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Abstract
For the past two decades, the USA has been embroiled in a growing prescription drug
epidemic. The ripples of this epidemic have been especially apparent in the state of
Maine, which has fought hard to mitigate the damage caused by addiction to phar-
maceutical and illicit opioids. In this study, we construct a mathematical model of
the opioid epidemic incorporating novel features important to better understanding
opioid abuse dynamics. These features include demographic differences in population
susceptibility, general transmission expressions, and combined consideration of phar-
maceutical opioid and heroin abuse. We demonstrate the usefulness of this model by
calibrating it with data for the state of Maine. Model calibration is accompanied by
sensitivity and uncertainty analysis to quantify potential error in parameter estimates
and forecasts. The model is analyzed to determine the mechanisms most influential to
the number of opioid abusers and to find effective ways of controlling opioid abuse
prevalence. We found that the mechanisms most influential to the overall number of
abusers in Maine are those involved in illicit pharmaceutical opioid abuse transmis-
sion. Consequently, preventative strategies that controlled for illicit transmission were
more effective over alternative approaches, such as treatment. These results are pre-
sented with the hope of helping to inform public policy as to the most effective means
of intervention.
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1 Introduction

Since the late 1990s, the opioid epidemic has affected millions of Americans per year
and as recently as 2018 was killing more than a hundred Americans per day (HHS
2019). April 2021 marked the first time that drug overdose deaths surpassed 100,000
in a 12-month period, with opioid overdoses comprising the majority (CDC 2021a).
Opioid analgesic prescriptions picked up speed in the late 1990s in response to growing
advocacy for the treatment of patient pain. Pain would eventually be recognized as
the fifth vital sign thanks to the efforts of various federal and medical institutions
(Walid et al. 2008). As a result, opioid prescriptions would erupt in the next decade,
increasing by over 35% (Kenan et al. 2012). In this short amount of time, the opioid
epidemic would balloon to an imposing size. Rates of nonmedical opioid use and
abuse followed a similar trajectory as prescriptions (Zacny et al. 2003), with overdose
deaths in tow. Eventually, research would help elucidate the addictive potential of
opioid analgesics (Kosten and George 2002), as well as establish links between opioid
dosage and overdose risk (Dunn et al. 2010; Zacny et al. 2003). Neurobiological
findings suggested that environmental, social, and even genetic factors are implicated
in increasing this risk (Sehgal et al. 2012; Kosten and George 2002). This and other
findings led to more stringent practices in opioid prescription, reaching a peak in 2012
and declining in subsequent years, a trajectory that has persisted to the present day
(Guy Jr. et al. 2017; CDC 2021b).

The opioid epidemic remains an issue of central importance despite the down-
ward trend in prescriptions, even growing in complexity due to the popularity of
synthetic opioids and the COVID-19 pandemic. A large part of this complexity has
to do with the interplay between pharmaceutical and nonpharmaceutical opioids—the
latter including drugs such as heroin and fentanyl. In addition, the COVID-19 pan-
demic has worsened the situation in many ways (Haley and Saitz 2020; Ochalek et al.
2020; Rabin 2021; Slavova et al. 2020). Healthcare facilities, strained by the pandemic,
have found it difficult to reconcile treatment services for those afflicted with opioid
abuse. Since 2020, opioid overdose mortalities have increased by nearly 30% (Rabin
2021). In some areas, during the same four-month window from 2019 to 2020, the
number of nonfatal opioid overdose visits doubled (Ochalek et al. 2020).

To address the renewed ferocity of the opioid epidemic, it is imperative that steps
are taken to best mitigate its continued growth. To help inform this process, we propose
a novel mathematical model of the opioid epidemic. We demonstrate the usefulness
of this model by calibrating it using publicly accessible data of the opioid epidemic
in the state of Maine. This framework is a step forward in understanding the opioid
epidemic. The most significant contributions are the simultaneous consideration of
pharmaceutical opioid and heroin abuse, the interactions of different opioid abusers,
the use of general incidence rates to accommodate social contagions, and accounting
for differences in susceptibility to opioid abuse. We hope this will serve not only as
a tool to inform opioid policy and epidemic management, but also as a megaphone
to draw attention to data needs that, if resolved, will assist in further research and
understanding.

To preface our study of the opioid epidemic in Maine, the general framework we
present distinguishes between the dynamics of pharmaceutical and nonpharmaceutical
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opioids. Although the abuse dynamics of these classes are inextricably linked, they
differ substantially in isolation. Pharmaceutical opioid abuse results fromprescriptions
and diversion, while nonpharmaceutical opioid abuse manifests predominantly in an
illicit manner. Diverted prescription drugs are those that are illegally channeled and
made available illicitly. Pharmaceutical opioids are those that can be obtained through
a prescription, while nonpharmaceutical drugs include everything else. Although we
discuss these opioid classes in general, it may be more useful (e.g., because of data
limitations) to model one opioid in particular from each class, which is the approach
we take here. That is, rather than consider nonpharmaceutical opioid abuse broadly, we
confine our study to heroin abuse specifically. We model drug abuse spread drawing
ideas from susceptible-infectious disease models. In this case, nonabusing “suscepti-
ble” individuals may be “infected” by drug abusers.

Previous mathematical model studies have looked at only a single class of opi-
oids, such as prescription opioids (Battista et al. 2019; Caldwell et al. 2019) or
heroin/illicit opioids (White and Comiskey 2007; Liu and Zhang 2011; Samanta 2011;
Cole and Wirkus 2022). Unfortunately, most mathematical models in the literature do
not account for the transition of individuals between pharmaceutical and nonpharma-
ceutical opioid abuse (Sharareh et al. 2019). The importance of considering multiple
types of opioids cannot be understated, owing to the link between illicit and prescrip-
tion sources of opioid addiction. For example, one recent survey found that nearly
80% of heroin abusers were first introduced to opioids via prescription drugs (Cicero
et al. 2014). The authors of (Jones et al. 2015) found that individuals with past-year
opioid pain reliever abuse or dependence were most likely to use heroin. Research has
shown that a transition to illicit opioids following prescription use typically occurs
because illicit sources tend to be cheaper and more readily available (Compton et al.
2016). Thus, the interplay between pharmaceutical and nonpharmaceutical opioids in
drug abuse patterns in a population is critical.

The work of Pitt et al. (Pitt et al. 2018) considered both prescription opioid and
heroin use disorders, but individuals in the latter compartment do not contribute to
drug abuse propagation in their model. Nonlinear interactions in amathematical model
of the opioid epidemic should be considered because of how social contagions such as
drug abuse spread in a population, specifically how behavior propagation inherently
relies on interactions between individuals of different drug abuse statuses (Behrens
et al. 2000). This is a component in most mechanistic models but is neglected in other
modeling studies, such as more policy- and prediction-oriented models (e.g., (Chen
et al. 2019; Ballreich et al. 2020; Alexander et al. 2021)); hence, why mechanistic
models have been referred to as the more practical modeling tool (Sharareh et al.
2019).

To our knowledge, besides the work presented here, (Phillips et al. 2021) is the
only work to date that considers both pharmaceutical and nonpharmaceutical opioids
as well as nonlinear transmission between drug abusers. The authors of (Phillips et al.
2021) distinguish between susceptibles, prescription opioid users, prescription opi-
oid addicted, heroin/fentanyl addicted, and a “stably” recovered compartment. Our
proposed model expands on this work by incorporating demography-based suscepti-
bility, exploring incidence rates beyond the conventional assumption of mass-action,
and using more granular data in model calibration. Our consideration of more general
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incidence rates raises interesting questions regarding policy, and we hope our valida-
tion of model assumptions using uncertainty quantification can serve as a template for
future modelers. The importance of these contributions will be argued in the sections
to come, but with this work we hope to contribute to the growing body of mecha-
nistic models that consider the transitions and interplay between pharmaceutical and
nonpharmaceutical opioid abuse.

The rest of this paper is structured as follows: The following section introduces a
general opioid modeling framework and fits it to Maine opioid mortality data. The
model is analyzed in Sect. 3, including parameter uncertainty and model forecasts in
Sect. 3.1, and a sensitivity analysis in Sect. 3.2. An investigation of control strategies
within the context of the findings of previous sections is presented in Sect. 3.3. Finally,
we conclude by interpreting our results, highlighting study limitations, and suggesting
areas of future work in Sect. 4.

2 An Opioid Epidemic Modeling Framework

We compartmentalize the population into “susceptible” individuals, “infected” or
active opioid abusers, and “in recovery/treatment.” An individual is susceptible if
they are not currently abusing opioids but are at risk of doing so, while infected refers
to a status of current abuse. We define current abuse as any opioid usage in the past
month, following the definition used by theNationalHousehold Survey onDrugAbuse
(SAMHSA 2002). Following the approach of (Battista et al. 2019), who in turn refer
to (Vowles et al. 2015), we take abuse to mean “nonmedical use with the potential for
harm.” This definition includes all harmful use of opioids, specifically opioid misuse
and abuse, which will be used interchangeably henceforth. Individuals in recovery are
undergoing treatment/rehabilitation and consequently are not actively abusing opioids.

Susceptible and infected individuals are further broken up into separate compart-
ments; susceptible individuals are classified as being either low-risk (SLR) or high-risk
(SHR). This designation allows the model to account for factors that contribute to a
higher risk of initiating pharmaceutical opioid abuse, including but not limited to
comorbid psychopathology and history of substance use disorder (see (Sehgal et al.
2012) and the references therein). Low-risk susceptible individuals can only initi-
ate pharmaceutical opioid abuse through a naturally developed addiction resulting
from prescription use, which occurs at rate εLR. High-risk susceptibles are k times
more likely than low-risk susceptibles to initiate pharmaceutical opioid abuse via the
same mechanism and are also capable of developing a use disorder via diverted drugs
or contact with opioid abusers. We ignore movement between susceptible risk com-
partments. While it is true that the risk classification of an individual can change in
practice (i.e., direct movement from low-risk to high-risk or vice versa), modeling this
phenomenon heavily depends on the predictor(s) of choice. Because of this and the
difficulties associated with measuring said predictors, we opt to make the simplifying
assumption that individuals can only change their risk classification from low risk to
high risk (i.e., indirectly after moving through the other compartments).

Infected individuals are classified by the type of opioid they abuse; these are either
pharmaceutical opioids (AP) or heroin (AH). Pharmaceutical opioids are those that can
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be obtained through a prescription. We ignore comorbid opioid abuse, i.e., simultane-
ous abuse of pharmaceutical opioids and heroin. Individuals abusing pharmaceutical
opioids need not have obtained these drugs with a prescription. In general, we choose
to distinguish between pharmaceutical opioids and heroin because of the stark dif-
ferences between either drug in terms of overdose mortality, means of addiction, and
acquisition. Genetic determinants in drug abuse have been found to account for up to
60% of an individual’s risk (Kreek et al. 2005). Therefore, opioid prescription inher-
ently risks the development of an abuse disorder. The parameter εLR is the product of
the proportion of the populationwith a prescription and this natural abuse rate. Individ-
uals that leave recovery/treatment enter the high-risk susceptible compartment. This
way, the mechanisms of relapse and recovery are built into the dynamics of our model.
This is in contrast to other models that include nonlinear movement out of treatment
and into an abuse compartment (Battista et al. 2019; White and Comiskey 2007).
Individuals can pursue treatment to cease active abuse, in which case they enter the
recovered compartment (R). Some proportion of these individuals are still susceptible
to opioid abuse and will thus re-enter the high-risk susceptible compartment.

Movement into and between abusing compartments occurs by different processes,
represented by either linear or nonlinear expressions in the model. Movement is linear
when it takes place absent the influence of other individuals. The linear movements in
our model are as follows:

(i) individuals entering the low-risk susceptible compartment via a recruitment rate
term (�) and exiting all compartments through nonoverdose death (μ);

(ii) progression to pharmaceutical opioid abuse from the low-risk susceptible com-
partment (εLR) or the high-risk susceptible compartment (kεLR with k > 1) as a
result of a prescription;

(iii) pharmaceutical opioid and heroin abusers seeking treatment (ηP and ηH, respec-
tively);

(iv) pharmaceutical opioid and heroin abusers exiting abuse compartments due to
overdose death (μP and μH, respectively);

(v) pharmaceutical opioid and heroin abusers ceasing drug abuse for reasons other
than death and treatment (σP and σH, respectively, which may differ as active
drug use fluctuates for many reasons beyond treatment and overdose mortality
(Cicero et al. 2014)); and

(vi) recovering individuals exiting treatment and re-entering the high-risk susceptible
compartment according to the treatment discharge rate (τ ).

Nonlinearmovements are assumedwhenmechanisms involve the influence of other
individuals. This is the social contagion aspect of our model, as drug abusers can
“transmit” opioid abuse to other individuals (Behrens et al. 2000). We assume that
only high-risk susceptibles are capable of nonlinear recruitment into the two abuse
compartments. That is, low-risk susceptibles do not initiate opioid abuse as a result
of interactions with drug abusers. The nonlinear modes of transmission are functions
of a general susceptible and infected population, as well as a parameter vector we
denote by θ . These functions and their roles are as follows: initiation of abuse as
a result of diverted pharmaceutical opioids, f1(SHR, AP, θ); recruitment directly
into the heroin abuse compartment, f2(SHR, AH, θ ); and progression from pharma-
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ceutical opioid to heroin abuse, f3(AP, AH, θ). In the case of a social contagion,
contact need not be physical and multiple contacts or infected individuals may be
required for transmission, thus the transmissibility of the contagion need not be lin-
early proportional to prevalence in the population. A variety of incidence rates that
take this into consideration were tested when fitting the model (see the next section
and Supplementary Material A for fitting details). The incidence rate producing the
best fit was fi (X ,Y , θ) = βi X

( Y
N

)qi . Here, individuals in Y infect those in X , N is
the total number of individuals in the population, qi > 0 represents the number of
infected individuals required for transmission to occur, and βi > 0 is a transmission
parameter. For a social contagion, it may not be the case that transmission is bilinear
(i.e., qi = 1). For example, a single heroin abuser may influence a disproportionate
number of susceptibles in the community. For qi > 1, transmission is slower than that
assuming standard incidence, as susceptible individuals require more contacts in order
to become infected. Employing the incidence rate above, the full system of ODEs to
model the opioid epidemic is given as follows:

ṠLR = � − (εLR + μ)SLR,

ṠHR = τ R + σPAP + σHAH − β1SHR

(
AP

N

)q1
− β2SHR

(
AH

N

)q2

− (kεLR + μ)SHR,

ȦP = εLRSLR + kεLRSHR + β1SHR

(
AP

N

)q1
− β3AP

(
AH

N

)q3

− (σP + ηP + μP + μ)AP,

ȦH = β2SHR

(
AH

N

)q2
+ β3AP

(
AH

N

)q3
− (σH + ηH + μH + μ)AH,

Ṙ = ηPAP + ηHAH − (τ + μ)R,

(1)

with initial conditions SLR(0) = SLR,0 ≥ 0, SHR(0) = SHR,0 ≥ 0, AP(0) = AP,0 ≥ 0,
AH(0) = AH,0 ≥ 0, R(0) = R0 ≥ 0 satisfying

SLR,0 + SHR,0 + AP,0 + AH,0 + R0 = N , (2)

where N is the total population, assumed to be constant by choosing � = μN +
μPAP + μHAH. Parameter descriptions are given in Table 1. Note that there is no
direct movement back into the pharmaceutical opioid abuse compartment after an
individual has progressed to abusing heroin. However, movement between the two
abuse compartments is still possible via intermediate transitions through the high-risk
susceptible compartment, e.g., an individual abuses pharmaceutical opioids, seeks
treatment, recovers with high-risk status, and progresses to heroin abuse. A schematic
of the model is shown in Fig. 1, with nonlinear transmission terms denoted by fi .
Under the assumptions listed above, standard arguments yield that (1) admits a unique
solution, local to the initial conditions, in the invariant physical domain
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Fig. 1 A schematic of the model in (1). Dashed lines indicate mortality rates

	 =
{
(SLR, SHR, AP, AH, R) ∈ R

5+ : SLR + SHR + AP + AH + R = N
}

. (3)

2.1 Fitting theModel to the Opioid Epidemic in Maine

We apply the framework presented in (1) to the opioid epidemic for the adult (18+)
population in Maine during the years 2012–2019. As stated above, we restrict consid-
eration of nonpharmaceutical opioids to heroin, due to data availability. For this case
study, we took a history of substance use disorder to be the predictor distinguishing
low- and high-risk susceptibles. This choice of predictor is based on its faculty in
determining an individual’s risk in abusing opioids, as shown in (Sehgal et al. 2012).
Primarily due to limited data, we assume that all individuals entering the system (i.e.,
that turn 18 years of age) are low risk. The initial condition for SHR is the estimated
proportion of Maine adults who had a history of dependence or abuse of illicit drugs
or alcohol during 2012, or around 8.5%, as recorded by the National Survey on Drug
Use and Health (NSDUH) (SAMHSA 2014a). Initial conditions for the abuse com-
partments AP and AH were calculated according to the mortality data obtained from
CDC WONDER (CDC 2020). This estimate was obtained by dividing the number of
overdoses to either opioid class in January 2012 by their respective overdose mortal-
ity rate. For example, if 20 individuals died of a pharmaceutical opioid overdose in
January 2012, then the initial condition used is AP,0 = 20/μP. The initial recovered
population was set to zero, R0 = 0, so that SLR,0 = N − SHR,0 − AP,0 − AH,0 − R0.

There are several parameter values drawn from the literature. These include the
treatment discharge rate, τ , the natural death rate, μ, the progression rate from phar-
maceutical opioid use to abuse, εLR, and the number of times more likely a high-risk
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individual is than a low-risk individual of progressing from pharmaceutical opioid
use to abuse, k. For the treatment discharge rate τ , we assume 90% of individuals
will relapse in their first year following recovery based on the findings of (Smyth
et al. 2010; Bailey et al. 2013) [(see also the discussion in (Battista et al. 2019)]. The
remaining 10% of abusers remain in R and are assumed to be in recovery, but are
not immune from further opioid abuse. The rate of movement from pharmaceutical
opioid use to abuse, εLR, is a product of two factors: (i) the probability of having an
opioid prescription and (ii) the rate at which an individual with an opioid prescrip-
tion develops an abuse disorder. Piper et al. (Piper et al. 2016) found that 21.9% of
Mainers possess an opioid prescription. Since this includes individuals younger than
18 years of age (and thus outside the scope of our model), the prescribed proportion
is assumed constant at 20% of the adult population. The authors of (Edlund et al.
2010) estimated k to be 2.87 for nonopioid substance use disorders, but this parameter
varies depending on the database used and could be much higher (see, e.g., (Edlund
et al. 2014)). In the same study, the authors found that individuals with an opioid sub-
stance use disorder were 5.55 times more likely than those without to initiate opioid
abuse/dependence (Edlund et al. 2010).We decided on the more conservative estimate
mentioned because nonopioid substance use disorders (including, but not limited to,
those involving alcohol and marijuana) constitute the majority of those substance use
disorders observed, according to NSDUH estimates.

Overdose rates for both abuser compartments were determined from the CDC
WONDER database mentioned above. Approximate annual abuser counts in Maine
were obtained from the State Estimates of Mental Health and Substance Use, reported
byNSDUH (SAMHSA2014a, b, 2015, 2017a, b, 2018, 2019). This database includes
estimates for the number of individuals abusing pharmaceutical opioids and heroin in
any given year. To determine the former, an estimate for the prevalence of individuals
with a pain reliever use disorder was used as a proxy. For the years in which this
prevalence was not provided in the report, values were inferred based on the assump-
tion that a certain proportion of the population nonmedically using prescription pain
relievers (as estimated by NSDUH) will develop a substance use disorder. To estimate
the annual number of individuals abusing heroin, the NSDUH prevalence estimate for
individuals using heroin in the past year was used. Finally, NSDUH prevalence data
were used in combination with CDCWONDER overdose data to estimate the average
monthly overdose rates, μH and μP.

Treatment parameters, ηP and ηH, were determined from annual treatment admis-
sion data, reported yearly in the Substance Use Trends inMaine State Epidemiological
Profile (DHHS 2015, 2016, 2017, 2018, 2019). When admitted to treatment, an indi-
vidual identifies a primary and secondary drug as a reason for seeking treatment. The
yearly report includes categories, such as heroin/morphine, based on the drug identi-
fied by admitted patients. These category amounts were tallied together in accordance
with the distinction of pharmaceutical opioids/heroin employed by CDC WONDER
and used for the calculation of either treatment rate. The treatment data used for model
calibration here includes primary and secondary admissions and is therefore vulnera-
ble to duplicate reporting. Tertiary reasons for admission are reported some years but
were not included to compensate for this overcounting. Treatment parameter values
were obtained by calculating the average treatment rates for the years in which data
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Table 1 Parameter descriptions, sources, and values for (1). POUD refers to pharmaceutical opioid use
disorder and HUD stands for heroin use disorder

Description [Source] Value

� Birth rate to keep the population constant [N/A] varies

εLR Rate an individual w/a prescription develops POUD
linearly [(Battista et al. 2019)]

0.000124

k Number of times more likely a high-risk individual
develops a POUD compared to a low-risk
individual [(Edlund et al. 2010)]

2.87

μ Age-adjusted death rate [(Xu et al. 2014; Kochanek
et al. 2014, 2017; Murphy et al. 2015, 2018; Xu
et al. 2017, 2020; Kochanek et al. 2020)]

0.001372

β1 Transmission rate SHR → AP [Fit] 63.94

β2 Transmission rate SHR → AH [Fit] 12.04

β3 Transmission rate AP → AH [Fit] 25.42

q1 No. of exposures required for SHR→ AP [Fit] 1.44

q2 No. of exposures required for SHR→ AH [Fit] 1.01

q3 No. of exposures required for AP → AH [Fit] 1.05

τ Relapse rate [(Battista et al. 2019)] 0.075

σP Linear rate of leaving AP compartment [Fit] 0.36

σH Linear rate of leaving AH compartment [Fit] 0.88

ηP Rate of entering treatment for POUD [(DHHS 2015,
2016, 2017, 2018, 2019)]

0.0227

ηH Rate of entering treatment for HUD [(DHHS 2015,
2016, 2017, 2018, 2019)]

0.0333

μP Overdose rate for POUD [(CDC 2022a)] 0.00253

μH Overdose rate for HUD [(CDC 2022a)] 0.000763

were available and converting these averages to monthly rates. The total population,
N , is taken to be the average Maine adult population during 2012–2019.

The remaining eight parameters (β1, β2, β3, q1, q2, q3, σP , σH), as well as the
choice of incidence rate functional form, fi (X ,Y , θ) = βi X

( Y
N

)qi , were fitted to
Maine data. Model calibration was done with monthly overdose death data from CDC
WONDER (CDC 2020) using overdose data recorded for the state of Maine from
2012–2019 for both pharmaceutical opioid overdoses (ICD-10 codes T40.2-T40.4)
and heroin overdoses (ICD-10 code T40.1); causes of death included those of any
intent except for suicide (ICD-10 codes X40-44, X85, and Y10-14). This data set,
containing 96×2 = 192 data points corresponding to pharmaceutical opioid overdoses
and heroin overdoses over a 96 month period (2012–2019), was then smoothed by
taking a rolling (nearest neighbor) average to reduce inherent noise: the raw data point
xi = x(ti ) at month ti is re-scaled as xi = (xi−1 + xi + xi+1)/3, i = 2, . . . , 95 (with
x1 = (x1 + x2)/2 and x96 = (x95 + x96)/2 for the boundary cases). Model fitting
was done with lsqcurvefit in MATLAB using the trust-region reflective algorithm
with a generalized least squares (GLS) scheme following the approach in (Banks et al.
2016a) using second-order differencing to calculate the pseudo-measurement errors
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Fig. 2 Solutions of the model in (1) with parameter values in Table 1

(Banks et al. 2017) (outlined in detail in Supplementary Material A, along with the
other incidence rates we considered).

A summary of parameter values and their respective sources are given in Table 1.
Initiationof heroin abuse fromeither the high-risk susceptible or pharmaceutical opioid
abuser compartments is well approximated by standard incidence, as q2, q3 ≈ 1. This
is not the case with pharmaceutical opioid abuse as a result of diversion, since q1 > 1.
This means that, compared to other mechanisms of abuse, fewer heroin abusers are
needed in order to have sustained transmission of heroin abuse in the community. The
model fit is plotted in Fig. 2 using the parameters from Table 1.

3 Model Analysis

We next analyze the opioid epidemic model in (1). As mentioned in Sect. 2, it follows
from standardODE theory that the opioid epidemicmodel in (1),with initial conditions
satisfying (2) admits a unique solution local to said initial conditions, invariant to the
physically meaningful domain (3). The model in (1) admits an abuse-free equilibrium
that is given by

(SLR, SHR, AP, AH, R) =
(

Nμ

εLR + μ
, 0, 0, 0, 0

)
,

under the restrictive assumption that εLR = 0 (i.e., the absence of opioid prescriptions
or the use of completely nonaddictive opioids), in linewith other works in the literature
(e.g., (Phillips et al. 2021; Battista et al. 2019)). In such a case, a standard stability
analysis applied to (1) fails because of the form of themodel (even if qi = 1 is assumed
for all i); hence, the basic reproduction number (Van den Driessche and Watmough
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2002; van den Driessche and Watmough 2008) cannot be calculated. Though we
emphasize again that this scenario is less interesting because of the restrictive (and
unrealistic) requirement that εLR = 0. Fromnumerical investigations, there also seems
to be an abuse endemic equilibrium where A∗

P > 0 and A∗
H = 0, though it is difficult

to obtain explicitly in closed-form. Because of the time horizon of interest in this
work and because the basic reproduction number (and stability analysis) is not a
viable avenue here, we proceed with an uncertainty analysis and forecast (Sect. 3.1),
sensitivity analysis (Sect. 3.2), and an investigation of control strategies to manage the
opioid epidemic (Sect. 3.3).

3.1 Parameter Uncertainty andModel Forecasts

In this part, we seek to quantify model uncertainty in our parameter estimates and
predict future trajectories of the epidemic in the years 2020–2025. Uncertainty in our
parameter estimates (i.e., those listed in Table 1) is measured by the coefficient of
variation (CV), following the work of (Sutton et al. 2008) and (Banks et al. 2016b).
(Full details of the uncertainty analysis are given in Supplementary Material A.) In
brief, a conventional GLS fitting of the eight parameters produced high correlations
between parameters. To help alleviate this issue, parameter subset selection was per-
formed in order to fix the least number of parameters at their nominal values and still
achieve the greatest reduction in parameter correlations. It is important to note that
fixing parameter values essentially changes themodel we are analyzing.We found that
fixing σP and σH produced the best results, and the GLS algorithm was re-executed on
the reduced parameter set to arrive at the new best-fit values, θ̂FIX. Even after param-
eter subset selection, parameter correlations remained. Unsurprisingly, these were the
qi and βi parameter pairs, owing to the functional form of the transmission terms in
(1). The associated standard errors (S.E.’s) and coefficients of variation, which char-
acterize estimate uncertainty, are given in Table 2. The latter coefficient is obtained
by dividing the S.E. by the parameter estimate, allowing us to compare the relative
uncertainty for each parameter—the larger the CV, the more uncertain the estimate.
From Table 2, we see that the estimate of β3 is the most uncertain. In fact, if we con-
sider the βi and qi parameters together according to the transmission expressions in
which they appear, one sees that the fitted parameters of the incidence rate controlling
recruitment into heroin abuse from pharmaceutical opioid abuse (β3 and q3) are the
most uncertain. Thus, within our modeling framework, mechanisms of heroin abuse
following pharmaceutical opioid abuse are least informed by monthly overdose death
data, relative to the other avenues of transmission in (1).

To determine parameter distributions, 500 iterations of a bootstrap algorithm were
performed, following themethods in (Banks et al. 2016b) (see SupplementaryMaterial
A for algorithm details). Briefly, sampling of the data is done with replacement and
synthetic noise is added. A new fit is then produced using the same GLS routine as
before, and the subsequent parameter values were stored. From the bootstrap results,
95% confidence intervals were calculated (see Table 2). The GLS best-fit parameter
values for the reduced parameter set described above, θ̂F I X , and the bootstrap estimate,
θBOOT (obtained by taking the mean of all parameter distributions), are also given in
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Table 2 Parameter estimates obtained via: GLS (̂θGLS ); GLS after fixing σP and σH (̂θ F I X ); and boot-
strapping (θ BOOT )

̂θGLS ̂θ F I X θ BOOT S.E. CV 95% C.I.

β1 63.94 64.122 64.133 1.632 0.025 (64.103, 64.140)

β2 12.04 12.050 12.045 0.145 0.012 (11.998, 12.050)

β3 25.42 25.440 25.440 3.175 0.125 (25.435, 25.496)

q1 1.44 1.444 1.444 0.004 0.003 (1.443, 1.444)

q2 1.01 1.011 1.011 0.002 0.002 (1.010, 1.011)

q3 1.05 1.048 1.048 0.028 0.027 (1.048, 1.050)

σP 0.36 0.36 (fix) 0.36 (fix) N/A N/A N/A

σH 0.88 0.88 (fix) 0.88 (fix) N/A N/A N/A

Respective standard errors (S.E.), coefficients of variation (CV, calculated with respect to ̂θFIX), and 95%
confidence intervals are also provided. Fixed parameters are marked by (fix)

Table 2. Note that the bootstrap algorithm was performed with σP and σH fixed as
well.

Forecasts of the model are calculated using ̂θGLS (i.e., values from Table 1), as
shown in Fig. 3 for the case of pharmaceutical opioid overdose deaths, alongside the
approximate 95% confidence intervals (i.e., two standard deviations). The forecasts
are compared to overdose data released for the year 2020 (the 12 black dots in Fig. 3);
the agreement between the 2020 data and our model is encouraging, but it should be
noted that theCOVID-19 pandemic has disrupted treatment facilities, complicated data
reporting, altered drug testing practices, and, in some cases, exacerbated the severity of
the opioid epidemic (Haley and Saitz 2020; Ochalek et al. 2020; Rabin 2021; Slavova
et al. 2020). Recalling that the total population is fixed, and noting that variations in
� are relatively minor over the time horizon of interest, the oscillations appearing
in Fig. 3 are due to individuals moving between the recovery/high-risk susceptible
compartments and active opioid abuse. (The onset of these oscillations can also be
seen in Fig. 2.)

As mentioned before, fixing certain parameters changes the model but, in doing so,
correlations between parameters can be reduced to allow for more accurate parameter
estimates. In practice, the rates at which individuals cease opioid abuse for reasons
other than treatment or overdose are much simpler to quantify than the (more impor-
tant) transmission parameters βi and qi . In this section we have demonstrated how
this can be leveraged to arrive at parameter estimates with less uncertainty: namely,
efforts should be undertaken to estimate σP and σH from real-world data. That being
the case, the analysis in the remainder of this paper will concern the original eight
fitted parameters, θ̂GLS.
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Fig. 3 Monthly overdose deaths
due to pharmaceutical opioids
from the model in (1) (solid blue
curve), with 96 data points (red
dots) and 12 forecast points
(black dots) overlaid, and 2σ
confidence intervals (shaded
area). The black dotted vertical
line delineates the beginning of
the forecast period. (CDC
WONDER data policy is to
suppress data points of 9 or
fewer, indicated by the red
dashed line.) (Color figure
online)

3.2 Sensitivity Analysis

Next we use sensitivity analysis for the purpose of identifying key trends and
mechanisms in (1). The relative local sensitivity of the ith state variable xi (here,
x = (SLR, SHR, AP, AH, R)) with respect to the jth parameter θ j is given by

Sxiθ j
(t) = ∂xi

∂θ j
(t; θ0)

θ0, j

xi (t; θ0)
, (4)

where θ0, j is the baseline value of the jth parameter. This function is calculated for each
state variable and parameter combination. To quantify overall relative sensitivities for
means of comparison, we calculate the following indices:

∫
|∂AP| = 1

96

∫ 96

0
|SAP

θ j
(t)|dt,

∫
|∂AH| = 1

96

∫ 96

0
|SAH

θ j
(t)|dt,

∫
|∂SHR| = 1

96

∫ 96

0
|SSHRθ j

(t)|dt,
∫

|∂R| = 1

96

∫ 96

0
|SR

θ j
(t)|dt .

(5)

These indices are, respectively, the average absolute relative sensitivity of the phar-
maceutical opioid abuser population, the heroin abuser population, the high-risk
susceptible population, and the recovered population to each parameter over the 96-
month period 2012–2019.

The calculated indices for each parameter are given inTable 3,which can be grouped
together based on their effect on the total number of abusers. These results show that
the most influential parameters are the exponents q1, q2, followed by q3 and the
transmission parameters β1 and β2, and, interestingly, the linear rates of movement
σP and σH. The exponents q1 and q2 control the number of exposures needed for a
susceptible individual to initiate pharmaceutical opioid and heroin abuse, respectively.
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Table 3 Parameters and their respective sensitivity metrics for the model in (1) for the time period 2012–
2019

∫ |∂AP| + |∂AH| ∫ |∂AP| ∫ |∂AH| ∫ |∂SHR| ∫ |∂R|
q1 (–)11,284.38 (–)7806.15 (–)3478.54 (+)1848.23 (–)4321.15

q2 (+)9472.81 (+)6567.50 (+)2905.42 (–)1551.25 (+)3552.71

β2 (–)1402.50 (–)973.40 (–)429.08 (+)229.62 (–)523.72

σH (+)1356.46 (+)942.34 (+)414.15 (–)222.03 (+)504.90

β1 (+)1313.65 (+)908.76 (+)404.90 (–)215.15 (+)502.51

σP (–)1263.02 (–)873.68 (–)389.32 (+)206.85 (–)483.78

q3 (+)1141.04 (+)794.96 (+)346.07 (–)186.74 (+)422.33

εLR (+)196.90 (+)135.68 (+)61.21 (–)31.16 (+)76.28

β3 (–)169.92 (–)118.60 (–)51.31 (+)27.79 (–)62.33

ηP (–)78.33 (–)54.03 (–)24.30 (+)12.80 (–)29.89

ηH (+)53.20 (+)37.08 (+)16.11 (–)8.72 (+)20.04

k (+)41.83 (+)28.94 (+)12.90 (–)6.85 (+)16.07

μP (–)8.42 (–)5.77 (–)2.65 (+)1.37 (–)3.29

τ (–)2.46 (–)1.84 (–)0.62 (+)0.41 (–)1.23

μH (+)1.28 (+)0.90 (+)0.38 (–)0.21 (+)0.46

The plus or minus signs indicate whether the relationship is directly or inversely proportional, respectively.
Parameters are ordered by influence, determined by

∫ |∂AP| + |∂AH|

For example, in the incidence rate given by β1SHR(AP/N)q1 , a value of q1 = 1.44
indicates that between one and two abusers in AP are required to recruit a high-risk
susceptible individual. In this case, transmission is slower than would be the case if
we had assumed mass-action incidence (i.e., q1 = 1). Either transmission parameter
draws from the high-risk susceptible compartment, or those individuals with a history
of substance use disorder. Slight changes to these parameters can significantly impact
the size of the epidemic, especially in later years. This final point is emphasized by the
plots in Figs. 4a, b, which show the relative rate of change of either abuser compartment
with respect to q1 and q2, respectively, versus time. In the case of q1, the negative
relative sensitivity depicted in Fig. 4a indicates that any perturbation to q1 produces an
opposite change to either opioid abuser compartment. That is, increasing q1 decreases
the number of individuals in AP and AH over time. The opposite phenomenon is
observed for the parameter q2, as shown in Fig. 4b; increasing or decreasing q2 will
produce a proportional change in the number of opioid abusers over time. These facts
are important when considering control strategies, discussed in the next section.

The sensitivity indices in Table 3 indicate that nonlinear recruitment from the high-
risk susceptible compartment into heroin abuse (β2) significantly affects the number
of abusers in either opioid compartment, more so than similar transmission param-
eters governing alternative methods of movement between compartments. Initiation
of heroin abuse from the high-risk susceptible compartment circumvents pharmaceu-
tical opioid abuse completely, and so it is interesting that AP is most sensitive to
this mechanism of nonlinear transmission. This is a consequence of how we model
social contagion: the term AH/N grows at the expense of AP/N asmore heroin abusers
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Fig. 4 The relative sensitivity indices SAPθ j
and S

AH
θ j

over the period 2012–2019 for θ j equal to: a q1, b q2,

c β2, d β1, e σP, and f σH

encourages additionalmovement into AH.This result is exploredmore fully in Sect. 3.3
when control strategies are considered. The relative sensitivity of either abuser com-
partment to β2 and β1 is plotted in Figs. 4c, d. Local changes to β2 produce an inverse
response in either abuser population, since reduced heroin abuse recruitment from the
high-risk susceptible compartment is compensated by a larger pharmaceutical opioid
abuser population. In contrast, local changes to β1 produce proportional changes to
either abuser population. This is important, as limiting recruitment into pharmaceu-
tical opioid abuse (specifically by limiting diversion) achieves the desired effect of
reducing abuser populations, and is not compensated by alternative drug abuse mech-
anisms. However, model responses are much more sensitive to changes in the former
scenario. This result is explored in Sect. 3.3.
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It should be noted that the most highly sensitive parameters are all related to the
recruitment of individuals from the high-risk susceptible compartment in (1).Our high-
risk group—defined as those with a history of substance use disorder—contributes
significantly to the total number of opioid abusers, underlining the potential of control
strategies that target groups most at risk to abuse. More broadly, all of the incidence
rate parameters (bothβi and qi parameters) are highly influential in ourmodel. The fact
that these rates account for addiction via illicit routes, such as pharmaceutical opioid
diversion and heroin abuse, illustrates the importance of controlling these mechanisms
of transmission over, say, treatment (represented by the parameters ηP and ηH, which
have comparatively little effect on abuser numbers). Our finding that prevention is
more effective than treatment echoes that of similar modeling studies (Sharareh et al.
2019).

Perhaps most curious is the sensitivity of the state variables to the parameter σH,
representing linear movement out of heroin abuse and into the high-risk susceptible
compartment. Recall that this parameter is included to capture cessation of heroin
abuse for all reasons excluding treatment and death. The fact it features prominently
in Table 3 (sometimes even more so than illicit routes of transmission) highlights
the significance of these alternative means of stopping abuse. Various interpretations
are possible. For example, individuals may cease heroin abuse of their own accord or
because of changes in drug availability. Regarding the latter, the nonlinearmechanisms
we have relied on do not consider availability or cost as factors in abuse, which are
likely important (Cicero et al. 2014). It is known that the availability of either drug is
a factor in observed abuse patterns (Cicero et al. 2014). A third possible interpretation
has to do with relapse. As our model is currently constructed, individuals that cease
heroin abuse for reasons other than death or treatment need not do so permanently.
Therefore, this might suggest that repeated abuse of either opioid class contributes
crucially to epidemic size over time. The large sensitivity indices for σP in Table
3 can be explained by similar reasoning. Relative sensitivity indices for σP and σH
are shown in Figs. 3e, f. Perturbations to σH produce proportional changes in both
abuser compartment, as more individuals are funneled into pharmaceutical opioid
abuse after ceasing their heroin abuse. Importantly, a positive perturbation to σP will
lead to a decrease in drug abuser populations as this directly reduces the number of
pharmaceutical opioid abusers at any point in time.

Finally, from the plots given in Fig. 4, local extrema in relative sensitivities appear
to align with the local extrema in overdose deaths (and thus the total number of
abusers) shown in Fig. 3. This implies that changes to parameter values (such as by
the implementation of control strategies) are most influential during peaks in abuser
numbers; in contrast, changes to parameter values are less effective during years in
which the number of abusers is small.

We also note the parameters identified to be comparatively noninfluential, locally
speaking. These include the treatment parameters (τ , ηP, and ηH), the rate at which
individuals with a prescription naturally develop addiction (εLR), and the overdose
mortality parameters (μP and μH). We found that treatment is less effective than pre-
ventive measures at reducing the overall number of opioid abusers. The insensitivity
of abuser numbers to treatment-seeking rates, ηP and ηH, might have to do with our
choice of τ , or the proportion of abusers that return to the high-risk compartment and
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are thus susceptible to opioid abuse following treatment. We assume that 90% of indi-
viduals will relapse after 1 year in treatment (Smyth et al. 2010; Bailey et al. 2013); the
inefficiency of treatment in ensuring permanent recovery means that treatment overall
is less effective than preventing (illicit) drug abuse in the first place. The parameter
εLR provides for an interesting comparison between mechanisms of initiating pharma-
ceutical opioid abuse. The sensitivity indices for εLR in Table 3 suggest that, although
developing a pharmaceutical opioid abuse disorder simply from having a prescription
is significant, it is overall less important than illicit sources of pharmaceutical opioid
abuse. Since the parameter εLR includes the proportion of Mainers with an opioid
prescription, this additionally means that reducing opioid prescriptions is relatively
ineffective. Furthermore, although we do not consider the number of overdoses in
our local sensitivity analysis, the results in Table 3 indicate that adjusting the over-
dose mortality parameters (such as might be the case if naloxone or other overdose
reversing treatments are made more available) have very little effect on overall abuser
numbers. The benefits and drawbacks of these programs have been debated in the
literature (Doleac and Mukherjee 2018; Jones et al. 2017; McClellan et al. 2018), but
our findings suggest that any such changes are negligible compared to other methods
of control. This question is raised again in the following section.

3.3 Control Strategies: Managing an Opioid Epidemic

To help understand what these results mean in practice, we model a variety of control
strategies over a 5-year period (2020–2025). The initial conditions for 2020 are those
produced using the parameter values in Table 1, ̂θGLS , at the end of the fitting period
(December 2019). The performance of each case scenario is measured using four
metrics:

(i) average number of pharmaceutical opioid (PO) abusers;
(ii) average number of heroin abusers;
(iii) total number of PO overdoses; and
(iv) total number of heroin overdoses.

Each control strategy is modeled by changing the relevant baseline parameter values
in Table 1 by a certain percentage. For example, to model the effects of wider nalox-
one distribution on the quantities of interest above, we reduce the overdose mortality
rates (μH and μP) by an appropriate percentage. The percentage used to model a
control strategy depends on the sensitivity of the total abuser population to the param-
eter of interest, i.e., the fourth column in Table 3. Highly sensitive parameters are
perturbed by 1%, moderately sensitive parameters are perturbed by 5%, and least sen-
sitive parameters are perturbed by 10%. The direction of change in each parameter
perturbation is based on what would be reasonably expected to produce a positive
result, or a decrease in the number of abusers/overdoses. For example, mortality rates
are decreasedwhile treatment rates are increased. Although these percentages are arbi-
trary, our hope with these experiments is to illustrate how common control strategies
compare to one another in a controlled and informative manner for the management
of an opioid epidemic. Control strategy results are shown in Table 4.
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Table 4 Impact of control strategies relative to nominal parameters (nonintervention) for the years 2020–
2025. The percent change for each control method is chosen based on the relative sensitivities listed in
Table 3

Control
strategy (%)

Avg. PO
abusers (%)

Avg. heroin
abusers (%)

No. PO
overdoses
(%)

No. heroin
overdoses
(%)

q1 +1 −58 −37 −58 −37

q2 +1 +27 −4 +27 −4

β2 −5 +27 −4 +27 −4

σH +5 +41 −8 +41 −8

β1 −5 −20 −14 −20 −14

σP +5 −12 −9 −12 −9

q3 +5 +126 −51 +127 −51

εLR −10 +2 −2 +2 −2

β3 −10 +46 −5 +46 −5

ηP +10 +1 −2 +1 −2

ηH +10 +5 −1 +5 −1

k −10 0 0 0 0

μP & μH −10 −1 +1 −11 −9

τ −10 +4 −2 +4 −2

We found that the only control strategies producing positive results for the full
5-year period target parameters governing certain pathways of pharmaceutical opi-
oid abuse. Specifically, positive results were obtained by reducing illicit (nonlinear)
recruitment into AP (reducing β1 and/or increasing q1), or by increasing the linear
quit rate, σP. Recall that illicit recruitment into pharmaceutical opioid abuse occurs as
a result of opioid diversion. Reducing opioid diversion can be accomplished in many
ways, such as by the creation or expansion of prescription drug monitoring programs
(Rhodes et al. 2019; Surratt et al. 2013), educating patients on proper disposal of
prescribed medications (Johnson et al. 2011; Rose et al. 2016; Spoth et al. 2013), and
drug drop-off/take-back programs (Stewart et al. 2015), to name but a few. An example
of the latter has already been successful in Maine (Stewart et al. 2015). Recommen-
dations for reducing diversion are widely available (see, e.g., (Volkow and McLellan
2011; Compton et al. 2015)), and can be tailored to a variety of circumstances. Various
studies have found the primary sources of diversion are those with existing prescrip-
tions, typically friends and family (Cicero et al. 2011; Daniulaityte et al. 2014; Hulme
et al. 2018) and pain patients (Inciardi et al. 2009, 2007), including the elderly. These
findings and those of our model suggest that patient education on opioid dependence
and proper disposal is likely an effective strategy of controlling opioid diversion and
abuse in general. Similar results can be obtained by limiting transmission to high-risk
individuals. This nonlinear recruitment, as it appears in our model, can be reduced
by intervention programs that aim to make individuals more reluctant to initiate phar-
maceutical opioid abuse. Research has shown the effectiveness of these strategies in
reducing the likelihood of future misuse (Spoth et al. 2013) and potentially reducing
overdose deaths (Johnson et al. 2011).
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Fig. 5 Pharmaceutical opioid and heroin abuser solutions for the model in (1) using nominal (blue) and
control strategy (dashed red) parameters; values for the latter are taken from Table 4. Each row of figures
compares abuser trajectories for a different parameter, these are: a, b q1, c, d β2, and e, f q3 (Color figure
online)

The success of control strategies targeting pharmaceutical opioid diversion can
be explained as follows. In our model, heroin abuse relies primarily on nonlinear
recruitment, i.e., recruitment involving the faculty of other opioid abusers. The pool
of individuals thatmay initiate heroin abuse is comprised of high-risk individuals (indi-
viduals with a history of substance use disorder) and pharmaceutical opioid abusers,
where the latter appears to be the majority in practice (Cicero et al. 2014; Mars et al.
2014). Preventing pharmaceutical opioid abuse therefore indirectly mitigates heroin
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abuse levels. This was the case when the parameter q1 was increased, or the trans-
mission parameter controlling recruitment via diversion of high-risk susceptibles into
pharmaceutical opioid abuse. Increasing this parameter by 1% produced significant
decreases in the number of abusers as well as overall overdoses. Plots comparing the
nominal to control strategy scenarios are shown in Figs. 5a, b. Abuser populations no
longer oscillate but monotonically decrease over the course of the five year forecast
period.

Focusing solely on reducing heroin abuse only tackles the downstream escalation of
opioid abuse and does not address the component played by pharmaceutical opioids,
possibly worsening long-term outcomes. This occurred when reducing the transmis-
sion parameter β2, which would reduce movement of high-risk susceptibles directly
into the heroin abuse compartment. As can be seen in Figs. 5c, d, while the heroin
abuser population at first declines, all progress is immediately lost as individuals
instead move to pharmaceutical opioid abuse. Other model parameters demonstrated
the same trend of producing short-term (possibly one-sided) benefits but ultimately
yielding worse outcomes in the long term. We suspect this is a consequence of how
we model social contagion. For example, increasing treatment efficacy by reducing
the relapse rate (i.e., reducing τ ) produces positive results in the first year. Increasing
treatment efficacy reduces the number of heroin abusers dramatically, as the treatment
rate is higher for heroin abusers than pharmaceutical opioid abusers (ηH > ηP). How-
ever, as the number of heroin abusers falls after the first year, high-risk individuals will
progress to abusing pharmaceutical opioids rather than heroin, given that the former
is the more “popular” option. The same phenomenon occurred when the proportion of
Mainers with prescriptions was reduced (i.e., reducing εLR). Closer analysis reveals
the increase is due to individuals initiating pharmaceutical opioid abuse via diverted
(illicit) means. Reducing the rate of illicit recruitment into heroin abuse from AP (i.e.,
reducing β3 or increasing q3) actually increased the number of individuals abusing
pharmaceutical opioids in the long term. Once again, opioid diversion more than com-
pensated for the decrease in heroin abuse. Thus, it is clear that reduction in certain
avenues of pharmaceutical opioid or heroin abuse is compensated by an increase in
illicit abuse of diverted pharmaceutical opioids. In some instances this is particularly
extreme, as can be seen in the example of q3, in which a small perturbation pro-
duced a dramatic change in the number of pharmaceutical opioid abusers. Figure5e, f
shows how this happens: increasing the number of heroin abusers required to recruit
pharmaceutical opioid abusers causes the rapid collapse of AH, but in return the phar-
maceutical opioid abuser population swells to more than double those expected when
using nominal parameter values.

Such counter-intuitive results are far from baseless. For example, various studies
have found connections between increases in regulation of prescription opioids and
increases in illicit opioid use (Coffin et al. 2020; Fischer et al. 2020). The authors
in (Coffin et al. 2020) observed that discontinuing opioid prescriptions resulted in
individuals seeking illicit outlets for their drug abuse in the form of (diverted) nonpre-
scribed opioids and heroin. Modeling studies have also revealed this to be the case for
certain control strategies (Sharareh et al. 2019). The question then becomes how opi-
oid abuse can be controlled given this complicated balance. Our findings suggest that
controlling (illicit) pharmaceutical opioid abuse is the most effective strategy. Finally,
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it is worth remarking that reducing overdose rates had an insignificant impact on the
average monthly number of abusers for either opioid class. The fact that this has been
observed in practice (Jones et al. 2017; McClellan et al. 2018) is encouraging.

4 Conclusions

The opioid epidemic remains a debilitating public health crisis, claiming the lives of
tens of thousands of Americans each year and growing (CDC 2022b). To assist in
informing policy going forward, we introduced a novel mathematical framework cali-
brated using publicly availablemortality data fromCDCWONDER.We demonstrated
its usefulness for the state of Maine for modeling pharmaceutical opioid and heroin
abuser populations. Ourmodel includes several features we believe to be critical in any
mathematical analysis of the opioid epidemic, including general transmission terms
to better contend with social contagions, susceptible compartments differentiated by
risk of opioid abuse, and separating opioid abuser compartments by drug type to more
closely study interactions between them. The rise and fall of drug deaths, as fore-
casted by our model (see Fig. 3), mirrors national trends (Sorg 2022) and is predicted
to continue into future years. In our model, these oscillations are caused by individuals
moving between different abuse compartments and recovery.

Future work should consider other important illicit opioids, especially fentanyl,
as well as pharmaceutical opioids. Fentanyl has become more common nationally in
recent years (Park et al. 2021) and in Maine has already eclipsed the contributions of
other illicit opioids such as heroin in terms of annual overdoses (Sorg 2019, 2020,
2021, 2022). More complicated models could apply the framework here to a larger
nonpharmaceutical class. Progress in this direction has already been made (Phillips
et al. 2021), but data on fentanyl abuse are in desperate need. By assumption, individ-
uals must progress through pharmaceutical opioid abuse in our model before initiating
heroin abuse—as is presently observed amajority of the time (Cicero et al. 2014; Jones
et al. 2015; Mars et al. 2014). However, we do not consider drug availability or cost
as factors affecting drug patterns. These are likely important considerations (Cicero
et al. 2014). In practice, active abusers that typically rely on pharmaceutical opioids
switch to heroin if the former becomes harder to obtain. Note that while this has been
observed in practice (Dart et al. 2015; Cicero et al. 2012), the more general trends are
debated (Compton et al. 2016).

While isolating drug types in a compartment model simplifies its structure, a perti-
nent question is comorbidity, i.e., abusers who abuse multiple drug types. Comorbid
drug disorders are important for individuals with an opioid use disorder (Cicero et al.
2020) and drug death reports for the state of Maine show that comorbid abuse of both
pharmaceutical and nonpharmaceutical opioids in overdose victims is no isolated
phenomenon (Sorg 2017, 2018, 2019). The addition of a comorbid compartment,
however, begs the question of how movement occurs between the different abuser
states. These transitions are not well-studied, and we resolved on avoiding comorbid-
ity in favor of the disjoint compartmentalization in ourmodel. It would be enlightening
to study these transitions more closely and collect data of comorbid substance abuse
for future analysis. In keeping with the topic of more data, movement between sus-
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ceptible risk groups is another useful consideration. As a consequence of assuming
individuals enter the model population as low-risk susceptible (i.e., that they do not
have a history of substance use disorder), individuals may only re-enter the high-
risk susceptible compartment if they have a history of opioid abuse. Accounting for
these details requires data concerning drug abuse patterns at a state level. Interactions
between susceptible compartments also depend on the predictor chosen to discrimi-
nate individuals in terms of their opioid abuse risk. We chose a history of substance
use disorder given data availability and research indicating this as a strong predictor
(Sehgal et al. 2012). The predictor used will likely depend on the US state, but wewant
to emphasize that differences between opioid abuse risk exist and should be included
in mathematical models of the opioid epidemic moving forward. Finally, we showed
that if data can be obtained concerning the rates that abusers cease drug use for reasons
other than death or seeking treatment, the accuracy of (important) parameter estimates
can be improved markedly.

The major findings from our analysis are summarized as follows:

(i) According to our model forecast, the trend for the pharmaceutical opioid abuser
population is to grow with oscillations; the appearance of oscillations is due to
individuals fluctuating between states of active opioid abuse (residing in either
abuse compartment) and inactive opioid abuse (residing in recovery or the high-
risk susceptible compartment). In practice, these are likely a result of legislation
and changing drug availability.

(ii) Illicit opioid abuse transmission, specifically pharmaceutical opioid diversion, is
the most important target for epidemic control moving forward. The extent that
pharmaceutical opioid abuse is due to diverted opioids is substantiated by Maine
drug death reports, which found that a majority of individuals that overdosed on
pharmaceutical opioids did so with drugs they did not have a current prescription
for (Sorg 2020, 2021). Parameter fitting results further suggested that heroin abuse
is more “infectious” than pharmaceutical opioid abuse.

(iii) Maxima in overdose deaths (and thus total number of abusers) align with maxima
in relevant parametric sensitivities of the model. Hence, targeted control strategies
should be undertaken during overdose death peaks for maximum effect.

(iv) As mentioned previously, controlling pharmaceutical opioid abuse indirectly mit-
igates heroin abuse given the evidence suggesting most individuals abusing heroin
began with abusing pharmaceutical opioids (Cicero et al. 2014; Jones et al. 2015;
Mars et al. 2014). We have suggested courses of action based both on our findings
and elsewhere, including but not limited to expanding prescription drugmonitoring
programs, prescribed patient education, and drug drop-off programs.

(v) Our analysis also suggests that linear rates of abuse, such as via natural pathways
resulting from opioid prescriptions, are much less influential than strategies tar-
geting illicit transmission. Increasing treatment rates and efficacy were also found
to be less effective. Reducing overdose rates produced insignificant changes to the
average monthly number of opioid abusers, lending support to existing research
(Jones et al. 2017; McClellan et al. 2018) and demonstrating the promise of nalox-
one in reducing overdose deaths without ill effects.
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(vi) Furthermore, we found that certain control strategies have the possibility to worsen
opioid abuse in the long term. This is a disputed matter in the literature, and
evidence remains mixed (Coffin et al. 2020; Dowell et al. 2016; Fischer et al. 2020;
Lee et al. 2021; Rhodes et al. 2019). More complicated relationships than those we
have included are likely at play (especially concerning other illicit opioids, such
as fentanyl), and studying these are an important next step to better understanding
the efficacy of policies confronting the opioid epidemic.

All else being equal, our analysis suggests that controlling diverted pharmaceutical
opioids is more effective than alternative strategies, such as controlling heroin abuse or
improving access to treatment, at reducing the number of abusers and the total number
of overdoses.
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