
Bulletin of Mathematical Biology (2023) 85:60
https://doi.org/10.1007/s11538-023-01161-4

ORIG INAL ART ICLE

A Statistical Mechanics Approach to Describe Cell
Reorientation Under Stretch

N. Loy1 · L. Preziosi1

Received: 22 February 2023 / Accepted: 25 April 2023 / Published online: 30 May 2023
© The Author(s) 2023

Abstract
Experiments show that when a monolayer of cells cultured on an elastic substratum
is subject to a cyclic stretch, cells tend to reorient either perpendicularly or at an
oblique angle with respect to the main stretching direction. Due to stochastic effects,
however, the distribution of angles achieved by the cells is broader and, experimentally,
histograms over the interval [0◦, 90◦] are usually reported. Here we will determine
the evolution and the stationary state of probability density functions describing the
statistical distribution of the orientations of the cells using Fokker–Planck equations
derived from microscopic rules for describing the reorientation process of the cell. As
a first attempt, we shall use a stochastic differential equation related to a very general
elastic energy that the cell tries tominimize and,wewill show that the results of the time
integration and of the stationary state of the related forward Fokker–Planck equation
compare very well with experimental results obtained by different researchers. Then,
in order to model more accurately the microscopic process of cell reorientation and
to shed light on the mechanisms performed by cells that are subject to cyclic stretch,
we consider discrete in time random processes that allow to recover Fokker–Planck
equations through classical tools of kinetic theory. In particular, we shall introduce
a model of reorientation as a function of the rotation angle as a result of an optimal
control problem. Also in this latter case the results match very well with experiments.
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1 Introduction

In the 80’s the study of cardiovascular diseases led to the need of understanding the
behaviour of cells of the heart and of the arterial walls subject to periodic deformations
due to pulsatile heart contractions and consequent blood flow (Buck 1979, 1980). In
order to mimick this environment, many authors seeded cells on a substratum that
was stretched periodically (see, for instance, the recent review (Giverso et al. 2022)
and references therein). It was generally found that for sufficiently high stretching
frequencies (see Greiner et al. 2015; Hsu et al. 2009; Jungbauer et al. 2008; Lee
et al. 2010; Tondon and Kaunas 2014) and amplitudes (see Boccafoschi et al. 2007;
Dartsch et al. 1986; Kaunas et al. 2005; Mao et al. 2021; Morita et al. 2013), cells
internally develop stress fibers that link to the substratum via focal adhesions and
confer anisotropic characteristics to the cell (see Fig. 1). Such stress fibers are, at
the equilibrium, mainly aligned perpendicularly to the main stretching direction or
at oblique and symmetric angles with respect to it. Consequently, the cells take an
elongated shape with the section of the nucleus that becomes elliptic with the long
axis along the above directions as well. This fact well correlates with the observation
that smooth muscle cells in the intima of arterial walls are oriented obliquely with
respect to the vascular axial direction forming helical-like structures characterized by
an angle with the longitudinal axis between 20◦ and 40◦ (Rhodin 1962; Shirinsky et al.
1989).

The reorientation dynamics in vitro is quite robust with respect to both cell type and
experimental set-up. In fact, regarding the former aspect, fibroblasts,muscle-type cells,
epithelial cells, endothelial cells, osteoblasts, melanocytes, mesenchymal stem cells,
all respond in a similarwaywhenperiodically stretched.Regarding the latter aspect, the
final result seems to be nearly independent from the applied frequency and amplitude,
and from the mechanical characteristics of the substratum, with transitions when the
corresponding values are smaller than some thresholds, i.e., too low frequencies, too
small deformations, too soft substrata. On the other hand, the strain ratio in the two
perpendicular directions turns out to be relevant, as well described by the experiments
performed by Livne et al. (2014).

From the viewpoint of mathematical modelling, the first attempts to describe the
phenomenon were based on a strain avoidance principle, consisting in the assumption
that cells tend to reorient in the direction of minimal strain (Barron et al. 2007; Faust
et al. 2011; Morioka et al. 2011; Wang 2000; Wang et al. 1995).

Successively, it was hypothesized that rather than minimal strain, the main reori-
entation direction tends to minimize stress (De et al. 2007, 2008; Livne et al. 2014).
Therefore in these works, the evolution of the cell orientation θ is related to a linear
elastic energy E through

d

dt
θ ∝ − ∂

∂θ
E . (1)

In particular, Livne et al. (2014) modelled the ensemble of cells on the substratum as
a linear elastic anisotropic material subject to biaxial strain and identified the equi-
librium orientations θeq formed by the cell major axis or of the stress fibers and the
direction of stretching corresponding to minimal energy. In this way, they found a
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Fig. 1 Experimental set-up and sketch of a sample oriented cell as schematized from actual pictures from
Fig. 3a of Roshanzadeh et al. (2020). The top row refers to a case in which cells tend to orient at an oblique
angle and the bottom row to the particular case in which εyy = 0 (and then r = 0) for which cells tend to
orient perpendicularly to the main streching direction

linear relationship between cos2 θeq and a parameter quantifying the biaxiality of the
deformation and the cell’s anisotropic material coefficients. They also showed that in
this parameter plane, data obtained using fibroblasts tend to align along a straight line.

Starting from the observation that the experimental results holded true even for
deformation ranges that make questionable the use of linear elasticity [they can go
up to 30% (Faust et al. 2011; Livne et al. 2014)], Lucci and Preziosi (2021) proved
that a generalization of the linear relationship found by Livne et al. (2014) also holds
for a very large class of nonlinear constitutive orthotropic models. In the nonlinear
framework, the squared cosine of the orientation angle is linearly dependent on a
parameter which is the natural generalization of the one found by Livne et al. (2014),
with a slope depending on a combination of elastic coefficients characterizing the
nonlinear strain energy. A detailed bifurcation analysis is given. Also Lazopoulos
and coworkers (Lazopoulos and Pirentis 2007; Lazopoulos and Stamenović 2006;
Stamenović et al. 2009) employed a finite elasticity framework to describe stress fibers
reorganization in strained cells, although they considered only uniaxial substratum
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stretching and addressed the problemusing a non-convex energy, giving an explanation
based on the co-existence of phases.

A viscoelastic model is instead proposed by Lucci et al. (2021) to explain why
on the time scale of experiments the reorientation phenomenon does not occur for
small frequencies, for instance, as a consequence of the reorganization of focal adhe-
sions. A Maxwell-like force-deformation relation was also used by Chen et al. (2012)
who focused on the dynamics of single stress fibers and on the reorganization of the
attachment of focal adhesions to the substratum.

However, it must be noticed that for sake of simplicity most of the models men-
tioned above work in a deterministic framework, while, as in any biological process,
randomness characterizes several aspects of the mentioned dynamics, such as the
assembly and disassembly of stress fibers and of focal adhesions as well as the bio-
chemical response inside the cell to such mechanical cues. Some of these aspects are
considered in Hsu et al. (2009, 2010), Kaunas et al. (2011) where the focus is on
the stochastic evolution of radially oriented stress fibers around the nucleus when the
cell is subject to static and cyclic stretch. De (2018) focused instead on the stochastic
stretch-sensitive bond association and dissociation processes taking also into account
the elasticity of the cell-substratum system to predict the orientation and stability of
adhesion mechanisms.

From the experimental point of view, the visible result of such uncertainties is
reflected in a spread in cell orientation, in the sense that the distribution of the ori-
entations of the cells is not represented by a Dirac delta, but by smoother functions.
Actually, the outcome of the experiments is naturally described using histograms and
graphs reporting the distribution of the frequencies of cell orientations falling in a
partition of angle ranges over [0◦, 90◦] (see, for instance, Barron et al. 2007; Chen
et al. 2018; Faust et al. 2011; Hayakawa et al. 2001, 2000; Livne et al. 2014; Mao
et al. 2021; Neidlinger-Wilke et al. 2001, 2002; Morioka et al. 2011; Wang et al.
1995; Wang and Grood 2000). The degree of spreading is not constant but depends
on the amplitude and frequency of the imposed stretch. Specifically, it increases when
decreasing amplitude and frequency.

The inclusion of some randomness allows the authors in Barron et al. (2007), Chen
et al. (2018), Morioka et al. (2011), Wang et al. (1995) to compare the histograms
obtained from the experiments with the curves obtained by the results of simulations
of the orientation model that they propose. However, there, an analytical distribution
function was not provided and the effect of stochasticity was not explored in detail.

One of the first analitycal treatments of the problem of describing the probability
density function of the orientations of the cells (its time evolution or, at least, the
stationary state) is provided by Kemkemer et al. (2006, 1999). They express the
evolution of the orientation of a cell by means of an automatic controller, i.e. an
ODE describing the temporal evolution of the single-cell orientation with an empirical
forcing term that has the desired symmetry. They gain a stochastic differential equation
(SDE) by adding diffusion, and obtain the evolution of the probability density function
as a forward equation of the SDE. They can easily compute the stationary state of the
resulting Fokker–Planck equation, represented by an exponential of a doubly-wrapped
cosine, that is a Boltzmann-like distribution. In particular, they compare the analytical
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findings with experimental results and show that the Boltzmann-like distribution can
describe cell orientations on curved substratums.

As a consequence, and as classically done in statistical mechanics when describing
reorienting dipoles, many authors consider a Boltzman probability density function
f

f (t, θ) ∝ e
−E(θ)

kT ,

that is, as a matter of fact, coherent with the fact that the cells’ orientation evolves
according to (1). Then, all the efforts lie in the modelling of the energy E of the
system and of its temperature T . For example, starting from their already mentioned
works (De et al. 2007, 2008), Safran and De (2009) describe the cell as a reorienting
dipole subject to a periodic stretch and model the distribution of the orientations
as a Boltzmann-distribution with a competition between the force determining the
free energy of the dipole and the effective temperature. Faust et al. (2011) use this
distribution assuming an E corresponding to the strain avoidance hypothesis. Also
Mao et al. (2021) consider a Boltzmann-like distribution with an energy that is the
sum of three contributions given by the work done by focal adhesions, by the pulling
force, and by the elastic potential energy of bars in the tensegrity structure, that however
presents a flaw. Driven by the aim of studying how peristalsic deformation affects the
orientation of cells in the intestinal epithelial sheet, in a very recent work Gérémie
et al. (2021), too, consider an SDE where the drift term is given by an elastic energy.
They, then, determine the Fokker–Planck equation but they do not manage to retrieve
a stationary probability density function, and they approximate it with a Gaussian
distribution.

In the present work our aim is to determine the evolution and the stationary state of
probability density functions describing the statistical distribution of the orientations
of the cells subject to cyclic stretch. We shall do this using Fokker–Planck equations
that we shall derive from microscopic stochastic processes taking into account the
reorientation dynamics of cells in response to cyclic stretch. We shall then compare
the probability density function with experimental results, in such a way that that the
proposed microscopic process can be validated. As a first step, we shall consider a
microscopic stochastic process ruled by the quadratic elastic energy proposed by Lucci
and Preziosi (2021), that has already been investigated in a deterministic framework,
leading to a good comparison with experimental results. As a second step, starting
from the principle of minimization of the previous quadratic energy, we shall derive a
microscopic stochastic process as a function of the actual rotation angles performed
by the cell during the reorientation and caused by the cyclic stretch of the substratum.
After deriving the probability density function describing the statistical distribution
of the orientations of the cells that obey to this second stochastic process, we shall
compare it with experimental results.

In order to do that, after recalling in Sect. 2 the mechanical background proposed
by Lucci and Preziosi (2021), as a first step we shall model the evolution of the cell
orientation by means of a stochastic differential equation in which the evolution of the
direction is related to a general elastic energy plus a stochastic fluctuation (Sect. 3). In
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the same section the evolution of the probability density function is, then, classically
obtained by means of a forward equation, namely a Fokker–Planck equation. We will
find the stationary state and prove that it is an asymptotic equilibrium (Sect. 3.1).
We will then show in Sect. 3.2 that using the elastic energy proposed by Lucci and
Preziosi (2021) the results of the integration of the Fokker–Planck equation and its
stationary state compare very well with the experimental results reported by Faust
et al. (2011), Hayakawa et al. (2001), Jungbauer et al. (2008), Livne et al. (2014), Mao
et al. (2021).
In Sect. 4, we shall describe the process of reorientation as a discrete in time stochastic
process that happens with a certain frequency. After showing that the same Fokker–
Planck equation used inSect. 3 can be obtained byperforming aquasi-invariant limit of
the Boltzmann kinetic equation describing the evolution of the statistical distribution
of the orientations of cells, in Sect. 4.2 we will propose a different viewpoint that
consists in modelling reorientation as a result of an internal optimal control problem
activated by the cell. Finally, we compare the results of the integration of the derived
Fokker–Planck equation and of its stationary state, obtaining an even better agreement
with respect to the one obtained in Sect. 3.2.

2 Mechanical Backgrounds

We consider isolated cells that are seeded on the surface of a thin elastic substratum
that is stretched biaxially. We define the x-axis along the direction subject to the
maximum stretch. For sake of simplicity, we assume that cells behave elastically, are
much softer than the substratum and strongly adhere to it, in such a way that the strain
in the specimen is perfectly transferred to cells and is homogeneous. This translates in
the fact that the strain tensor in the plane writes asE = diag(εxx , εyy) = diag(ε,−rε)
where r is called biaxiality ratio. As sketched in Fig. 1, when stretched, cells internally
develop stress fibers that link to the substratum via focal adhesions. The fact that these
stress fibers tend to form along a certain angle with respect to the stretch direction,
confers anisotropic characteristics to the system. Neglecting substratum deformability
by the traction forces exerted by the cells, of adhesion remodelling, and of viscoelastic
effect in cell behaviour [that are however considered in a deterministic fashion in
Lucci et al. (2021), Xu et al. (2016)], we will describe the system through a general
orthotropic elastic energy denoted by U that will be affected by the cell orientations.

Referring to Fig. 1, we will denote by θ the cell orientation angle with respect to the
x-axis. Now, at variance with what happens during migration when the moving cell
polarizes forming a head and a tail, in this case the internal structures of the cell aligned
along θ and along θ + π are geometrically indistinguishable [see, for instance, the
work by Roshanzadeh et al. (2020), Tondon and Kaunas (2014), Wang et al. (1995)].
As a consequence, these angles are also equivalent from the energetic point of view,
i.e. one must have U(θ + π) = U(θ). In addition, also the orientation of the axes is
equivalent in the sense that it is observed experimentally that configurations θ and
π − θ are equiprobable, as showed in Fig. 1. As a consequence, U(π − θ) = U(θ).
Therefore, U(θ) is an even π -periodic function and we can work under the following
symmetry requirements
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U1: U(θ) = U(2π − θ) = U(π − θ) = U(π + θ), ∀θ .

Most of the discussion that will follow is independent of the particular form of
energy that is chosen provided that it possesses the symmetry properties above. How-
ever, using continuum mechanics arguments, it can be proved (see, for instance, the
work by Ogden 2003) that an orthotropic elastic energy for a planar system with
the symmetry properties in U1 depends on θ through the square of its cosine and is
characterized by material coefficients describing the response to stretching along the
orientation direction (K‖) and perpendicular to it (K⊥) and the response to shear (Ks),
in addition to possible mixed terms.

To be specific in the following we will neglect mixed terms and use the following
form of elastic energy

U = K‖ε2Ū = K‖ε2

2

{
[(r + 1) cos 2θ + 1 − r ]2

+K̃⊥ [(r + 1) cos 2θ − 1 + r ]2 + K̃s(r + 1)2(1 − cos2 2θ)
}

, (2)

where K̃⊥ = K⊥
K‖

and K̃s = Ks

K‖
. We notice that Eq. (2) is a generalization of the

energy used by Livne et al. (2014) and a particular case of the one used by Lucci and
Preziosi (2021), Lucci et al. (2021). Of course, it satisfies the symmetry requirements
U1.

Referring then to Lucci and Preziosi (2021), Lucci et al. (2021) for a more detailed
stability analysis, defining

ρ(α) = 1 + α

1 − α
= 2 − K̃s

K̃s − 2K̃⊥
,

the following scenarios are possible in terms of r and

α = 1 + K̃⊥ − K̃s

1 − K̃⊥
: (3)

Case 1: ∀r if α > 1 and for r ∈
[

1
ρ(α)

, ρ(α)
]
if α ∈ (0, 1), there is only one stable

equilibrium θeq ∈ (
0, π

2

)
such that

cos2 θeq = 1

2
+ 1

α

(
1

2
− 1

r + 1

)
, (4)

or

cos 2θeq = 1

α

r − 1

r + 1
. (5)

Therefore, due to U1, there are four stable equilibria in [0, 2π), namely in
θ1eq = θeq , θ2eq = π − θeq , θ3eq = π + θeq , θ4eq = 2π − θeq (see Fig. 2a).
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(a) (b)

(c) (d)

Fig. 2 Elastic energy scenarios: a corresponds to Case 1, b to Case 2, c to Case 3 and d to Case 4

Case 2: ∀r if α < −1 and for r ∈
[
ρ(α), 1

ρ(α)
,
]
if α ∈ (−1, 0), there are four stable

equilibria in [0, 2π), namely θ1eq = 0, θ2eq = π/2, θ3eq = π , θ4eq = 3π/2 (see
Fig. 2b);

Case 3: for r < ρ(α) if α ∈ (−1, 0) and r < 1
ρ(α)

if α ∈ (0, 1), there are two stable

equilibria in [0, 2π), namely θ1eq = θ2eq = π/2, θ3eq = θ4eq = 3π/2 (see
Fig. 2c);

Case 4: for r > 1
ρ(α)

if α ∈ (−1, 0) and r > ρ(α) if α ∈ (0, 1), there are two stable

equilibria in [0, 2π), namely θ1eq = θ4eq = 0, θ2eq = θ3eq = π (see Fig. 2d).

We remark that in experimental works, observations of the orientations are reported
over [0, π/2) when the parameters of the experimental setting correspond to cases (a)
and (b), while the observations are reported over [0, π) when the parameters of the
experimental setting correspond to cases (c) and (d). In particular, in the following
we shall be interested in experimental settings that lead to scenarios (a) and (c) (Case
1 and 3). We want to highlight the fact that when dealing with scenario (a), exper-
imentalists tend to represent data over [0, π/2) as, because of the aforementioned
symmetry around the axis, the measure of θ ∈ [π/2, π) is reported in the histogram
bin corresponding to π − θ ∈ [0, π/2).

Working in a deterministic framework, on the basis of Lagrangian mechanics argu-
ments, we can relate the evolution in time of the orientation angle θ with the changes
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in the virtual workL done by the stress acting on the cell due to stress fiber alignment.
Considering an overdamped regime, which corresponds to neglecting inertial effects,
we can then write

0 = −η
dθ

dt
− ∂L

∂θ
, (6)

whereη is a viscous-like coefficientmeasuring cell resistance to internal rearrangement
of stress fibers. In the elastic case Eq. (6) reduces to

η
dθ

dt
= −∂U

∂θ
(θ, t) , (7)

or
dθ

dt
= − ε2(t)

λθ

∂Ū
∂θ

(θ) , (8)

whereλθ = η/K‖ andwe have put in evidence that the strainmight be time-dependent.
Referring to the work by Lucci et al. (2021) for a more detailed discussion, we here

observe that the same equation is obtained for a viscoelastic Maxwell-like model in
the limit of high frequenciesω with respect to the inverse of the viscoelastic relaxation
time λ, i.e., λω � 1. On the contrary, in the limit λω 	 1 viscous effects dominate
and a term λω appears at the numerator (related to the appearance of a strain rate, i.e.,
ε(t)ε̇(t) instead of ε2(t)), so that the effective λθ becomes λθ

λω
. Considering that λ is of

the order of oneminute for both stress fiber and focal adhesion remodelling (Chen et al.
2013; Pasapera et al. 2010), one has that the transition from low to high frequencies
occurs for ω about 0.01–0.1 Hz. In the work by Lucci and Preziosi (2021), Lucci et al.
(2021) the authors perform simulations of the deterministic process (8), showing a
very good agreement with experimental results that report the average orientation of
cells subject to cyclic stretch.

At variance with the previous deterministic description and, as any biological pro-
cess, cell reorientation is strongly affected by their stochastic behaviours. From the
experimental point of view, then, this leads to a representation of the orientation state
of the ensemble of cells in terms of mean, variance, and, whenever possible, frequency
histograms, as discussed in the following (see Figs. 5, 6 and 7). In parallel, from the
theoretical point of view, this leads to the need of determining a probability density
function describing the statistical distribution of the orientations. For this reason, in
the following, we will introduce a statistical mechanics approach.

3 Statistical Description of the Orientations of Cells under Bi-axial
Stretch

In order to describe analytically the statistical distribution of the orientations of the
cell, we introduce the probability density function f = f (t, θ) such that f (t, θ)dθ is
the fraction of cells having orientation in [θ, θ + dθ ] at time t . As discussed above,
the fact that cells have no identifiable head and tail, implies that if a cell is rotated
by π , it is not possible to perceive a difference in cell orientation. Hence the angles
θ and θ + π identify the same orientation. Therefore we shall deal with π -periodic
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probability density functions f , so that f (t, θ) = f (t, θ + kπ)∀k ∈ Z. In addition,
as a probability density function, f must satisfy

F1: f ≥ 0;

F2:
∫ π

0
f (t, θ) dθ = 1.

Moreover, due to the symmetry related to the choice of the direction of the axes along
the principal strain directions, the following property also holds

F3: f (t, 0) = f (t, π), ∀t ≥ 0;
F4: f satisfies the same symmetry property asU1, i.e. f (t, θ) is s.t. f (t, π −θ) =

f (t, θ);

where F3 is also implied by the periodic character of the distribution function f .
With the aimof taking randomness into account,wemay add a stochastic fluctuation

to (7),

dθ

dt
= −1

η

∂U
∂θ

+
√

σ 2

λθ

ξ , (9)

where ξ is a Gaussian random variable with zero mean and unitary variance and σ

takes into account the stochastic fluctuations due to uncertainties. The latter may then
be more properly rewritten as an Itô process

dθ = −1

η

∂U
∂θ

dt +
√

σ 2

λθ

dWt , (10)

where dWt = √
tξ , being, then, Wt a Wiener process.

The Fokker–Planck equation describing the forward evolution of the probability den-
sity distribution f of the orientations of the cells that follow the dynamics (10) is then
(Risken 1996)

∂

∂t
f (t, θ) = ε2(t)

λθ

∂

∂θ

(
∂Ū
∂θ

(θ) f (t, θ)

)
+ 1

2λθ

∂2

∂θ2

(
σ 2 f (θ, t)

)
. (11)

We observe that though in most experiments ε(t) = ε(1 − cosωt), since we are
interested in modelling the process of cell reorientation, as it is classically done in
previously discussed elastic models, we will consider the mean strain ε over an oscil-
lation period.

Introducing the nondimensional time t̄ = tε2

λθ

, then the Fokker–Planck equation

describing the evolution of f̄ (t̄, θ) = f (t̄λθ/ε
2, θ) reads

∂

∂ t̄
f̄ (t̄, θ) = ∂

∂θ

(
∂Ū
∂θ

f̄ (t̄, θ)

)
+ ∂2

∂θ2

(
σ̄ 2 f̄ (t̄, θ)

)
(12)
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where σ̄ 2 = σ 2

2ε2
. This already puts in evidence that increasing the stretch amplitude

decreases the dimensionless diffusion coefficient σ̄ leading to amore focused response
and more peaked distribution functions, and vice versa.

As already recalled, the inclusion of viscoelastic effects leads to the same results
in the high frequency regime. On the other hand, in the low frequency regime, the
dimensional analysis is modified because ε2 is formally replaced by ε2λω. As a con-

sequence, the effective dimensionless diffusion coefficient is σ̄ 2 = σ 2

2λωε2
, showing

that when the imposed frequency decreases, σ̄ increases leading to broader probability
density functions.

We remark that Eq. (12) is similar to the one analyzed by Bastardis et al. (2008),
and by Coffey et al. (2009) where the authors study a Fokker–Planck equation with a
periodic potential that rules the rotational motion of a Brownian particle with inertial
effects and that has the same symmetry properties as the elastic energy (2). In particular
they extendKramer’s escape theory (Bastardis et al. (2008)) and treat a similar problem
in the context of superparamagnetic relaxation of magnetic nanoparticles in 3D in
Coffey et al. (2009).

3.1 The Stationary Equilibrium

Dropping the bars over f and t here and henceforth, if we denote by

F[θ, f (t, θ)] = ∂Ū
∂θ

(θ) f (t, θ) + ∂

∂θ

(
σ̄ 2 f (t, θ)

)
, (13)

then the π -periodicity of Ū and f , implies that

F[π, f (t, π)] = F[0, f (t, 0)]. (14)

In particular, thanks to the differentiability of Ū , the stationary solution f ∞ of (12),
coupled with an initial condition f0, satisfying F1, F2, F3 is found by imposing

F[θ, f ∞(θ)] = 0, (15)

where the r.h.s. side is zero because of the boundary conditions (14). Thus, the sta-
tionary state of (12) is

f ∞(θ) = C exp

(
− Ū(θ)

σ̄ 2

)
, (16)

where C is a normalization constant. We observe that the maxima (resp. minima) of
f ∞(θ) correspond to minima (resp. maxima) of Ū . In particular, recalling that f is
defined in [0, π), in Cases 3 and 4 there is only a maximum respectively in π

2 and 0.
Therefore, in the former case, due to symmetry, the mean corresponds to the mode.
A similar property can be obtained in the latter case working in the more convenient
periodicity interval

(− π
2 , π

2

]
, otherwise the mean is trivially and misleadingly equal

123



60 Page 12 of 31 N. Loy, L. Preziosi

to π
2 . On the other hand, in Cases 1 and 2, f ∞(θ) is a bi-modal distribution in [0, π)

with modes θ1eq , π − θ1eq and 0, π
2 , respectively. Actually, for the already mentioned

symmetry reasons, usually, the range of angles used to report experimental data is the
first quadrant [0, π/2), rather than [0, π) or [0, 2π). In this case, then, the notion of
mean looses its informative role, especially with respect to the mode that, restricted
to [0, π/2) is θ1eq in Case 1.

Remark 1 We observe that, if σ = 0, i.e. there is no stochastic fluctuation in (10), then
the stationary state given by imposing (15) is a Dirac delta or a weighted sum of Dirac
deltas centered in the stable equilibria orientations.

As usually done for the standard Fokker–Planck equation (Furioli et al. 2017),
convergence to the stationary state can be studied by analyzing the monotonicity in
time of various Lyapunov functionals of the solution. The typical one is the relative
Shannon entropy

H( f , f ∞) =
∫ π

0
f (θ, t) log

(
f (t, θ)

f ∞(t, θ)

)
dθ , (17)

where f , f ∞ : I ⊂ R → R+ aree two probability densities. As periodic boundary
conditions (14) hold, it is straightforward to prove (see Furioli et al. 2017) that the
Shannon entropy monotonically decreases in time towards the stationary state, i.e.

d

dt
H( f , f ∞) ≤ 0 and

d

dt
H( f , f ∞) = 0 iff f = f ∞.

Therefore, f ∞ is an asymptotic global equilibrium state.

3.2 Statistical Description and Comparison with Experiments

Usually, dealing with angles requires circular statistics and the definition of trigono-
metric moments (Mardia and Jupp 1999), e.g. the circular mean

〈θ(t)〉 := arctan
β(t)

α(t)
, α =

∫ π

0
cos θ f (t, θ) dθ, β =

∫ π

0
sin θ f (t, θ) dθ.

However, the symmetry properties of f in Case a) and Case b), that prescribe a
bi-modal probability density function, would always lead to α = 0 and, therefore,
〈θ(t)〉 = π

2 . For this reason, we will use the following definition restricted to the first
quadrant

θ̄c(t) := arctan

∫ π/2

0
sin θ f (t, θ) dθ

∫ π/2

0
cos θ f (t, θ) dθ

, (18)
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even because it better correlates with the definition of average

θ̄�(t) := 2
∫ π/2

0
θ f (t, θ) dθ, (19)

that has been used in most experimental papers, where the 2 accounts for renormal-
ization over [0, π/2). We will also use the coherent definition of variance

v̄�(t) := 2
∫ π/2

0
(θ − θ̄�)

2 f (t, θ) dθ. (20)

An index∞will identify thequantities above computed for the equilibriumdistribution
f ∞.
However, some remarks are needed. First of all, we observe that in general the

average and the mode do not coincide, i.e. θ̄∞
c , θ̄∞

� �= θ1eq . They obviously do when
σ → 0. However, we will see numerically (see Fig. 4) that in most cases θ̄∞

c = θ̄∞
� .

In order to clarify this point, in Fig. 3 we plot the equilibrium distribution (16) over
the interval [0, π) for different values of the parameters r and K̃s , α being fixed to
the value αL = 0.794 determined fitting the data of the experiments by Livne et al.
(2014). Then we vary K̃s and, from (3), set

K̃⊥ = K̃s − 1 + αL

1 + αL
. (21)

The positivity of K̃⊥ prescribes the compatibility condition

K̃s > 1 − αL . (22)

Therefore, we remark here that for all the figures presented most of the parameters are
imposed by the experimental setting (r , α = αL , K̃‖, K̃⊥, K̃s). The values of K̃ are
not in general given by experimentalists, but K̃‖ = 1, K̃⊥ is given by (21), and the
only free parameters are K̃s , that must obey constraint (22), and σ . In particular we
have observed that K̃s does not influence the average of the distribution, as well as its
shape, and we shall always consider K̃s = 0.7, while the greatest role is played by σ .
We remark that in Fig. 3 and in all the other Figures, we have preferred to describe
angles in degrees rather than in radians for a better readability and a more direct
comparison with the statistical descriptions of the experimental results.
In addition to the obvious observation that the diffusion parameter σ̄ influences the
spread of the orientations, other two facts linked to the presence of the diffusion
stochastic term emerge explicitly and are put in evidence in Fig. 4:

• unless for the symmetric case θ1eq = π
4 that is always obtained for r = 1 (see

Eq.(4)), the average of the probability density distribution computed over
[
0, π

2

)
does not correspond to θ1eq , that is identified by the mode in the first quadrant, i.e.
the maximum of the distribution function;
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Fig. 3 Profile of the stationary state (16) with Ū given by (2) for various values of σ̄ and r as specified in

the title and legend of the figures. In all figures K̃s = 0.7. The value r = ρ(αL ) = 1−αL
1+αL

= 0.115 refers

to the bifurcation point. The table reports θ1eq (denoted by a � in the figures) obtained by (4) and the mean

θ̄∞
�

over
[
0, π

2
)
(denoted by a circle in the figures), computed using (19) with f ∞ defined by (16)

• the average of the probability density depends on σ and tends to the mode θ1eq
(marked by �) when σ → 0 and to π/4, corresponding to a uniform distribution,
when σ → +∞.

In Fig. 4 we also observe that the linear and the circular average at the stationary state
coincide. Therefore, as experiments always consider the linear average, then in the
following we shall make reference to θ̄�. We remark that, for values of the average that
are close to θeq , there may be two different values of σ and therefore two different
probability density functions that allow to recover the same average θ̄� (see Fig. 4).
Therefore, at each time we shall determine the one that better reproduces experimental
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Fig. 4 Average orientation as a
function of σ̄ and for different
values of r . θ̄∞

c (circles) and
θ̄�

∞ (full line) are computed,
respectively, using (18), (19) and
(16). Linear and circular average
coincide. Moreover, increasing
values of σ̄ lead to π/4,
corresponding to uniform
distributions, while for small
values of σ̄ the average tends to
θ1eq (marked by �).

A
ng

le
 °

Fig. 5 Comparison of the evolution of the probability density function obtained by performing a Monte
Carlo simulation of (10) with the experimental data reported in Hayakawa et al. (2001). In particular,
ε = 20% and r = 0.4. Solution for θ1eq ≈ 61◦, σ ≈ 0.04, and λθ ≈ 0.18s. On the left, the thick bars in
blue, red and yellow refer to the simulation results at t = 0, 1, 3 hours, respectively, while the corresponding
lighter and thinner bars correspond to experimental datas. On the right, evolution of the probability density
function.

results. It is evident that in Case 3 when θ1eq = θ2eq = π
2 , then it is more appropriate

to use 〈θ〉, rather than θ̄�.
With the aim of comparing the probability density functions with experimental

results, we now focus on some papers reporting histograms of the percentage of cells
in intervals of orientation angles. As in most cases esperimental data are given for
θ ∈ [

0, π
2

]
, we will restrict to the first quadrant.

In Fig. 5 we compare the temporal evolution of the probability density distribution
obtained by integrating (10) with a Monte Carlo approach with the experimental data
reported in the work by Hayakawa et al. (2001) (the represented histograms) for
ε = 20%, r = 0.4 and ω = 1Hz, that implies that we are in a high frequency regime.
In these experiments it is found that at t = 1h the average orientation is 52.8◦, while
at t = 3 hours, when more than the 80% of the cells are oriented at angles of 50◦–80◦,
the average orientation is 62.02◦. Using (4) and α = αL the minimum of the elastic
energy is obtained at θ1eq ≈ 61◦. In particular, we have run aMonte Carlo simulation of
(10) with N = 106 cells and dt = 0.06s, the initial probability density function is the
uniform distribution over [0, π). We have recovered the probability density function
as an histogram of the orientations of the simulated particles that, thus, approximates
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Fig. 6 Equilibrium distributions (16) changing σ̄ , ω and ε, while σ = 0.2 everywhere. The parameter
ε = 2%, 5%, 10% (first, second and third columns, respectively) is changed according to the experimental

setup giving rise to decreasing values of σ̄ 2 = σ 2

2ε2
in the first row and σ̄ 2 = σ 2

2ε2λω
with λ = 100 s in the

second row. The value of K̃s = 0.7 is used.

the solution to (12). In particular, we remark that the simulation is run over [0, π).
We then restrict and renormalize f over [0, π/2) for comparison purposes with the
reported histograms. Then, we calibrated σ in order to obtain a stationary state with
average 62.2◦ and that is closer to the histograms presented in Fig. 5 (left panel) and λθ

to replicate the time evolution of data. In particular, we set σ ≈ 0.04 that is such that
θ̄� = 62.2◦ and the probability density function has the same height as the histogram
at t = 3 h and λθ ≈ 0.18 s. After 1 hour we have that the average orientation is 54.6◦
and after 3 hours the average orientation is 62.04◦ and 85% of the cells is oriented at
angles of 50◦–80◦. In Fig. 5 (left panel) we plot both the histogramswith classes’ width
of 10 degrees and, in the righ panel, the time evolution of the recovered probability
density functions (that are histograms with classes width of 0.01 degrees).

Focusing on the stationary distributions, Mao et al. (2021) report some experi-
mental data in histograms over [0◦, 180◦), changing the stretching amplitude (ε =
2%, 5%, 10%) and frequency (ω = 1 Hz, 0.001 Hz). In particular, they show that
increasing values of both amplitude and frequency lead to more peaked distributions.
In their case, r = 0 and the equilibrium orientation is perpendicular to the main
stretching direction, i.e. θ1eq = 90◦. Trivially, due to symmetry, in this case the mode
and the mean computed in [0◦, 180◦) coincide, with σ, ε and ω determining only the
variance of the probability density function. In Fig. 6 in order to replicate the data
reported by the histograms by Mao et al. 2021, we plot (16) where we set the same
σ = 0.2 and vary ε and ω. When ω = 1 (top row of Fig. 6), that corresponds to a
high frequency regime, increasing the strain amplitude, coherently with the fact that
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σ̄ 2 = σ 2

2ε2
(so, it goes like ε−2) we have more peaked distributions that fit quite well

the experimental distributions.
For ω = 0.001Hz since λω corresponds to a low frequency regime (it is λω = 0.1

if we take λ = 100 s), we use σ̄ 2 = σ 2

2ε2λω
. Also in this case, the distributions peak up

when increasing the strain amplitudes and, the theoretical results compare well with
the experimental results, in spite of the fact that we are not really using a viscoelastic
model but only taking into account of viscoelastic effects through a modification of σ̄

that is valid in the low frequency regime. Comparing the results obtained for a fixed
ε at the different ω’s (for instance, the last column in Fig. 6) simulations give more
peaked distributions for higher frequencies.

Faust et al. (2011) report the results of some experiment characterized by an eval-
uated biaxiality ratio of r = 0.15. Assuming that α = αL , as also suggested in
Livne et al. (2014), the minimum elastic energy and therefore the mode is obtained
at θ1eq ≈ 79◦. They perform the experiment applying different stretching amplitudes,
namely 4.9% (denoted as Case a1), 8.4% (Case a2), 11.8% (Case a3), and 14% (Case
a4). We recall that in this case, at variance with the (symmetric) one in Mao et al.
(2021), the mean changes with the strain amplitude that influences σ̄ (see second row
in the table in Fig. 7). The means of the stationary distribution obtained by the sim-
ulation reported in the fourth row in the table closely follow the experimental ones.
A slight difference is found for the standard deviation, expecially for larger ampli-
tudes. Therefore, in Fig. 7 we compare their experimental results with the stationary
probability density functions defined by (16) having average and standard deviation
as computed from the histograms reported in Faust et al. (2011). In particular, we
renormalize (16) over [0, π/2) for comparison purposes with the histograms that are
reported in thework by Faust et al. (2011).We remark again that, as the average is close
to θeq in the presented cases, there may be two different values of σ and therefore two
different probability density functions that allow to recover the same average θ̄� (see
Fig. 4). Here, we have chosen the one that allows to better reproduce the histograms.

4 Kinetic Description

With the aim to get closer to the intrinsic dynamics followed by the single cell, in
this section we will apply some classical tools of kinetic theory that, starting from
the definition of the microscopic dynamics performed by the cells in the reorientation
process, allow to derive the related mesoscopic evolution equation, such as (11). After
going through the general procedure, we will then apply it to different microscopic
rules. Then, in Sect. 4.2 we will discuss a different intrinsic dynamics that is probably
performed by the cell, that through an optimal control argument drives them towards
the most convenient orientation.
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Fig. 7 Equilibrium distributions (16) with Ū given by (2) in the cases a1, a2, a3, a4 reported in the work
by Faust et al. (2011) with applied strains listed in the table. In all figures we have r = 0.15 and K̃s = 0.7
that allowed to best reproduce the averages of the histograms θ̄hist

�
by varying σ in (16). The red circles

represent the average circular orientation θ̄∞
�

computed using (18). The black diamond represents θ1eq .

We also computed the standard deviation of the histogram ¯sdhist� and the standard deviation
√

v̄∞
�

of the

stationary state using (20).

4.1 Derivation of Kinetic Models fromDiscrete Random Processes

As a first stepwe formalize amicroscopic discrete-in-time random process for describ-
ing the reorientation of cells. Let �t ∈ [0, π) denote a random variable describing
the orientation of a representative cell at time t . As typically done in kinetic theory
(Pareschi and Toscani 2013), over a finite time interval �t , we assume that a cell
can change its main axis according to whether a reorientation occurs or not. We then
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express this discrete-in-time random process as

�t+�t = (1 − Tλθ )�t + Tλθ �
′
t , (23)

where �′
t is the random variable in [0, π) describing the new direction after a reorien-

tation given the previous direction�t , while Tλθ is a Bernoulli random variable which
we assume to be independent of all the other variables appearing in (23), discriminat-
ing whether the direction changes (Tλθ = 1) or not (Tλθ=0) during the time interval
�t . In particular we set

Prob(Tλθ = 1) = �t/λθ , (24)

where naturally the necessary condition for Tλθ to be a random variable is �t ≤ λθ .
Thus, the larger the time interval is, the higher the probability of having a reorientation
is. The quantity �′

t models the change of direction (if it happens) and it may be
generally expressed as

�′
t = hλ,K (�t ) +

√
σ 2ξ mod(π), (25)

i.e., the new direction �′
t is a function hλ,K of the previous orientation �t and of

the deformation parameters λx , λy, K‖, K⊥, Ks , accounted for by the index λ, K . We
shall assume hλ,K to be a regular function of its arguments, i.e. hλ,K ∈ C1([0, π)), ξ
is a standard gaussian random variable, i.e. ξ ∼ N (0, 1) satisfying 〈ξ 〉 = 0, 〈ξ2〉 = 1,
while the term mod(π) models the fact that �t is π -periodic.

The aggregate description of the orientations of the cells can be obtained by deter-
mining the evolution of an observable quantity ϕ = ϕ(θ) defined on the phase space
[0, π). Taking into account the rules (23) together with the assumed independence of
Tλθ it is possible to see that the evolution of the probability density function f (t, θ)

is (see “Appendix A” for a formal derivation)

d

dt

∫ π

0
ϕ(θ) f (t, θ) dθ = 1

λθ

〈
∫ π

0

(
ϕ(θ ′) − ϕ(θ)

)
f (t, θ)dθ〉, (26)

where, coherently with (25), θ ′ is given by

θ ′ = hλ,K (θ) +
√

σ 2ξ mod(π). (27)

Equation (26) is a Boltzmann-type integro-differential equation. Choosing ϕ(θ) = 1
we readily obtain

d

dt

∫ π

0
f (t, θ) dθ = 0,

which means that the total mass of the agents is conserved in time by the interac-
tions (27). Classically, the evolution of the statistical moments of f are obtained
choosing ϕ(θ) = θn , n = 0, 1, or circular moments may be recovered by setting
ϕ(θ) = cos(θ), sin(θ).
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As shown in “Appendix B”, by an asymptotic procedure called quasi-invariant limit
(see, for instance, Cordier et al. 2005; Furioli et al. 2017; Toscani 2006) based on a
rescaled microscopic rule

θ ′ = θ + γ
(
hλ,K (θ) − θ

) +
√

γ σ 2ξ, mod(π), (28)

where γ 	 1, we can obtain in the limit γ → 0 a Fokker–Planck equation for the
evolution of f

∂

∂τ
f (τ, θ) = − 1

λθ

∂

∂θ

[
(hλ,K (θ) − θ) f (τ, θ)

] + 1

2λθ

∂2

∂θ2

[
σ 2 f (τ, θ)

]
.

In particular, if we want to model the new orientation of a cell that tries to minimize
a potential energy U after a time interval dt we may observe that the discrete in time
random process describing the evolution of the orientation�t happens with frequency
1/λθ and may be expressed by discretizing (10) over dt (where we consider the high
frequency regime) and setting dt = γ

θ ′ = θ − γ ε2
∂Ū
∂θ

+
√

γ σ 2ξ mod(π). (29)

Using the quasi-invariant limit procedure, we have the Fokker–Planck equation

∂

∂τ
f (τ, θ) = ε2

λθ

∂

∂θ

(
∂Ū
∂θ

f (τ, θ)

)
+ 1

2λθ

∂2

∂θ2

[
σ 2 f (τ, θ)

]
,

which is, as expected, the same as (11).

4.2 Reorientation as an Optimal Control Problem

In this section we want to introduce a new point of view consisting in modelling
reorientation as a result of an internal control actuated by the cell that tries to minimize
the elastic energy U . From the mathematical point of view, this approach consists in
expressing reorientation rules like (27) starting from a control problem, in the sense
that we assume that the cell changes its orientation by a rotation angle νψopt where
ψopt is the angle that minimizes a certain cost functional J . At the kinetic level, this
has been widely treated in recent literature, e.g. by Preziosi et al. (2021), Tosin and
Zanella (2019), Albi et al. (2020), Dimarco et al. (2022), Albi et al. (2014), Albi et al.
(2014). Therefore, we write

θ ′ = θ + νψopt , ψopt = argminψJ (ψ), (30)

where J is an energy functional defined as

J (ψ) = ν
ψ2

2
+ 〈g(θ ′)〉,
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where the first contribution is a kinetic energy related to the control process, being ν

a penalization coefficient, and the function g will be specialized later on.
In order to determine the optimal control at each reorientation, we need to introduce

a Lagrangian
L(θ ′, ψ) = J (ψ) + χ〈θ ′ − (θ + νψ)〉, (31)

where χ ∈ R is the Lagrange multiplier associated with the constraint (30). The
optimality conditions are then identified by the solution of

⎧⎪⎪⎨
⎪⎪⎩

∂L
∂θ ′ =

〈
dg

dθ ′ (θ
′)
〉
+ χ = 0,

∂L
∂ψ

= ν(ψ − χ) = 0.
(32)

Therefore, eliminating the Lagrange multiplier, the optimal value is implicitly identi-
fied by

ψopt +
〈
dg

dθ ′ (θ
′)
∣∣∣
θ ′=θ+νψopt

〉
= 0 . (33)

If we choose g = ε2Ū , then Eq. (33) specializes to

ψopt + ε2
dŪ
dθ

(θ + νψopt ) = 0,

that, in general, allows to determine the optimal control only implicitly.
In any case the reorientation rule (30) specializes into

θ ′ = θ + νψopt = θ − νε2
dŪ
dθ

(θ + νψopt ),

that in the limit of small ν used for the grazing limit and adding the stochastic term is
equivalent to (29) and leads again to (12).
In order to explicitly determine the control, we can, instead, more classically take a
quadratic form for g

g(θ ′) = ε2

2
[θ ′ − θ̂ (θ)]2 , (34)

where, assuming to work in Case 1,

θ̂ (θ) = θ1eq p(θ) + (1 − p(θ))(π − θ1eq) (35)

with p(θ) a non negative and continuous function defined on [0, π) that satisfies

p(θ1eq) = 1 p(π − θ1eq) = 0, p(0) = p(π/2) = p(π) = 1/2,

p′(θ1eq) = p′(π − θ1eq) = 0 (36)

in such a way that
θ̂ (θ1eq) = θ1eq and θ̂ (θ2eq) = θ2eq . (37)
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Therefore, the choice of g given by (34)–(37) has the same extrema θ1eq and θ2eq as

Ū . The latter models, essentially, the fact that if θ is already close to an equilibrium
orientation, then it ismore likely not to change. In particular, we shall consider a second
order polynomial satisfying the previous conditions. In this case one can explicitly
solve (33) and determine

ψopt = − ε2

1 + νε2
(θ − θ̂ ),

and therefore the reorientation rule (30) becomes

θ ′ = θ + γ ε2(θ̂(θ) − θ) where γ = ν

1 + νε2
. (38)

Adding a stochastic fluctuation weighted by σc we have

θ ′ = θ + γ ε2(θ̂(θ) − θ) +
√

γ σ 2
c ξ mod(π). (39)

This rule implies the fact that at each reorientation the cell will activate a control to
reach a better orientation that is given by a rotation of γ ε2(θ̂(θ) − θ) (plus a white
noise). This process will stop when the cell has oriented along the stable equilibria,
because of the choice (34)–(37). In the symmetry points θ = 0, π/2, π the cell has
the same probability (= 1/2) of reorienting either towards θ1eq or θ2eq = π − θ1eq .

As illustrated in Sect. 4.1, in this case the quasi-invariant direction limit procedure
leads to the following Fokker–Planck equation

∂

∂τ
f (τ, θ) = − ε2

λθ

∂

∂θ

[
(θ̂(θ) − θ) f (τ, θ)

]
+ 1

2λθ

∂2

∂θ2

[
σ 2
c f (τ, θ)

]
, (40)

that can be coupled with boundary conditions F3. Therefore, the stationary state is
given by

−(θ̂(θ) − θ) f ∞(θ) + ∂

∂θ

[
σ̄ 2
c f ∞(θ)

]
= 0,

where σ̄ 2
c = σ 2

c

2ε2
, that gives

f ∞(θ) = C exp

(∫ θ

0

θ̂ (θ) − θ

σ̄ 2
c

dθ

)
(41)

where C is the normalization constant. This distribution has actually mode θ1eq and
π − θ1eq in [0, π), thanks to the choice (34)–(37) and average depending on the value
of σc.

In Fig. 8 we compare the stationary distribution (41) with the experimental data by
Faust et al. (2011), as in Fig. 7. Setting σc in such a way that θ̄l of (41) is the same as in

123



A Statistical Mechanics Approach to Describe Page 23 of 31 60

a1 a2 a3 a4

ε(%) 4.9 8.4 11.8 14
θ̄hist 51.1◦ 60.1◦ 70◦ 70.3◦

s̄d
hist 26◦ 23◦ 17◦ 18◦

θ̄∞ 51.1◦ 60.1◦ 70◦ 70.3◦

v̄∞ 24.6◦ 20.6◦ 13.8◦ 13.6◦

σc 4.2 4.1 3.3 3.9

Fig. 8 Equilibrium distributions (41) with σ̄ 2
c = σ 2

c

2ε2
in the cases a1, a2, a3, a4 as listed in the table. As

in Fig. 7, in all figures we have r = 0.15 and K̃s = 0.7 that allowed to best reproduce the averages of
the histograms θ̄histl by varying σc in (41). The red circles represent the average circular orientation θ̄∞

l
computed using (18) with (41). The black diamonds represent θ1eq . We also computed the standard deviation

of the histogram ¯sdhist� and the standard deviation
√

v̄∞
�

of the stationary state using (20) with (41). We

also superpose (16) with Ū given by (2) as reported in Fig. 7

the work by Faust et al. (2011), we find that the microscopic rule (39) allows to recover
probability density functions (41) that are better than those in Fig. 7. The prediction
of the standard deviation, reported by the fourth line of the table in the two figures,
shows that those of (41) are slightly closer to the linear standard deviation reported by
Faust et al. (2011). We remark that the values of σ and σc are very different, and this
is due to the fact that the rule (10) expresses the variation of θ in terms of its derivative
and of the elastic energy, while (39) expresses the variation through a rotation angle
that the cell performs during a reorientation.
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Fig. 9 Temporal evolution of the mean of the orientation distribution. In (a) ω = 1.2Hz and ε = 10% as
reported by Livne et al. (2014). In addition, λθ = 6.6s and σc = 0.7. In (b) and (c) ω = 2Hz and ε = 8%
as reported in Jungbauer et al. (2008). In addition, λθ = 6.6s and σc = 1.6. After 3000s stretching stops
and cells tend to reorient uniformly. The standard deviation (one confidence interval) of the angle is also
given in (b). In c the same mean is reported in terms of its cos 2θ for a more direct comparison with the
work by Jungbauer et al. 2008. Green squares correspond to the experimental results reported by Jungbauer
et al. (2008).

Focusing on the temporal evolution of (40) in Fig. 9(a)we report the results obtained
performing a Monte Carlo simulation of (23), (24), (39) with N = 106 particles,
γ = 10−2, as done in a different context for example by Loy and Tosin (2021). In fact,
equation (40) is derived as the quasi-invariant limit of a Boltzmann like equation (see
“Appendix B”) with microscopic rule (39), that is derived from (23)-(24)-(25) in the
limit of large N and small �t . In particular, we choose the data of the experimental
results reported by Livne et al. (2014) where ε = 10%, λθ = 6.6s and ω = 1.2Hz,
corresponding to a high frequency regime, and we set σc = 0.7 so that the average

orientation θ̄l of (41) with σ̄ 2
c = σ 2

c

2ε2
is the same as reported in Livne et al. (2014). The

qualitative behaviour corresponds to that reported in Livne et al. (2014). In particular
we find that the rotation time is λθ/ε

2 as stated in Livne et al. (2014).
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Eventually,wewant to replicate the experiment proposed by Jungbauer et al. (2008),
where the authors stop stretching at a certain time and record the recovery phase
towards a uniform distribution. To this aim, in Fig. 9b, c, we simulate (39) with N =
106 elements, γ = 10−2 and using the parameters corresponding to the experiment
reported in the work by Jungbauer et al. (2008): the stretch is imposed only for 3000s,
while ε = 8% and r = 0.194. After 3000s, ε = 0. We choose the same reorientation
time as found in the work by Livne et al. (2014), i.e. λθ = 6.6s, for the whole
dynamics. Also in this case the behaviour corresponds to that reported in the work by
Jungbauer et al. (2008) (green squares corresponds to the experimental results reported
in Jungbauer et al. (2008)).

5 Discussion

In order to describe the dynamics of cell reorientation under stretch, we have proposed
a class of Fokker–Planck models for the evolution of the statistical distribution, i.e. the
probability density function, paying particular attention to their link with the micro-
scopic models. In particular, we have considered a stochastic microscopic process (10)
in which the cell tends to minimize the elastic energy U . The model is able to describe
both the evolution and the stationary state of the probability density function over the
orientations of the cells, which can be determined explicitly from as the stationary
state of the Fokker–Planck equation relative to the SDE (10). The results compare
well with several independent experiments (Faust et al. 2011; Hayakawa et al. 2001;
Mao et al. 2021) showing the flexibility of the model.

In Sect. 4, we have used a well known procedure that allows to recover Fokker–
Planck equations from microscopic stochastic discrete in time processes, through
classical tools of kinetic theory. We have shown that by means of this approach it is
possible to recover the Fokker–Planck equation (12) thanks to an appropriate choice
of the microscopic rule for the evolution of the orientation angle. Then, thanks to the
optimal control problem we have obtained a rule that is expressed as a function of the
rotation angle performed by a cell during a reorientation. Also in this case the results
compare well with several independent experiments (Faust et al. 2011; Jungbauer et al.
2008; Livne et al. 2014).

At present, the microscopic dynamics determining the drift term in the Fokker–
Planck equation is defined according to biophysically sound qualitative arguments. In
the future, the close link between the microscopic and the mesoscopic model shown
here can be exploited, on the one hand, to better calibrate the model with respect to
experimental data, and, on the other hand, to describe the microscopic mechanisms
starting from measurements on the behaviour of single cells, whenever these data will
be experimentally available. Moreover, the advantage of the microscopic rule (39) is
that it is expressed in terms of rotation angles and is thus more amenable to possible
extensions in order to include superposing effects that can be considered when dealing
with cells seeded on a substratum, for example on collagen, that are subject to cyclic
stretch, such as contact guidance and steric hindrance (Ristori et al. 2018). Moreover,
the present framework may be extended to describe a three dimensional environment,
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by considering a second angle and its microscopic dynamic and a probability density
function that depends on the two rotation angles.
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Appendix A

In this Appendix we want to show the formal derivation of (26) from the microscopic
stochastic mechanism (23)–(25) as classically done, for example, in Pareschi and
Toscani (2013). Let then ϕ = ϕ(θ) be an observable quantity defined on the phase
space [0, π). From (23) together with the assumed independence of Tλθ , we see that
the mean variation rate of ϕ in the time interval �t satisfies

〈ϕ (�t+�t )〉 − 〈ϕ (�t )〉
�t

= 〈ϕ (
(1 − Tλθ )�t + Tλθ �

′
t

)〉 − 〈ϕ (�t )〉
�t

= 〈ϕ (�t )〉(1 − �t/λθ ) + 〈ϕ (
�′

t

)〉�t/λθ − 〈ϕ (�t )〉
�t

,

where here and henceforth 〈�〉 denotes the expectation of a generic random variable�

with respect to its law. Then, the latter equality holds remembering that 〈Tλθ 〉 = �t/λθ

and that Tλθ is independent from all the other random variables. Whence, we deduce
the instantaneous time variation of the average of ϕ in the limit �t → 0+ as

d

dt
〈ϕ (�t )〉 = 1

λθ

〈(ϕ (
�′

t

) − ϕ (�t ))〉.

If f (t, θ) is a probability density function, then we obtain

d

dt

∫ π

0
ϕ(θ) f (t, θ) dθ = 1

λθ

〈
∫ π

0

(
ϕ(θ ′) − ϕ(θ)

)
f (t, θ)dθ〉,
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where θ ′ is given by

θ ′ = hλ,K (θ) +
√

σ 2ξ mod(π).

Appendix B

One of the most relevant aspects of kinetic models is the possibility of characterising
the stationary distributions arising asymptotically for t → +∞. This is typically
carried out by means of asymptotic procedures, which, in suitable regimes of the
parameters of the microscopic interactions, allows to transform a Boltzmann-type
integro-differential equation into a partial differential equation, that is usually easier
to be investigated analyticallly. A particularly efficient asymptotic procedure is the
so-called quasi-invariant limit, which leads to Fokker–Planck-type equations.

The idea behind the quasi-invariant limit is that one studies a regime in which the
new reorientation direction θ ′ is close enough to the previous direction θ , so that the
reorientation enhances a small variation.This conceptwasfirst introduced in the kinetic
literature on multi-agent systems by Cordier et al. (2005), Toscani (2006) for binary
collisions and by Furioli et al. (2017) for the interactions with a fixed background and
has its roots in the concept of grazing collisions studied in the classical kinetic theory
(Villani 1998).

In our framework this corresponds to considering a small reorientation and, then,
a rescaled microscopic rule (27)

θ ′ = θ + γ
(
hλ,K (θ) − θ

) +
√

γ σ 2ξ, mod(π),

where γ 	 1. Now, diffusion is linked to a random variable
√

γ ξ = N (0, γ ) with
zero mean and variance γ . To compensate for the smallness of each reorientation, we
simultaneously scale time as τ := γ t , which corresponds to observe the dynamics on
a slower time scale and we introduce

f γ (τ, θ) = f (τ/γ, θ).

Equivalently we can scale λθ as λ
γ
θ := γ λθ , meaning that the reorientation time

corresponding to a small reorientation is shorter when γ 	 1. Then, Eq. (26) rewrites

d

dτ

∫ π

0
ϕ(θ) f γ (τ, θ) dθ = 1

γ λθ

〈
∫ π

0

(
ϕ(θ ′) − ϕ(θ)

)
f γ (τ, θ)dθ〉, (42)

with (28). Now, let ϕ ∈ C3([0, 2π)) satisfy the requirement ϕ(0) = ϕ(π) = 0, as we
are considering quasi-invariant changes of a direction belonging to [0, π) (Festa et al.
2018). Expanding the difference ϕ(θ ′) − ϕ(θ) in Taylor series about θ and using (28)
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we get

d

dτ

∫ π

0
ϕ(θ) f γ (τ, θ) dθ = 1

γ λθ

∫ π

0

dϕ

dθ
(θ)γ (hλ,K (θ) − θ) f γ (τ, θ) dθ

+ 1

2γ λθ

∫ π

0

d2ϕ

dθ2
(θ)γ σ 2 f γ (τ, θ) dθ + Rϕ( f γ )(τ, θ),

(43)

where

Rϕ( f γ )(τ, θ) = 1

γ λθ

∫ π

0

1

2
γ 2 d

2ϕ

dθ2
(θ)(hλ,K (θ) − θ) dθ

+ 1

γ λθ

∫ π

0

1

6

d3ϕ

dθ3
(θ + δ(θ ′ − θ))〈(θ ′ − θ)3〉 dθ,

being δ ∈ (0, 1). If we assume that |ξ3| < ∞ the following holds1 (cf. Cordier et al.
(2005) for similar calculations)

∣∣Rϕ( f γ )(τ, θ)
∣∣ �

∥∥∥∥
d2ϕ

dθ2

∥∥∥∥∞
γ

∫ π

0
(hλ,K (θ) − θ)2 f γ (τ, θ) dθ

+
∥∥∥∥
d3ϕ

dθ3

∥∥∥∥∞

∫ π

0

(
γ 2(hλ,K (θ) − θ)3

+√
γ 4σ 3 + 3γ σ 2(hλ,K (θ) − θ)3

)
f γ (τ, θ) dθ.

(44)

If we assume that h2λ,K , h3λ,K are bounded in [0, π), as F2 is satisfied, then

Rϕ( f γ )
γ→0+
−−−−→ 0.

Let us assume now that ( f γ ) converges in C([0, π); L1([0, π)) ∩ L1([0, π); θ dθ)),
possibly up to subsequences, to a distribution function f when γ → 0+. Then, passing
to the limit γ → 0+ in (43) we obtain the limit equation

d

dt

∫ π

0
ϕ(θ) f (τ, θ) dθ = 1

λθ

∫ π

0

dϕ

dθ
(θ)(hλ,K (θ) − θ) f (τ, θ) dθ

+ 1

2λθ

∫ π

0

d2ϕ

dθ2
(θ)σ 2 f (τ, θ) dθ,

1 Here and henceforth we use the notation a � b to mean that there exists a constant C > 0, independent
of γ and whose specific value is unimportant, such that a ≤ Cb.
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which, by integration by parts, and recalling the compactness of the support of ϕ, can
be recognised as a weak form of the following Fokker–Planck equation

∂

∂τ
f (τ, θ) = − 1

λθ

∂

∂θ

[
(hλ,K (θ) − θ) f (τ, θ)

] + 1

2λθ

∂2

∂θ2

[
σ 2 f (τ, θ)

]
.
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