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Abstract
Metapopulation models have been a popular tool for the study of epidemic spread
over a network of highly populated nodes (cities, provinces, countries) and have been
extensively used in the context of the ongoing COVID-19 pandemic. In the present
work, we revisit such a model, bearing a particular case example in mind, namely that
of the region of Andalusia in Spain during the period of the summer-fall of 2020 (i.e.,
between the first and second pandemic waves). Our aim is to consider the possibility of
incorporation of mobility across the province nodes focusing on mobile-phone time-
dependent data, but also discussing the comparison for our case example with a gravity
model, as well as with the dynamics in the absence ofmobility. Ourmain finding is that
mobility is key toward a quantitative understanding of the emergence of the second
wave of the pandemic and that the most accurate way to capture it involves dynamic
(rather than static) inclusion of time-dependent mobility matrices based on cell-phone
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data. Alternatives bearing no mobility are unable to capture the trends revealed by the
data in the context of the metapopulation model considered herein.

Keywords Metapopulation · Human mobility · COVID-19 epidemic · Gravity law

1 Introduction

Human mobility has played an indisputable role in COVID-19 dynamics (Chinazzi
et al. 2020; Kraemer et al. 2020) with as many as 86% of global cases having been
imported from Wuhan, the original location of the pandemic. Studies of the epidemic
in China have shown that in the early stages thereof, the probability of an outbreak
was correlated with the frequency of imported cases from Wuhan (Kraemer et al.
2020). The trajectory of the epidemic over a similar time period was also studied in
Li et al. (2020) using an SEIR (Susceptible-Exposed-Infected-Recovered) stochastic
metapopulation model, where it was determined that undocumented infections played
a crucial role in the rapid spread of the epidemic. These early and high-profile studies
render it clear that a systematic consideration of suchmobility aspects of the pandemic
and of theoretical models thereof is a key ingredient toward appreciating its potential
for spreading across countries and regions.

Continuing along this vein, in a subsequent study (Wells et al. 2020), the proba-
bility of case importations to countries having airports with direct flights to and from
mainland China was estimated. It was assumed that the probability of importation
is proportional to the number of airports in the country with direct connections to
mainland China. With the implementation of Wuhan’s travel ban and the subsequent
international travel restrictions, Chinazzi et al. (2020) analyzed the effect of quar-
antine measures on local, national, and international pandemic spread. Even though
the spread of the virus could only be delayed in the Chinese mainland, the mitiga-
tion of the transmission would be notable around the world. Modeling the course of
the epidemic in other countries such as England and Wales, Danon et al. (2021) also
incorporated daily commuting as an important factor in the spread of the disease. It
was assumed that infectious hosts may infect others both at home during the night and
away during the day in the span of a day’s cycle. A study evaluating confinement and
other mitigation measures in Spain (Arenas et al. 2020) used workforce mobility as a
proxy for confinement. For Brazil, commuter and airline data were used to calibrate
a stochastic epidemic model (Costa et al. 2020). The model was used to investigate
the spatial spread of the disease at various geographical scales (ranging from munic-
ipalities to states). It should be clear that these are only some select studies within a
continuously expanding large volume of literature, which has now also been reviewed,
e.g., in Calvetti et al. (2020) (see also earlier reviews such as Chen 2014; McCallum
et al. 2001).

Of course, such models have a time-honored history in earlier instances of disease-
spread modeling. For example, the Global Epidemic and Mobility (GLEAM) team
integrates real-world pandemic transmission models with mobility data, including
airline transportation network flows, ground mobility flows, and sociodemographic
features, to capture spatiotemporal connections between mobility and an epidemic’s
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spread (Chinazzi et al. 2020; Balcan et al. 2009). Amodel for influenza in theUSA (Pei
et al. 2018) accounted for both daily commuting and random travels between states.
One of the main findings there was that the metapopulation model more accurately
predicts the onset, peak timing and intensity than models only accounting for specific
locations. A study of long-term influenza patterns in the US (Viboud et al. 2006)
used mortality data and the gravity model, whereby population flows between nodes
of the metapopulation network are determined by considerations akin to Newton’s
law of gravity, to study the spreading of influenza across states. References (Balcan
et al. 2009; Zipf 1946) also showed correlation between infection spread and human
movements. Theoretical metapopulation studies, where the travel rates are given by
the gravity model, also exist (Belik et al. 2011). Other works use the rates at which
hosts leave and return to their permanent locations to infer the coupling strengths
in their ODE model (Kelling and Rohani 2002). In earlier work, the bubonic plague
epidemic was modeled using a similar approach (Keeling and Gilligan 2000), with
adjacent metapopulations on a lattice coupled to rates chosen to fit historical data.

Studies looking at human mobility under lenses that go beyond gravity models
also exist. One such example is the radiation model (Simini et al. 2012), which is
based on the assumption that population density dictates employment opportunities,
sowhen density is low, commuters need to travel longer distances.Hence, the predicted
flux depends on the origin and destination populations and on the population of the
region surrounding the origin location. More recently, a new mobility law (Schlapfer
et al. 2021) has been proposed showing that the number of visitors to any location
is proportional to the inverse square of the product of the frequency of visits and
distance traveled. This law has been applied in the context of urban mobility (within-
city mobility), where it has shown a remarkable agreement with data.

When traffic data are available, they may be leveraged using entropy maximization
techniques (Gomez et al. 2019;VanZuylen andWillumsen 1980) aiming to reconstruct
origin–destination matrices (Willumsen 1981) describing human mobility among var-
ious locations. However, in more recent considerations where mobile-phone data are
available, these have been found to more accurately represent the actual movements
of people (Tizzoni et al. 2014; Wesolowski et al. 2016). During the first and second
COVID-19 pandemic waves, in the US (Badr et al. 2020; Glaeser et al. 2022), Japan
(Yabe et al. 2020), and in China (Chinazzi et al. 2020), among others, mobile-phone
location data were utilized to explore the effects of mobility on the reported cases
reduction.

We should also note in passing that other approaches to examining the spatial
spread of COVID-19 have also been deployed, including, e.g., models based on partial
differential equations (Kevrekidis et al. 2021; Mammeri 2020; Viguerie et al. 2021).
These modeling efforts take into account local population density by modifying the
transmission coefficients accordingly (Kevrekidis et al. 2021) (compared to anordinary
differential equations model), emphasize the importance of inflows from neighboring
regions (Viguerie et al. 2021), and utilize time-varying diffusion coefficients to account
for the effect of mitigation measures (Kevrekidis et al. 2021; Mammeri 2020).

In the present work, wewish to explore some of the practical challenges of applying
ametapopulationmodel to a concrete region during the COVID-19 pandemic, and also
when attempting to systematically compare model results with existing data. In line
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with our earlier studies (Cuevas-Maraver et al. 2021), we bring to bear an epidemic
model that accounts for both symptomatic and asymptomatic infections and includes
appropriate recovered compartments, as well as a compartment for the fatalities, since
the latter appears to be the most accurate dataset (Holmdahl and Buckee 2020). How-
ever, since we have examined already aspects of the identifiability of such models, as
well as their usefulness in the context of age-structured populations (Cuevas-Maraver
et al. 2021), we do not focus on such aspects herein. Instead, our emphasis is on
the availability of different approaches to couple the nodes of such a model into a
network pattern for a metapopulation description of a region of interest. In that vein,
we compare and contrast the findings of an implementation neglecting the mobility
between provinces, with one incorporating it.When incorporating suchmobility traits,
we comment on our attempts to do so, based on “standard” techniques such as those
stemming from gravity models or transportation-based origin–destination matrices.

Our case example of interest is the region of Andalusia in Spain for numerous rea-
sons, including the familiarity of our groupwith the region (aiding an understanding of
the observed mobility patterns and, e.g., their seasonal variation). A significant feature
facilitating and enabling our study is a large-scale data analysis of the Transportation
Ministry of the SpanishGovernment (https://www.mitma.gob.es/ministerio/covid-19/
evolucion-movilidad-big-data) that provides time-resolved mobility data across the
provinceswithin this region and hence a dynamic incorporation of the relevant patterns
based on an “as accurate as possible” characterization of themobility within the area of
interest. We calibrate the model using fatality data from Andalusia (https://cnecovid.
isciii.es/covid19/), focusing on the summer and early fall period of 2020 (i.e., from
around the end of the first and the beginning of the second pandemic wave). During
this period, mitigationmeasures were relatively relaxed andmobility among provinces
was high due to summer vacations and later due to higher education-related relocation.
We find that we are unable to obtain a quantitativematchwith the observed data in each
province (and hence Andalusia as whole) without mobility—or with static patterns of
mobility produced by some of the above mentioned “standard” techniques—. Instead,
our most accurate quantitative description of the observations stems from the incorpo-
ration of the above described “dynamicmobility” as obtained from the time-dependent
mobile-phone provided by MITMA (https://www.mitma.gob.es/ministerio/covid-19/
evolucion-movilidad-big-data).

Our presentation is structured as follows. In Sect. 2, we present themodel, including
the relevantmetapopulationnetwork considerations.Wealso showhowmobilitymatri-
ces, an input to the metapopulation model, that are obtained from different data sets
compare. In Sect. 3, we present our results, including the parameter fitting approach
used and the comparisonwith the existing data forCOVID-19 fatalities in eachAndalu-
sian province. Finally, in Sect. 4, we present our conclusions and a discussion toward
future steps within these classes of models. The Appendix contains information on
the determination of the origin–destination matrix using either the gravity method or
mobile-phone data.
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2 Modeling Framework

2.1 Epidemic Model for Each Node

In the ordinary differential equation (ODE) model that we put forth (a slight variant
of the ones previously considered, e.g., in Cuevas-Maraver et al. 2021; Kevrekidis
et al. 2021), there are seven compartments for each node. Susceptible individu-
als, S, become exposed (latently infected, not infectious yet), E , after contact with
either asymptomatically infectious hosts, A, or symptomatically infectious hosts,
I . Recall that the importance of asymptomatically induced transmission, especially
in the context of COVID-19 has been argued in numerous studies (Peirlinck et al.
2020; Calvetti et al. 2020). We assume standard incidence βAS,I S/(N − D), where
N − D = S + E + A + I + U + R is the total living population. However, as the
number of individuals in the deceased class D is quite small in most cases, from now
on it will be ignored compared to N , namely we will set the incidence to βAS,I S/N ,
where the transmission coefficient βAS,I S can be assumed constant over the consid-
ered periods of time. We have selected the time interval under consideration as one
involving high mobility without changes in mitigation measures, so as to reflect more
clearly the genuine role of transportation effects in the model results.

Once in the exposed class E , a fraction of hosts ϕ never develop symptoms and
moves into the asymptomatically infectious class A at a rate σA. Asymptomatic hosts
are assumed to recover at an average rate γA andmove into the recovered compartment
U . The remaining exposed host fraction 1 − ϕ develops symptoms at a rate σI and
these individuals move into the symptomatically infectious class I . A fraction ω of
symptomatic hosts die at an average rate χ (moving into the compartment D) and the
remaining fraction 1−ω recovers at a rate γI and moves into the recovered class R. A
schematic diagram of the above description is shown in Fig. 1. The relevant equations
governing the spreading of the epidemic read:

Fig. 1 Schematic diagram of the Susceptible-Exposed-Asymptomatic-Infected-Recovered (SEAIR) model
for each metapopulation node (Color figure online)
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S′ = −βASS
A

N
− βI S S

I

N
, (1)

E ′ = βASS
A

N
+ βI S S

I

N
− (κA + κI )E, (2)

A′ = κAE − γA A, (3)

I ′ = κI E − (κR + κD)I , (4)

U ′ = γA A, (5)

R′ = κR I , (6)

D′ = κD I , (7)

where we set

κA = ϕσA, κI = (1 − ϕ)σI , κR = (1 − ω)γI , κD = ωχ. (8)

In what follows, in order to reduce parameter redundancy in the model, we fit the
following seven parameters and parameter combinations

βAS, βI S, κA = γA. (9)

This version of the model will be used when considering the fatalities within Andalu-
sia’s provinces but without any (mobility-induced) coupling between them and when
considering the entire Andalusia (no metapopulation). It is straightforward to observe
that for system (1–7), the total population N = S + E + A + I + R + U + D is
conserved. Moreover, the subset {S ≥ 0, E ≥ 0, A ≥ 0, I ≥,U ≥ 0, R ≥ 0, D ≥ 0}
of R7 is positively invariant for the system. Hence, the system is well-posed for any
initial condition.

All variables and model parameters are defined in Table 1.

2.2 MetapopulationModel

We are implementing a coupling between the different provinces in line with (Belik
et al. 2011). Namely, we assume that individuals are indistinguishable and travel from
node i to node j at some rate given by human mobility data, without assigning any
base location to them. Hence, individuals in node i are instantaneously assigned to
node j upon arrival, regardless of their prior node (no memory). The same individual
may change multiple nodes, in principle, within the model. Connections between the
nodes depend on the mobility flow of susceptible S, exposed E , and infectious hosts,
A and I . To avoid a highly complicated model, we do not incorporate terms such as
Si A j , Si I j in the equations., i.e., we assume that the primary source of infection is
through interactions of susceptible with infectious individuals within each node (no
direct long-range transmission).

123



The Role of Mobility in the Dynamics of the COVID-19… Page 7 of 27 54

Table 1 Variables and
parameters Variable

S Susceptible hosts

E Exposed hosts

A Asymptomatically infectious hosts

I Symptomatically infectious hosts

U Recovered hosts (transitioning from A)

R Recovered hosts (transitioning from I )

D Deceased hosts

t Time (days)

Parameter

βI S Transmission rate between I and S (1/day)

βAS Transmission rate between A and S (1/day)

κA Transition rate from E to A (1/day)

κI Transition rate from E to I (1/day)

γA Transition rate from A to U (1/day)

κR Transition rate from I to R (1/day)

κD Transition rate from I to D (1/day)

The metapopulation model assumes the following form (with i = 1, . . . imax where
imax = 8 since Andalusia has eight provinces):

S′
i = −βASSi

Ai

Ni
− βI S Si

Ii
Ni

+ θ

⎛
⎝∑

j

Mi j
S j

N j
−

∑
j

M ji
Si
Ni

⎞
⎠ , (10)

E ′
i = βASSi

Ai

Ni
+ βI S Si

Ii
Ni

− (κA + κI )Ei + θ

⎛
⎝∑

j

Mi j
E j

N j
−

∑
j

M ji
Ei

Ni

⎞
⎠ ,

(11)

A′
i = κAEi − γA Ai + θ

⎛
⎝∑

j

Mi j
A j

N j
−

∑
j

M ji
Ai

Ni

⎞
⎠ , (12)

I ′
i = κI Ei − (κR + κD)Ii + θ

⎛
⎝∑

j

Mi j
I j
N j

−
∑
j

M ji
Ii
Ni

⎞
⎠ , (13)

U ′
i = γA Ai , (14)

R′
i = κR Ii (15)

D′
i = κD Ii , (16)

N ′
i = θ

⎛
⎝∑

j

Mi j −
∑
j

M ji

⎞
⎠ , (17)
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The last equation shows how the population of node i is updated over time. Our model
is along the lines of Li et al. (2020) and Pei et al. (2018). If mobility is ignored by
setting θ = 0, the total population within each node Ni is conserved. Otherwise, when
θ = 1, solely the total population over all provinces is conserved. We note that θ

is a binary parameter, assuming the value 1 (0) when human mobility is considered
(not considered). Mi j is the daily rate of people traveling from j to i . Then, one
multiplies this rate with the proportion of S, E, A, I in the total node population N j .
This can be interpreted as the probability of an individual from these four classes
traveling if we choose randomly from N j . Symptomatically infectious individuals
I are assumed to be able to move, but not U or R. In any event, the latter two do
not affect further the dynamics in the network as they are terminal classes of the
model. Allowing U and R to move (since no re-infection is considered on the time-
scales used in the present work) only has the effect of redistributing the recovered
population among the network nodes: the infection dynamics are not expected to be
directly affected. However, movement of individuals in these compartments may still
change the population size of a given location, which could slightly affect incidence
(frequency-dependent transmission with 1/Ni , 1/N j terms). It is relevant to also note
that, over the time scale considered, these individuals are assumed to have immunity
(upon recovery) and, hence, it is not considered to be a possibility for the population
in U or R to re-enter the susceptible population, over the time frame of interest.
Therefore, we only allow the susceptible class, S, which consists the majority of the
population, and the exposed, E , and infectious, A and I , classes to move among the
network nodes. Furthermore, since there were no mobility restrictions at the time,
we assume that the movement of exposed, asymptomatic, and infected individuals is
the same as the movement of susceptible individuals. While quarantine and isolation
were required at the time for infectious and exposed individuals, we consider that they
all travel and at the same rate since it is not straightforward to estimate compliance.
Should, however, such compliance data become available, it would be an easy fix to
multiply Mi j with the appropriate compliance rate.

One may easily observe that as long as Ni > 0, i = 1, . . . , 8 the metapopulation
model is well-posed for any initial condition. This follows since the region

{Si ≥ 0, Ei ≥ 0, Ai ≥ 0, Ii ≥,Ui ≥ 0, Ri ≥ 0, Di ≥ 0} ⊂ R
56

is positively invariant and for the time period studied, while Ni fluctuate, they stay
positive for all i = 1, . . . , 8.

We note that based on the mobility data (https://www.mitma.gob.es/ministerio/
covid-19/evolucion-movilidad-big-data), the networkof the eightAndalusianprovinces
is a complete graph and the population flows Mi j are time-dependent. In the following
subsection we discuss how we determined the daily movement rates, i.e., the popu-
lation flows, between two network nodes, and alternative ways to determine them if
mobile-phone records are not available.
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2.3 HumanMobility Estimation

Mobility flows are commonly estimated from mobile-phone records. In this work the
flows we analyzed are based on a study performed by the Spanish government (Min-
isterio de Transportes, Movilidad y Agenda Urbana-MITMA) https://www.mitma.
gob.es/ministerio/covid-19/evolucion-movilidad-big-data) that included all of Spain
for the period beginning on March 14, 2020. The main data source was anonymized
mobile-phone data for more than 13 million mobile lines as well as locations of com-
munication towers and antenna orientations. Population data as well as information
about the transportation network (airport locations, railways) were leveraged. Figure2
shows the time-dependent population flows for each province, i.e., each network node,
of Andalusia as determined by the mobile-phone data. They are shown for the time
duration of our study, starting on July 10, 2020 till October 29, 2020 (112 days). Note
the significant time dependence of the inter-province population flows.

Daily mobility data among locations, such as those provided by mobile phones,
may not be always readily and publicly available. When this is the case, other types of
data and alternative models are used to determine the population flows. One avenue is
to rely on census surveys and base the coupling of the epidemiological model on daily
commuting data (Danon et al. 2009, 2021). In this approach, workdays and weekend,
as well as commuters and non-commuters, should be distinguished using additional
travel surveys. Failure to consider non-work related trips may lead to an erroneous
slowing down of the epidemic (Danon et al. 2009). This fine tuning is not required
when using time-varying mobility matrices as in the present work.

Another avenue is to utilize commonly used trip-distribution modeling techniques,
like the gravity model to construct the origin–destination (O–D) matrix for the
metapopulation network. The gravity law is used extensively in the literature to model
travel demand between O–D pairs (e.g., Erlander and Stewart 1990; Ortúzar and
Willumsen 2011). We assume a region where n denotes the nodes (or centroids )
of the cities in the regional transportation network and m their highway links. A trip
matrix element (number of trips per day) is denoted by wi j , where i and j are the
origin and destination nodes of the considered trip, respectively. Given the population
of these cities and their distances, the O–D matrix elements are computed by

wi j = C
Nα
i N

γ

j

eβGdisi j
, (18)

where C is a constant, disi j is the distance between the O–D pair (i j), α and γ are
parameters associated with the populations Ni and N j of the pair (i j), and βG is a
constant parameter whose value —measured in units of inverse distance, indeed in
our case of 1/km— depends on the distance between the network nodes, as explained
in Appendix A. Once the elements of the O–D matrix have been estimated, the force
of infection on susceptible hosts S j in location j in the metapopulation model, which
reads βAS A j/N j , βI S I j/N j in Eqs. (10, 11) is modified as Xia et al. (2004)
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Fig. 2 Time-varying daily population flows (the daily rate of individuals traveling Mi j ) for each Andalu-
sian province as determined from mobile-phone data (https://www.mitma.gob.es/ministerio/covid-19/
evolucion-movilidad-big-data). The destinations are shown on the vertical axis. The code name for the
eight provinces in Andalusia is: Alm: Almeria, Cad: Cadiz, Cor: Cordoba, Gra: Granada, Hue: Huelva, Jae:
Jaen, Mal: Malaga, Sev: Seville (Color figure online)

123

https://www.mitma.gob.es/ministerio/covid-19/evolucion-movilidad-big-data
https://www.mitma.gob.es/ministerio/covid-19/evolucion-movilidad-big-data


The Role of Mobility in the Dynamics of the COVID-19… Page 11 of 27 54

Fig. 3 Origin–destination matrices based on the gravity-law method (vehicle trips per day) for a pre-
pandemic day left panel and from the mobility data based on mobile-phone records (people traveling per
day) for Friday, July 10, 2020 (middle panel) and Tuesday, October 27, 2020 (right panel) (Color figure
online)

βAS
1

N j

(
A j + CN γ

j

∑
i �= j

Aα
i

eβGdisi j

)
, βI S

1

N j

(
I j + CN γ

j

∑
i �= j

I α
i

eβGdisi j

)
. (19)

A notable difference between models implementing (19) and the metapopulation
model (10–17) is the following. Whereas the model defined by (10–17) introduces
mobility via changes directly in the rates of change of the S, E , A, and I popula-
tions (for θ = 1), models using (19) implement mobility through modification of the
transmission terms.

It is relevant to note that the accuracy of gravity-like models has received con-
siderable recent criticism (Schlapfer et al. 2021; Simini et al. 2012). In the present
work, we will not embark on a detailed comparison of a metapopulation model based
on the gravity law and our own approach (based on time-dependent mobile-phone
records). Nevertheless, for completeness, wewould like to illustrate that in the absence
of alternative and possibly quite superior data sets, the method can be used to cap-
ture some principal features of mobility flows in workdays (Friday and Tuesday;
no mobility restrictions in place); see, in particular, Fig. 3. More concretely, due to
the scarcity of reported traffic count data—they are averaged over a year— only a
static O–D matrix can be obtained. Also, the traffic count data available to us were
from 2019-2020, namely prior to the pandemic. The O–D matrices in Fig. 3 show
that the gravity-law method roughly captures the main mobility trends. For instance,
there is substantial support within the matrix between the rows 2–4 and columns
6–8 (and vice-versa), as well as, e.g., between Seville and Huelva or Malaga etc.
Therefore, in the absence of more detailed and accurate mobility information, it can
be used as an alternative. The O–D matrix presented in Fig. 3 , left panel, repro-
duces the gravity-law data shown in Table 6 in the “Appendix”. It should be noted
however, that the gravity-law O–D is in terms of vehicle trips per day, whereas
the mobility flows from the Spanish government reported in Movilidad y Agenda
Urbana Ministerio de Transportes (https://www.mitma.gob.es/ministerio/covid-19/
evolucion-movilidad-big-data) are expressed in terms of people traveling per day.
To convert one into the other one would need to know on average the number of
people traveling in vehicles: as the comparison is qualitative we opted not to convert
population flows to trips per day.
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3 Results

3.1 Period of Study and Rationale

The time period considered begins on July 10, 2020, and ends onOctober 29, 2020 (112
days). We use the first 84 days from July 10 till October 1, 2020, as the fitting period,
and the remaining 28 days from October 2 to October 29, 2020, as the prediction
interval. Since the goal of the present study is to investigate of the role of mobility on
the spread of an epidemic, the period of study was chosen to satisfy the following two
conditions. First, that there would be no imposed mobility restrictions except at the
end. In fact, on October 29, the regional government imposed a curfew at nights and
closed the border with the rest of Spain and limited mobility between the provinces.
That is the reason we chose to perform our analysis up to the end of October 2020,
and not longer, as afterward the mobility patterns were modified due to the imposed
restrictions on travel. Second, the period should include the initial exponential growth
of the epidemic peak.

3.2 Parameter Fitting andModel Predictions

We first use the model of Eqs. (1)–(7) for the entire region of Andalusia. We use the
norm

N =
84∑
i=1

(
Dnum(ti )

Dobs(ti )
− 1

)2

, (20)

as the objective function. We minimized it to fit the fatality data Dobs(ti ), where ti
stands for day i , from our start point of July 10, 2020, and Dnum(ti ), denotes the
fatality estimate for the same day, obtained from the model. It is worth noting again
that we are not attempting to fit to case data, since these are believed to be significantly
less reliable than fatality data, due to under-reporting as has been the case in other
countries as well (Cuevas-Maraver et al. 2021; Kevrekidis et al. 2022). Indeed, when
trying to fit both case and fatality data, we obtained results that are considerably less
satisfactory than the ones presented below.

In addition to the seven parameters shown in (9), we also obtain estimates for the
initial parameters I0, A0, E0 when the entire autonomous community of Andalusia is
considered. We performed 500 optimizations with an initial guess for each parameter
uniformly sampled within a pre-specified range. The upper and lower limits of the
variation ranges were used as boundaries in the constrained minimization algorithm
(implemented in MATLAB via the fmincon function). The outcome of the fitting,
for values taken from July 10 to October 1, 2020 (84 days), allowed us to retrieve an
approximation for the initial values for the I , E and A compartments. Their median
(they had a very small dispersion) was used as initial condition for the metapopulation
model (10–17), weighted by ω j = C j/C , with C j being the number of cases in the
j-th province in the period from July 4 to July 10 and C the total number of cases in
Andalusia in the whole period. We minimized the norm
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Fig. 4 Model fit and prediction of the fatalities time series for the entire region of Andalusia. Data points
are shown as black dots, the output of the metapopulation model with mobility (θ = 1) is shown as a red
curve, the output of the metapopulation model with mobility turned off (θ = 0) is shown as a blue curve,
and the fit to the ODE model (Eqs. 1–7) is shown as a green curve. The light blue vertical line corresponds
to the date when fitting stops (day 84) and prediction begins. The interquartile range is highlighted in red
(Color figure online)

N =
8∑
j=1

N j , (21)

with

N j =
84∑
i

(Dj,num(ti )

Dj,obs(ti )
− 1

)2
, (22)

and Dj,num(ti ) and Dj,obs(ti ) being, respectively, the fatality estimate and data for
the day ti at province j . In the metapopulation model, we focused on two values of
θ , θ = 1 and θ = 0, which will be denoted as the metapopulation model with and
without mobility, respectively. As mentioned previously, the coupling matrices Mi j

were obtained from mobile-phone data (https://www.mitma.gob.es/ministerio/covid-
19/evolucion-movilidad-big-data).

Figure4 shows the fit of the SEAIR model of Eqs. (1)–(7), no metapopulation,
together with the metapopulation model (10–17) with (θ = 1) and without (θ = 0)
mobility for the case of the whole region of Andalusia. Part of the data (the first 84
days, from July 10 to October 1) is used for parameter fitting, and the remaining is used
for prediction (till day 112, from October 2 to October 29). We observe that while all
three curves are close to each other and trail the data points with a satisfactory level of
accuracy during the fitting period (since we are fitting them to the data), they diverge
afterward. Only the metapopulation model with mobility follows the same trend as the
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data in the prediction interval. One possible reason is that during summer the fatality
curves in all provinces behave similarly, i.e., they are quite homogeneous, but later
on they follow different trends, and they become heterogeneous. Hence, the overall
fatality curve (black dots in the figure), the one corresponding to the entire autonomous
community of Andalusia, diverges from the homogeneous curve.

Another explanation is that it is possible to fit different models to the same data set,
but not all models will be able to make accurate predictions. This is especially true
when fitting to epidemic data in the period before the inflection point of the epidemic
peak has been reached (Prasse et al. 2022).

Further insight on the dynamical evolution of the fatalities in each of the provinces is
provided in Fig. 5. During themonths considered in the present study, due to relaxation
or complete absence of mitigation measures, different nodes of the network exhibit
different characteristics. This can be attributed to some nodes being touristic destina-
tions (Malaga, Huelva), others being close to country borders (Cadiz with Gibraltar
and Huelva with Portugal), while yet others undergoing annual exodus over the sum-
mer months (Seville). This is evident in Figs. 2 and 6, where we show the variation
in mobility flows and population, respectively, for the eight provinces forming our
network.

It is relevant to make the following observations in connection with the results.
With the exception of Cordoba (featuring a systematic underestimation within the
prediction interval for whichwe do not have a definitive explanation) andHuelva (with
a corresponding overestimation in the prediction interval), data points typically follow
qualitative trends consonant with the interquartile range. Huelva is a major vacation
hub, both in the summer period and during weekends, mainly from residents in Seville
(who also commonly spend their holidays in the province of Cadiz). If people return to
their permanent residence to receive treatment and quarantine (or are anyway logged
as cases within these regions), this may explain the disparity between the observed
and predicted fatalities. It is worthwhile to note an apparently similar overestimation
trend within the prediction interval for Cadiz; however, in this case, the situation is
somewhat less clear, due to an opposite trend within the fitting interval. Also, high
population density over the summer could partially explain the overestimation: the
model is trained with more people residing there, who subsequently depart to return
to their regular residence. Also, compared to other provinces, fatalities are relatively
small in number, which makes it prone to stochastic effects (Calleri et al. 2021; Ando
et al. 2021), as is also evident in the trends of the data.

Figure6 shows the population in each province during the period of our study. Two
major trends emerge. First, there is a weekly oscillation, due to increased mobility
during the weekends. This is due to residents traveling from their primary residence to
vacation destinations, such as the oneswedescribed before betweenSeville andHuelva
or Cadiz; similar patterns are found between other pairwise transitions: e.g., in the case
of Cordoba, such movements happen to and from Malaga, Seville and Jaen. In any
event, the real-time data used in thiswork provide a clear picture of the dynamics across
the network and the key interactions across its nodes. Second, there is a significant
variation in the population of most provinces, ranging from mild (0.99−1.06 in Jaen,
0.93–1 in Cordoba) to extreme (0.75−1.2 in Huelva). Others, experience a peak in
late summer (Almeria, Cadiz, Malaga) before their population drops again in October.
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Fig. 5 Fatality data (black dots) and model fit for each province of Andalusia. The output of the metapop-
ulation model, Eqs. (10)–(17), with mobility (θ = 1) is shown as a red curve and the output of the
metapopulation model with mobility turned off (θ = 0) is shown as a blue curve. The light blue vertical
line corresponds to the date when fitting stops (day 84) and prediction begins. The interquartile range is
highlighted in light-red for red curve, while for the blue curve, the interquartile range is so narrow that it is
not visible in the plot. Note the different y-axis scales (Color figure online)
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Fig. 6 The ratio of the population of each province Ni (t) to the initial population N0, the latter based on
data from Instituto Nacional de Estadística. The light blue vertical line corresponds to the day when fitting
stops (day 84) and validation begins. Note the different y-axis scales (Color figure online)

123



The Role of Mobility in the Dynamics of the COVID-19… Page 17 of 27 54

Fig. 7 Snapshots of the evolution of the number of fatalities occurring from (and including) July 10 at
each province at different days from September to October. Top and middle row maps correspond to the
numerical fit/prediction of the metapopulation model with and without mobility, whereas bottom row maps
represent the observed number of fatalities. Bottommap in the first snapshot includes the code for the name
of each province (AL: Almeria, CA: Cadiz, CO: Cordoba, GR: Granada, H: Huelva, J: Jaen, MA: Malaga,
SE: Seville) (Color figure online)

Granada and Seville exhibit a reverse behavior, where their population increases in
the fall, when people resume living in their permanent residence. This is the seasonal
trend that is superposed to the weekly trend. A similar observation may be made
by considering Fig. 2 where the time-dependent population flows between any two
provinces are shown. In line with our above observations, some clear signatures are
obvious, such as weekly periodicity, overall increased mobility in the summer months
and other trends, such as the consistent mobility between specific pairs of provinces,
as discussed above.

Figure7 depicts the time evolution of the fatalities in the form of a heat map. We
can observe how the model predicts the spreading of the epidemic from Almeria to
neighboring provinces. Note, however, that in the reported data there was a spot in
Malaga, probably caused by people traveling from other places in the world (a process
which is not included in the current work). We also observe that Seville and Malaga
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are the provinces that eventually exhibit the highest number of fatalities, an observa-
tion correlated to their higher population. The maps also show that the model without
mobility predicts a very much smaller number of fatalities than the model with mobil-
ity. Although at an early stage of the prediction both models are fairly comparable,
later on, within the prediction interval, the model with mobility is significantly more
accurate toward predicting the spread of the epidemic within the metapopulation net-
work than the model without it. Both the detailed (individual province, cf. Figure5)
quantitative findings, and this overarching figure are convincing, in our view, of the
relevance at such regional levels of the consideration of metapopulation approaches.
Additionally, the concrete trends that our mobility data reveal illustrate the relevance
of the dynamic consideration of the coupling matrices Mi j .

The best-fit parameters are shown in Table 2, whereas Table 3 presents the initial
conditions for each province in the metapopulation model. For the initial condition
of the population (N0) we took the census data for January 1, 2020 (https://www.
ine.es/en/). We must note that the data we compared with correspond to the day
when events (such as deaths) actually occurred, and were extracted from the data
available in the National Epidemiological Center of Spain (https://cnecovid.isciii.
es/covid19/), as well as that each fatality is assigned to the residence province. It
is worth mentioning that the initial value for the infections in Almeria is about 12
times the value in Seville, despite Almeria having a third of the province of Seville’s
population. This is attributed to an outbreak that occurred in July which originated
at a settlement of temporary workers in the province of Almeria, that also expanded
to the neighboring province of Granada (https://www.diariosur.es/andalucia/junta-
andalucia-califica-20200717141402-nt.html) .

Table 4 shows the residuals for the fitting and predictions. The former is found
by computing (20) at each simulation and taking the median and quartiles of all
these values; for getting the latter, the same procedure is followed but extending the
summation in (20) to 114.

3.3 Effective Reproduction Number

Given the importance of the reproduction number during the initial stages of an epi-
demic wave, we use the Next Generation Matrix approach (Diekmann et al. 1990) to
evaluate the effective reproductive number Rt . In doing so, we treat this epidemicwave
as a “new epidemic" assuming that most of the population is still susceptible. This
assumption practically renders Rt = R0, namely the effective reproduction number,
is equal to the basic reproduction number R0. For t > 0 it holds Rt = R0S(t)/N ,
Cintron-Arias et al. (2009). Hence, the calculated effective reproduction number refers
to the first day of our simulations, July 10th, 2020. The reproduction number for the
one-node model (1–7) (with either N −D in the denominator or the simplified version
N − D ≈ N ) is

Rt = κA

κA + κI

βAS

γA
+ κI

κA + κI

βI S

κD + κR
. (23)
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Table 3 Initial conditions Province I0 E0 A0 N0 = S0

Almeria 175 278 281 727,945

Cadiz 26 41 42 1,244,049

Cordoba 9 15 15 781,451

Granada 246 391 395 919,168

Huelva 7 11 11 524,278

Jaen 14 23 23 631,381

Malaga 95 150 152 1,685,920

Seville 14 23 23 1,950,219

The first term is the contribution to Rt from asymptomatic hosts A while the second
is the contribution from the symptomatically infectious hosts I . Each term represents
the fraction of asymptomatic κA/(κA +κI ) or symptomatically infected κI /(κA +κI )

hosts generated in the lifespan of an exposed host E , or equivalently the fraction of
individuals reaching A or I after going through state E , multiplied by the number
of new infected hosts generated in the lifespan of the corresponding infectious host,
βAS/γA, βI S/(κD + κR), respectively.

Using the estimated parameters shown in the first column of Table 2, the value of
Rt is (the interquartile range in parenthesis)

Rt = 1.4848 (1.4798 − 1.4903).

We calculated Rt based on the 500 sets of parameter values, see the discussion
following Eq. (20). The interquartile range was calculated as follows. First, using the
500 accepted sets of the model parameters, we calculate Rt . From those values, we
then obtain the lower and upper quartiles and the median. When the metapopulation
model is used without mobility (θ = 0), then the same expression, Eq. (23), applies
with the parameters of the second column yielding

Rt = 1.5972 (1.5945 − 1.5983).

Finally, for the entire metapopulation network, Rt is calculated as follows. We define
the relevant vectors, focusing on the infectious/infected compartments (Ei , Ai , Ii ) and
ignoring the rest (Si , Ui , Ri , Di ):

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

βAS
N1

S1A1 + βI S
N1

S1 I1
0
0
.
.
.

βAS
N8

S8A8 + βI S
N8

S8 I8
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(κA + κI )E1 − θ
(∑

j M1 j
E j
N j

− ∑
j M j1

E1
N1

)

−κAE1 + γA A1 − θ
(∑

j M1 j
A j
N j

− ∑
j M j1

A1
N1

)

−κI E1 + (κR + κD)I1 − θ
(∑

j M1 j
I j
N j

− ∑
j M j1

I1
N1

)

.

.

.

(κA + κI )E8 − θ
(∑

j M8 j
E j
N j

− ∑
j M j8

E8
N8

)

−κAE8 + γA A8 − θ
(∑

j M8 j
A j
N j

− ∑
j M j8

A8
N8

)

−κI E8 + (κR + κD)I8 − θ
(∑

j M8 j
I j
N j

− ∑
j M j8

I8
N8

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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We then find the Jacobian matrices of F ,V with respect to Ei , Ai , Ii in the order
in which they appear. This yields two 24 × 24 matrices of the form:

F =

⎛
⎜⎜⎜⎜⎜⎝

F11 O3×3 O3×3 . . . O3×3
O3×3 F22 O3×3 O3×3 O3×3
O3×3 O3×3 F33 O3×3 O3×3

...
...

...
. . .

...

O3×3 O3×3 O3×3 . . . F88

⎞
⎟⎟⎟⎟⎟⎠

, Fii =
⎛
⎝
0 βAS

Si
Ni

βI S
Si
Ni

0 0 0
0 0 0

⎞
⎠ ,

O3×3 =
⎛
⎝
0 0 0
0 0 0
0 0 0

⎞
⎠

V =

⎛
⎜⎜⎜⎝

V11 V12 . . . V18
V21 V22 . . . V28
...

...
. . .

...

V81 V82 . . . V88

⎞
⎟⎟⎟⎠ ,

Vii =
⎛
⎜⎝

κA + κI + θ
∑

j
M ji
Ni 0 0

−κA γA + θ
∑

j
M ji
Ni

0

−κI 0 κR + κD + θ
∑

j
M ji
Ni

⎞
⎟⎠

Vi j =

⎛
⎜⎜⎝

−θ
Mi j
N j

0 0

0 −θ
Mi j
N j

0

0 0 −θ
Mi j
N j

⎞
⎟⎟⎠ ,

We note that for the calculation at t = 0, we set Si (0)
Ni (0)

in the Fii matrices and
Mji (0)
Ni (0)

,
Mi j (0)
N j (0)

in Vii , Vi j , respectively.

The reproduction number is the spectral radius of FV−1 which in our case has the
value

Rt = 1.3349 (1.2806 − 1.4581).

This is exactly the same value one obtains when using Eq. (23) if one completely
disregards the mobility terms in matrix V , i.e., with the parameter values of the third
column in Table 2. Hence, the change in Rt is due to the different values in third
column of Table 2, and not due to the terms containing Mi j in matrix V . In other
words, the effect of mobility is to change the estimated parameters; while they do not
alter the Rt (which, as mentioned earlier is effectively evaluated at the first day of our
simulations), they have a large effect on the dynamics later. When mobility is included
in themodel, the interquartile intervals of each parameter value are significantly wider,
which is also reflected in the corresponding interval for Rt .
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4 Discussion and Conclusion

In the present work, we revisited the formulation ofmetapopulationmodels, motivated
by the interest toward describing a “relatively small” region (the autonomous com-
munity of Andalusia within Spain) with well-defined and available in a time-resolved
manner data regarding the mobility across provinces. It is also a region without an
extensive influx (or outflux) of populations, e.g., through major international airport
hubs. This appears to render this case a fertile ground for the application of metapop-
ulation models.

In that vein, in addition to a prototypical model for each node, involving suscep-
tibles, exposed, asymptomatic and symptomatically infected, as well as recovered
from each of these categories and fatalities, we considered different possibilities on
how to incorporate human mobility across the nodes. We explored the model for the
entire autonomous community of Andalusia (without sub-nodes), the model where the
nodes do not feature mobility between them (independent nodes) and the canonical
case proposed where mobility is incorporated. One of the main findings of the present
work is that in the absence of mobility among nodes the model is unable to predict
the wave of infections that took place in the fall of 2020. It has long been known that
human mobility is crucial at the beginning stages of an epidemic, when the infection
is seeded in various locations (Chinazzi et al. 2020; Kraemer et al. 2020; Wesolowski
et al. 2016). It has also been noted that mobility may also affect contact rates which in
turn affect disease transmission (Wesolowski et al. 2016). The present study suggests
that population flows are critically important in periods during an epidemic when
there are no restrictions on mobility. Moreover, while there are numerous ways of
incorporating mobility, for example via static origin–destination matrices as calcu-
lated via gravity models, we believe that at present the optimal inclusion should be
time-resolved. Dynamical information stemming from mobile-phone data seamlessly
incorporates aspects such as the weekly or seasonal variations of human mobility;
hence it more accurately captures the resulting increases or decreases in the probabil-
ity of formation of an epidemic wave of infection. However, when this is not possible,
we also offer details on how origin–destination matrices obtained by the gravity-law
can be calculated to be used in a metapopulation model.

Nevertheless, we certainly refrain from assigning full responsibility to human
mobility for the wave of infections in the fall of 2020, or indeed more generally
during the second wave of the pandemic. It is clear that there exist numerous factors
that may have contributed to the relevant features, including, e.g., seasonality (Danon
et al. 2021) and humidity (Drossinos et al. 2022). It would be interesting to further
explore these factors and their interplay with mobility both in the context of the sec-
ond wave (as here) in other regions, but also as concerns subsequent waves of the
pandemic, where other key factors, such as the existence and the role of vaccinations
(Usherwood et al. 2021) need to be taken into consideration. Such studies will be
deferred to future publications.
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Table 5 Parameters of gravity
law Balcan et al. (2009);
Stefanouli and Polyzos (2017)

d (km) Parameter Estimate
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βG N/A

C 0.04289
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Appendix A: Origin–Destinationmatrices

We describe the methodology used to compute origin–destination (O–D) matrices for
light-duty vehicle highway travels compatible with empirical data of coarse grained
flows in highway transportation networks. We obtained the O–D matrices either
via the gravity model or from the mobile-phone data reported by the Ministry of
Transportation, Mobility and Urban Agency (Ministerio de Transportes, Movilidad y
Agenda Urbana-MITMA https://www.mitma.gob.es/ministerio/covid-19/evolucion-
movilidad-big-data) (see, also the discussion in Sect. 2.3 in the main text). Specif-
ically, we constructed the O–D matrix as follows: given population data from the
Instituto Nacional de Estadística (https://www.ine.es/en/) and distances of city pairs
we applied the gravity law to calculate the vehicle number of trips per day between
any two nodes. The gravity-model methodology is presented in Section A.1. Sec-
tion A.2 describes briefly how we translated the mobile-phone data into population
flows, people traveling per day between provinces. Figure3 in the main text compares
the static, pre-pandemic, gravity-model calculated O–D matrix with time-dependent
O–D matrices obtained from mobile-phone data for two characteristic working days:
Friday, July 10, 2020, and Tuesday, October 27, 2020.

1. Methodology: Gravity law and traffic counts

Given the population of provinces and distances between the capital city of province
pairs, the gravity model as described by Eq. (18) in the main text can be leveraged
with the parameters presented in Table 5. When the distance between an O–D pair (i j)
is larger than 300km, βG is set to be N/A, which denotes that the denominator will be
approaching 0, as well as wi j would be approaching 0.

The origin–destination matrix for the eight Andalusian provinces calculated from
the gravity law with the parameters reported in Table 5 is presented in Table 6, which
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Table 6 O–D matrix (daily number of vehicle trips) based on the gravity law

Almeria Cadiz Cordoba Granada Huelva Jaen Malaga Sevilea

Almeria 0 0 0 4139 0 873 4863 0

Cadiz 0 0 2391 0 2645 0 4704 21,312

Cordoba 0 2536 0 3323 1658 4211 10,110 14,025

Granada 4018 0 3531 0 0 7051 13,425 3253

Huelva 0 3248 1920 0 0 0 0 17,683

Jaen 964 0 5092 8022 0 0 3728 2612

Malaga 4015 4509 9138 11,417 0 2787 0 9059

Seville 0 19,750 12,257 2675 13,346 1888 8758 0

summarizes the daily number of vehicle trips between O–D pairs (i j). As mentioned
in the main text this O–Dmatrix is static, and the data we used referred to 2019–2020,
i.e., before the pandemic started.

2. Methodology: Mobile-phone data

All mobility data used in this work are available in the website referenced in MITMA
(https://www.mitma.gob.es/ministerio/covid-19/evolucion-movilidad-big-data). The
database aggregates more than 13 million anonymized mobile lines to provide data
for the number of persons traveling per day, i.e., population flows. The procedure
we followed to determine Mi j , the daily rate of people traveling from province i
to province j , was to download the spreadsheet, and then to select the origin and
destination of a trip according to following codes: 04 for Almería, 11 for Cádiz, 14 for
Córdoba, 18 for Granada, 21 for Huelva, 23 for Jaén, 29 forMálaga, and 41 for Sevilla.
The trip date is under the column “fecha” and the trips, one per individual, under the
column “viajes”. This information is extracted and assembled into the Mi j (t)matrices
for day t that provide the desired population flows as persons traveling per day.
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