clustered trajectories (“clustering mistakes”) when using Euclidean, DTW, and GWτ distances.
Note superior performance of GWτ in this comprehensive evaluation (Color figure online)

Scalability (Fig. 5) Here we demonstrate that GWτ distance not only captures
similarities/differences that Euclidean and DTW distances have difficulties capturing,
but also that GWτ is indeed fast to compute in comparison to DTW. Since Euclidean
distance is essentially a subroutine for both GWτ and DTW, it is of course faster (but
as above results suggest, by itself it is not always possible/useful) to compute, and
hence we omit it from our comparisons in this section.

Theoretical complexity of single GWτ computation for all the datasets of Fig. 5 is
O(N ) (Proposition 1e),while theoretical complexity of single computation of classical
is O(N 2) Keogh and Ratanamahatana (2005) (where N is the common trajectory
length in each dataset), and thus algorithms using GWτ are expected to run faster than
the ones using classical DTW. To confirm this empirically, we report7 runtimes for
several tasks performed in this paper using GWτ and DTW on the datasets whose

7 All experiments were run on Intel Core i3 CPU with 8GB memory.
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Fig. 5 Scalability of GWτ with respect to dataset size and dimension. A left: runtimes (log scale) when
calculating distances for 100 circle/line pairs (synthetic data used in Fig. 1B) in both 2D and 3D using GWτ

versus DTW. As expected, increase in dimension from 2D to 3D does not affect the runtimes; increase in
dataset size (as number of points along each trajectory) results in steep increase in runtimes for DTW, while
has almost negligible effect on GWτ . The same trend is observed for the other two synthetic/simulated
datasets used in Fig. 2A and 3 (right). B. runtimes (log scale) when calculating matrices of all pairwise
distances between trajectories (left) and performing 1-NN classification (right) using GWτ versus DTW
for the real data UCRbio used in Table 1, listed in increasing data complexity appropriate for each task
(t.s.length*(train size + test size) (left) and t.s.length*train size* test size (right)). Observe shorter runtimes
when using GWτ compared to DTW (Color figure online)

dimension/size we can control (Fig. 5A) as well as on the real-world datasets whose
(mostly large) complexity cannot be changed (Fig. 5B).

3.2 Using GW� for Analysis ofWobble Dataset from Ignacio et al. (2022)

Our final result demonstrates how our GWτ distance is used to investigate differences
in trajectory behavior and compare averaging methods for data arising in cell biology.
The data recently published in Ignacio et al. (2022) investigated the effect of three
different experimental conditions on pronuclear movement in early embryos of the
nematodewormCaenorhabditis elegans (C. elegans): empty vector (EV) as the control
treatment, RNA interference (RNAi) to knockdown the protein GPB-1 (gpb-1(RNAi)),
and RNAi to knockdown the protein LET-99 (let-99(RNAi)). It was observed that
compared toEVembryos, embryos subjected toRNAi knockdownexhibit a pronuclear
movement defect termed wobble in Ignacio et al. (2022), which is characterized by
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Fig. 6 Applying GWτ for the analysis of time series arising in cell biology: grouping trajectories from
cells under different experimental conditions. A schematic of the “wobbling” movement quantification and
corresponding Wobble dataset from Ignacio et al. (2022) for change in angle of a pronuclear complex
(yellow, with two centrosomes marked by red and blue) during centration and rotation in early C. elegans
embryos (10 trajectories of empty vector (EV) control (Left), 12 trajectories of cells subjected to RNA
interference against the protein GPB-1 (gpb-1(RNAi); Center), and 7 trajectories of cells subjected to RNA
interference against the protein LET-99 (let-99(RNAi); Right)). B using GWτ to construct the distance
matrix between trajectories (left) to be used for k-medoids clustering and embedding of trajectories into
the plane followed by k-means clustering on embedded coordinates. Both clustering methods using GWτ

distinguish EV from the RNAi knockdowns, with twoRNAi knockdown trajectories found closer to EV than
to other RNAi knockdown trajectories. C DTW and Euclidean distances have larger error in distinguishing
EV from the RNAi knockdowns (Color figure online)

oscillations of the pronuclear complex, and quantified by the change in angle between
the centrosome axis and the long axis of the embryo (Fig. 6A). The Wobble dataset
corresponding to this data consists of trajectories for the change in angle over time,with
10 trajectories for the EV condition, 12 trajectories for gpb-1(RNAi), and 7 trajectories
for let-99(RNAi). All trajectories are defined on the same time vector of 40 time points,
with equally spaced 5s intervals (Fig. 6A).

The data analysis in Ignacio et al. (2022) employs the discrete Fourier transform
to confirm the observation that the behavior of the RNAi knockdown embryos indeed
exhibit wobbling, while the EV control embryos do not. Remarkably, this result is
confirmed with a completely different type of analysis when clustering the dataset
using GWτ as a distance between trajectories (Fig. 6B). Although not entirely unrea-
sonable, DTW distance performs slightly weaker in reproducing EV/RNAi clusters,
and the Euclidean distance performance is rather unsatisfactory (Fig. 6C).

This result suggests that averaging trajectories within EV or RNAi knockdown
groups, respectively, using Euclidean distance may not accurately preserve the fea-
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Fig. 7 Applying GWτ to analyse time series arising in cell biology: comparing different trajectory aver-
aging methods. A Wobble dataset from Ignacio et al. (2022) with mean trajectories and FGW barycenter
trajectories based on FGW barycenter method of Vayer et al. (2020). Note that traditionally used mean tra-
jectories appear to damp the oscillations found in the RNAi treatment data. B embedding with GWτ places
mean trajectories of the RNAi-treated embryos (blue) inside the EV group, while the FGW barycenter
trajectories (black) stay close to their respective trajectories (Color figure online)

tures of individual trajectories in the mean trajectory. Rather, other averaging methods
may perform better for datasets of this type when Euclidean distance is not capturing
similarities within the class and differences between classes. Among other plausi-
ble alternatives, the Fused Gromov-Wasserstein (FGW) is the barycentering method
recently proposed to average trajectories under the Gromov-Wasserstein framework
(Vayer et al. 2020).8 We observe that FGW barycenters (computed using the func-
tion ot .gromov. f gw_barycenters fromPythonOptimal Transport toolbox (Flamary
et al. 2021) with parameter α = 0.59) provide a plausible solution to the averaging
problem for these data (Fig. 7A). Interestingly, FGW barycenters are close to the indi-
vidual datasets in the GWτ sense (Fig. 7B), even though the distance used in the FGW
barycenter problem has little in common with GWτ except the overall conceptual
Gromov-Wasserstein paradigm (see section of Vayer et al. (2020) for the definition of
FGW distance and comparison with other GW-type constructions). Hence, closeness

8 We remark that the barycenter problem can be defined in terms of GWτ as a minimization of a weighted
sum of GWτ distances. However, the resulting optimal vector of geodesic distances that represents the
barycenter trajectory cannot be unambiguously translated into a trajectory form.
9 The code is available in the Supplementary Information and can be used for computing FGW barycenters
for trajectories of interest.
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in the GWτ sense is not an artifact of barycenter construction, but rather evidence that
FGW barycenter trajectories are similar in shape to the data from their correspond-
ing experimental conditions. In contrast, the mean trajectories (which are, in fact, the
barycenters under 1DEuclidean distance between y-coordinates) for gpb-1(RNAi) and
let-99(RNAi) are closer to the EV group than to their corresponding RNAi groups in
terms of the shapes, as GWτ comparison shows (Fig. 6B). This result illustrates how
GWτ can assess the quality of an averaging procedure for biological time series.

To summarize the findings of this paper, we introduced a distance between time
series that we termed GWτ and demonstrated its performance for comparison of
biological time series. The construction GWτ is based on fixing two coordinates in
the Gromov-Wasserstein distance optimization program, which turns the resulting
problem into a Wasserstein distance optimization program on the real line. Having a
closed-form solution, this program is scalable in terms of the number of points along a
given time series, providing a quick and exact alternative to other time series distances.
Various empirical evaluations on synthetic and real world datasets demonstrate the use
of our proposed distance for biological time series comparison and further applications.

Supplementary information

DataandcodeThedata used in this paper and the codes to reproducenumerical results,
along with sample tutorial on computing GWτ distance, are available at https://github.
com/kravtsova2/GWtau.
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Appendix A Proof of Proposition 1(b)

The proof is given for the continuous case. The proof for the discrete case is the same
with summation replacing integration.

Let p ≥ 1, and recall that for all a, b ∈ R, |a + b|p ≤ 2p−1(|a|p + |b|p). Suppose
WLOG that the point x ′ is “farther" from the start of the curve than the point x , i.e.
dX (rX , x ′) > dX (rX , x). Then, we can write dX (x, x ′) = dX (rX , x ′) − dX (rX , x),
and thus for any μ ∈ C(μX , μY ),

∫

X×Y

∫

X×Y
|dX (x, x ′) − dY (y, y′)|p dμ(x ′, y′)dμ(x, y)
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=
∫

X×Y

∫

X×Y
|(dX (rX , x ′)

−dX (rX , x)) − (dY (rY , y′) − dY (rY , y))|p dμ(x ′, y′)dμ(x, y)

=
∫

X×Y

∫

X×Y
|(dX (rX , x ′) − dY (rY , y′)) − (dX (rX , x) − dY (rY , y))|p

dμ(x ′, y′)dμ(x, y)

≤ 2p−1 ·
(∫

X×Y

∫

X×Y
|dX (rX , x ′)

−dY (rY , y′)|p dμ(x ′, y′)dμ(x, y)

+
∫

X×Y

∫

X×Y
|(dX (rX , x) − dY (rY , y)|p dμ(x ′, y′)dμ(x, y)

)

= 2p−1 · 2
∫

X×Y
|dX (rX , x) − dY (rY , y)|p dμ(x, y)

The last equality follows since one of the two integrals in each term integrates a
constant function with respect to a probability measure μ resulting in a value of 1.
Taking infimum over μ ∈ C(μX , μY ) gives

(2GW (X , Y ))p ≤ 2p(GWτ (X , Y ))p

and dividing by 2p and taking the pth root gives that GW ≤ GWτ , as claimed.

Appendix B Model equations constructed by Xiao and Li (2000) and
used to produce the dataset 3D Lotka-Volterra

Denote the parameter vector ε := (ε1, ε2). For 0 < ‖ε‖ � 1, consider the system
given in Equation (6) of Xiao and Li (2000) as

ẋ1 = x1[(1 − x1) + (1 − x2) + (1 − x3)] (B1)

ẋ2 = x2[(1 − x1) + (1 − x2) + 2(1 − x3)] (B2)

ẋ3 = x3[(13
5

+ ε1)(1 − x1) + (
8

5
+ ε2)(1 − x2) + 3(1 − x3)] (B3)

According to the analysis of pp. 9–11 of Xiao and Li (2000), the following parameter
regimes correspond to the following stability results for the equillibrium points:

• When 3ε2 + 2ε1 > 0, the equilibrium (1, 1, 1) is an unstable focus
• When 3ε2 + 2ε1 < 0, the equilibrium (1, 1, 1) is a stable focus
• When (ε1, ε2, ) = (0, 0), the equilibrium (0, 0, 0) is an unstable node

These three types of behavior constitute the three classes in our dataset 3D Lotka-
Volterra (Fig. 3).
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