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Abstract
Forecasting invasive-pathogen dynamics is paramount to anticipate eradication and
containment strategies. Such predictions can be obtained using a model grounded on
partial differential equations (PDE; often exploited to model invasions) and fitted to
surveillance data. This framework allows the construction of phenomenological but
concise models relying on mechanistic hypotheses and real observations. However, it
may lead to models with overly rigid behavior and possible data-model mismatches.
Hence, to avoid drawing a forecast grounded on a single PDE-based model that would
be prone to errors, we propose to apply Bayesian model averaging (BMA), which
allows us to account for both parameter and model uncertainties. Thus, we propose a
set of different competing PDE-based models for representing the pathogen dynam-
ics, we use an adaptive multiple importance sampling algorithm (AMIS) to estimate
parameters of each competingmodel from surveillance data in amechanistic-statistical
framework, we evaluate the posterior probabilities of models by comparing different
approaches proposed in the literature, and we apply BMA to draw posterior distribu-
tions of parameters and a posterior forecast of the pathogen dynamics. This approach
is applied to predict the extent of Xylella fastidiosa in South Corsica, France, a phy-
topathogenic bacterium detected in situ in Europe less than 10 years ago (Italy 2013,
France 2015). Separating data into training and validation sets, we show that the BMA
forecast outperforms competing forecast approaches.
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1 Introduction

The emergence of exogenous pathogens in new territories may induce severe sanitary
and socio-economical crises. Mainly, such crises are reinforced by the eventual long
delay between pathogen establishment in the new territory and its detection (Jones
and Baker 2004; Faria et al. 2014; Soubeyrand et al. 2018). As this delay increases,
the potential for pathogen expansion and the resulting cost for pathogen eradication
or containment generally increases. Hence, reconstructing the past dynamics of the
pathogen (Boys et al. 2008; Roques et al. 2016; Soubeyrand and Roques 2014) and
predicting its future extent (Chapman et al. 2015; Peterson et al. 2003) are key steps
for understanding the pathogen epidemiology, designing eradication or containment
strategies and assessing their potential efficiency.

Partial differential equations (PDE) have been extensively used formodeling spatio-
temporal population dynamics (Skellam 1951; Shigesada et al. 1995; Turchin 1998;
Okubo and Levin 2002). PDE can precisely be used for past dynamics reconstruction
and future extent prediction, by exploiting their ability (1) to represent dynamics
in a phenomenological and concise way, and (2) to be fitted to data by attach-
ing a probabilistic model of observations within a state-space modeling framework
(the combination of (1) and (2) corresponds to the so-called physical-statistical or
mechanistic-statistical approach; Berliner 2003; Wikle 2003; Roques et al. 2011;
Soubeyrand and Roques 2014). To apply such an approach, the PDE is generally
chosen to be parsimonious for identifiability reasons (i.e., the ability to estimate its
parameters given the information contained in data). However, when left parsimo-
nious, a PDE may not be proficient in describing all the processes and sources of
variability involved in epidemiological dynamics. In addition, various structures of
PDE are likely to be considered as candidate models for a given epidemic. When the
goal of the study is to draw predictions, the use of a single model is prone to predic-
tion error because this model may not have taken into account crucial drivers of the
dynamics. This limitation can be circumvented by associating random terms to the
PDE as proposed by Wikle (2003), or by considering a set of competing PDE-based
models and applying either a model selection strategy (Burnham et al. 1995) or a
model aggregation strategy (Hoeting et al. 1999).

As part of the model aggregation strategy, the Bayesian model averaging (BMA)
approach has been proposed by Leamer (1978) to reduce and account for parameter
and model uncertainties. This approach consists in performing a weighted average of
candidate models in a Bayesian way and hence combining multiple predictions and
multiple estimations of shared parameters (Raftery 1996; Madigan and Raftery 1994;
Wintle et al. 2003). Theoretically, BMA provides better average predictive ability, as
measured by a logarithmic scoring rule, than using any single model (Madigan and
Raftery 1994). Axiomatically, this result depends on the assumption that the data are
generated in the following stages (Fletcher 2018): (1) a model is selected at random
from the set of candidate models using prior model probabilities, (2) the parameter
values for this model are generated using the relevant prior distribution, and (3) the
data are generated from the selected model and parameter values.

The BMA efficiency has been largely explored, in particular with respect to its
theoretical properties (Rubin and Schenker 1986; Madigan and Raftery 1994), leave-
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one-out predictive performance (Madigan et al. 1995; Lamon and Clyde 2000) and
numerical performance (George and McCulloch 1993; Viallefont et al. 2001). While
BMA is an intuitively attractive solution to the problem of accounting formodel uncer-
tainty, it presents several difficulties related to its numerical implementation (Hoeting
et al. 1999). By dint of some pioneering work implementing BMA (Madigan and
Raftery 1994; Raftery 1996), this approach has then been applied in numerous study
domains such as medicine (Oehler et al. 2009), ecology (Wintle et al. 2003), mete-
orology (Raftery et al. 2005), genetics (Yeung et al. 2005), economical and political
sciences (Sidman et al. 2008), engineering and physical sciences (Parkinson andLiddle
2013) and epidemiology (Viallefont et al. 2001). Despite ample literature on BMA and
its usefulness, it has beenmarginally applied in the context of predictive epidemiology.

In this article, we investigate the application of BMA in the context of pathogen-
dynamics prediction using PDE-based models and we want to test its efficiency on a
real case study. The models are grounded on a family of reaction-diffusion equations,
some of which include spatially heterogeneous diffusion and reproduction terms. Our
aim is to compute, from post-introduction data, the BMA posterior distribution of a
certain quantity of interest �, which is typically the introduction time or location of
the pathogen or its future spatial extent. Following Abboud et al. (2019), we apply to
each model the Adaptive Multiple Importance Sampling algorithm (AMIS; Cornuet
et al. 2012) for providing an empirical approximation, obtained via a weighted sample
{�n,wn}Nn=1 of size N , of the posterior distribution of � given the specified model.
Then, for drawing BMA posterior samples of �, we compute posterior probabilities
of models using different approximations of the integrated likelihood that have been
proposed in the literature. Namely, we compare an estimator of the integrated likeli-
hood, which is easily obtained by averaging AMIS un-normalized importance weights
(Bugallo et al. 2015), to estimators of the integrated likelihood grounded on informa-
tion criteria (McElreath 2018), as well as harmonic mean estimators (Raftery 1996;
Gelfand and Dey 1994).

This approach is first tested on simulated data and then applied to make predictions
concerning the dynamics of the phytopathogenic bacterium Xylella fastidiosa (Xf) in
South Corsica, France. This quarantine pathogen in Europe has significantly impacted
olive production in Puglia, Italy, and presents a drastic risk of environmental degra-
dation due to its ability to reach a large variety of plant species. It is currently present
in a large part of Corsica island and more marginally in Southern mainland France
(Denancé et al. 2017a; Soubeyrand et al. 2018; Martinetti and Soubeyrand 2019). Xf
might cause a major sanitary crisis in France, as the one caused in Italy since 2013
where the socio-economical impacts are considerable due to the death and felling
of numerous olive trees in Puglia. In the case of South Corsica, spatio-temporal and
presence–absence post-introduction surveillance datawere collected from an intensive
surveillance plan implemented by governmental agencies after the first in situ detec-
tion of Xf in 2015 in the city of Propriano. These data covering about three years and
a half are separated into a training set (nearly 2 years) used for fitting the models and a
validation set (nearly 1.5 years) used for comparing the forecasts obtained with BMA,
the best PDE-based model (i.e., the model with the largest posterior model probability
computed in the BMA procedure), an ensemble approach (i.e., the equiprobable aver-
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age of all the PDE-basedmodels parameterized by themaximum likelihood estimates)
and two data-oriented prediction strategies not grounded on PDE.

The paper is organized as follows: Data are briefly described in Sect. 2. The com-
peting models coupling a partial differential equation and a Bernoulli observation
process are presented in Sect. 3. The Bayesian model averaging technique is described
in Sect. 4. The simulation study is presented in Sect. 5. Results obtained from surveil-
lance data for Xf in South Corsica are detailed in Sect. 6 where we specifically focus
on model comparison, parameter inference and out-of sample predictive performance.
Finally, Sect. 7 provides a conclusion and a discussion of perspectives.

2 Surveillance Data with Presence–Absence Records

In this article, we analyze spatio-temporal presence–absence data collected in South
Corsica, France, and informing if sampled plants are positive or negative to Xf based
on a molecular test. Data have been collected since the first detection of the bacterium
in the study region in July 2015. Between July 2015 and January 2019, approximately
9500 plants were sampled, among which 900 have been diagnosed as infected with a
real-time polymerase chain reaction (real-time PCR) technique (Denancé et al. 2017b).
GPS coordinates, sampling dates and sanitary statuses (healthy/infected) are available
for all the sampled plants. Spatial locations and sanitary statuses at the sampling times
are shown in Fig. 1, left.

As for other bacteria, the growth andmortality ofXf are affected by various environ-
mental variables such as habitability of the environment, nutrients, climatic conditions
and availability of dissemination means (typically, insect vectors). In this study, to
account for spatial heterogeneity in the diffusion and the reproduction regimes of the
epidemics, we use temperature data to divide the spatial domain denoted by � into
two complementary and non-overlapping sub-domains, and different diffusion and
growth terms are applied to the two sub-domains.We exploit a freely available database
(PVGIS©EuropeanCommunities, 2001–2008) providing, in particular, monthly aver-
ages of the daily minimum temperature reconstructed over a grid with 1×1km spatial
resolution (Huld et al. 2006); these monthly averages correspond to the period 1995–
2003, which is between the probable introduction around 1960 of Xf in South Corsica
(Soubeyrand et al. 2018) and the observation window starting in 2015. We use these
data to build the average of the dailyminimum temperature over January and February,
say T (x) for any location x; see Fig. 1, right. Average daily minimum temperature in
Winter is known to be a crucial factor for the presence or abundance of Xf (Anas et al.
2008; Martinetti and Soubeyrand 2019).

Remark. In this work we divide the spatial domain based on a static assessment
of winter temperatures. This allows us to take into account a relatively large spatial
heterogeneity of the environment since the winter temperature, as we defined it, ranges
from −0.7 ◦C in the coldest area of South Corsica to 6.8 ◦C in its warmest area.
Ideally, we should also take into account the annual variability of winter temperatures
and eventual other environmental variables in the dynamic process, as proposed by
Botella et al. (2022) for instance. Such data may be obtained from a data base such as
WorldClim (https://worldclim.org/) at the 1×1km resolution that we consider here.
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3 CompetingModels

Here, a set of models based on parabolic partial differential equations is used to
describe pathogen dynamics at large spatial scales. As explained in the introduction,
these models have been extensively used to represent population dynamics in a phe-
nomenological and concise way, and can be fitted to data in a hierarchical modeling
setting incorporating a probabilistic model of observations. In this section, we propose
a family of mechanistic models and we present the model for the observation process.

3.1 Family of Mechanistic Models

We introduce a discrete family M = {Mi (T̃ ) : 0 ≤ i ≤ I ; T̃ ∈ T} of models
governing the probability u(t, x) of a host located at site x = (x1, y1) ∈ � to be
infected (i.e., sick because of the pathogen under consideration) at time t , where
I ∈ N

∗ and T is a finite collection of real values. The label i refers to a model structure,
i.e. a specific form for the parabolic PDE. The label T̃ refers in our application to a
temperature threshold, which splits the spatial domain into two sub-domains where
diffusion and growth terms may be different. The generic form of models in family
M satisfies:

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
= �(DiT̃ (x)u) + fi T̃ (u), t ≥ τ0, x ∈ �,

∇(DiT̃ (x)u(t, x)).n(x) = 0, t ≥ τ0, x ∈ ∂�,

u(τ0, x) = u0(x), x ∈ �,

(1)

where the first line is the reaction-diffusion equation, the second line gives boundary

conditions, the third line gives initial conditions,� = ∂2

∂x21
+ ∂2

∂x22
is the 2-dimensional

diffusion operator of Laplace, and ∇ = ∂

∂x1
+ ∂

∂x2
is the 2-dimensional gradient

operator.
The diffusion coefficient DiT̃ (x) may be spatially heterogeneous and is defined

as a spatial regularization of di T̃ (x) = ∑2
k=1 DiT̃ k1(x ∈ �T̃ k), ∀i ≤ I ,∀T̃ ∈ T,

where x �→ 1(x ∈ �T̃ k) is the indicator function taking the value 1 if x ∈ �T̃ k and 0
otherwise, and the sub-domains �T̃ 1 and �T̃ 2 are defined by thresholding the spatial
function T , with the threshold value T̃ such that: �T̃ 1 = {x ∈ � : T (x) > T̃ } and
�T̃ 2 = {x ∈ � : T (x) ≤ T̃ }. In our application, T is a measure of temperature in
winter, �T̃ 1 is the warm region of �, and �T̃ 2 the cold one. If DiT̃ 1 = DiT̃ 2, then the
diffusion coefficient is spatially homogeneous. The spatial regularization is required
for the existence and the uniqueness of a classic solution u(t, x) of Eq. (1); see Roques
(2013). Thus DiT̃ is defined as:

DiT̃ (x) =
∫

R
2

φ(x − y)di T̃ (y)dy, ∀x ∈ �, (2)
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where φ is the normal regularization kernel: φ(x) = 1

2πV exp

(

−‖x‖2
2V

)

, and the

transition speed V has to be tuned to approach more or less the piecewise constant
function di T̃ . In other words, DiT̃ locally smoothes the step function di T̃ around the
transition border between the two subdomains with a bandwidth determined by V.

The reproduction term may also be either spatially heterogeneous or not. In the
homogeneous case, we consider a logistic growth

fi T̃ (u) = bu
(
1 − u

K

)
, (3)

where b is the intrinsic growth rate of the epidemic and K ∈ (0, 1] is a plateau for the
probability of infection (i.e., an analog to the carrying capacity of the environment).
With such a reproduction term, the growth is nearly exponential when u is small,
and the growth rate is around zero when u reaches the plateau K , which gives the
maximum prevalence of the pathogen in the environment. In the heterogeneous case,
the growth is logistic in �T̃ 1 (i.e., warmest areas) and negative in �T̃ 2 (i.e., coldest
areas), mimicking a source-sink dynamics:

fi T̃ (u) = bu
(
1 − u

K

)
1(x ∈ �T̃ 1) − αu1(x ∈ �T̃ 2), ∀T̃ ∈ T, (4)

where α is the decrease rate of the infection in �T̃ 2. Thus, the pathogen is affected by
two contradictory forces in the cold region: it is forced to decline with the rate α but
may be at the same time reinforced by the sources of infection located in the warm
region.

In the application, we will consider three model structures:

• M0(T̃ ), under which DiT̃ 1 = DiT̃ 2 and fi T̃ satisfies Eq. (4), i.e. homogeneous
diffusion but heterogeneous growth, like in Abboud et al. (2019);

• M1(T̃ ), under which DiT̃ 1 �= DiT̃ 2 and fi T̃ satisfies Eq. (4), i.e. heterogeneous
diffusion and growth;

• M2(T̃ ), under which DiT̃ 1 �= DiT̃ 2 and fi T̃ satisfies Eq. (3), i.e. heterogeneous
diffusion, but homogeneous growth.

The second equation in System (1) corresponds to the homogeneous Neumann con-
dition on the boundary ∂� of � (i.e. with reflection on the boundary). This condition
is formalized by setting that the gradient of the spatial function x �→ DiT̃ (x)u(t, x) is
orthogonal to the outward normal vector n(x) at point x on the boundary ∂�, for all
t ≥ τ0. Thus, physically, there is neither outward nor inward flux from and to �.

The spatial function u0 models the introduction of the pathogen in the study domain
at time τ0 ∈ R. Following Abboud et al. (2019), the introduction represents the
initial phase of the outbreak corresponding to the arrival of the pathogen and its
local establishment. Thus, u0 is not expressed as a Dirac function but as a kernel
function centered around the central point of the introduction x̃0 = (x̃0, ỹ0) ∈ �.
More precisely, the probability of a host at x to be infected at τ0 satisfies:

u0(x) = P0 exp

(

−‖x − x̃0‖2
2σ 2

)

, (5)
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where P0 is the infection probability at (τ0, x̃0), σ 2 = r20
q , q is the 0.95-quantile of the

χ2 distribution with two degrees of freedom, and r0 is the radius of the kernel. Thus,
at τ0, if we neglect border effects, 95% of the infected plants are located within the
ball with center x̃0 and radius r0.

With these initial and boundary conditions, the equation system (1) is well-posed
(Evans 1998) and, by constraining P0 in [0, K ], the principle of parabolic comparison
(Protter, MH andWeinberger, HF 1967) implies that the solution of (1) remains in the
interval [0, K ].

3.2 Probabilistic Model of the Observation Process

Let t j ∈ R denote the sampling time of host j ∈ {1, . . . , J }, J ∈ N
∗, x j ∈ �

its location and Y j ∈ {0, 1} its observed sanitary status at t j (1 for infected, 0 for
healthy). Given u, Mi (T̃ ) and {(t j , x j ) : 1 ≤ j ≤ J }, the sanitary statuses Y j ,
j ∈ {1, . . . , J }, are independent random variables following Bernoulli distributions
with success probabilities u(t j , x j ):

Y j | u,Mi (T̃ ), {(t j , x j ) : 1 ≤ j ≤ J } ∼
indep.

Bernoulli(u(t j , x j )), (6)

where u depends on the model Mi (T̃ ) and its vector of parameters �i T̃ .
Remark. This data model was proposed in Abboud et al. (2019) for its simplicity. It

could be refined to account for sampling errors classically encountered in epidemiol-
ogy, e.g. false-positive and false-negative observations, as well as spatial and temporal
dependencies not accounted for in the process model.

4 BayesianModel Averaging

4.1 Principle

Briefly, the BMA consists in estimating the expectation of the posterior distributions
of the variable of interest� provided under all the competing models and weighted by
the posterior model probabilities (Raftery 1996; Hoeting et al. 1999). In the modeling
setting introduced above, � is typically a vector of shared parameters such as the
introduction point (x̃0,τ0), the temperature threshold T̃ or the spatial probability of
infection u over a future period. Using Gelfand’s bracket notation for probability
distributions (Gelfand and Smith 1990), the BMA posterior distribution of � given
training data Y satisfies:

[�|Y ] =
∑

0≤i≤I ,T̃∈T
[�|Y ,Mi (T̃ )] × [Mi (T̃ )|Y ]. (7)

123



67 Page 8 of 22 C. Abboud et al.

The posterior model probability of Mi (T̃ ) is:

[Mi (T̃ )|Y ] = [Y |Mi (T̃ )] × [Mi (T̃ )]
∑

0≤i ′≤I ,T̃ ′∈T [Y |Mi ′(T̃ ′)] × [Mi ′(T̃ ′)] . (8)

The integrated likelihood [Y |Mi (T̃ )] of Mi (T̃ ), which may be a complex integral
depending on the dimension of the unknowns and eventual dependencies, satisfies:

[Y |Mi (T̃ )] =
∫

[Y |�,Mi (T̃ )] × [�|Mi (T̃ )]d�. (9)

where � is the vector of parameters ofMi (T̃ ), [Y |�,Mi (T̃ )] is the likelihood under
Mi (T̃ ), [�|Mi (T̃ )] is the prior distribution of � under Mi (T̃ ), and [Mi (T̃ )] is the
prior probability of Mi (T̃ ). The posterior mean of � is a weighted average of the
posterior means under the competing models:

E[�|Y ] =
∑

0≤i≤I ,T̃∈T
[Mi (T̃ )|Y ] × E[�|Mi (T̃ ),Y ]. (10)

The posterior variance is expressed as follows:

V[�|Y ] =
∑

0≤i≤I ,T̃∈T
[Mi (T̃ )|Y ]

×
(

V[�|Mi (T̃ ),Y ] +
(

E[�|Mi (T̃ ),Y ] − E[�|Y ]
)2)

. (11)

4.2 Implementation

TheBMA-posterior distributionof� is computed from the following two-stepprocess:
First, we compute the posterior distribution of � given model Mi (T̃ ) and training
data Y for all i ∈ {1, . . . , I }; Second, we compute the posterior model probabilities.

4.2.1 Approximation of the Posterior Distribution of1 Given a ModelMi(T̃)

For any mechanistic-statistical model defined in Sect. 3, neither the posterior distribu-
tion nor the likelihood can be expressed analytically, especially because they depend
on the solution u of the PDE that cannot be written in a closed form. Thus, following
Abboud et al. (2019), we use the adaptive multiple importance sampling algorithm
(AMIS; Cornuet et al. 2012), that consists of successively generating parameter vec-
tors under an adaptive proposal distribution and assigning/updating weights for the
parameter vectors. To design efficient importance sampling algorithms, the auxiliary
proposal distribution should be chosen as close as possible to the posterior distribution.
However, the posterior distribution being unknown, the crucial choice of the proposal
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is a difficult task (Gelman et al. 1996). The main aim of AMIS is to overcome this dif-
ficulty by tuning the coefficients of the proposal distribution picked from a parametric
family of distributions, generally the Gaussian one, at the end of each iteration. In this
framework, at each iteration, new coefficient values for the proposal distribution are
determined using the current weighted posterior sample, then the posterior sample is
augmented by generating new replicates from the newly tuned proposal distribution
and the weights of the cumulative posterior sample are updated. The AMIS algo-
rithm provides a weighted posterior sample {(�l

m, wl
m) : 1 ≤ m ≤ M, 1 ≤ l ≤ L}

of size ML , which forms an empirical approximation of the posterior distribution
[�|Y ,Mi (T̃ )] (m stands for the iteration; l stands for the replicate generated at itera-
tion m). Conditions leading to the convergence in probability of the posterior mean of
any function (integrable with respect to the posterior distribution) of the parameters
are described in Cornuet et al. (2012) and Marin et al. (2019), and are satisfied in our
case (Abboud et al. 2019).

We implemented the AMIS algorithm in the R statistical software, with calls
to the software Freefem++ for numerically solving the PDE in the mechanistic-
statistical environment (MSE; https://informatique-mia.inrae.fr/mse/). We performed
parallel computation to compensate for the non-negligible time of PDE resolution.
With (M, L) = (50, 104) (which ensured the stabilization of the posterior samples
using the deviation measure described by Abboud et al. 2019) and the use of 100
cluster cores (the cluster being composed of 40-cores nodes Xeon(R) 2.2 Ghz, 228
Go RAM), the estimation procedure for one model takes approximately 1.75 days in
average. Unlike the MCMC algorithm that is often used in the mechanistic-statistical
framework (Soubeyrand and Roques 2014; Lanzarone et al. 2017), AMIS, as a purely
Monte Carlo algorithm, can be easily parallelized, its tuning parameters are automati-
cally adapted at each iteration, and all the samples generated throughout the algorithm
are recycled thanks to the update of weights at each iteration. The AMIS algorithm
provides at each iteration an assessment of the posterior distribution of parameters,
which is expected to be stable after a burn-in period and to converge to the true posterior
distribution.

4.2.2 Computation of the Integrated Likelihood

Computing the posterior model probability requires the evaluation of the integrated
likelihood as shown in Eq. (8). Various methods to estimate the integrated likelihood
(that is not analytically tractable in our case) are encountered in the literature. In
this article, we briefly assess several of these methods with respect to their impact on
BMApredictions. Nine integrated likelihood estimators, described inOnline Resource
1, Section S1, are considered: the un-normalized weight estimator denoted by UWE
(Bugallo et al. 2015), the estimator based on an information criterion (McElreath 2018)
of which we consider six different specifications denoted by WAIC1, WAIC2, BIC,
DIC1, DIC2 and IC, and the harmonic mean estimator (Newton and Raftery 1994;
Gelfand and Dey 1994) of which we consider two specifications denoted by HME1
and HME2.
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4.2.3 Priors and Posterior Samples

For the applications, we assume as a prior knowledge that the models are equally
weighted. Because several model structures with different sets of parameters are con-
sidered, the prior distribution of � partly depends on the model structure. These
distributions combine vague uniform and Dirac distributions (Dirac distributions are
considered for r0 and p0 for identifiability issues) and are provided in Online Resource
1, Section S2. AMIS is then applied to obtain a weighted posterior sample of size
ML = 5 × 105 for each candidate model; see Sect. 4.2.1. Posterior model proba-
bilities, empirical approximations of BMA posterior distributions and other posterior
quantities (including predicted infection maps) were approximated by sampling with
replacement 104 models×parameters with respect to model and parameter weights.

5 Application to Simulated Data

We perform a simulation study to illustrate the heterogeneity in the predictive perfor-
mance of the inference approach (by focusing on the posterior model probabilities)
when one considers the different methods presented in Sect. 4.2.2 for computing the
integrated likelihood.

The simulation study is carried out by generating three different data sets {O(g) :
g = 1, 2, 3} = {(t j , x j ,Y

(g)
j ) : 1 ≤ j ≤ J } from two different generativemodels. The

simulations are performed by using characteristics of real data analyzed in the next
section: we use the same spatial domain �, observations locations x j and observation
times t j and, for most of the parameters, we use values close to parameter estimates
obtained in the next section. The two models that we consider areM0(5.5), in which
the diffusion is homogeneous (D1 = D2), and M1(5.5), in which the diffusion is
heterogeneous. For the latter model, we consider two cases: D2 = 0.9D1 and D2 =
0.1D1. Table S1 in Online Resource 1 summarizes model specifications and provides
parameter values. Figures S1–S3 in Online Resource 1 display the posterior map of the
introduction location and the marginal posterior distributions of the other parameters
when the true model is fitted to data. We can observe that the true parameter values
are all in their respective 95% credible intervals.

The relevancy of each approach for computing posterior model probabilities is
assessed by fitting the two models M0(5.5) and M1(5.5) to the three simulated
data sets and by checking, for each data set, whether the true model has the largest
posterior probability. Both candidate modelsM0(5.5) andM1(5.5) have equal prior
weights. Posterior model probabilities provided in Table 1 are computed with each
of the nine estimators of the integrated likelihood listed in Sect. 4.2.2. Only posterior
model probabilities estimated from UWE, HME2, WAIC1 and WAIC2 are consistent
in the sense that the true model has the largest posterior probability.

In the real case study presented below, we use the estimator grounded on un-
normalized weights (UWE) because it is considered as one of the most efficient
approaches for assessing the integrated likelihood, displaying desirable convergence
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properties (Ford and Gregory 2007), and because, from a practical viewpoint, it is
easily obtained from AMIS output.

6 Application to Xylella fastidiosaData

6.1 Model Comparison

In the analysis of Xylella fastidiosa (Xf) data in South Corsica, we first compare the
27 models under consideration (the three model shapes presented in Sect. 3 times nine
temperature thresholds, from 4 ◦C to 6 ◦C every 0.25 ◦C). The models are fitted to
training data consisting of all the samples from July 2015 to April 2017 (subsequent
data from May 2017 to January 2019 are used for assessing predictive performance
of diverse forecast approaches in Sect. 6.3). The stabilization of AMIS assessed as
in Abboud et al. (2019) is satisfactory for all models (see Online Resource 1, Figure
S4 for an example). Posterior model probabilities are provided in Online Resource 1,
Table S2, for the computation based on UWE as well as for the computations based on
the other approximation approaches. Regarding the best model, UWE and HME2 lead
to M0(4.75) (homogeneous diffusion but heterogeneous growth with a temperature
threshold equal to 4.75 ◦C), DIC1 and IC lead to M0(5.75) and the others lead to
M1(5.75) (homogeneous diffusion and growth). Thereafter, we only analyze results
obtained with UWE, as explained in Sect. 5. Overall, models with the largest posterior
probabilities computed fromUWE areM0 andM1 with temperature thresholds from
4.75 ◦C to 5.5 ◦C.

6.2 Inference from BMA

BMA posterior distributions of shared parameters (the temperature threshold, the
introduction time and the introduction location) are displayed in Figs. 2 and 3. Figure2
illustrates an advantage of BMA since one obtains a posterior distribution for the
temperature threshold instead of the unique value obtained by Abboud et al. (2019)
with a model selection approach. The introduction of Xf tends to be relatively ancient
but uncertain (posterior mean: 1956; posterior median: 1954; posterior SD: 15 years;
95%-posterior interval: [1933;1988]). The inference of the introduction date provided
by the best model is slightly less variable (posterior mean: 1958; posterior median:
1957; posterior SD: 14years; 95%-posterior interval: [1934;1986]).A larger difference
in estimation uncertainty arises for the introduction location, which is more uncertain
in the BMA inference than, for instance, in the inference resulting from the model
selected by (Abboud et al. 2019, Fig. 6). The BMA estimation possibly better reflects
the uncertainty about the introduction location than a single-model estimation.

6.3 Forecast Performance

We assess forecast performance by considering different in-sample predictors trained
over the period from July 2015 to April 2017 (8152 observations) and evaluated over
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the period from May 2017 to January 2019 (1523 observations). We consider five
in-sample predictors:

• Best model: the posterior mean of u computed and averaged over the period May
2017–January 2019, which is provided by the best model selected from and fitted
to training data (the best model is the model with the highest posterior model
probability given by Eq. (8));

• BMA: the posterior mean of u computed and averaged over the period May 2017–
January 2019, which is provided by BMA applied to training data;

• Ensemble: themeanof the 27maximum likelihood estimates (MLE) ofu computed
and averaged over the period May 2017–January 2019 obtained under the 27
models, where the MLE of u corresponds for each model to the parameter vector
simulated in the AMIS algorithm leading to the largest likelihood value;

• Climatology: the so-called climatology forecast (Mason 2004), which is simply
the mean of {Y j : t j ∈ [July 2015–April 2017]};

• Kernel smoother: the spatial kernel smoother of {(x j ,Y j ) : t j ∈ [July 2015–April
2017]}, using the Epanechnikov kernel, which is proportional to d �→ (1 −
d2)1(|d| ≤ 1), where d is the geographical distance scaled by a bandwidth value
ranging from 2.5 to 25km. We assume that the kernel smoother predicts 0 if no
observations are available within the bandwidth.

The in-sample forecasts are computed over a regular square grid with 1km×1km
cells covering � and are compared to several benchmark out-of-sample forecasts
computed over the same grid and offering different visions of the true sanitary situa-
tion between May 2017 and January 2019. Two types of out-of-sample forecasts are
considered:

• Local infection proportions: the raw mean of Y j observed in each grid cell from
May 2017 to January 2019. Sampling over the validation period was made in a
limited number of grid cells mostly distributed near the shoreline. In particular,
areas with very low infection risk based on earlier observations were not sampled
(typically high altitude areas). Hence, to better represent the sanitary situation
across space in the validation map, we augmented the set of grid cells where local
infection proportions could be computed as raw means of Y j with a set of grid
cells where local infection proportions were fixed at zero. This set, displayed in
Figure S5 in Online Resource 1, was constructed by identifying grid cells far from
past detections of Xf and far from observations during the validation period, that
is to say grid cells satisfying two conditions: (1) no infection observed in training
data up to 10km; (2) no observation in validation data up to 10km.

• Smoothed infection proportions: the spatial kernel smoother of validation data,
i.e. {(x j ,Y j ) : t j ∈ [May 2017–January 2019]}, computed at each grid cell center.
Here also, the smoother is grounded on an Epanechnikov kernel with bandwidth
values ranging from 2.5 to 25km, and it predicts 0 if no observations are available
within the bandwidth.

The motivation for considering as benchmarks the smoothed infection proportions
with varying bandwidths (in addition to the raw local infection proportions) is that we
want to assess the ability of the competing predictors to forecast infection probability
at different spatial scales.
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Thus, Fig. 4 shows the benchmark out-of-sample predictions consisting of the local
infection proportions and the smoothed infection proportions obtained with the 15km-
kernel bandwidth (top right box), and the five in-sample predictions (as well as
posterior standard deviations of u for the best model and the BMA; bottom box).
Figures S6 and S7 in Online Resource 1 display the same plots for a kernel band-
width equal to 5 and 25km, respectively (only the in- and out-of-sample smoothers
are different in these figures). Overall, the best model, the BMA, the ensemble and
the kernel smoother provide spatially heterogeneous predictions that may be relevant
but a quantitative assessment of the prediction quality is needed to finely compare
the predictions (see the paragraph below). Furthermore, like for the estimation of the
introduction location, BMA yields a clearly more uncertain inference of the infection
probability u across space than the best model.

The root-mean-squared error (RMSE) with respect to each benchmark out-of-
sample forecast is computed to measure the predictive performance of the BMA,
the best model, the ensemble, the climatology and the kernel smoothing, i.e. to mea-
sure how close are the forecasts to the true sanitary situation between May 2017 and
January 2019. This quantity is calculated over the regular square grid with 1km×1km
cells already introduced above:

RMSE =
√
√
√
√ 1

H

H∑

h=1

( ˆ̄uh − ūh)2,

where ˆ̄uh is the average (in time and space) prediction of u in grid cell h over May
2017–January 2019 provided by one of the predictors; ūh is either the local infection
proportion in grid cell h over the validation period or the average (in time and space)
of u in grid cell h provided by the spatial kernel smoother with bandwidth b > 0
applied to validation data (where b ranges from 2.5 to 25km); H is the number of grid
cells.

Figure5 shows the RMSE values for the five in-sample forecast approaches and a
kernel bandwidth ranging from 2.5 to 25km. Looking only at the comparison with the
raw local infection proportions over the validation period (red symbols), the BMA
outperforms the other approaches (best model, ensemble, climatology and kernel
smoother whatever the bandwidth). The same holds true when one compares the com-
peting in-sample forecasts to the out-of-sample predictions computed as smoothed
infection proportions obtained with different bandwidths (black symbols). The cli-
matology, which predicts the same infection probability everywhere, obviously does
not account for the major spatially-structured effect of cold temperatures in winter
on Xf reproduction or propagation. For small bandwidths, the high probability areas
identified by the kernel smoother applied to training data and to validation data are
spatially close but do not exactly coincide. In contrast, the quite smooth predictions
based on the BMA, the best model and the ensemble do not predict peaks of infection
as observed in the out-of-sample forecast but correctly delineate regions where these
peaks can arise. When the bandwidth is large, the out-of-sample forecast tends to a
very smooth function that even yields significant positive infection probabilities in
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regions where Xf reproduction or propagation is hampered (i.e. cold regions in win-
ter). This bias incorporated in what we called a vision of the true sanitary situation is
also encountered in the in-sample forecast based on kernel smoothing (and to some
extent in the climatology that can be considered as a kernel smoothing with very large
bandwidth). This bias partly explains the improvement of the prediction ability of the
kernel smoothing and the climatology when the bandwidth increases. However, even
for large bandwidths, the BMA prediction is better.

7 Discussion

We have presented how to use Bayesian model averaging (BMA) to infer and predict
pathogen dynamics from multiple candidate PDE-based models, with an application
to Xylella fastidiosa. This approach has a large potential of application in epidemiol-
ogy where compartmental models based on ordinary or partial differential equations
are widespread and often used to forecast epidemics as illustrated during the current
COVID-19 pandemic (e.g., see Bertozzi et al. 2020; Kissler et al. 2020; Roques et al.
2020, among many other references). BMA is a valuable approach to compensate
for the supposed lack of flexibility of such deterministic models. BMA can also be
exploited for model selection, using the posterior model probabilities to identify the
best model. However, we have tested nine methods proposed in the literature to com-
pute these probabilities and we obtained rather heterogeneous results (even if only 3
models out of 27were identified as themost probablemodels by the ninemethods).We
chose the computation based on un-normalized weights calculated within the impor-
tance sampling algorithm. This natural choice appears to be efficient in our application
(it led to a BMA-forecast clearly better than the best-model-forecast and the ensemble-
forecast), but further work is required to provide robust advises for computing model
weights in BMA.

The model-averaging framework that we describe in this article may be used for a
broad range of applications not limited to pathogen invasion dynamics. It may espe-
cially be applied to predict more general population dynamics (invasive or not) by
adapting (1) the competing PDE-based models to the species dynamics and (2) the
observation-process model to the available data. For instance, the model-averaging
framework may be adapted to studies in which PDEs were fitted to data concern-
ing the population dynamics of insects (Ovaskainen et al. 2008; Roques et al. 2011),
birds (Wikle 2003), terrestrial mammals (Louvrier et al. 2020) and marine mammals
(Williams et al. 2018). The framework is not limited to PDE-based phenomenological
models: other relatively concise model formalisms may be used, such as those dis-
cussed for plant, animal and pathogen dynamics by Pyšek and Hulme (2005), Schurr
et al. (2012), Leitner and Kühn (2018) and Roques and Soubeyrand (2023), even if
the additional flexibility eventually offered by alternative models might be an issue
depending on the information brought by data. If such a case occurs, the model aver-
aging approach may however allow the analyst to reduce estimation difficulties by
simplifying a comprehensive model (affected by identifiability problems) into mul-
tiple partial models (less prone to identifiability problems), which are fitted to data
independently and then combined to draw probabilistic predictions. To illustrate this
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Table 1 Posterior model probabilities obtained for each simulated data set using different methods to assess
the integrated likelihood, namely, those based on BIC, DIC1 and DIC2, UWE, HME1, HME2, WAIC1,
WAIC2 and IC

Method Model Diffusion Posterior model probability
M0(5.5) M1(5.5)

BIC M0(5.5) D2 = D1 1.00 0.00

M1(5.5) D2 = 0.9D1 1.00 0.00

D2 = 0.1D1 1.00 0.00

DIC1 M0(5.5) D2 = D1 1.00 0.00

M1(5.5) D2 = 0.9D1 <0.01 >0.99

D2 = 0.1D1 1.00 0.00

DIC2 M0(5.5) D2 = D1 1.00 0.00

M1(5.5) D2 = 0.9D1 0.57 0.43

D2 = 0.1D1 0.30 0.70

UWE M0(5.5) D2 = D1 0.58 0.42

M1(5.5) D2 = 0.9D1 0.23 0.77

D2 = 0.1D1 0.15 0.85

HME1 M0(5.5) D2 = D1 1.00 0.00

M1(5.5) D2 = 0.9D1 0.80 0.20

D2 = 0.1D1 0.23 0.77

HME2 M0(5.5) D2 = D1 1.00 0.00

M1(5.5) D2 = 0.9D1 0.12 0.88

D2 = 0.1D1 0.08 0.92

WAIC1 M0(5.5) D2 = D1 1.00 0.00

M1(5.5) D2 = 0.9D1 0.40 0.60

D2 = 0.1D1 0.41 0.59

WAIC2 M0(5.5) D2 = D1 1.00 0.00

M1(5.5) D2 = 0.9D1 0.40 0.60

D2 = 0.1D1 0.40 0.60

IC M0(5.5) D2 = D1 1.00 0.00

M1(5.5) D2 = 0.9D1 0.00 1.00

D2 = 0.1D1 1.00 0.00

proposal, consider a situation where one aims to infer the dynamics of a species (typ-
ically a plant species) with multiple possible dispersal vectors (e.g., rivers, winds,
animals and humans). If fitting a comprehensive model accounting for all the disper-
sal vectors leads to identifiability problems, one may fit partial models instead (each
of them taking into account a single dispersal vector), and combine these models with
BMA to draw predictions, to infer the relative contribution of each dispersal vector,
and even to test hypotheses about them (Bartoš et al. 2021). Although appealing,
this proposal should be tested with caution: considering a single dispersal vector in a
model might lead to biased estimation of the effect of this vector, and might require
an informative prior to avoid this bias.

123



67 Page 16 of 22 C. Abboud et al.

Fig. 1 Locations of plants (left), sampled from July 2015 to January 2019, that have been detected as
positive (green dots) or negative (blue dots) to Xf in South Corsica, France, and map of the average of the
daily minimum temperature (right) in Celsius degrees over January and February and a 1×1km-pixel grid
(Color figure online)

Concerning the emergence and spread of Xylella fastidiosa, we obtained consistent
resultswith previous studies. Thus, our estimation of the introduction date around 1956
[1933; 1988] is consistent with the phylogeny-based estimation (1971 [1924; 1994])
for the sequence type 7 of Xf provided by Dupas et al. (2023) and the estimation of
Soubeyrand et al. (2018) based on a stochastic temporal model including a hidden host
compartment (1985 [1978;1993]). Dupas et al. (2023) mention “a period of massive
introduction of exotic plants, particularly in Corsica", starting around the 70’s, that
supports their estimation, referring to Jeanmonod and Natali (1997)—this statement
relies on the credible assumption that the introduction of Xf in an isolated disease-
free territory can occur via the introduction of infected plants. Jeanmonod and Natali
(1997) indeed estimated a rather constant and high rate of introduction of exotic plant
taxa in Corsica from 1970 to 1997: around 50 taxa per decade. In contrast, from 1840
to 1970, this rate was estimated to be around 20 taxa per decade, which is clearly lower,
but might be sufficient to favor the introduction of Xf in Corsica. A more in-depth
analysis of the introduced plant species, with regard to those which are recognized as
hosts of Xf, deserves to be carried out to evaluate the different estimates of the date
of introduction. By the way, such an analysis could be exploited to propose a more
informative prior of the introduction date in our Bayesian approach. The introduction
location, which likely took place in the region of Ajaccio (West coast of Corsica), is
consistent with the estimation provided by Abboud et al. (2019), but the application of
BMA is expected to better reflect the uncertainty about this location. In addition, BMA
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Fig. 2 BMA marginal posterior distribution of the temperature threshold T̃

Fig. 3 BMA Posterior distributions of the introduction time τ0 (histogram) and the introduction point x̃0
(color palette). The prior for τ0 was uniform over [1931, 2015] (red line). The prior for x̃0 was uniform
over �T̃ 1 for modelMi (T̃ ), 0 ≤ i ≤ I (Color figure online)
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Fig. 4 Training data (top left box), out-of-sample predictions computed either as a local infection proportion
or as a kernel smoothing with a 15km-bandwidth (top right box), and in-sample predictions (i.e. posterior
means provided by the best model and the BMA, ensemble, climatology and kernel smoothing with a
bandwidth of 15km; bottom box) obtained from training data. Map of standard deviations are also provided
in the bottom box for the best model and BMA. The color palette (bottom right) applies to all plots. The
range of values taken in each map is provided below the map (Color figure online)

provides a posterior distribution for the threshold in winter temperature that includes
the threshold identified by Abboud et al. (2019) via a model selection procedure.

Based on the ample literature on model averaging and its benefits, we expected
improved predictions and more realistic uncertainty estimation (Hoeting et al. 1999;
Wintle et al. 2003). Precisely, in the Xf case study, BMA outperforms the best model
in terms of prediction, and credibility intervals provided by BMA are larger than those
provided by the best model. This observation could reflect the fact that BMA succeeds
in better assessing model uncertainty and avoids overconfidence in the estimations
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Fig. 5 RMSE values showing the performance of the in-sample predictors (BMA; best model; ensemble;
climatology; kernel smoothingwith varyingbandwidth)with respect to eachof the out-of-sample predictions
(local infection proportions in red; smoothed infection proportions with varying bandwidth in black). Each
in-sample kernel smoother obtained with a given bandwidth value is compared both to the local infection
proportions (red crosses) and to the smoothed infection proportion using the samebandwidth (black crosses),
but not to the smoothed infection proportions using other bandwidth values (Color figure online)

and the predictions. However, for firmly confirming this result, complementary studies
should be conducted to assess the calibration of credibility intervals.

As illustrated by the analysis ofXf data, the deterministic candidatemodels summa-
rized by Eqs. (1–5) and describing the dynamics of the pathogen capture, overall, the
discrepancies between regions of low- and high-probabilities of infection but do not
capture the details, e.g., the spatio-temporal disease clusters that can be observed using
kernel smoothing with small bandwidth. These details could be implicitly taken into
account by coupling the partial differential equation to stochastic terms or observed
covariates that would lead to more flexible realizations of the dynamics. Additional
model components and covariates could be identified from the series of work grounded
on mechanistic models and machine learning investigating the dynamics of Xylella
fastidiosa and its environmental/biological drivers (Cendoya et al. 2020; Godefroid
et al. 2019; Kottelenberg et al. 2021; Martinetti and Soubeyrand 2019; Raffini et al.
2020; Soubeyrand et al. 2018; White et al. 2017, 2020). An interesting perspective is
also to include the models proposed in some of these references directly in the BMA
analysis since BMA is expected to take advantage of different model structures.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11538-023-01169-w.
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