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Abstract
Fractional calculus has recently been applied to themathematical modelling of tumour
growth, but its use introduces complexities that may not be warranted. Mathematical
modelling with differential equations is a standard approach to study and predict
treatment outcomes for population-level and patient-specific responses. Here, we use
patient data of radiation-treated tumours to discuss the benefits and limitations of
introducing fractional derivatives into three standard models of tumour growth. The
fractional derivative introduces a history-dependence into the growth function, which
requires a continuous death-rate term for radiation treatment. This newly proposed
radiation-induced death-rate term improves computational efficiency in both ordinary
and fractional derivative models. This computational speed-up will benefit common
simulation tasks such as model parameterization and the construction and running of
virtual clinical trials.

Keywords Mathematical oncology · Modelling & simulation · Cancer radiotherapy ·
Fractional derivatives · Differential equations

1 Introduction

Mathematical oncology aims to use mathematical and computational techniques to
better understand cancer growth andprogression and to better treat the disease.With the
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increased prevalence ofmathematical and computationalmodelling in oncology, a shift
has started from standard treatment protocols applied to everyone tomore personalized
treatment protocols developed for the patient (Baldock et al. 2013; Poleszczuk et al.
2018).

The desire to more accurately model patient response can lead to either more com-
plex mathematical models, such as those employing fractional derivatives (Camargo
et al. 2014; Arfan et al. 2021), or more general models with patient-specific parame-
terizations (Poleszczuk et al. 2018; Powathil et al. 2015; Rockne et al. 2010). Indeed,
the need for patient-specific treatment plans is driven by the vastly different outcomes
observed in clinical practice due to, among other factors, patient heterogeneity. Vir-
tual clinical trials attempt to address this heterogeneity but can be computationally
intensive.

It has been proven experimentally that cells behave as viscoelastic materials, for
instance (Kasza et al. 2007). Furthermore, the viscoelastic response of a cell depends
on its biological state (Nguyen et al. 2020). Thus, it is reasonable to assume that
the cell dynamics due to biological processes correlates to its viscoelastic behaviour.
The Caputo fractional derivative introduced in Caputo (1967) has been successfully
used in constitutive laws of viscoelasticity for a long time, which were validated
experimentally even in biological materials (Meral et al. 2010).

Riemann, Liouville, Cauchy, and Abel proposed various definitions for a fractional
derivative with power-law kernel. Caputo modified the definition to incorporate an
initial condition, making it appropriate for many real-world medical applications,
such as models of hydrocephalus (Wilkie et al. 2011) and COVID-19 (Tuan et al.
2020). The Caputo definition is the most commonly applied definition in tumour
growth models (Farayola et al. 2021). A new definition was proposed by Caputo and
Fabrizio to use a smooth exponential kernel (Caputo and Fabrizio 2015) and remove
the singularity. This definition is claimed to better describe material heterogeneities
and fluctuations on different scales. Atangana-Baleanu later proposed non-local and
non-singular kernel definitions based on the Caputo or Riemann–Liouville approach,
using the Mittag–Leffler function (Atangana and Baleanu 2016). However, it appears
that all these non-singular kernel definitions do not have convolution representations,
they require restrictive assumptions on the initial condition, and their corresponding
modified forms simplify to representations involving classical and Caputo derivatives
(Diethelm et al. 2020). Consequently, in this work, the more commonly used Caputo
fractional derivative will be used.

Fractional derivatives have been applied successfully to many different applica-
tions where the material properties exhibit heterogeneities and multiscale fluctuations
with memory effects (Ionescu et al. 2017), including cancer modelling. A fractional
Gompertz model was discussed in Bolton et al. (2015), wherein they showed a slight
improvement in fit to data over the standard model. In Valentim et al. (2020), several
standard tumour growth models were compared in both ordinary and fractional dif-
ferential equation forms. They showed that the fractional order may be advantageous
as it significantly affects the predicted growth dynamics. Arik and Araz presented
a piecewise model for cancer radiotherapy wherein they used an ordinary derivative
model in the pre-treatment phase, a stochastic model in the treatment phase, and a frac-
tional model in the post-treatment phase (Arık and İğret Araz 2022). In Solís-Pérez
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et al. (2019), both Caputo and Caputo–Fabrizio definitions of the fractional deriva-
tive were applied to a breast cancer model. They claim the memory effect was more
prolonged in the Caputo–Fabrizio model. And in Morales-Delgado et al. (2019), the
Caputo–Fabrizio and Atangana–Baleanu definitions were used in a model of cancer
chemotherapy, wherein the time history captured new dynamics of the chemother-
apy treatment. Additionally, optimal control has been explored in fractional cancer
treatment models (Akman Yıldız et al. 2018; Sweilam et al. 2020; Baleanu et al.
2019).

Perhaps themost significant use of tumour growth and treatmentmathematicalmod-
els is the suggestion and testing of new treatment strategies. Mathematical modelling
in the field of oncology allows for inexpensive, risk-free exploration to be done where
experimental testing is not possible or carries significant costs. It should be noted that
in a clinical setting experimental testing of many treatment schedules is neither feasi-
ble nor ethical, and tumour measurement data are limited at best. The challenge then
is to develop models, which are complex enough to adequately describe the tumour
growth, but simple enough to give insight that can be used clinically for predictive pur-
poses. To this end, models should be calibrated and validated on separate datasets and
then evaluated for predictive power before being used to explore alternatives (Brady
and Enderling 2019). Limited clinical data make determining the numerous model
parameters of highly complex models impossible, and so the aim must be to minimize
the number of model parameters in order to avoid model over-fitting and uncertainty.

To this end, we use clinical data of 19 head and neck cancer patients (Caudell
et al. 2021) to compare 6 mathematical models: three standard ordinary differen-
tial equation-based models and the three related fractional differential equation-based
models. We fit each model to each patient and explore the resulting parameter land-
scape.We also quantify the goodness of fit of these 6models using several information
criterion in order to determine the best model for the clinical data.

In this work, we use the Caputo fractional derivative, which, for uniqueness of solu-
tions, requires a continuous growth expression (Diethelm et al. 2002). This motivated
the development of a continuous death-rate term to describe the effects of radiation
treatment. The new radiation effect model is compared to both a discontinuous expres-
sion, and the standard impulsive model (Alvord et al. 2008; Enderling et al. 2010)
which requires the stopping and starting of the numeric integration at each treatment
time. In addition to being a more biological representation of radiation treatment
effects, we found that the new death-rate model provided a considerable increase in
computation speed (about twice as fast), which will provide significant benefit to large
computational tasks such as model parameterizations and virtual clinical trials.

2 Model Development

We consider three standard models of tumour growth: exponential growth (1), logistic
growth (2), and exponential-linear growth (3):

dv

dt
= av (1)
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dv

dt
= av

(
1 − v

K

)
(2)

dv

dt
= λ0v

(
1 +

(
λ0

λ1
v

)ψ
)− 1

ψ

(3)

In all equations, v(t) is the tumour volume in cm3, and we assume that time has
been non-dimensionalized using a characteristic time scale of 1 day. In Eq. (1), a
is the (dimensionless) exponential growth rate. In Eq. (2), a is the (dimensionless)
intrinsic growth rate and K is the carrying capacity in cm3. And in Eq. (3), λ0 is the
(dimensionless) exponential growth rate, λ1 is the linear growth rate (with dimensions
cm3), and ψ is a transition factor taken to be ψ = 20 to ensure a sufficiently smooth
transition between the exponential and linear growth phases.

2.1 A Continuous Radiation Death Rate

To incorporate the effect of radiation treatment, we use the standard linear-quadratic
(LQ) model (McMahon 2019), which predicts that following a dose of d Gy, the
surviving fraction of a population is given by SF = exp(−αd − βd2), where α

(Gy-1) and β (Gy-2) describe the tissue radio-sensitivities. Typically, in mathematical
models, radiation is assumed to cause an instantaneous cell kill equal to the proportion
predicted by the LQ model, v(1 − SF). This amount of cell death is instantaneously
removed from the simulated tumour (Prokopiou et al. 2015; Holdsworth et al. 2012)
by stopping the numerical integration at treatment time τi and restarting it again
with an updated tumour volume of v(τi )SF . This method of stopping and starting
the numerical integration should not be used with fractional derivatives because they
require continuity to guarantee existence and uniqueness of solutions (Diethelm et al.
2002). Further, the fractional differential operator incorporates a history-dependence
into the growth dynamics, which would be lost each time the numeric integration
is stopped. To avoid these issues, we propose a continuous radiation death-rate term
instead of the standard instantaneous death impulse train to model radiation treatment.

We proceed as follows. For each dose fraction d delivered over (dimensionless)
time window tw, we propose that the death rate can be described as:

death rate = v (1 − SF)
1

tw
= v

(
1 − e−αd−βd2

) 1

tw
.

This death rate is in effect for the treatment window length, tw, starting at treatment
time τi , otherwise it is zero as there is no death assumed between radiation treatments.
We can create a train of all treatments in the therapy protocol by summing over all
treatment days τi ∈ T and using a continuous approximation to the Heaviside function
to switch the treatment on and off while maintaining continuity of our death-rate
function:

death rate =
∑
T

v(t)
(
1 − e−αd−βd2

) Ĥ(t − τi ) − Ĥ(t − (τi + tw))

tw
.
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where Ĥ(t) is a continuous approximation of the Heaviside function defined in terms
of hyperbolic tangents (Bylsma 2012):

Ĥ(t) = 1

2

(
1 + tanh

( t

ε

))
,

with 0 < ε � 1 to capture the steep jump of the Heaviside function. Here, we use
ε = 10−5.

Adding this new death-rate term into our tumour growth equations gives three ODE
models for tumour growth with radiation therapy:

dv

dt
= av − v

(
1 − e−αd−βd2

) ∑
T

Ĥ(t − τi ) − Ĥ(t − τi − tw)

tw
(4)

dv

dt
= av

(
1 − v

K

)
− v

(
1 − e−αd−βd2

) ∑
T

Ĥ(t − τi ) − Ĥ(t − τi − tw)

tw
(5)

dv

dt
= λ0v

(
1 +

(
λ0

λ1
v

)ψ
)− 1

ψ

− v
(
1 − e−αd−βd2

) ∑
T

Ĥ(t − τi ) − Ĥ(t − τi − tw)

tw
.

(6)

Notice that in the limit as tw → 0, the treatment window function
Ĥ(t−τi )−Ĥ(t−τi−tw)

tw → δ(t − τi ) where δ(t) is the Dirac-delta function. As the treat-
mentwindow shrinks, the death rate increases to affect the same total death as predicted
by the LQ model. Thus, in the limit as the treatment window shrinks to zero, our
continuous death-rate term approaches the standard impulsive model.

2.2 Fractional Derivative Tumour-RadiationModels

Finally, we can convert our time-dimensionless ODE models of tumour growth and
radiation into fractional differential equations (FDE) by replacing the left-hand side
of Eqs. (4)–(6) with the Caputo fractional derivative Dμv. The Caputo fractional
derivative, assuming that time starts at t = 0 and that the fractional order μ lies in
0 < μ ≤ 1, is defined by:

Dμ f (t) = 1

	(1 − μ)

∫ t

0

1

(t − ξ)μ

d f

dξ
dξ,

where 	(x) is the Gamma function. Whenμ = 1, the ordinary derivative of first order
is obtained, that is D1 f = d f

dt .
In Eqs. (4)–(6), replacing the ordinary derivative with the Caputo fractional deriva-

tive of orderμ gives the following three FDEmodels for tumour growth with radiation
treatment:
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Dμv = av − v
(
1 − e−αd−βd2

) ∑
T

Ĥ(t − τi ) − Ĥ(t − τi − tw)

tw
(7)

Dμv = av
(
1 − v

K

)
− v

(
1 − e−αd−βd2

) ∑
T

Ĥ(t − τi ) − Ĥ(t − τi − tw)

tw
(8)

Dμv = λ0v

(
1 +

(
λ0

λ1
v

)ψ
)− 1

ψ

− v
(
1 − e−αd−βd2

) ∑
T

Ĥ(t − τi ) − Ĥ(t − τi − tw)

tw
.

(9)

These FDE models contain one more parameter than the corresponding ODE models,
the order of the fractional derivative μ, assumed to lie in (0, 1].

2.3 Model Parameterization

Tonumerically simulate bothODEandFDEmodels,we use the same solver for consis-
tency, namely the FDE solver fde12 in MATLAB (Garrappa 2012), which implements
a predictor–corrector algorithm (Diethelm et al. 2002). To reduce the dimensionality
of our parameterization, we make the following assumptions. Unless otherwise stated,
we assume that all treatment windows, tw, are 15 minutes (non-dimensionalized). We
assume that α

β
= 10 Gy as suggested by clinical literature for head and neck cancers

(Bel et al. 2018). Thus, we fit α and determine β from β = α
10 Gy-2. Lastly, we

fix the carrying capacity K (cm3) of the logistic model to be twice the initial vol-
ume measurement for that patient. This assumption enforces a logistic slow-down in
the growth curve, further differentiating it from the exponential growth model. With
these assumptions, it remains to determine parameters a and α for the exponential and
logistic models, and parameters λ0, λ1, and α for the exponential-linear model. For
the corresponding fractional derivative models, we must also determine the fractional
order μ.

To parameterize our models, we use clinical data from 19 head and neck cancer
patients treated at the Moffitt Cancer Center and previously published in Caudell et al.
(2021). The patients received between 66–70Gyof radiation in 2Gyweekday fractions
in addition to chemotherapy. As done in Caudell et al. (2021), we neglect the effect of
the chemotherapy and assume the tumour response is due to the radiation treatment
alone. This assumption causes the radio-sensitivities of our fits to be over-estimates
as they also incorporate any tumour reduction due to chemotherapy.

Tumour volume measurements were taken prior to treatment start for planning
purposes, just before the first radiation fraction, and then weekly for the remainder of
treatment. The final measurement is assumed to occur on the last day of treatment.
Each patient j has a specific set of treatment days T j for j = 1 . . . 19, with a subset
of T j corresponding to measurement days.

Unknownmodel parameters were fit using the gradient-based fmincon inMATLAB
with generous but physiological upper and lower bounds imposed: a, λ0, λ1, and μ

must lie in (0.001, 1), and α must lie in (0,∞). Best-fit parameters where those that
minimized the sum of squared residuals (SSR) between the numerical solution and
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the patient’s data, over several repetitions of the fitting process. Initial guesses for the
optimization scheme were uniformly sampled random numbers in the range (0, 0.1)
for parameters a, α (Gy-1), and λ0, and in the range (0, 1) for parameter λ1 (cm3).
The initial guess of the fractional order was μ = 0.5 to start the fitting algorithm in
the middle of our accepted range of (0, 1].

3 Results

3.1 Fitted Parameter Values

A summary of the parameter fits for our six tumour growthmodels with radiation treat-
ment (Eqs. (4)–(9)) to the 19 patient datasets is shown in Table1. From the parameter
landscapes shown in Fig. 1, the spread of the patient-specific parameter values is clearly
seen, as well as the small deviations in fits caused by the introduction of a fractional-
ordered derivative. Violin box plots for all parameter values for each model show the
variability across the patient cohort, see Fig. 2.

Overall, between the ODE and corresponding FDE model, the parameter fits are
mostly similar. The majority of patients have fits requiring the order of the fractional
derivative μ to satisfy 0.999 ≤ μ ≤ 1. At least 15 out of the 19 patients, for all FDE
models, had μ fits that satisfied this range. This suggests that the fractional derivative
is not being employed to moderate the tumour response curve and that an ordinary
differential operator would result in a similar fit with the added benefits of reducing
the model complexity, reducing the number of model parameters, and returning the
numeric simulation to more standard methods.

To demonstrate the data and model fits, the ODE and FDE model predictions are
shown for patient 5 in Fig. 3. Patient 5 was selected to demonstrate a typical result since
the fitting results for this patient resulted in the median SSR values over all patients.
The relationships between model predictions and patient data, for all patients and each
model, are shown in Fig. 4.

3.2 Dynamic Sensitivity Analysis

To examine the effects of fitted model parameter values on the predicted tumour
response, we use a dynamic method of local sensitivity analysis. We examine the
time-response of relative sensitivity coefficients, S̄v

p j
(t), which measure the relative

change in predicted tumour volume, v, to the relative change in the perturbed model
parameter p j . In other words, the standard sensitivity coefficients are normalized by
the ratio of the perturbed parameter’s nominal value, p j,∅, to the nominal tumour
volume at time t , v∅(t). The relative sensitivity coefficients are defined by:

S̄v
p j

(t) = ∂v

∂ p j

p j,∅
v∅

≈ v(t; p j + �p j ) − v(t; p j )

v∅(t)
p j,∅
�p j

. (10)
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Fig. 1 Parameter landscapes for each ODE and FDE model. ODE models are shown in A exponential
model,C logisticmodel, andE exponential-linearmodel. FDEmodels are shown inB fractional exponential
model, D fractional logistic model, and F fractional exponential-linear model. Color indicates the order of
the derivative with magenta corresponding to an order-one derivative. Patient number is indicated beside
the corresponding data point

where the subscript ∅ denotes the nominal (unperturbed) value of either the parameter
or the predicted volume. Here we take �p j = 0.01p j,∅ to reflect a 1% change in the
parameter’s fitted value.

We use the patient 5 data to explore the model parameter sensitivities. Relative
sensitivities were calculated for all fitted parameters of each model from day 0–50,
for both 1% increases and decreases in the nominal value. Since fractional order of
patient 5 was very close to 1, we consider only a 1% decrease in the value. Figure5
shows the resulting dynamics of the relative sensitivity coefficients for each model and
its fitted parameters.

Note that across all models, the behaviour of the radiation sensitivity, α, is similar.
As expected, an increase to the radiation sensitivity parameter results in a reduction
of tumour volume and thus a negative relative sensitivity. The sensitivity of parameter
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Fig. 2 Violin box plots for all fitted model parameter values for each ODE and FDE model: A exponential
model, B logistic model, C exponential-linear model, and D the fractional order for each model

Fig. 3 Model simulations and patient data for patient 5. All ODE models are shown in A, and all FDE
models are shown in B. Parameter values are listed in Table 1

α grows in magnitude with each additional treatment. The exponential growth rate,
a or λ0, also has similar sensitivity behaviour across the models. A small increase to
the exponential growth rate results in an increase to the tumour volume and thus a
positive relative sensitivity. The sensitivity of a grows in magnitude as the difference
in perturbed tumour volume to the nominal volume continues to grow exponentially.
Note that for patient 5, the exponential-linear model threshold for transition from
exponential to linear growth occurs at λ1

λ0
> 40 cm3. Since the tumour never grows

this large under the prescribed treatment (see Fig. 3), this model is always in the
exponential growth phase. Thus, the relative sensitivity of λ0 is similar to that of
exponential growth parameter a, and the relative sensitivity of the linear growth rate,
λ1, is negligible.
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Fig. 4 Predicted tumour volume vs actual tumour volume for all patients using the A exponential model,
B fractional exponential model, C logistic model, D fractional logistic model, E exponential-linear model,
and F fractional exponential-linear model

Perhaps the most interesting sensitivity behaviour comes from the fractional order
μ. With a small decrease in μ, there is an initial decrease in tumour volume and
thus relative sensitivity. This is followed by a sharp, and ever growing, increase once
treatment begins. To explore this phenomenon further, treatment curves for patient 5
are simulated with decreasing values of fractional order, see Fig. 6. Initially the lower
fractional ordered derivative has a slower growth rate, but once treatment starts, the
lower orders exhibit faster regrowth rates post-treatment, ultimately leading to larger
tumour volumes. In fact, the physicality of these accelerated regrowth rates post-
treatment is questionable: see, for example, the μ = 0.8 curve in Fig. 6 which has
near-infinite growth rates right after treatment application (vertical dips in the curve).
This suggests that fractional derivative-based models are not a good fit for treatment
prediction.
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Fig. 5 Relative sensitivity coefficients for all fittedmodel parameters of eachmodel. Equation (10) is used to
compute the relative sensitivity coefficients over times [0, 50]. Each parameter was perturbed independently
by 1% of the nominal value

Fig. 6 Fractional exponential model predictions for patient 5 with decreasing fractional order from μ = 1
to μ = 0.8
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3.3 Model Comparison

The Akaike information criterion (AIC) and Bayesian information criterion (BIC)
are two tools that can be used to help identify the best model for a dataset, given
the number of model parameters. Both metrics assume that the errors are normally
distributed. This assumption was verified using both the Lilliefors and the Shapiro–
Wilk tests, implemented in MATLAB. The model and patient combinations that have
errors that failed the normality tests are: patient 10 with the exponential, fractional
exponential, exponential-linear, and fractional exponential-linear models, and patient
19 with the logistic and fractional logistic models. The results for these patient-
model combinations should be interpreted with caution, but are included below for
completeness.

The Bayesian information criterion, BIC, is defined by:

BIC = n ln

(
SSR

n

)
+ K ln n,

where n is the number of data points,K is the number of fitted model parameters, and
SSR is the sum of squared errors between the data and model prediction. Since the
patient data sets are small, we use the corrected Akaike information criterion (Brewer
et al. 2016), AICc, defined by

AICc = n ln

(
SSR

n

)
+ 2K + 2K(K + 1)

n − K − 1

To aid in the comparison of these results,we normalize theAICc scores to theminimum
score found for that dataset:

�i = AICci − AICcmin,

where AICci is the score for model i , and AICcmin is the minimum score for all
models applied to that dataset. AICc�i values for all patients and models are reported
in Table 2.

TheAICc�i values can be used to rank the six candidatemodels frombest (�i = 0)
to worst (maximum �i ) for each patient. If a tie occurs, both models are ranked at
the average, for example if two models tie for third and fourth place, their assigned
ranking would both be 3.5. For patient 5, the model ranking is: 1—exponential, 2—
logistic, 3.5—fractional exponential, 3.5—exponential-linear, 5—fractional logistic,
and 6—fractional exponential-linear. From the values listed in Table 2, for 15 of the
19 patients, the�i values rank the exponential model as the best candidate model. The
logistic model is ranked best for 3 of the 19 patients, and the fractional exponential
model is ranked best for one patient.
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Table 2 AICc �ivalues for all patient-model combinations. �i = 0 indicates the best candidate model
for that patient. �i ≤ 2 indicates that substantial support exists in the data for that model (cells in italics).
Increasing�i values suggest decreasing support for thatmodel.Modelswithmoderate support, 2 < �i ≤ 7,
are in bold, and models with the minimal support, �i > 7, are in bolditalics

Exp Fr Exp Log Fr Log Exp-Lin Fr Exp-Lin

Patient 1 0 5.60 1.43 7.03 5.60 14.93

Patient 2 0.84 2.03 0 1.70 4.98 10.66

Patient 3 3.79 3.95 0 5.60 1.73 10.99

Patient 4 0 7.00 0.83 7.83 7.00 21.00

Patient 5 0 5.60 1.33 6.93 5.60 14.93

Patient 6 0 5.60 1.86 7.46 5.60 14.93

Patient 7 0 5.60 4.42 10.02 5.60 14.93

Patient 8 0 5.60 1.54 7.14 5.60 14.93

Patient 9 0 7.00 4.41 11.41 7.00 21.00

Patient 10 0 4.80 2.07 6.87 4.80 12.00

Patient 11 0 5.60 0.15 5.75 5.51 14.84

Patient 12 0 5.60 0.37 5.97 5.60 14.93

Patient 13 0 5.60 0.76 6.36 5.60 14.93

Patient 14 0.50 0 14.07 19.67 2.82 9.33

Patient 15 0 5.60 3.91 9.51 5.65 14.98

Patient 16 0 5.60 2.12 7.72 5.60 14.93

Patient 17 0.14 5.74 0 5.60 5.46 14.80

Patient 18 0 5.60 0.54 6.14 5.60 14.93

Patient 19 0 4.80 1.98 6.78 4.80 12.00

While theAICcdifferences inTable 2 are useful for creating a ranking of themodels,
it is possible to extend our use of the �i -values to quantify the plausibility of each
model being the best model from our set in the Kullback–Leibler sense (Anderson and
Burnham 2002). We first calculate the likelihood of each model given the data as

L(gi |data) ∝ e− 1
2�i ,

where gi is the i th candidate model. These likelihoods represent the relative strength
of evidence for each model. To better interpret the relative likelihood of the model,
given the data and R different models, we normalize the L(gi |data) to be a positive
set of Akaike weights (Anderson and Burnham 2002), wi , defined by

wi = e− 1
2�i

R∑
r=1

e− 1
2�r

. (11)
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Table 3 AICcweights,wi , for all patient-model combinations. The largestweight in a row, in bold, indicates
that there is the most evidence in favour of that model being the best over all other considered models, for
that patient

Exp Fr Exp Log Fr Log Exp-Lin Fr Exp-Lin

Patient 1 0.60910 0.03704 0.29833 0.01814 0.03704 0.00035

Patient 2 0.25938 0.14302 0.39448 0.16851 0.03269 0.00191

Patient 3 0.08471 0.07833 0.56355 0.03422 0.23687 0.00232

Patient 4 0.57459 0.01735 0.37924 0.01145 0.01735 0.00002

Patient 5 0.60002 0.03649 0.30793 0.01873 0.03649 0.00034

Patient 6 0.64899 0.03946 0.25614 0.01558 0.03946 0.00037

Patient 7 0.80729 0.04909 0.08868 0.00539 0.04909 0.00046

Patient 8 0.61960 0.03768 0.28723 0.01747 0.03768 0.00035

Patient 9 0.85185 0.02572 0.09385 0.00283 0.02572 0.00002

Patient 10 0.63604 0.05770 0.22644 0.02054 0.05770 0.00158

Patient 11 0.47388 0.02882 0.44009 0.02676 0.03017 0.00028

Patient 12 0.49908 0.03035 0.41472 0.02522 0.03035 0.00029

Patient 13 0.54106 0.03290 0.37031 0.02252 0.03290 0.00031

Patient 14 0.38322 0.49170 0.00043 0.00003 0.12000 0.00462

Patient 15 0.78681 0.04785 0.11139 0.00677 0.04674 0.00044

Patient 16 0.67091 0.04080 0.23294 0.01417 0.04080 0.00038

Patient 17 0.44064 0.02680 0.47276 0.02875 0.03078 0.00029

Patient 18 0.51718 0.03145 0.39557 0.02405 0.03145 0.00030

Patient 19 0.62920 0.05708 0.23387 0.02122 0.05708 0.00156

Observe that
R∑

i=1
wi = 1. Akaike weights are considered to be the weight of evi-

dence in favour of model i as being the best model for a given dataset out of the R
candidate models (Anderson and Burnham 2002). The weights for all patient-model
combinations are listed in Table 3. Consideration of theseweights shows that for all but
four patients, namely patients 2, 3, 14, and 17, the exponential model has the highest
probability and is thus considered the best of our six candidate models for the given
data. Observe that for these same 15 patients, the logistic model, with fixed carrying
capacity K , has the second highest probability. For patients 2, 3, and 17, the logistic
model has the highest probability of being the best model.

In a similar manner as above, the BIC �i -values were calculated and used to rank
the models for each patient. Summing the ranking over all patients for a particular
model gives a tally score, indicating the overall ranking of the model in our 19-patient
dataset. Table 4 provides a summary of the AICc and BIC analyses, including an
overall ranking of the models from both measures. The exponential growth model was
found to be the best model for the clinical dataset, with the logistic model (with fixed
carrying capacity) coming in second. Of note, the FDEmodels ranked lower than their
respective ODE models, indicating that the inclusion of a fractional derivative does
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Table 5 Fitted parameter values
for the exponential model with
the continuous death-rate term,
for patient 5 and various
treatment window lengths, tw.
Fitted parameter values for the
exponential model with
impulsively applied radiation
cell-kill is included for
comparison

tw a α (Gy-1) SSR

1/48 0.011 0.022 8.112

1/96 0.012 0.022 8.115

1/144 0.012 0.024 8.118

1/288 0.012 0.022 8.127

dt = 0.001 0.013 0.023 8.174

Impulse 0.0167 0.0243 8.397

not perform sufficiently better to overcome the penalty for including another fitted
parameter.

3.4 Convergence of Radiation Effect to Impulsive Model

As the exponential model was found above to be the best candidate model for the
clinical dataset, we proceed with the rest of our analysis using only this model. In
Sect. 2.1, we discussed how the newly proposed continuous death-rate term introduced
to model the effect of radiation-induced cell death approaches the impulsive model
more commonly used, as the treatment window length tw → 0. Here we demonstrate
this convergence by fitting the model parameters with progressively smaller treatment
window lengths. Table 5 lists the best-fit parameter values for the exponential model to
the patient 5 data for treatment window lengths of 30, 15, 10, and 5 non-dimensional
minutes, as well as tw = dt , where dt is the numeric integration step size of fde12
(here we use either 1/288 or 0.001).

As seen in Table 5, when using the death-rate radiation term, the fitted values of
a and α are consistent, and the SSR values do not significantly vary. These fitted
parameter values are close to those determined by fitting the impulsive model to the
data. Of note, the goodness-of-fit metric is smaller for the models implementing the
death-rate term than for the impulsive model.

3.5 Radiation Death-Rate Term Gives Speed-Up of Computational Time

To demonstrate the increase in speed of computation using the continuous death-rate
term instead of theHeavisidemodel or themost common, impulsivemodel, we run 100
parameter fitting instances on the patient 5 dataset. Using the exponential model as the
baseline, comparison is made between the various implementations of the radiation-
induced tumour reduction. That is, we compare the continuous death-rate term with
hyperbolic tangent functions, Ĥ , the discontinuous death-rate term with Heaviside
functions, H , and the impulse model that stops and restarts the numeric integration at
each treatment time. Note that since we are not considering fractional derivatives for
this test, discontinuities are allowed, but do still pose numeric integration challenges.

In MATLAB (The Mathworks Inc 2021), we fit these models to the data M = 100
times using fmincon and randomized uniformly sampled initial guesses for a ∈ [0, 0.2]
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and α ∈ [0, 0.1]. Both the total time (using tic and toc) and the total CPU time (using
cputime) are recorded. The fitting procedure was run on a standard 2019 MacBook
Pro laptop (1.4 GHz intel Core i5, 8 GB RAM). We divide the total time to complete
all fits by M to get the average "time per fit" reported in Table 6. The models were
numerically simulated with either fde12, a fixed time-step method (dt = 1/288) with
no correction option, or ode45, a dynamic time-step method with maximum time-step
set to dt = 1/288.

As seen in Table 6, the fastest fits are obtained by the newly proposed continuous
death-rate function solved via ode45. The standard impulsive model is almost twice
as slow to find the best fit with this algorithm. Using fde12, the impulsive model is
the fastest, but requires twice the CPU time as ode45. The discontinuous death-rate
model implementing the Heaviside function is incredibly slow and not recommended.

The various death models do find approximately equal fits as measured by SSR,
with approximately the same success rates 81 − 88%. The fitted parameter values ca
and α are slightly different for the different models but mostly invariant to the numeric
solver.

The computing speed-up obtained by solving the ODE model with the continuous
death-rate radiation term is considerable. Applications that rely on many repetitions of
numeric integration of an ODEmodel, such as parameter fitting procedures and virtual
clinical trial construction and simulations, will benefit greatly from this improvement.

4 Discussion

This paper provided an in-depth comparison betweenODE and FDEmodels of tumour
growth with radiation treatment and determined that the added complexity of the
fractional derivative does not significantly improve the model’s ability to simulate
clinical data. Additionally, we proposed a new continuous radiation-induced death-
rate function as a more biological and computationally efficient alternative to the
impulsive model commonly used.

Upon fitting all 3 of our ODE and corresponding 3 FDE models to the data, we
observe that in 86% of our FDE fits, the fractional order μ ∈ [0.999, 1]. The fitted
curves for these fractional models are essentially identical to their respective ODE
model predictions. Although our sensitivity analysis reveals the order of the fractional
derivative to be the most sensitive of our parameters, fitted values of μ which do
not approach 1 either don’t improve the fit of the model to the data or yield non-
biological results. An examination of model selection information-based criterion
finds, repeatedly, that the ODE exponential model is the best of our candidate models
for this clinical dataset. The Akaike evidence ratios further substantiate our findings
from the fits and in 93% of the patients show substantial evidence against the FDE
model in favour of its ODE counterpart.

The continuous death-rate function describing radiation-induced cell kill post-
treatment provides similar model predictions and data-fits to the impulsive model
wherein the numeric integration is stopped and restarted after each treatment. Param-
eterizations and goodness-of-fit metrics are similar between the two models. The
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death-rate term provides a more biological description of cell death following radia-
tion treatment as the treatment window length can be adjusted. Radiation inducesDNA
damage that, if not repaired, will cause the cell to die when it attempts to divide. Thus,
the actual death following radiation treatment is spread out over the approximately
24-hour period when the cancer cells are attempting to proliferate. The radiation effect
treatment window, tw, could be increased to try to capture this effect. In this work, we
kept the treatment window short in order to aid comparison with the impulsive model,
which assumes all death occurs instantaneously, but this assumption is not necessary.

Previous work applying FDEmodels to radiation therapywas proposed by Farayola
et al. (2020a, b) wherein they lumped the effect of all radiation fractions into one
dose that was applied all together starting at t = 0. This method of lumping the
fractionated treatments together does not replicate the actual biology that occurs during
tumour treatment, and it does not account for the tumour regrowth that occurs between
treatments, an important dynamic of tumour treatment modelling (Enderling 2020).
In comparison, the FDE models proposed here with the addition of the continuous
death-rate term were all able to capture the dynamical features of tumour growth
under fractionated radiation treatment.

The computational efficiency gained by the continuous death-rate term, over the
impulsive model, is significant. Parameter fitting of ODEmodels is a time-consuming
process, requiring many repetitions of numeric integration—especially for genetic
algorithm, Markov Chain Monte Carlo, and simulated annealing-based methods. The
continuity of the function describing the entire treatment course is also significant for
gradient-based optimization methods that estimate derivatives to build Hessian matri-
ces. The speed-up provided by this new death-rate expression will be noticeable for
many applications in mathematical oncology and quantitative systems pharmacology.

Funding This research was supported in part by the Faculty of Science at Toronto Metropolitan University
(NW), by the NIH National Cancer Institute grant U01CA244100 (HE), and by the Natural Sciences and
Engineering Research Council (NSERC) Discovery Grant program RGPIN-2018-04205 (KPW).

Data Availability Data sharing was not applicable to this article as no datasets were generated directly
during the current study.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Akman Yıldız T, Arshad S, Baleanu D (2018) Optimal chemotherapy and immunotherapy schedules for a
cancer-obesity model with Caputo time fractional derivative. Math Methods Appl Sci 41(18):9390–
9407. https://doi.org/10.1002/mma.5298

Alvord EC, Rockne R, Rockhill JK, Swanson KR (2008) A mathematical model for brain tumor response
to radiation therapy. J Math Biol 58:561–578. https://doi.org/10.1007/s00285-008-0219-6

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/mma.5298
https://doi.org/10.1007/s00285-008-0219-6


Modelling Radiation Cancer Treatment with a Death-Rate Term... Page 21 of 22 47

Anderson DR, Burnham KP (2002) Model selection and multimodel inference. Springer, New York
Arfan M, Shah K, Ullah A, Shutaywi M, Kumam P, Shah Z (2021) On fractional order model of tumor

dynamicswith drug interventions under nonlocal fractional derivative.Results Phys 21:103783. https://
doi.org/10.1016/j.rinp.2020.103783
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