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Abstract
Plasmodium vivax is the most geographically widespread malaria-causing parasite
resulting in significant associated global morbidity and mortality. One of the factors
driving this widespread phenomenon is the ability of the parasites to remain dormant
in the liver. Known as ‘hypnozoites’, they reside in the liver following an initial expo-
sure, before activating later to cause further infections, referred to as ‘relapses’. As
around 79–96%of infections are attributed to relapses from activating hypnozoites, we
expect it will be highly impactful to apply treatment to target the hypnozoite reservoir
(i.e. the collection of dormant parasites) to eliminate P. vivax. Treatment with radi-
cal cure, for example tafenoquine or primaquine, to target the hypnozoite reservoir
is a potential tool to control and/or eliminate P. vivax. We have developed a deter-
ministic multiscale mathematical model as a system of integro-differential equations
that captures the complex dynamics of P. vivax hypnozoites and the effect of hypno-
zoite relapse on disease transmission. Here, we use our multiscale model to study the
anticipated effect of radical cure treatment administered via a mass drug administra-
tion (MDA) program. We implement multiple rounds of MDA with a fixed interval
between rounds, starting from different steady-state disease prevalences.We then con-
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struct an optimisation model with three different objective functions motivated on a
public health basis to obtain the optimal MDA interval. We also incorporate mosquito
seasonality in our model to study its effect on the optimal treatment regime. We find
that the effect of MDA interventions is temporary and depends on the pre-intervention
disease prevalence (and choice of model parameters) as well as the number of MDA
rounds under consideration. The optimal interval between MDA rounds also depends
on the objective (combinations of expected intervention outcomes). We find radical
cure alone may not be enough to lead to P. vivax elimination under our mathematical
model (and choice of model parameters) since the prevalence of infection eventually
returns to pre-MDA levels.

Keywords P. vivax dynamics · Multi-scale model · Superinfection · Mass drug
administration · Radical cure

1 Introduction

Plasmodium vivax is a parasite that causes malaria, responsible for 4.5 million cases in
2020 (World Health Organization 2021). After an infective mosquito bite, the P. vivax
parasite triggers a primary infection and can remain dormant (known as a ‘hypnozoite’)
within the human liver for a prolonged period before causing a secondary infection
known as a ‘relapse’ (White 2014; Ricardo Águaset al. 2012). Because of the relapse
characteristics, P. vivax has become the most globally widespread parasite and is
responsible for significant morbidity and mortality (Antinori 2012; Battle 2019). The
reason for hypnozoite activation is still not clear, and the number of hypnozoites
established per infective mosquito bite and the recurrence time vary geographically
(Price 2020).

When it comes to P. vivax for control or elimination, the biological characteristics
of P. vivax make it more challenging than other malaria parasites because P. vivax
transmission can be re-established from hypnozoite activation (Mehra et al. 2022b;
Price 2020). An estimated 79–96% of the total vivax cases are due to hypnozoite
activation (Robinson 2015; Huber 2021; Adeshina and Adekunle 2015; Commons
2020). Thus, targeting the hypnozoite reservoir with treatment is an important element
of any program for P. vivax elimination (Campo 2015). Mass drug administration
(MDA) is an effective intervention for controlling many diseases and was advocated
by theWorldHealth Organization (WHO) in the 1950s to control malaria transmission
(Hsiang 2013). MDA involves treating the entire population, or a well-defined sub-
population, in a geographic location regardless of their infection status (Newby 2015;
Hsiang 2013). Most of the antimalarial drugs currently used to treat malaria only clear
blood-stage parasites. Drugs that clear hypnozoites from the liver are referred to as
‘radical cure’, examples ofwhich are primaquine and tafenoquine (Timothy et al. 2010;
Taylor 2019; Poespoprodjo 2022). In a radical cure MDA intervention, individuals are
given a combination of two such drugs: artemisinin combination therapy (ACT) for
clearing blood-stage parasites and primaquine to clear hypnozoites. However, because
of the risk of haemolysis in glucose 6 phosphate dehydrogenase (G6PD)-deficient
individuals, radical cure is not recommended by the WHO without screening for
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G6PD deficiency (World Health Organization 2021; Howes Rosalind 2012; Watson
2018).

The effect of radical cure treatment on P. vivax transmission has been explored in a
number ofmathematicalmodels (Ishikawa2003;RicardoÁguaset al. 2012;Chamchod
and Beier 2013; RoyManojit 2013;White 2014, 2016, 2018). However, most of these
models do not consider the variation in hypnozoite number permosquito bite (Ishikawa
2003; RicardoÁguaset al. 2012; Chamchod and Beier 2013; RoyManojit 2013;White
2016). Mehra et al. (2022b) have developed a within-host model capturing hypnozoite
dynamics and variation across infected mosquito bites that explicitly models the effect
of radical cure treatment on the hypnozoite dynamics and reservoir.Wehave previously
developed a multiscale model (Anwar 2022) by embedding Mehra et al.’s within-host
model without treatment, which only uses three compartments at the population level
while considering hypnozoite dynamics and the effect of the hypnozoite reservoir on
disease transmission. The effect of three rounds of MDA with radical cure on P. vivax
prevalence has been studied in a randomised controlled trial (Phommasone 2020).
However, as the MDA implementations are expensive, and the empirical evidence
remains unclear as to the overall impact they are expected to have, mathematical
modelling is well suited to explore the overall impact and establish efficient designs
before the actual implementation of the MDAs (Kaehler 2019; Jambulingam 2016).
The impact of multiple rounds (> 3) of MDA on P. vivax transmission has not been
exploredwith amathematicalmodel as far aswe are aware.AsP. vivax is transmitted by
mosquitoes, overall disease transmission is greatly affected by themosquito population
distribution in a region, which in turn is influenced by climate factors (Herdicho et al.
2021; Buonomo and Marca 2018; Kabirul and Nobuko 2014; Galardo 2009). Thus,
the effect of treatment can be influenced by an abundance of mosquitoes and, hence,
by seasonality. However, while a few P. vivax transmission models have considered
the role of seasonality in mosquito population dynamics (Ishikawa 2003; Chamchod
and Beier 2013; White 2014; Silal 2019; Mehra et al. 2022a), few have also captured
the rich dynamics of hypnozoites (Mehra et al. 2022a) and none have considered the
impact of multiple drug administration explicitly on hypnozoite dynamics. Also, the
abundance of mosquitoes and the contribution of hypnozoite activation can frequently
trigger superinfection (reinfection of individuals that are already infected) which can
potentially delay recovery from infection (Smith 2012; Dietz et al. 1974). However,
only a few P. vivax mathematical transmission models account for superinfection
(White 2014, 2018; Silal 2019; Mehra 2022; Mehra et al. 2022a, b).

In this article, we study the impact of multiple rounds of radical cure treatment
within anMDA program on disease transmission by incorporating hypnozoite dynam-
ics into an epidemic transmission framework. We account for superinfection and
consider the impact of seasonal mosquito population changes (which we refer to as
“seasonality” throughout). In Sect. 2, we extend our existing multiscale model (Anwar
2022) to incorporate the effect of radical cure treatment and seasonality.We then obtain
some key parameters for the population model from the within-host model (Mehra
et al. 2022b) under multiple rounds of MDA and obtain the recovery rate under super-
infection. In Sect. 3, we provide illustrative results for both the within-host scale and
transmission setting. We construct an optimisation problem to determine the optimal
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interval between MDA rounds with and without accounting for seasonality before
concluding remarks are presented in Sect. 4.

2 Methods

A multiscale mathematical model that accounts for hypnozoite variation within indi-
viduals without treatment has already been developed (Anwar 2022). In our previous
work, we did not account for superinfection in the population level model. Here,
we extend the population level model to account for superinfection and allow treat-
ment (via MDA) with a radical cure. The inclusion of superinfection in the model
is important since for high transmission settings, overlapping blood-stage infections
are frequent due to exposure to multiple infectious bites as well as the activation of
hypnozoites.

2.1 Population TransmissionModel with Treatment

Let S, I and L represent the fraction of the human population who are susceptible
with no hypnozoites, blood-stage infected and liver-stage infected, respectively. Indi-
viduals in both S and L compartments are susceptible to infective mosquito bites and
become blood-stage infected (I ) at the rate λ(t) = mabIm , where m is the human-to-
mosquito ratio, a is mosquito biting rate, and b is the transmission probability from
mosquito to human. Recovery without accounting for superinfection is straightfor-
ward. In our previous model (Anwar 2022), we did not account for superinfection in
the population-level model while the within-host framework permits superinfection.
Here, we consider superinfection at the population level by following the work of
Mehra (2022). To do that, we need to consider the multiplicity of infection (MOI),
defined as the number of distinct parasites co-circulating within a blood-stage infected
individual (for P. vivax, either from a new infectious bite or hypnozoite activation).
When considering superinfection, an individualmight experiencemultiple blood-stage
infections, and recovery from the blood-stage infection is conditioned upon howmany
infections (MOI) they are currently experiencing. Those blood-stage infected individ-
uals who are experiencing only one infection will recover and move out of I and,
depending on the hypnozoite reservoir size (blood-stage infected individuals may or
may not have hypnozoites), either become susceptible (S) or liver-stage infected (L).
Following the work ofMehra (2022), we define two parameters p1(t) and p2(t)where
p1(t) is the probability that a blood-stage infected individual only experiencing one
infection (MOI = 1) has no hypnozoites in their liver at time t and p2(t) is the prob-
ability that a blood-stage infected individual only experiencing one infection (MOI
= 1) has hypnozoites in their liver at time t . Hence, after recovery from blood-stage
infection, individuals become susceptible (S) at rate p1(t)γ and become liver-stage
infected (L) at rate p2(t)γ , where γ is the natural recovery rate. Thus, the probability
of staying blood-stage infected at time t is

(
1 − (p1(t) + p2(t))

)
.

Individuals suffer relapses from hypnozoite activation, the rate at which depends on
the hypnozoite reservoir size and the baseline activation rate for each hypnozoite,α.We
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Fig. 1 Schematic illustration of the multiscale model with treatment. S, I and L represent the fractions
of the human population that are susceptible with no hypnozoites, blood-stage infected, and liver-stage
infected, respectively. Note that, blood-stage infected individuals may or may not have hypnozoites, but
liver-stage infected individuals have at least 1 hypnozoite. The left (top and bottom) part of the schematic
demonstrates the transmission dynamics between the human and mosquito populations while the right
part of the schematic demonstrates how the within-host model has been embedded within the population
scale model. The within-host model takes into account the history of infective bites and calculates the
probability of blood-stage infected individuals having 0 hypnozoites and one blood-stage infection (p1(t)),
blood-stage infected individuals having more than 0 hypnozoites and one blood-stage infection (p2(t)),
liver-stage infected individuals having 1 hypnozoite (k1(t)), the expected size of the hypnozoite reservoir
(kT (t)), and the probability of blood-stage infected individuals having 0 hypnozoites (p(t)) at any given
time t as a function of the force of infection, λ(t). The red area on the right part of the schematic indicates
the force of infection from time t = 0 to t . The functions Db(t) and Dl (t) capture the effect of treatment
when implemented. Other parameters are defined in Table 1 in “Appendix”

define kT (t) to be the average hypnozoite reservoir size given liver-stage infected. That
is αkT (t) is the relapse rate. Individuals from the L compartment become susceptible
without experiencing a relapse if theyhaveonly onehypnozoite (with probability k1(t))
and the hypnozoite dies naturally before activation, at rateμ. For themosquito popula-
tion,wedefine Sm, Em , and Im to be the fraction of susceptible, exposed, and infectious
mosquitoes, respectively. Susceptible mosquitoes become exposed when they take a
blood meal from an infected individual at the rate acI , where c is the transmission
probability from human to mosquito. After the incubation period (mean 1/n days),
they become infectious and can transmit parasites to humans. The time-dependent
parameters p1(t), p2(t), k1(t), and kT (t) capture the dynamics of hypnozoites and
are obtained from the within-host model (Sect. 2.2) as an integral function of the force
of infection, λ(t), which makes the model a system of integro-differential equations
(IDEs). The definition and derivation of these time-dependent parameters are discussed
in Sect. 2.2. The model schematic is depicted in Fig. 1.

Suppose that drug treatment is administered successively at times s1, s2, . . . , sN ,
where N is the total number of MDA rounds. The effect of blood-stage and liver-stage
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radical cure treatments are captured by the time-dependent functions Db(t) and Dl(t),
respectively. To implement the effect of radical cure in the population level model,
we assume that radical cure has an instantaneous effect (Mehra et al. 2022b). That
is, on administration, all ongoing blood-stage infections are instantaneously cleared
with probability pblood, and each hypnozoite in the liver dies instantaneously with
probability prad.Without treatment, blood-stage infections are clearedone at a time, but
with treatment, blood-stage infections will all be cleared with probability pblood. We
define p(t) as theprobability of blood-stage infected individuals havingnohypnozoites
in their liver (Anwar 2022). Therefore, at the time when radical cure is administered,
individuals that were blood-stage infected either become susceptible with probability
p(t) or become liver-stage infected with probability (1− p(t)). Blood-stage infected
individuals who are not cured following treatment undergo the same dynamics as
those who receive no treatment. Liver-stage infected individuals whose hypnozoites
have not been fully cleared following treatment will undergo the same dynamics as
if without treatment but starting with the reduced hypnozoite reservoir. Hence, if
radical cure is administered at time t = s j , where j is the number of MDA rounds,
the drug has an effect only on the ongoing infections and hypnozoites established
from time t = s j−1 until t = s j . Hypnozoites that are established after time t = s j
or any blood-stage infections caused by either hypnozoite activation or infectious
mosquito bites after t = s1 will undergo dynamics as if without treatment (until the
next time of MDA application). Since we are concerned with disease dynamics over
a time scale of years, the assumption of an instantaneous effect of the radical cure is
appropriate, as drugs such as artemisinin, which clears blood-stage parasites, have a
half-life of 1.93h (Birgersson 2016) and primaquine, which kills hypnozoites have a
relatively short half-life of approximately 3.7−9.6h (Jittamala 2015). Another drug,
tafenoquine, that also kills hypnozoites has a half-life of approximately 14–28 days
which is short compared to a time scale of years (Schlagenhauf 2019). Since the
number of mosquitoes in the environment influences P. vivax dynamics dramatically
(Herdicho et al. 2021; Buonomo and Marca 2018), it is important to account for
seasonal environmental effects on the mosquito population (see, for example, Kabirul
and Nobuko 2014; Galardo 2009). To incorporate mosquito seasonality, we consider
that the mosquito birth rate at time t, bm(t), is regulated by a cosine function with a
period of 1 year as follows:

bm(t) = bm(0)

(
1 + η cos

(
2π t

365
+ φ

))
,

wherebm(0) = g is the baselinemosquito birth rate,η ∈ [0 1) is the seasonal amplitude
and φ is the seasonal phase (taken to be 0). Note that if bm(t) = bm(0) = g, then the
mosquito population is constant, that is, without seasonality. With all the assumptions
outlined above, the system of IDEs that describe the dynamics is (see “Appendix A”
for a detailed derivation of the model):

dS

dt
= −λS + μk1(t)L + p1(t)γ I + Dl(l)L + Db(t)p(t)I , (1)
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dI

dt
= λ(S + I ) + αkT (t)L − γ

(
p1(t) + p2(t)

)
I − Db(t)I , (2)

dL

dt
= −λL − μk1(t)L − αkT (t)L + γ p2(t)I − Dl(t)L + Db(t)

(
1 − p(t)

)
I , (3)

dSm
dt

= bm(t) − acI Sm − bm(t)Sm, (4)

dEm

dt
= acI Sm − (bm(t) + n) Em, (5)

dIm
dt

= nEm − bm(t)Im, (6)

where,

λ = m0abImexp

{
365gη

2π
sin

(
2π t

365
+ φ

)}
,

is the force of reinfection, andm0 = Nm (0)
Nh

is the initial mosquito ratio. Here Db(t) and
Dl(t) are blood-stage parasite and liver-stage parasite (hypnozoite) clearance rates,
respectively, and are given by:

Db(t) = ln
(
(1 − pblood)

−1)
N∑

j=1

δD(t − s j ),

Dl(t) = {
k1(t) ln

(
(1 − prad)

−1)+ k2(t) ln
(
(1 − p2rad)

−1)+ . . .
} N∑

j=1

δD(t − s j )

=
∞∑

i=1

ln
(
1 − pirad

)−ki (t)
N∑

j=1

δD(t − s j ),

where δD(·) is the Dirac delta function. That is, any blood-stage parasite will be instan-
taneously cleared with probability pblood every time the radical cure is administered
(Mehra et al. 2022b) and depending on the parameter p1(t)which is the probability that
an individual experiencing only one infection has no hypnozoites in the liver given
blood-stage infection (Eq.20) and p2(t) which is the probability that an individual
experiencingonly one infectionhas hypnozoites in the liver givenblood-stage infection
(Eq.21), move to the susceptible compartment (S) at rate p1(t)Db(t) and to the liver-
stage infected compartment (L) at rate p2(t)Db(t), respectively. As each hypnozoite is
clearedwith probability prad, the liver-stage clearance rate Dl(t) depends on howmany
hypnozoites are present in the liver. That is, Dl(t) depends on k1(t), k2(t), . . . , ki (t),
where ki (t) is the probability that a liver-stage infected individual has i hypnozoites.
All model parameters are defined in Table 1 in “Appendix”.
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2.2 Within-Host Model with Treatment

A within-host model considering the effect of radical cure on hypnozoite dynamics
was introduced byMehra et al. (2022b). They developed the framework considering N
MDA rounds but explored analytically and numerically considering one MDA round.
Here, we solve the necessary equations for N MDA rounds. First, the dynamics of
a single hypnozoite under treatment were modelled, then a fixed number of hypno-
zoites introduced by a single mosquito bite before accounting for continuousmosquito
inoculation where each mosquito bite contributes an average of ν hypnozoites to the
reservoir. The within-host model also assumes that radical cure has an instantaneous
effect.

For the short-latency case (in which hypnozoites can immediately activate after
establishment without going through a latency phase), a hypnozoite can be in one
of four different states. Let H , A, C , and D represent the state of establishment,
activation, clearance and death for a single hypnozoite, respectively. Suppose that
drug treatment is administered successively at times s1, s2, . . . , sN . We denote the
state of the hypnozoite at time t with Xr (t, s1, s2, . . . , sN ) ∈ (H , A,C, D) with
corresponding probability mass function (PMF)

prH (t, s1, . . . , sN ), prA(t, s1, . . . , sN ), prC (t, s1, . . . , sN ), prD(t, s1, . . . , sN )

, respectively. The governing equations for the state probabilities under treatment are
given by Equations (17)–(22) from Mehra et al. (2022b):

dprH
dt

= − (α + μ)prH − ln
(
(1 − prad)

)−1
N∑

j=1

δD(t − s j )p
r
H , (7)

dprA
dt

= − γ prA + α prH − ln
(
(1 − pblood)

)−1
N∑

j=1

δD(t − s j )p
r
A, (8)

dprC
dt

=γ prA + ln
(
(1 − pblood)

)−1
N∑

j=1

δD(t − s j )p
r
A, (9)

dprD
dt

= − μprH + ln
(
(1 − prad)

)−1
N∑

j=1

δD(t − s j )p
r
H , (10)

where the parameters α, γ, and μ are as per Table 1. Since our population model
in Eqs. (2)–(6) uses the parameters p1(t), p2(t), k1(t) and kT (t), we seek to obtain
expressions for these parameters from the within-host model under multiple rounds
of MDA. Evaluating the parameters p1(t), p2(t), k1(t) and kT (t) in the population
model requires the probability of hypnozoite establishment (prH (t)) and the probability
of hypnozoite activation (prA(t)) (Anwar 2022); hence we solve Eqs. (7)–(8) for N
MDA rounds to give:

prH (t, s1, s2, s3, . . . , sN ) = (1 − prad)
N pH (t), (11)
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Fig. 2 Effect of radical cure (three rounds of MDA) on a single hypnozoite. A Probability of hypnozoite
establishment as per Eq. (11) and B probability of hypnozoite activation as per Eq. (12). For each subplot,
blue represents the probabilitywithout considering treatment and orange represents treatment assuming 50%
efficacy (pblood = prad = 0.5) of the drugs. The vertical lines indicate the times of drug administration.
Other parameters are as in Table 1

prA(t, s1, s2, s3, . . . , sN ) = (1 − pblood)e
−γ (t−sN ) prA(sN , s1, s2, . . . , sN−1)

+ (1 − prad)
N (pA(t) − e−γ (t−sN ) pA(sN )

)
, (12)

where pH (t) and pA(t) are the probability of establishment and activation of a hyp-
nozoite without treatment, respectively, and are given by:

pH (t) = e−(α+μ)t ,

pA(t) = α

(α + μ) − γ

(
e−γ t − e−(α+μ)t

)
.

Figure2 shows the effect of three rounds ofMDAon the dynamics of a single hypno-
zoite. The probability of hypnozoite establishment (prH (t)) and hypnozoite activation
(prA(t)) under 3 rounds ofMDA (with pblood = prad = 0.5) is illustrated in Fig. 2A, B,
respectively. The drug is administered for the first time 200 days after the hypnozoite
is established, and the interval between each MDA round is fixed at 30 days.

We now define two additional states, P and PC , to denote an ongoing primary
infection from infective mosquito bites and a cleared primary infection, respectively.
Let N f (t) denote the number of hypnozoites in states f ∈ {H , A,C, D} := F at time
t and NP (t), NPC (t) denote the number of ongoing and cleared primary infections,
respectively, at time t . Defining the state space F ′ := {H , A,C, D, P, PC}, the
probability generating function (PGF) for

N(t) = (NH (t), NA(t), NC (t), ND(t), NP (t), NPC )

withN(0) = 0 can be written following from Equation (30) in Mehra et al. (2022b)
(for short-latency case (k = 0) with probability of a blood-stage infection after an
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infectious bite, pprim = 1) (by the law of total expectation):

G(t, zH , zA, zC , zD, zP , zPC ) := E

⎡

⎣
∏

f ∈F ′
z
N f (t)
f

⎤

⎦

= exp

⎧
⎨

⎩
−q(t) +

∫ t

0

λ(τ)
(
zPe−γ (t−τ) + (1 − e−γ (t−τ))zPC

)

1 + ν
(
1 −∑

f ∈F z f p f (t − τ)
) dτ

⎫
⎬

⎭
, (13)

where q(t) is the mean number of infective bites in the interval (0, t] and is given by:

q(t) =
∫ t

0
λ(τ)dτ.

All parameters are as per Table 1. The expression for the joint PGF with drug admin-
istration at time t = s1 is given by Equation (31) in Mehra et al. (2022b). Following
a similar analysis, if the drug is administered at N successive times (s1, s2, . . . , sN )
then the joint PGF for the number of hypnozoites/infections in each state is:

Gs1,s2,...sN (t, zH , zA, zC , zD, zP , zPC ) := E

⎡

⎣
∏

f ∈F ′
zN

s1,s2 ,...sN
s (t)

f

⎤

⎦

= exp

{
− q(t) +

∫ t

sN
λ(τ)

e−γ (t−τ)zP + (1 − e−γ (t−τ))zPC

1 + ν
(
1 −∑

f ∈F z f .p f (t − τ)
)dτ

+
∫ s1

0
λ(τ)

(1 − pblood)e−γ (t−τ)zP + (1 − (1 − pblood)e−γ (t−τ))zPC

1 + ν
(
1 −∑

f ∈F z f .prs (t − τ, s1 − τ)
) dτ

+
∫ s2

s1
λ(τ)

(1 − pblood)2e−γ (t−τ)zP + (1 − (1 − pblood)2e−γ (t−τ))zPC

1 + ν
(
1 −∑

f ∈F z f .prs (t − τ, s1 − τ, s2 − τ)
) dτ

+
∫ s3

s2
λ(τ)

(1 − pblood)3e−γ (t−τ)zP + (1 − (1 − pblood)3e−γ (t−τ))zPC

1 + ν
(
1 −∑

f ∈F z f .prs (t − τ, s1 − τ, s2 − τ, s3 − τ)
) dτ

+ . . . +
∫ sN

sN−1

λ(τ)
(1 − pblood)N e−γ (t−τ)zP + (1 − (1 − pblood)N e−γ (t−τ))zPC

1 + ν
(
1 −∑

f ∈F z f .prs (t − τ, s1 − τ, s2 − τ, s3 − τ, . . . , sN − τ)
)dτ

}
.

(14)

We now use the PGF in Eq. (14) to derive expressions for the population-level
parameters p(t), p1(t), p2(t), k1(t), and kT (t) under multiple MDA rounds.

2.2.1 Probability Blood-Stage Infected Individual has no Hypnozoites (Under N
Rounds of MDA)

With p(t) defined as the probability that an individual has an empty hypnozoite reser-
voir conditional on an ongoing blood-stage infection (i.e. primary infection or relapse)
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from Equation (13) of Anwar (2022) we have:

p(t) = P
(
NH (t) = 0|NA(t) > 0 ∪ NP (t) > 0

)

= P
(
NH (t) = 0) − P(NH (t) = NA(t) = NP (t) = 0

)

1 − P
(
NA(t) = NP (t) = 0

) . (15)

where the probability that an individual has an empty hypnozoite reservoir at time t ,
P(NH (t) = 0), is given by:

P(NH (t) = 0) = Gt,s1,s2,...,sN (t, zH = 0, zA = 1, zC = 1, zD = 1, zP = 1, zPC = 1)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp
{
−q(t) + ∫ t

0
λ(τ)

1+ν pH (t−τ)
dτ
}

if t < s1

exp
{
−q(t) + ∫ t

sN
λ(τ)

1+ν pH (t−τ)
dτ + ∫ s1

0
λ(τ)

1+ν prH (t−τ,s1−τ)
dτ

+ ∫ s2
s1

λ(τ)
1+ν prH (t−τ,s1−τ,s2−τ)

dτ + . . . + ∫ sN
sN−1

λ(τ)
1+ν prH (t−τ,s1−τ,...,sN−τ)

dτ
}

if t ≥ sN ,

(16)

the probability that an individual is neither experiencing a relapse nor a primary infec-
tion at time t , P

(
NA(t) + NP (t) = 0

)
(i.e. no blood-stage infection), is given by:

P
(
NA(t) + NP (t) = 0

) = Gt,s1,s2,...,sN (t, zH = 1, zA = 0, zC = 1, zD = 1, zP = 0, zPC = 1)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
{
−q(t) + ∫ t

0
λ(τ)(1−e−γ (t−τ))
1+ν pA(t−τ)

dτ
}

if t < s1

exp
{
−q(t) + ∫ t

sN
λ(τ)(1−e−γ (t−τ))
1+ν pA(t−τ)

dτ

+ ∫ s1
0

λ(τ)(1−(1−pblood)e−γ (t−τ))
1+ν prA(t−τ,s1−τ)

dτ

+ ∫ s2
s1

λ(τ)(1−(1−pblood)2e−γ (t−τ))
1+ν prA(t−τ,s1−τ,s2−τ)

dτ

+ . . . + ∫ sN
sN−1

λ(τ)(1−(1−pblood)N e−γ (t−τ))
1+ν prA(t−τ,s1−τ,...,sN−τ)

dτ
}

if t ≥ sN .

(17)

and the probability that an individual is neither experiencing an infection nor has any
hypnozoites in their liver at time t , P

(
NH (t) = NA(t) = NP (t) = 0

)
, is given by:

P
(
NH (t) = NA(t) = NP (t) = 0

)

= Gt,s1,s2,...,sN (t, zH = 0, zA = 0, zC = 1, zD = 1, zP = 0, zPC = 1)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
{
−q(t) + ∫ t

0
λ(τ)(1−e−γ (t−τ))

1+ν(pH (t−τ)+pA(t−τ)
dτ
}

if t < s1

exp
{
−q(t) + ∫ t

sN
λ(τ)(1−e−γ (t−τ))

1+ν(pH (t−τ)+pA(t−τ)
dτ

+ ∫ s1
0

λ(τ)(1−(1−pblood)e−γ (t−τ))
1+ν(prH (t−τ,s1−τ)+prA(t−τ,s1−τ)

dτ

+ ∫ s2
s1

λ(τ)(1−(1−pblood)2e−γ (t−τ))
1+ν(prH (t−τ,s1−τ,s2−τ)+prA(t−τ,s1−τ,s2−τ)

dτ

+ . . . + ∫ sN
sN−1

λ(τ)(1−(1−pblood)N e−γ (t−τ))
1+ν(prH (t−τ,s1−τ,...,sN−τ)+prA(t−τ,s1−τ,...,sN−τ)

dτ
}

if t ≥ sN .

(18)
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2.2.2 Probability of Blood-Stage Infected Individual Having One Infection and No
Hypnozoites (Under N Rounds of MDA)

With p1(t) defined as the probability that an individual has one infection (NA(t) +
NP (t) = 1) and an empty hypnozoite reservoir (NH (t) = 0) conditional on an ongoing
blood-stage infection (i.e. primary infections or relapse, NA(t)+NP(t) > 1), we have:

p1(t) = P
(
NA(t) + NP (t) = 1|NH (t) = 0

)
P(NH (t) = 0)

1 − P(NA(t) + NP (t) = 0)
. (19)

The expression for P(NH (t) = 0) and P(NH (t) + NP (t) = 0) follows from Eqs.
(16) and (17). The expression for P

(
NA(t)+ NP (t) = 1|NH (t) = 0

)
can be obtained

from Eq. (B-27) (see “Appendix B” for details) which is

P(NA(t) + NP (t) = 1|NH (t) = 0) = exp {h(0, t) − h(1, t)} ∂h(0, t)

∂z

= G(t, zH = 0, zA = 0, zC = 1, zD = 1, zP = 0 zPC = 1)

G(t, zH = 0, zA = 1, zC = 1, zD = 1, zP = 1 zPC = 1)

∂h(0, t)

∂z
,

= P(NH (t) = NA(t) = NP (t) = 0)

P(NH (t) = 0)

∂h(0, t)

∂z
.

Finally, from Eq. (19),

p1(t) = P
(
NA(t) + NP (t) = 1|NH (t) = 0

)
P(NH (t) = 0)

1 − P(NA(t) + NP (t) = 0)
,

= P(NH (t) = NA(t) = NP (t) = 0)

1 − P(NA(t) = NP (t) = 0)

∂h(0, t)

∂z
, (20)

where

∂h(0, t)

∂z
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t
0 λ(τ)

e−γ (t−τ )
(
1+ν pH (t−τ )

)+ν pA(t−τ )
[
1+ν

(
pA(t−τ )+pH (t−τ )

)]2 dτ if t < s1

∫ t
sN

λ(τ)
e−γ (t−τ )

(
1+ν pH (t−τ )

)+ν pA(t−τ )
[
1+ν

(
pA(t−τ )+pH (t−τ )

)]2 dτ

+ ∫ s1
0 λ(τ)

(1−pblood)e−γ (t−τ )
(
1+ν prH (t−τ,s1−τ )

)+ν prA(t−τ,s1−τ )
[
1+ν

(
prA(t−τ,s1−τ )+prH (t−τ,s1−τ )

)]2 dτ

∫ s2
s1 λ(τ)

(1−pblood)2e−γ (t−τ )
(
1+ν prH (t−τ,s1−τ,s2−τ )

)+ν prA(t−τ,s1−τ,s2−τ )
[
1+ν

(
prA(t−τ,s1−τ,sN−τ )+prH (t−τ,s1−τ,sN−τ )

)]2 dτ

+ . . . + ∫ sN
sN−1 λ(τ)

(1−pblood)N e−γ (t−τ )
(
1+ν prH (t−τ,s1−τ,...,sn−τ )

)+ν prA(t−τ,s1−τ,...,sN−τ )
[
1+ν

(
prA(t−τ,s1−τ,...,sN−τ )+prH (t−τ,s1−τ,...,sN−τ )

)]2 dτ if t ≥ sN .

2.2.3 Probability of Blood-Stage Infected Individual Having One Infection and
Non-Zero Hypnozoites (Under N Rounds of MDA)

The probability that a blood-stage infected individual experiencing only one infection
(NA(t) + NP (t) = 1) and has hypnozoites (NH (t) > 0) at time t , p2(t), is

p2(t) = P(NA(t) + NP (t) = 1, NH (t) > 0|P(NA(t) + NP (t) > 0),
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= P
(
NA(t) + NP (t) = 1

)

1 − P(NA(t) + NP (t) = 0)
− P

(
NA(t) + NP (t) = 1|NH (t) = 0

)
P(NH (t) = 0)

1 − P(NA(t) + NP (t) = 0)
,

= P
(
NA(t) + NP (t) = 1

)

1 − P(NA(t) = NP (t) = 0)
− p1(t). (21)

The expression P(NA(t) + NP (t) = 0) = P(NA(t) = NP (t) = 0) is given by Eq.
(17). The expression for P(NA(t)+NP (t) = 1) follows from Equation (81) in Mehra
et al. (2022b) and is given by

P(NA(t) + NP (t) = 1) = P(NA(t) = NP (t) = 0)
∂ f (0, t)

∂z
,

where,

∂ f (0, t)

∂z
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t
0 λ(τ)

e−γ (t−τ )+ν pA(t−τ)

[1+ν pA(t−τ)]2 dτ if t < s1
∫ t
sn

λ(τ)
e−γ (t−τ )+ν pA(t−τ)

[1+ν pA(t−τ)]2 dτ

+ ∫ s1
0 λ(τ)

(1−pblood)e−γ (t−τ )+ν prA(t−τ,s1−τ)

[1+ν prA(t−τ,s1−τ)]2 dτ

+ ∫ s2
s1

λ(τ)
(1−pblood)2e−γ (t−τ )+ν prA(t−τ,s1−τ,s2−τ)

[1+ν prA(t−τ,s1−τ,s2−τ)]2 dτ

+ . . . + ∫ sN
sN−1

λ(τ)
(1−pblood)N e−γ (t−τ )+ν prA(t−τ,s1−τ,...,sn−τ)

[1+ν prA(t−τ,s1−τ,...,sn−τ)]2 dτ if t ≥ sN .

2.2.4 Probability Liver-Stage Infected Individual has 1 Hypnozoite in Liver (Under N
Rounds of MDA)

The probability that a liver-stage infected individual has 1 hypnozoite in the liver at
time t (that is, the conditional probability for NH (t) given an individual does not have
an ongoing blood-stage infection at time t) under N MDA rounds is:

k1(t) = P(NH (t) = 1|NA(t) = NP (t) = 0, NH (t) > 0)

= P(NH (t) = 1|NA(t) = Np(t) = 0)

1 − P(NH (t) = 0|NA(t) = NP (t) = 0)
.

= exp {g(0, t) − g(1, t)}
1 − P(NH (t) = 0|NA(t) = NP (t) = 0)

∂g(0, t)

∂z

= P(NH (t) = NA(t) = NP (t) = 0)
(
1 − P(NH (t) = 0|NA(t) = NP (t) = 0)

)
P(NA(t) = NP (t) = 0)

∂g(0, t)

∂z
,

(22)
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where

∂h(0, t)

∂z
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t
0

λ(τ)ν pH (t−τ)(1−e−γ (t−τ ))

[1+ν(pH (t−τ)+pA(t−τ))]2 dτ if t < s1
∫ t
sN

λ(τ)ν pH (t−τ)(1−e−γ (t−τ ))

[1+ν(pH (t−τ)+pA(t−τ))]2 dτ

+ ∫ s1
0

λ(τ)ν prH (t−τ,s1−τ)(1−(1−pblood)e−γ (t−τ ))

[1+ν(prH (t−τ,s1−τ)+prA(t−τ,s1−τ))]2 dτ

+ ∫ s2
s1

λ(τ)ν prH (t−τ,s1−τ,s2−τ)(1−(1−pblood)2e−γ (t−τ ))

[1+ν(prH (t−τ,s1−τ,s2−τ)+prA(t−τ,s1−τ,s2−τ))]2 dτ

+ . . . + ∫ sN
sN−1

λ(τ)ν prH (t−τ,s1−τ,...,sN−τ)(1−(1−pblood)N e−γ (t−τ ))

[1+ν(prH (t−τ,s1−τ,...,sN−τ)+prA(t−τ,s1−τ,...,sN−τ))]2 dτ if t ≥ sN .

(23)

The expression for P(NH (t) = 1|NA(t) = Np(t) = 0) follows from Equation (78) in
Mehra et al. (2022b) and P(NH (t) = 0|NA(t) = NP (t) = 0) is obtained by dividing
Eq. (18) by Eq. (17).

2.2.5 Average Number Hypnozoites Within Liver-Stage Infected Individuals (Under N
Rounds of MDA)

The average number of hypnozoites within liver-stage infected individuals, kT (t), is
defined by:

kT =
∞∑

i=1

iki =
(

E [NH (t)|NA(t) = NP (t) = 0]

1 − P(NH (t) = 0|NA(t) = NP (t) = 0)

)

where E [NH (t)|NA(t) = NP (t) = 0] is the expected size of the hypnozoite reservoir
in an uninfected (no blood-stage infection) individual under N rounds of MDA and is
given by:

E [NH (t)|NA(t) = NP (t) = 0]

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t
0

ν pH (t−τ)λ(τ)
(
1−e−γ (t−τ )

)

[1+ν pA(t−τ)]2 dτ if t < s1
∫ t
sn

ν pH (t−τ)λ(τ)
(
1−e−γ (t−τ )

)

[1+ν pA(t−τ)]2 dτ

+ ∫ s1
0

ν prH (t−τ,s1−τ)λ(τ)
(
1−(1−pblood)e−γ (t−τ )

)

[1+ν prA(t−τ,s1−τ)]2 dτ

+ ∫ s2
s1

ν prH (t−τ,s1−τ,s2−τ)λ(τ)
(
1−(1−pblood)2e−γ (t−τ )

)

[1+ν prA(t−τ,s1−τ,s2−τ)]2 dτ

+ . . . + ∫ sN
sN−1

ν prH (t−τ,s1−τ,...,sn−τ)λ(τ)
(
1−(1−pblood)N e−γ (t−τ )

)

[1+ν prA(t−τ,s1−τ,...,sN−τ)]2 dτ if t ≥ sN

(24)

The time-dependent parameters p1(t), p2(t), k1(t), and kT (t) that characterise the
hypnozoite dynamics at the population level, account for all the infective bites received
throughout time and change instantaneously with MDA because of the assumption of
the instantaneous effect of the drug.
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As these parameters involve numerical integration, we implement our own integro
differential equation (IDE) solver using a 4th-order Runge–Kuttamethod, as described
by Algorithm 1 in Anwar (2022). Considering treatment at times s1, s2, . . . , sN , the
parameters p1(t), p2(t), k1(t), and kT (t) are first obtained from thewithin-hostmodel
at each time t to then obtain the solution of the population-level model at time t .

2.3 OptimisationModel for theMDA Intervals

In this section, we construct a mathematical optimisation model to obtain the optimal
timing for each MDA round. Suppose s1, s2, . . . , sN are the N MDA administration
times. We want to optimise the MDA intervention times so that the outcome of the
MDA implementation is optimised. We construct the optimisation problem as:

minimise
s1,s2,...,sN

Z

s.t. 0 < s1 < s2 < . . . < sN ,

where Z is the objective function to be minimised. Based on public health relevance,
we investigate two objective functions:

• Z1 = mint
(
I (t) + kT (t)L(t)

)
,

• Z2 = mint
((

I (t) + L(t))Wh + (Em(t) + Im(t)
)
Wm

)
,

where Wh , Wm are weighting factors for the human and mosquito population, respec-
tively, and t ∈ [s1 tmax]. That is, Z1 is the minimum of the sum of the blood-stage
infected proportion and the average hypnozoite burden in liver-stage infected individ-
uals for t ∈ [s1 tmax] and Z2 is the minimum of the weighted sum of the proportion of
infected humans (both blood-stage and liver-stage) and infected mosquitoes (exposed
and infectious) for t ∈ [s1 tmax]. Since the P. vivax transmission is mainly dominated
by hypnozoite dynamics and an estimated 79–96% of the total vivax infections are
due to relapse, it is important to target the hypnozoite reservoir to disrupt the effect
of relapse. Therefore, it is worth exploring the optimum effect of the drugs on disease
prevalence and hypnozoite burden with the objective function, Z1. As mosquito pop-
ulations are an integral part in P. vivax transmission, we explore the potential effect
of infected (exposed and infectious) mosquitoes along with infected humans with the
objective function Z2. By setting Wm = 0, we can also investigate the optimal effect
on only the human infected proportions (see Fig. 7, for example).

2.3.1 Without Seasonality

When seasonality is not considered, the time of the first MDA, s1, can be considered
arbitrary (as long as the dynamics have reached an equilibrium). In this case, we can
fix s1 = 0 (without loss of generality) and then the remaining MDA implementation
times are optimised.Here,weminimise the objective function Z over the time period of
[s1 tmax]. We reconstruct the optimisation problem in terms of time intervals between
MDA rounds. Let x1, x2, . . . , xN−1 be the time intervals between the first and second
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rounds of MDA, second and third rounds of MDA, and so on, respectively. That is,
x1 = s2 − s1, x2 = s3 − s2, . . . , xN−1 = sN − sN−1. Then the optimisation problem
becomes:

minimise
x1,x2,...,xN−1

Z

s.t. x1, x2, . . . , xN−1 > 0 and
∑

xi ≤ tmax

(25)

2.3.2 With Seasonality

When considering seasonality in the mosquito population, the time of the first MDA
round is no longer arbitrary as the dynamics are periodic oscillations around the mean
annual prevalence. As the periodic function that governs the mosquito birth rate,
bm(t), has an oscillation period of one year (assumed), the dynamics of human and
mosquito populations have a peak within each year. Our optimisation problemwithout
seasonality (Eq. 25) is constructed in terms of MDA intervals x1, x2, . . . , xN−1; for
the case when we consider seasonality, we set a range of two years (starting from
the time when prevalence is at a peak) for the optimisation algorithm to find the first
MDA time, s1. Here we define x0 = s1 − θ where θ is the peak prevalence time.
That is, x0 represents the interval between the prevalence peak time and the initial
MDA time. The remaining times are obtained similarly without seasonality. Hence,
the optimisation problem with seasonality in the mosquito population is:

minimise
x0,x1,...,xN−1

Z

s.t. x1, . . . , xN−1 > 0, x0 ≥ 0 and
∑

xi ≤ tmax

(26)

3 Results

In this section, we present some numerical results. First, we consider the effect of
MDA rounds if there were no seasonality. We explore the effect of oneMDA round on
disease prevalence (as a function of human to mosquito ratio, m), liver-stage infected
proportions, and the hypnozoite reservoir in Sect. 3.1. The effect of drug efficacy (vary-
ing prad) with one MDA round is presented in Sect. 3.2. We then present numerical
results on the effect of multiple MDA rounds on disease prevalence (Sect. 3.3) by
varying mosquito ratio where we present the rebound (e.g. minimum) disease preva-
lence obtained after 5 and 15 years for varying MDA rounds (up to N = 6 rounds)
with varying pre-MDA prevalence (20–60%). Finally, we explore the effect of optimal
MDA intervals on different disease prevalence by varying mosquito ratios for the two
different objective functions constructed in the previous section, both with andwithout
seasonality (Sect. 3.4).

3.1 The Effect of a Single Round of MDA (with pblood = 0.9, prad = 0.9)

To quantify the effect of radical cure MDA, we first assume that one round of MDA is
applied when the system is at a steady state (see “Appendix C” for detail on the steady-
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state derivation). Treatment coverage plays a significant role in the effect of an MDA
program (Lydeamore 2019). To study the model behaviour, we assume that 100% of
the population is covered by the MDA scheme and that there is 90% drug efficacy.
Figure3 shows the results from our multiscale model under one round of MDA. The
drugs were assumed to have an instantaneous effect (with pblood = 0.9, prad = 0.9);
the hypnozoite reservoir size just before the MDA (Fig. 3B) becomes smaller in size
(Fig. 3C; mode is 0) as a result of the radical cure. That is, just immediately following
MDA, most individuals will have no hypnozoites within their liver (with probability
≈ 0.7). Disease prevalence drops significantly at the time of radical cure (Fig. 3A), as
we assume that the drug clears any ongoing blood-stage infections with 90% efficacy
(pblood = 0.9). For liver-stage infected individuals, as the drugs are assumed to kill
each hypnozoite with probability prad = 0.9, the overall effect of the drug depends
on the size of the hypnozoite reservoir. If the size of the hypnozoite reservoir is
substantial before the treatment, the overall effect would be insignificant, and vice
versa. As individuals are still exposed to infectious mosquito bites, and each infective
bite contributes to an average of ν number of hypnozoites that activate at a constant
rate α, both blood-stage and liver-stage proportions reach the same equilibrium state
(Fig. 3D) as before MDA (Fig. 3B) eventually.

Fig. 3 Results frommultiscale model under radical cure treatment (pblood = 0.9, prad = 0.9) with a single
round of MDA without seasonality. Parameters are as per Table 1. Subplot A depicts the proportion of
blood-stage and liver-stage infected humans over time under treatment. The colored dashed lines indicate
the times at which the hypnozoite distribution is quantified in Subplots (B–D). Hypnozoite distribution in
population (obtained as per Equations (74)–(75) in Mehra et al. (2022b)) before MDA (time is indicated
by the blue dashed line in Subplot A is depicted in Subplot (B). Subplot (C) and Subplot D depict the
hypnozoite distribution in the population just after and 10 years after the MDA, respectively (times are
indicated by green and purple dashed lines in Subplot A)
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Fig. 4 Effect of radical cure on liver-stage infected individuals without seasonality. Subplot A depicts the
proportion of liver-stage infected for different hypnozoitocidal efficacy levels (prad). Yellow, blue, and
green lines corresponds to prad = 0.9, prad = 0.95, and prad = 1, respectively. Here pblood = 0.9 for all
scenarios. Subplots B, C, and D show the hypnozoite distribution within the population just after the MDA
program when prad = 0.95, prad = 0.99, and prad = 1, respectively (obtained as per Equations (74)–(75),
in Mehra et al. (2022b)). Other parameters are as in Table 1

3.2 The Effect of a Single Round of MDA, Varying prad

The effect of the drug on disease transmission and the hypnozoite reservoir also
changes with the efficacy of the drug (Fig. 4). Figure4A illustrates the effect of vary-
ing efficacies of the hypnozoicidal drug (i.e. prad) on liver-stage infected proportions.
Figure4B illustrates the hypnozoite distribution just after the application of MDA
when pblood = prad = 0.9 and Fig. 4C illustrates the hypnozoite distribution when
pblood = 0.9, prad = 0.95. If the hypnozoicidal drug were 100% effective (that is,
prad = 1) then all liver-stage infected individualswould recover (green line in Fig. 4A).
In the case of prad = 1, the hypnozoite reservoir within the human populationwould be
completely cleared (Fig. 4D). In other words, immediately following drug administra-
tion, no individuals would be liver-stage infected. However, the disease will eventually
reach the same equilibrium state as if no treatment were administered. (Fig. 4A).

3.3 The Effect of Multiple MDA Rounds

We also examined the impact of multiple MDA rounds on transmission and hypno-
zoite dynamics in the absence of seasonality (Fig. 5). Figure5A depicts the long-term
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behaviour of the transmission dynamics under four MDA rounds where the transient
behaviour over the time of theMDA rounds (150 days) is depicted in Fig. 5B. Here, we
assumed a fixed interval (30 days) between MDA rounds, although intervals between
MDA rounds among studies varywidely, fromweeks to severalmonths (Newby 2015).
The effect of four successive MDA rounds is clearly visible in Fig. 5A. Disease preva-
lence was driven down to approximately zero after the fourth round. However, as we
model the system as a deterministic process and the effect of the drug is temporary, over
time the disease reaches the same endemic steady state as before treatment. The over-
all effect of radical cure MDA treatment also depends on the disease prevalence; the
lower the prevalence, the more effective the MDA in reducing the disease prevalence
and hypnozoite-positive proportions. Figure5C, D illustrate the sensitivity analysis of
up to six MDA rounds at different assumed prevalences (20–60) obtained by varying
mosquito ratio, m, showing the rebound prevalence 5 years and 15 years after the first
MDA round was applied. The interval between each MDA round was again fixed at
30 days. If the prevalence before MDA is high, the dynamics reach the equilibrium
state faster than when the prevalence is low before MDA.

Fig. 5 Effect of multiple rounds of MDA without seasonality. Subplot A shows the effect of four MDA
rounds on prevalence over time whereas Subplot B is a snapshot from Subplot A that shows the transient
dynamics during the MDA rounds. A sensitivity analysis of up to N = 6MDA rounds over different steady
state prevalences is illustrated in Subplots (C–D). Subplot C shows the disease prevalence 5 years after the
first MDA round for up to six MDA rounds and Subplot D shows the disease prevalence 15 years after the
first MDA round. The green and red asterisks in Subplots C and D are the prevalences corresponding to
the green and red asterisks in Subplot (A), respectively. The intervals between MDA rounds are fixed at 30
days. Other parameters are as in Table 1
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3.4 Optimal MDA Programs

3.4.1 Without Seasonality

To obtain the optimal interval betweenMDA rounds, we use the optimisation problem
defined in Eq. (25). We used the MATLAB optimisation tool ‘Multistart’ (with 80
different initial starting points) with fmincon (SQP algorithm) to generate global
optimal solutions. The results of two optimally timed MDA rounds are illustrated in
Fig. 6 for a steady-state disease prevalence (see “Appendix C” for the derivation of the
steady-state disease prevalence) of 20%with the objective function Z1.With our choice
of parameter values (see Table 1), the optimisation problemgives an optimal interval of
x1 = s2−s1 = 34.7 days, as illustrated in Fig. 6A. Figure6C depicts the sum of blood-
stage infected population proportion and the hypnozoite burden on liver-stage infected
population over time, I (t) + kT (t)L(t), before and after the MDA rounds using the
optimal interval of x1 = 34.7 days. The effect of the optimally timed MDA rounds on
disease prevalence (20%) is depicted in Fig. 6D. The dashed vertical lines in Fig. 6C,
D indicate the optimal time for the MDA rounds (x1 = 34.7). When no seasonality is
considered, the time of the first MDA can be at any arbitrary time (after an equilibrium
has been reached). The equilibrium disease prevalence (obtained by varying mosquito
ratio,m) greatly affects the optimum intervals (Fig. 6B). The left vertical axis in Fig. 6B
illustrates the mosquito ratio, m, and the values on the right vertical axis depict the
prevalence corresponding to each green bar. For higher prevalence (25–60%), the
optimisation problem with the objective function Z1 suggests an interval of around
480 days between the two MDA rounds.

Figure7 shows the optimum interval for two (first row) and three (second row)
MDArounds for different equilibriumdisease prevalences (right vertical axis) obtained
through changing the mosquito ratio, m, with three different choices of the objective
function. The first, second, and third columns represent the objective function Z1, Z2
withWh = 1, Wm = 0, and Z2 withWh = 1, Wm = 1, respectively. In contrast with
the objective function Z2 with Wh = 1, Wm = 0 and Z2 with Wh = Wm = 1, the
optimisation problem suggests a longer interval for the second MDA round for higher
prevalences (> 35%) with Z1 when only two rounds of MDA are used (Fig. 7B). The
interval between the two MDA rounds is very similar for different prevalences for the
objective function Z2 withWh = 1Wm = 0 and Z2 withWh = Wm = 1 (Fig. 7B, C).

The optimal intervals for three MDA rounds depend on both m, hence prevalence,
and the choice of the objective function (Fig. 7D–F). If three MDA rounds are consid-
ered, the optimisation problem (Eq.25) suggests a similar interval for all of the MDA
rounds with all three choices of the objective function for low prevalence (< 50%).
But for higher prevalences (> 55%), for Z1 and Z2 with Wh = 1, Wm = 0, the opti-
misation routine suggests an immediate implementation of the third round of MDA
after a long delay in between. However, for Z2 with Wh = 1, Wm = 0, the interval
x2 becomes shorter as m, hence prevalence gets higher (but remains the same).
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Fig. 6 Effect of two rounds of optimally timed MDA. Subplot A shows the impact of varying intervals
between two MDAs on the objective function Z1 (using a starting steady-state disease prevalence of 20%)
where the minimum objective value obtained from the optimisation problem (Eq. 25) is when the interval is
34.7 days. Subplot C depicts the objective function, Z1, over time, before and after the MDAs when using
the optimal interval of ≈ 35 days. Subplot D illustrates the transient disease dynamics corresponding to
two optimally timed MDAs (time for the first MDA is arbitrary), separated in time by ≈ 35 days. Finally,
subplot B illustrates the optimal interval for different disease prevalences (right vertical axis) by varying the
mosquito ratio (left vertical axis), m corresponding to the objective function Z1. These optimal intervals
are for two MDA rounds found by solving Eq. (25) where the red rectangle shows the ≈ 35 day optimal
interval for the 20% steady state disease prevalence used in Subplot (A), (C), and (D). All parameters are
as in Table 1

3.4.2 With Seasonality

The effect of two optimally timed MDA rounds (including the first round, which
was not required to be considered when seasonality was not considered) is illus-
trated in Fig. 8. The optimal time for the first MDA round is approximately the same
for different annual mean disease prevalences (right vertical axis, obtained by vary-
ing initial mosquito ratio, m0) and the objective functions (Fig. 8D–F). The seasonal
amplitude, η, is thought to play an important role in intervention strategies (Selvaraj
et al. 2018); here we have assumed η = 0.1. Figure8A–C shows the impact of two
MDA rounds on disease prevalence for all the objective functions when there is a
54.9% annual mean disease prevalence before MDA for demonstrative purposes. The
vertical solid line indicates the time when the pre-MDA prevalence reaches a peak
and the vertical dashed lines indicate the time of the MDA implementations. When
the annual mean disease prevalence is 54.9%, the optimisation problem with our
choice of parameters as per Table 1 along with the objective function Z1, provides
the interval x0 = 103.4 days and x1 = 26.7 days for two MDA rounds. The inter-
vals with Z2 (Wh = 1,Wm = 0) are x0 = 132.1 days, x1 = 34.3 days and with
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Fig. 7 Sensitivity analysis of two and three rounds of optimal MDA intervals over different disease preva-
lence (right vertical axis) without seasonality. Prevalence is varied by varyingmosquito ratio,m (left vertical
axis). The optimal interval between two and three rounds of MDA for the objective function Z1 (Subplot A,
D, respectively), Z2 with Wh = 1, Wm = 0 (Subplot B, E, respectively) and Z2 with Wh = 1, Wm = 1
(Subplot C, F, respectively) are shown. All parameters are as in Table 1

Z2 (Wh = Wm = 1) are x0 = 133.7 days and x1 = 33.7 days. The sensitivity analysis
for optimal interval time with different annual mean prevalences (right vertical axis,
corresponding to each bar) is illustrated in Fig. 8D–F with Z1, Z2 (Wh = 1, Wm = 0)
and Z2 (Wh = Wm = 1), respectively. The red rectangles in Fig. 8D–F indicate the
optimal intervals corresponding to Fig. 8A–C. With respect to all objective functions,
Z1, Z2 (Wh = 1, Wm = 0), and Z2 (Wh = Wm = 1), the optimal intervals are very
similar when the mean annual prevalence is low (< 50%). However, the optimisation
algorithm suggests an immediate implementation for the two MDA rounds for higher
annual mean prevalence with the objective function Z2 (Wh = 1, Wm = 0) (Fig. 8E),
while with Z2 (Wh = Wm = 1), the algorithm suggests a similar interval as for low
prevalences (Fig. 8F). With objective function Z1, the interval between the two MDA
rounds is also very similar for different annual mean prevalences (Fig. 8D).

Figure9 shows the optimal intervals when three MDA rounds are considered for
each objective function. Figure9A–C demonstrates the effect of three optimally timed
MDA rounds on the objective function Z1, Z2 (Wh = 1, Wm = 0) and Z2 (Wh =
Wm = 1), respectively, over time where the vertical solid line indicates the time
when the prevalence reaches a peak and the three subsequent vertical dashed lines
indicate the optimal time for the threeMDArounds. The sensitivity analysis for optimal
interval time with different annual mean prevalences (right vertical axis) is illustrated
in Fig. 9D–F with Z1, Z2 (Wh = 1, Wm = 0) and Z2 (Wh = Wm = 1), respectively,
where the violet rectangles in Fig. 9D–F indicate the optimal intervals corresponding
to Fig. 9A–C. With respect to all objective functions, Z1, Z2 (Wh = 1, Wm = 0), and
Z2 (Wh = Wm = 2), the optimal timing for the second and third MDA round, that
is the interval between the last two rounds is almost identical throughout all different
prevalences.
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Fig. 8 Effect of two rounds of optimally timed MDA with mosquito seasonality. Subplots A–C depict the
impact of optimal MDA on disease prevalence (annual mean disease prevalence before MDA of 54.9%)
with objective function Z1, Z2 (Wh = 1, Wm = 0), and Z2 (Wh = Wm = 1), respectively. The solid
vertical line indicates the time when the prevalence reaches a peak before the initial MDA. The dashed
vertical lines indicate the optimal times for the MDA rounds. Subplots D–F depict the sensitivity analysis
over different annual mean disease prevalences with the objective function Z1, the objective function Z2
with Wh = 1,Wm = 0, and objective function Z2 with Wh = Wm = 1, respectively. All parameters are
as in Table 1

Fig. 9 Effect of three rounds of optimally timed MDA with mosquito seasonality. Subplots A–C depict
the impact of three optimally timed MDAs on objective functions Z1, Z2 (Wh = 1, Wm = 0), and
Z2 (Wh = Wm = 1), respectively (note the change in X-axis between Subplots A, B, C) (annual mean
disease prevalence before MDA of 49.9%). Subplots D-F depict a sensitivity analysis over different annual
mean disease prevalences (right vertical axis) obtained by varying initial mosquito ratio (left vertical axis)
with objective function Z1, the objective function Z2 with Wh = 1,Wm = 0, and the objective function
Z2 with Wh = Wm = 1, respectively. All parameters are as in Table 1
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Fig. 10 Effect of change in model parameters on the optimal interval (without seasonality) between two
MDA rounds with the objective function Z1 which is the minimum of the sum of the blood-stage infected
proportion and the average hypnozoite burden in liver-stage infected individuals at time t . Subplots A–
E illustrate the impact of varying m (number of mosquitoes per human), α (hypnozoite activation rate),
μ (hypnozoite death rate), γ (natural recovery rate), and ν (average number of hypnozoites per bite)
on the optimal interval, respectively. The colorbars in each subplot illustrate the equilibrium prevalence
corresponding to the parameters before the first MDA was implemented. The red arrows in Subplots A–E
indicate the baseline parameters in Table 1 and optimal interval when prevalence is around 40% (see Fig. 6B
as a reference). Parameter ranges for Subplot A–E are as in Table 1

The choice of model parameters can significantly influence the optimal MDA inter-
vals. In order to obtain an equilibrium disease prevalence (without seasonality, see
“Appendix C”) for Figs. 5 and 6, we only varied the human-to-mosquito ratio (m) and
kept all other parameter values as per Table 1. We note that there are (possibly) many
other combinations of model parameters that could generate the same equilibrium
prevalence (see Fig. 10). Hence, we performed a sensitivity analysis for the parame-
ters m, α, μ, γ , and ν on the optimal interval (without seasonality) for two MDA
rounds with the objective function Z1 which is the minimum of the sum of the blood-
stage infected proportion and the average hypnozoite burden in liver-stage infected
individuals at time t . Figure10A–E depicts the effect of varying m, α, μ, γ , and
ν on the optimal intervals, respectively. The color of the bars in Fig. 10A–E depicts
the equilibrium prevalence corresponding to the parameter value. The red arrows in
Fig. 10A–E depict the baseline parameters in Table 1 that generate a prevalence of
40% as shown in Fig. 6B. As illustrated in Fig. 10A, the abundance of mosquitoes can
drastically influence the disease equilibrium as the force of reinfection (that is, the
probability of reinfection per unit time) increases with m (λ = m0abIm). We see that
the optimal intervals can be different for the same equilibrium prevalence generated
with a different combination of the parametersm, α, μ, γ , and ν. That is, the optimal
interval without seasonality depends on the inputmodel parameters. To investigate this
further, we vary the values of α and set a value of m such that the steady-state disease
prevalence is 30% (Fig. 11). Figure11A illustrates the distribution of the optimal inter-
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val for two MDA rounds for different values of α and m. The optimal interval varies
from around 47 days to 446 days for the different combinations of α and m (objective
function z1). Figure11B depicts the distribution of optimal intervals for the same set
of parameters but with the objective function Z2 with Wh = 1,Wm = 0. In this case,
the optimal interval varies from around 37 days to 172 days. The results illustrate that
prevalence alone is not sufficient to determine an optimal MDA interval when there is
no seasonality in the mosquito population.

The jump in optimal interval seen in Figs. 8A, 10, and 11 as we vary model parame-
ters is related to the choice of the objective function. Regardless of the choice of model
parameters (and hence disease prevalence), the effect of the drug on the blood-stage
infected population (I ) is to cause an instantaneous reduction at the time of the MDA
corresponding to the effectiveness of the drug (pblood). Hence, to minimise the blood-
stage infected population alone, the optimisation will always suggest the immediate
implementation of the secondMDA round. Similarly, the effect of the drug on the hyp-
nozoite reservoir (which has an average size, kT ) is always to reduce its size regardless
of model parameters (and disease prevalence). However, since the effect of the drug
on kT will be more for larger hypnozoite reservoir sizes, to minimize the hypnozoite
reservoir alone, the optimisation would suggest a longer interval (regardless of disease
prevalence) so that the reservoir has time to build up before the next MDA round. In
contrast, the effect of the drug on the liver-stage infected population (L) does vary with
model parameters (and disease prevalence). For low disease prevalence, the average
hypnozoite reservoir size will be smaller (see Eq.C-34) in which case L will decrease
at the time of the first MDA application. For higher disease prevalence, the average
hypnozoite reservoir size will be larger and it is possible that L will increase at the
time of the first MDA application since those in I have their blood-stage infection
cleared but not all of their hypnozoites due to the large average hypnozoite reservoir
size. The objective function, Z1, considers minimising both blood-stage infections (I )
and hypnozoite burden within liver-stage infected fractions (kT L). This increase in
the liver-stage infected fractions when the first MDA is applied under higher disease
prevalence means that a longer interval for the second MDA will be optimal to reduce
the burden (Figs. 8A, 10) while when prevalence is low the liver-stage infected fraction
will decrease with the first MDA and a second MDA round within a short interval will
be optimal. Furthermore, if we consider seasonality in the mosquito populations, the
results are quite different. Figure12 illustrates the distribution of the optimal inter-
vals (x0 and x1) when the annual mean prevalence is approximately 30% for objective
function z1 (Fig. 12A) and for objective function Z2 withWh = 1,Wm = 0 (Fig. 12B).
The distribution of the optimal interval is consistent for both objective functions. The
results indicate that when there are fluctuations in the abundance of mosquitoes in the
environment, the optimal interval can be identified by measuring the prevalence.

4 Conclusions and Discussion

Targeting the hypnozoite reservoir is the most crucial action in any P. vivax elimi-
nation strategy, as hypnozoites dominate P. vivax transmission dynamics. In malaria
elimination efforts around the world, interest in MDA using primaquine or tafeno-
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Fig. 11 Effect of change in two model parameters (the hypnozoite activation rate, α, and the number of
mosquitoes per human, m) on the optimal interval (without seasonality) between two MDA rounds with
the objective functions Z1 and Z2 with Wh = 1,Wm = 0. Subplot A is a violin plot that illustrates the
optimal interval corresponding to the objective function Z1, whereas Subplot B illustrates the optimal
interval corresponding to the objective function Z2 withWh = 1,Wm = 0. In both cases, for a given value
of α (outer color of the scatter points), we choose the parameter value m (inner color of the scatter points)
so that the steady-state prevalence is 30%. The colorbars on the bottom illustrate the value of m and α,
respectively. All other parameters are as in Table 1

quine has grown, as these are the only available drugs to treat liver-stage P. vivax
infections (Hsiang 2013). In this paper, we have developed a multiscale model that
captures hypnozoite dynamics and the effect of the hypnozoite reservoir on disease
transmission under radical cure treatment as a method of MDA. This model extends
our previous work (Anwar 2022) by integrating treatment into the model with multiple
MDA rounds accounting for superinfection. We have extended Mehra et al. (2022b)
within-host model by obtaining key parameters regarding hypnozoite dynamics under
multipleMDArounds and embedding these into a population-level transmissionmodel
that considers superinfection based onMehra (2022). We have also included mosquito
seasonality in our model to study the impact of MDA treatment when there is a sea-
sonal effect on mosquitoes in the environment. According to our model and choice
of parameters, MDA with radical cure can significantly reduce disease burden at the
time the program is administered and maintain it at low levels when prevalence before
the MDA intervention is low and if multiple MDA rounds are implemented (Fig. 5).
Our model results are sensitive to some parameters, especially for parameter regimes
where superinfection is likely. However, we found that the optimal MDA intervals
for a specific objective depend on the parameter values (without seasonality), espe-
cially the ones that have more influence on the transmission dynamics (mosquitoes per
human, hypnozoite activation rate, hypnozoite death rate, natural recovery rate, and
average hypnozoite per mosquito bite). That is, even where different combinations
of the model parameters correspond to the same equilibrium prevalence, the optimal
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Fig. 12 Effect of change in two model parameters (the hypnozoite activation rate, α, and the initial number
of mosquitoes per human, m0) on the optimal interval (with seasonality) between two MDA rounds with
the objective functions Z1 and Z2 with Wh = 1,Wm = 0. Subplot A illustrates the optimal intervals
x0 and x1 corresponding to the objective function Z1, whereas Subplot B illustrates the optimal interval
corresponding to the objective function Z2 with Wh = 1,Wm = 0. In both cases, for a given value of α

(outer color of the scatter points), we choose the parameter value m0 (inner color of the scatter points) so
that the annual mean prevalence is ≈ 30%. The colorbars on the bottom illustrate the value of m0 and α,
respectively. All other parameters are as in Table 1

intervals are not necessarily the same (without seasonality, Figs. 10 and 11). However,
when there is seasonal variation in the mosquito population in the environment, the
optimal intervals are very similar (Fig. 12) for different combinations of the model
parameters that correspond to the same annual mean prevalence. Hence, prevalence
alone should not be considered a reliable measure when determining optimal inter-
vals between rounds of MDA, especially in regions where seasonal variation in the
mosquito population is negligible.

Although the optimal interval, frequency, and population coverage with MDA are
not clear in practice (Maude 2012; Greenwood 2008; Hsiang 2013), treatment cover-
age (the proportion of the population who are treated) drives the overall effectiveness
of the MDA (Finn Timothy 2020; Dyson 2017). The higher the coverage of MDA,
the more transmission will be reduced and the closer we will reach towards elimina-
tion (Slater 2014). For simplicity, here we assume 100% treatment coverage in our
model which is difficult to achieve in reality due to various factors (Agboraw 2021;
Finn Timothy 2020). However, if and when this assumption of 100% coverage is
relaxed and each MDA round has a certain coverage, the correlation of coverage will
be important as systematic non-adherence can greatly undermine the success of the
MDA program and be ineffective in disrupting onward transmission (Dyson 2017;
Rock 2015; Plaisier 2000). We have also assumed that all drugs (both blood-stage and
liver-stage) are 90% effective, unless specified otherwise. This assumption about the
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effectiveness of the radical cure drug is realistic, as studies show radical cure efficacy
varies between 57.7% and 95% depending on the combination of drugs (Huber 2021;
Nelwan 2015; Llanos-Cuentas 2014). According to our model, the optimal intervals
between MDA rounds vary with the prevalence before MDA, the number of MDA
rounds under consideration, and the choice of the objective function (Figs. 7, 8, 9).
However, regardless of the objective and number of MDA rounds, the overall effect
of the drug is only temporary under our model assumptions. This temporary effect
is due to the assumption of the instantaneous effect of the drugs. This assumption is
appropriate given that available drugs have half-lives varying from 3.7h to 28 days
(Jittamala 2015; Schlagenhauf 2019) which is short compared to the time frame of
interest (years). Hence, in the long term, the dynamical system does not observe any
drug effect and the system returns to its pre-MDA state, which is the expected out-
come from a deterministic framework such as ours. A deterministic framework is
useful to understand the disease dynamics for a large population size however for a
small population size, it will be important to use a stochastic model to study disease-
extinction scenarios (Allen and Burgin 2000). Currently, prophylaxis is not taken into
account in our model. Accounting for prophylaxis might vary model outcomes, as a
longer duration of prophylaxis leads to greater measured efficacy, especially in higher
transmission settings (Huber 2021). Furthermore, given the mosquito population has a
shorter lifespan, for a longer duration of prophylaxis a reasonable proportion of infec-
tious mosquitoes may die out and disrupt the chains of transmission. The assumption
of blood-stage infection clearance in the presence of superinfection is slightly differ-
ent in the population model in comparison to the within host model. The within host
model assumes that each blood-stage infection is cleared independently for analytical
tractability (Mehra et al. 2022b). However, since we are not aware of any study that
suggests that the blood-stage drugs act differently on each blood-stage infection, we
assumed that the clearance of all blood-stage infections (regardless of howmany there
are) depends only on the efficacy of the drug, pblood.

Although being an effective intervention strategy, MDA has some disadvantages,
especially in terms of drug resistance (Zuber and Takala-Harrison 2018; Commons
2018). Because of the extensive use of antimalarial drugs, the parasite has developed
resistance to some drugs, particularly chloroquine. However, chloroquine is still effec-
tive in most parts of the world for P. vivax (World Health Organization 2020). Another
challenge withMDA is the use of the anti-hypnozoicidal drugs primaquine and tafeno-
quine, as these can cause blood hemolysis in individuals with G6PD deficiency and
problems in pregnant women (Howes Rosalind 2012; Watson 2018). We do not con-
sider G6PD deficiency in our model, but it could easily be extended to do so. We also
do not consider drug resistance, immunity, or heterogeneity in bite exposure.

Since our model is deterministic, disease fade-out is not possible, but a disease
in a real-life setting may undergo stochastically driven fade-out when the disease
prevalence is sufficiently low (Keeling and Rohani 2011; Greenhalgh et al. 2015).
The primary purpose of this work is to optimise the implementation of the timing
of the rounds of MDAs. However, disease elimination could be investigated with
our multiscale model by approximating the elimination probability as a Binomial
random variable. As P. vivax parasites are transmitted through infectious mosquito
bites, contributing to hypnozoites in the liver, it is as important to reduce mosquito-
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bite exposure or the abundance ofmosquitoes as it is to clear hypnozoites from the liver
(Le Menach 2007; Price 2020; Newby 2015). Insecticide-treated nets, indoor residual
spraying, and long-lasting insecticide-treated nets are some of the standard vector-
control interventions for controlling malaria transmission and are necessary additional
interventions alongside MDA as per theWHO guidelines (Zuber and Takala-Harrison
2018). Including vector-control interventionswithMDAand stochasticity in themodel
to obtain the probability of disease eradication is an avenue for potential future work.

To our knowledge, ours is the first multiscale model to provide a framework for
studying the effect of multiple MDA rounds in both the within-host and population
scale for P. vivax transmission. The results from the model demonstrate the effect of
several MDA rounds delivered at optimal intervals on both the transmission setting
and hypnozoite dynamics. According to our model, P. vivax transmission can only
be interrupted for a certain period (the duration of which depends on the prevalence
before MDA) when using MDA. That is, MDA alone is not sufficient to progress us
towards sustained P. vivax elimination under our model. While our model has not
been parameterised for any particular geographical setting, it has the potential to aid
policymakers in MDA control strategy decision-making.
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AModel Derivation with Mosquito Seasonality

Let X , Y , and Z represent the number of susceptible, blood-stage and liver-stage
infected individuals and U , V , and W represent the number of susceptible, exposed
and infectious mosquitoes. Let Nh = X + Y + Z be the total human population
and Nm(t) = U + V + W be the total mosquito population at time t , respectively.
With mosquito seasonality, the model equations for the number of individuals in each
compartment are:

dX

dt
= −λ(t)X + μk1(t)Z + p1(t)γY + Dl(l)Z + p1(t)Db(t)Y ,

dY

dt
= λ(t)(X + Z) + αkT (t)Z − γ (p1(t) + p1(t))Y − Db(t)(p1(t) + p2(t))Y ,

123

http://creativecommons.org/licenses/by/4.0/


43 Page 30 of 38 M. N. Anwar et al.

dZ

dt
= −λ(t)Z − μk1(t)Z − αkT (t)Z + p2(t)γY − Dl(t)Z + (1 − p(t))Db(t)Z ,

dU

dt
= bm(t)Nm(t) − ac

Y

Nh
U − gU ,

dV

dt
= ac

Y

Nh
U − (g + n)V ,

dW

dt
= nV − gW ,

where

λ(t) =Nm(t)

Nh
ab

W

Nm(t)
= ab

W

Nh
.

All model parameters are defined in Table 1. Here, d(Nh)/dt = d(X +Y + Z)/dt = 0
so that the human population is constant in size over time. But for the mosquito
population:

dNm(t)

dt
= d(U + V + W )

dt
,

= bm(t)Nm(t) − g(U + V + W ),

= bm(t)Nm(t) − gNm(t),

= bm(0)

(
1 + η cos

(
2π t

365
+ φ

))
Nm(t) − gNm(t),

= g

(
η cos

(
2π t

365
+ φ

))
Nm(t),

∴ Nm(t) = Nm(0)exp

{
365gη

2π
sin

(
2π t

365
+ φ

)}
,

where Nm(0) is the initial mosquito population size.
We now convert the above transmission model into a model on the proportion scale

for consistencywith themodel given in Eqs. (2)–(6). Let S = X/Nh, I = Y/Nh, L =
Z/Nh, Sm = U/Nm(t), Em = V /Nm(t), Im = W/Nm(t). Therefore

λ(t) = ab
ImNm(t)

Nh
,

= abIm
Nm(0)

Nh
exp

{
365gη

2π
sin

(
2π t

365
+ φ

)}

= m0abImexp

{
365gη

2π
sin

(
2π t

365
+ φ

)}
,

[m0 = Nm(0)

Nh
is the initial mosquito-human ratio].
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Fig. 13 Model solutions with and without mosquito seasonality. Subplot A depicts the blood-stage and
liver-stage proportions for humans over time with (solid lines) and without (dashed lines) seasonality.
Subplot B illustrates the proportion of infectious mosquitoes with (solid lines) and without (dashed lines)
seasonality over time. Parameters are as in Table 1

The equations for the human population on the proportion scale become:

d(SNh)

dt
= −λ(t)SNh + μk1(t)LNh + p1(t)γ I Nh + Dl (l)LNh + p1(t)Db(t)I Nh ,

	⇒ dS

dt
= −λ(t)S + μk1(t)L + p1(t)γ I + Dl (l)L + p1(t)Db(t)I .

Similarly,
dI

dt
= λ(t)(S + I ) + αkT (t)L − γ (p1(t) + p1(t))I − Db(t)(p1(t) + p1(t))I ,

dL

dt
= −λ(t)L − μk1(t)L − αkT (t)L + p2(t)γ I − Dl (t)L + p2(t)Db(t)I .

And the equations for the mosquitoes on the proportion scale become:

d(SmNm(t))

dt
= bm(t)Nm(t) − ac

I Nn

Nh
SmNm(t) − gSmNm(t),

	⇒ Nm(t)
dSm
dt

= bm(t)Nm(t) − acI SmNm(t) − gSmNm(t) − Sm
dNm(t)

dt
,

	⇒ dSm
dt

= bm(t) − acI Sm − gSm − Sm
Nm(t)

(bm(t) − g)Nm(t),

	⇒ dSm
dt

= bm(t) − acI Sm − bm(t)Sm .

Similarly,
dEm

dt
= acI Sm − (bm(t) + n) Em,

dIm
dt

= nEm − bm(t)Im .

The model dynamics with mosquito seasonality in comparison with no seasonality are
depicted in Fig. 13.
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BMultiple Infections Given Blood-Stage Infected

An individual might experience multiple blood-stage infections at the same time
either due to bites from infectious mosquitoes or relapses from hypnozoite activa-
tion. We define the multiplicity of infection (MOI) as the number of distinct parasites
co-circulating within a blood-stage infected individual. Thus, the multiplicity of infec-
tion (MOI) is given by the total number of bloods-stage infections (infections from
mosquito bites and relapses) at time t : MI (t) = NA(t) + NP (t). Now, multiplicity of
infection given empty hypnozoite reservoir: MI (t)|NH (t) = 0 can be obtained from
the PGF given by Eq. (13) that holds for before treatment and by Eq. (14) which holds
following treatment at times s1, s2, . . . , sN as

E[zMI (t)|NH (t) = 0] =
{

G(t,zH=0, zA=z, zC=1, zD=1, zP=z zPC=1)
G(t,zH=0, zA=1, zC=1, zD=1, zP=1 zPC=1) if t < s1
Gs1,s2 ,...sN (t,zH=0, zA=z, zC=1, zD=1, zP=z zPC=1)
Gs1,s2 ,...sN (t,zH=0, zA=1, zC=1, zD=1, zP=1 zPC=1) if t ≥ sN ,

=exp{h(z, t) − h(1, t)},

where

h(z, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t
0 λ(τ)

ze−γ (t−τ)+(1−e−γ (t−τ))

1+
(
pH (t−τ)+(1−z)pA(t−τ)

)
ν
dτ if t < s1

∫ t
sN

λ(τ)
ze−γ (t−τ)+(1−e−γ (t−τ))

1+
(
pH (t−τ)+(1−z)pA(t−τ)

)
ν
dτ

+ ∫ s1
0 λ(τ)

z(1−pblood)e−γ (t−τ)+(1−(1−pblood)e−γ (t−τ))

1+
(
pH (t−τ,s1−τ)+(1−z)pA(t−τ,s1−τ)

)
ν
dτ

+ . . . + ∫ sN
sN−1

λ(τ)
z(1−pblood)N e−γ (t−τ)+(1−(1−pblood)ne−γ (t−τ))

1+
(
pH (t−τ,s1−τ,...,sn−τ)+(1−z)pA(t−τ,s1−τ,...,sn−τ)

)
ν
dτ if t ≥ sN .

(B-27)

Now, the probability mass function for MI (t)|NH (t) = 0 is

P(NA(t) + NP (t) = n|NH (t) = 0) = P(MI (t) = n|NH (t) = 0)

= exp {h(0, t) − h(1, t)} 1

n!
n∑

k=1

Bn,k

[
∂h(0, t)

∂z
,
∂2h(0, t)

∂z2
, . . . ,

∂n−k+1h(0, t)

∂zn−k+1

]
,

where

∂kh

∂zk
(0, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k! ∫ t0
λ(τ)[ν pA(t−τ )]k−1

[
1+ν

(
pA(t−τ )+pH (t−τ )

)]k

(
e−γ (t−τ ) + ν pA(t−τ )(1−e−γ (t−τ ))

1+ν pA(t−τ )

)
dτ if t < s1

k!
( ∫ t

sN
λ(τ)ν pA(t−τ )k−1

[
1+ν

(
pA(t−τ )+pH (t−τ )

)]k

(
e−γ (t−τ ) + ν pA(t−τ )(1−e−γ (t−τ ))

1+ν pA(t−τ )

)
dτ

+ ∫ s1
0

λ(τ)ν prA(t−τ,s1−τ )k−1

[
1+ν

(
prA(t−τ,s1−τ )+prH (t−τ,s1−τ )

)]k

(
(1 − pblood)e−γ (t−τ )+

ν prA(t−τ,s1−τ )(1−(1−pblood)e−γ (t−τ ))

1+ν prA(t−τ,s1−τ )

)
dτ + . . .

+ ∫ sN
sN−1

λ(τ)ν prA(t−τ,s1−τ,...,sn−τ )k−1

[
1+ν

(
prA(t−τ,s1−τ,...,sn−τ )+prH (t−τ,s1−τ,...,sn−τ )

]k

(
(1 − pblood)N e−γ (t−τ )+

ν prA(t−τ,s1−τ,...,sn−τ )(1−(1−pblood)N e−γ (t−τ ))

1+ν prA(t−τ,s1−τ,...,sn−τ )

)
dτ
)

if t ≥ sn .
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C Steady-State Analysis (Without Seasonality)

To obtain the steady state of the systemwithout treatment and seasonality, first assume
that the time-dependent parameters p1(t), p2(t), k1(t), and kT (t) are in steady state.
We define

p̄1 = lim
t→∞ p1(t),

p̄2 = lim
t→∞ p2(t),

k̄1 = lim
t→∞ k1(t),

k̄T = lim
t→∞ kT (t).

Therefore at steady state, we have:

dS

dt
= −λS + μk̄1L + p̄1γ I = 0, (C-28)

dI

dt
= λ(S + L) + αk̄T L − γ ( p̄1 + p̄2)I = 0, (C-29)

dL

dt
= −λL − μk̄1L − αk̄T L + p̄2γ I = 0, (C-30)

dSm
dt

= g − acI Sm − gSm = 0, (C-31)

dEm

dt
= acI Sm − (g + n)Em = 0, (C-32)

dIm
dt

= nEm − gIm = 0. (C-33)

From Eqs. (C-30), (C-31) and (C-33), at steady state we have:

L = γ p̄2 I

λ + μk̄1 + αk̄T
,

Sm = g

g + acI
,

Em = gIm
n

.

Substituting the value of Sm and Em in Eq. (C-32), we get

Im = acnI

(g + acI )(g + n)
.

We have a constant human population, therefore

S = 1 − I − L
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Fig. 14 Temporal solution from numerical simulation of the model from time t = 0 (solid lines) and
steady-state model behaviour from analysis (dash-dot lines) for A the blood-stage and liver-stage human
proportions and B the infected and exposed mosquito proportions. Parameters are as in Table 1

= 1 − I − γ p̄2 I

λ + μk̄1 + αk̄T
.

Now, substituting the value of S and L in Eq. (C-28) gives:

− λ

(
1 − I − γ p̄2 I

λ + μk̄1 + αk̄T

)
+ μk̄1

γ p̄2 I

λ + μk̄1 + αk̄T
+ p̄1γ I = 0,

	⇒ I = λ(λ + μk̄1 + αk̄T )

(λ + μk̄1)(λ + p̄1γ + p̄2γ ) + (λ + p̄1γ )αk̄T
. (C-34)

To obtain a steady-state prevalence, I ∗, we need λ = λSS to be at a steady state.
Each of the parameters p̄1, p̄2, k̄1, and k̄T can be expressed as a function of λSS from
Eqs. (20), (21), (22), and (24), respectively. That is,

p̄1 = f1(λSS),

p̄2 = f2(λSS),

k̄1 = f3(λSS),

k̄T = f4(λSS),

which makes Eq. (C-34) a nonlinear function of λSS . That is

I ∗ = F(λSS). (C-35)

Therefore, given a fixed I ∗, we can solve Eq. (C-35) to obtain λSS and hence can
find the other human and mosquito proportions at steady state. Note that the steady-
state disease prevalence, I ∗, is obtained as a function of the human to mosquito ratio,
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m. That is, by varying m, we can vary λSS and hence I ∗. The steady-state solution
following this analysis is illustrated in Fig. 14 and captures the long-term behaviour
of the model based on numerical simulation.
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