
Bulletin of Mathematical Biology (2023) 85:23
https://doi.org/10.1007/s11538-023-01127-6

ORIG INAL ART ICLE

A Spatial Kinetic Model of Crowd Evacuation Dynamics
with Infectious Disease Contagion

Juan Pablo Agnelli1,2 · Bruno Buffa2 · Damián Knopoff1,2,3,4 ·
Germán Torres5,6

Received: 30 June 2022 / Accepted: 23 January 2023 / Published online: 18 February 2023
© The Author(s), under exclusive licence to Society for Mathematical Biology 2023

Abstract
This paper proposes a kinetic theory approach coupling together themodeling of crowd
evacuation from a bounded domain with exit doors and infectious disease contagion.
The spatial movement of individuals in the crowd is modeled by a proper description
of the interactions with people in the crowd and the environment, including walls and
exits. At the same time, interactions among healthy and infectious individuals may
generate disease spreading if exposure time is long enough. Immunization of the pop-
ulation and individual awareness to contagion is considered as well. Interactions are
modeled by tools of game theory, that let us propose the so-called tables of games that
are introduced in the general kinetic equations. The proposed model is qualitatively
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studied and, through a series of case studies, we explore different scenarios related to
crowding and gathering formation within indoor venues under the spread of a respi-
ratory infectious disease, obtaining insights on specific policies to reduce contagion
that may be implemented.

Keywords Crowd dynamics · Disease contagion · Kinetic theory · Active particles ·
Evacuation · Awareness · Immunization

1 Introduction

During the recent COVID-19 crisis, it has become evident to the whole society that
controlling and eradicating an epidemic from a population is a highly challenging
task. Mathematical modeling became imperative to understand the epidemiological
dynamics of disease spreading and to evaluate the impact of control measures imple-
mented over time, with complex dynamics coming into play when trying to predict
disease propagation. Used as a tool to guide public health authorities, epidemiological
models were able to give insights on how to best use available strategies to contain
and mitigate the ongoing outbreaks. However, there are still many aspects to explore
regarding the development of mathematical models considering spatial features, with
some recent contributions in Aguiar et al. (2020, 2021); Bellomo et al. (2020, 2022).
In particular, a variety of social distancing measures has been observed all around
the globe (see Qian and Jiang 2022; Thu et al. 2020; Sarcinschi 2020 among others).
Most indoor venues have been closed during large periods of times and in most cases
many restrictions regarding limitations in the number of people were implemented. It
is worth stressing, however, that this concern is not new and not limited to COVID-19
contagion. Indeed, deal of attention has been paid to aerosol and airborne transmitted
diseases in general, like the severe acute respiratory syndrome (SARS) outbreaks of
2003, the human avian influenza A (H5N1) infections and the more recent pandemic
influenza A(H1N1/2009) cases in 2009 (Levy 2006; Tang et al. 2011; Teunis et al.
2010; Modchang et al. 2012), among others.

Most epidemiological models are based on the average of the behaviors of a large
population over a given period of time. In particular, compartmental models (start-
ing from the celebrated model by Kermack and McKendrick (1927)) use mean-field
approximations which are attractive because of their simplicity. However, these mod-
els involve complex parameters that depend on many factors, which makes it difficult
to predict how a change in a single environmental, demographic or epidemiological
condition will affect the whole population (Brauer et al. 2019). Moreover, these mod-
els are not valid if the population size is small-to-medium, as happens in some spatial
domains (neighborhoods, stations, schools, etc.) that are very relevant in the dynamics
around the development of an epidemic (Aguiar et al. 2021). Consequently, when it
comes to assess particular responses to specific outbreaks, studying how the proximity
of people plays a role in the diffusion of a disease and what can be done in crowded
areas and mass gatherings could informmore targeted responses. In this present paper,
a SEIR (Susceptible-Exposed-Infectious-Recovered) approach is considered to model
disease spreading in a general situation. However, it will be shown that, due to its ver-
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satility, the epidemiological model can be tuned to consider specific dynamics, e.g.,
saturation of the infection force (Kolokolnikov and Iron 2021), immunization of the
population (Qiu and Feng 2010) or isolation (Zuzek et al. 2015).

On the other hand, crowd dynamics has so far been studied to tackle safety problems
(Bellomo et al. 2019; Degond et al. 2017), for instance by supporting crisis manage-
ment in critical situations such as sudden evacuations induced in complex venues by
incidents. Modeling of crowd dynamics requires a multiscale approach, since it can
be developed at three scales, namely microscopic (individual-based), macroscopic
(hydrodynamic), and mesoscopic (kinetic). The mesoscopic representation, which is
typical of the mathematical kinetic theory, is delivered by a probability distribution
function over the state of the individual entities. As observed in the recent book (Aylaj
et al. 2020) (see also Liao and Zhou 2022 for the movement of aggregated groups and
Bellomo et al. (2022) for the modeling of dynamical emotional states), the selection
of the scale is a key problem as each one presents advantages and withdraws.

For instance, the description of the dynamics at the micro-scale is delivered by a
systemof ordinary differential equations corresponding to aNewtonian type dynamics.
The key problem consists in modeling the acceleration terms as well as of the overall
crowd distribution in space. Hence, individual-based models focus on interactions
between each individual with the others. One of the main contributions is the so-
called social force model proposed by Helbing and coworkers (Helbing and Molnar
1995), which has been further developed to model evacuation dynamics (Helbing
et al. 2002) and panic situations (Helbing et al. 2000). In principle, this approach can
be generalized to the case of groups moving according to different behaviors, as an
example, by including the presence of leaders, as well as multiple interactions. As
stated in Aylaj et al. (2020), accounting for the heterogeneity of walkers, which is an
important feature of crowd dynamics, still needs additional work to be exhaustively
treated. On the other hand, the macroscopic scale requires the continuity assumption
of thematter which is reasonable in the case of real fluids, but not in the case of crowds,
where distances between individuals cannot be neglected. In addition, local averages
hide the heterogeneous behaviour of individuals. Also, models derived by the kinetic
theory approach require the continuity assumption of the probability distributionwhich
is not realistic in the case of flows with a limited number of individuals (Cercignani
et al. 1994). However, the main problem to take into account in the modeling at all
scales is the heterogeneous behavioral feature of people in a crowd and its specific
influence on interactions of walkers to be interpreted as active, rather than classical,
particles (Helbing and Johansson 2009;Haghani and Sarvi 2017). Individual behaviors
and heterogeneity, in the case of crisis circumstances, can lead to significant deviations
with respect to the usual dynamics in rational flow conditions.

Crowd and epidemiological modeling have been so far treated as separated fields
of research, with very few attempts to link them together (Kim and Quaini 2020;
Terna et al. 2020). In this paper, we study the propagation of an epidemic through
the development of mathematical models of crowd dynamics based on the kinetic
theory of active particles. Our departure point is the model proposed in Agnelli et al.
(2015), where the evacuation of a crowd from a bounded domain with exit doors is
developed. Themodel considersmechanical transitions only, accounting for changes in
the velocity of pedestrians (speed anddirection) according to a decision-based strategy:
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pedestrians may decide to move towards exit areas and avoid the walls (dynamics
induced by the geometry of the domain) while following the mainstream or trying
to avoid large concentrations (dynamics induced by interactions among pedestrians).
In this present paper, we assume that pedestrians are also carriers of a new micro-
state variable describing their state related to an infectious disease: namely, they can
belong at a given time t to one compartment (e.g., susceptible, exposed, infectious,
recovered). Thus, we will couple the kinetic evacuation model with epidemiological
dynamics occurring within the same domain. The complete model will be introduced
and then used to analyze the interplay between evacuation and contagion, in order to
understand how much proximity, residence time before exiting, and even vaccination
influence on the overall spread of the disease.

The paper is structured as follows: Section 2 resumes the kinetic model of crowd
evacuation and couples it with the contagion dynamics, by considering a microscopic
variable accounting for the disease-related state of particles. Section 3 presents numer-
ical results in which the model is tested through three exploratory case studies. In
particular, we perform a parameter sensitivity analysis and explore the role of the infec-
tion rate, immunization, and population awareness on the overall dynamics. Finally,
in Section 4 we conclude the paper and present some possible further extensions.

2 AMathematical Model

2.1 Functional Subsystems and Representation

Let us consider a large system of pedestrians moving in a bounded environment � ⊂
R
2. We assume that the boundary ∂� includes the exit zone E ⊂ ∂�, while the

remaining part of the boundary constitutes the wall W ⊂ ∂�. It is worth noticing
that E could be the finite union of disjoint sets, i.e., the domain may have several
exit zones. We consider, for simplicity, a convex domain, as shown in Fig. 1. Even
though the presence of internal obstacles is not included in the following treatment,
it can be done through a straightforward technical generalization of the model, see
(Kim and Quaini 2019). The domain� is also characterized by a parameter α ∈ [0, 1]
accounting for the quality of the environment, where α = 0 corresponds to the worst
quality which forces pedestrians to stop, while the value α = 1 corresponds to the best
quality, that contributes keeping high speeds. We can think about α as an indicator of
some features like signaling, lighting, presence of obstacles or fire, etc.

Each pedestrian is seen as an active particle carrier of a microscopic state. Fol-
lowing the ideas presented in Agnelli et al. (2015), we consider a representation with
continuous-discrete hybrid features,where themicro-state of eachpedestrian is defined
by position and velocity direction and disease-related state at time t . More in detail:

• The position x = (x, y) is supposed to be a continuous variable defined over �.
• For the velocity, denoted by v = v(cos θ, sin θ) in polar coordinates, it is assumed
that the speed v is a continuous deterministic variable which evolves in time and
space according to macroscopic effects determined by the overall dynamics, while
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Fig. 1 Geometry of the bounded
domain � with boundary
∂� = W ∪ E1 ∪ E2

the velocity direction θ is a discrete variable -heterogeneously distributed among
pedestrians- attaining values in the set

Iθ =
{
θi = i − 1

n
2π : i = 1, . . . , Nθ

}
,

with cardinal Nθ .
• A disease-related state given by a categorical variable in the set Iλ with cardinal

Nλ.

Remark 1 The set Iλ will be adjusted according to the case under study. For instance,
if we consider four compartments for susceptibles (S), exposed (E), infected (I ), and
recovered (R), then Iλ = {S, E, I , R} and Nλ = 4. If a vaccinated class (V) is consid-
ered, then Iλ = {S, E, I , R, V } and Nλ = 5. This way of introducing heterogeneity
gives flexibility to choose the most suitable epidemiological model.

Remark 2 The term functional subsystem (FS) will be used to identify groups of parti-
cles sharing a commonmicro-state. For instance, the i-FS refers to those active particles
moving with direction θi or the E-FS refers to those active particles belonging to the
exposed class E .

The overall state of particles is given by the distribution function f j
i (t, x) =

f (t, x, θi , λ j ), which is interpreted as the number of particles that, at time t , are
located in x, move with direction θi and are carriers of the disease-related state λ j .
The knowledge of the distribution function lets us obtain several macroscopic quanti-
ties of interest through the computation of its moments. For instance, the local density
in x is given by

ρ(t, x) =
∑
j∈Iλ

Nθ∑
i=1

f j
i (t, x),

the local density of individuals belonging to the λ j -class is

ρ j (t, x) =
Nθ∑
i=1

f j
i (t, x),
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and the total population within the domain is given by

N (t) =
∫

�

ρ(t, x∗)dx∗.

In thisway, the number of individuals belonging to each infectious compartmentwithin
the domain � can be computed as follows:

S(t) =
∫

�

ρS(t, x∗)dx∗, E(t) =
∫

�

ρE (t, x∗)dx∗,

I (t) =
∫

�

ρ I (t, x∗)dx∗, R(t) =
∫

�

ρR(t, x∗)dx∗,

where S(t), E(t), I (t) and R(t) are the susceptible, exposed, infectious and recovered
populations within the domain, respectively. Notice that these quantities may change
over time due to the effect of the two coupled dynamics under study, namely contagion
dynamics and exit (resp. entrance) of individuals from (resp. to) the domain.

Remark 3 In general, physical dimensions are removed through nondimensionaliza-
tion, in such a way that the maximum reachable local density is equal to 1 under
normal conditions. We refer to Agnelli et al. (2015) and Section 3 for more details.

2.2 Mathematical Structure

The modeling approach takes into account interactions of pedestrians with all other
pedestrians and with the environment. The derivation of the mathematical structure
can be obtained by a suitable balance of particles in the elementary volume of the space
of microscopic states, considering the net flow into such volume due to transport and
interactions

∂t f
j
i (t, x) + divx(vi [ρ](t, x) f j

i (t, x)) = J j
i [ f ](t, x), j ∈ Iλ, i = 1, . . . , Nθ ,(1)

where vi [ρ] = v[ρ](cos θi , sin θi ), the left-hand termmodels the transport of particles,
whileJ j

i [ f ] represents the net balance for those particles in the λ j -FS that move with
direction θi due to interactions.

As in Agnelli et al. (2015), to model interaction dynamics, we suppose that pedes-
trians modify their walking direction by a decision strategy which takes into account
the following trends:

1. Moving towards the exit;
2. Avoiding collision with walls;
3. Moving towards less congested areas;
4. Attraction to follow the main stream.

The first two types of dynamics are related to purely geometric aspects of the
domain,while the last two take into consideration that pedestrians’ behavior is strongly
affected by the presence of other people. In this sense, items 3 and 4 are related to
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another interaction which modifies the internal state of pedestrians, namely: In this
sense, items 3 and 4 are related to another kind of interaction which modifies the
internal state of pedestrians that is now considered in this work, namely:

5. Interaction between susceptible and infectious pedestriansmay produce contagion
and spread of the infectious disease.

Hence, we split the interaction term into two terms

J j
i [ f ] = J G

i [ f ] + J j P
i [ f ],

where J G
i is the difference between the gain and the loss of particles moving with

direction θi , due to geometrical effects (notice that it is independent of the disease-
related state) and J j P

i accounts for the balance due to interactions among particles
belonging to the λ j and i-FSs with the others subsystems.

Taking inspiration fromAgnelli et al. (2015),wemodel changes in velocity direction
by using probabilistic rules, through the so-called transition probabilities Ah(i) for
h, i = 1, . . . , Nθ and B1

hk(i) for h, k, i = 1, . . . , Nθ .
The quantity Ah(i) is the probability that an h-particle, i.e., a pedestrian moving

with direction θh , adjusts his/her direction into θi as a consequence of the domain
geometry (e.g., walls or exit doors), while B1

hk(i) is the probability that an individual
moving with direction θh changes his/her direction into θi after an interaction with an
individual walking with direction θk .

In addition, in order to account for disease-related transitions, we introduce the
transition probability density B2

sr ( j) giving the probability that a λs-individual may
undergo a transition into the state λ j as a consequence of an interaction with a λr -
individual.

Remark 4 Notice that the symbol A is used to describe transitions involving only the
geometry of the domain, while B is used for inter-pedestrian interactions.

The compact form of the transition probability B is given by the product

Bsr
hk(i, j)[ρ] = B1

hk(i)[ρ] × B2
sr ( j),

where Bsr
hk(i, j)[ρ] is the probability that a pedestrian with infectious state λs moving

with direction θh undergoes a transition into the infectious state λ j and direction θi
after an interaction with a pedestrian with state λr moving with direction θk .

Remark 5 The transition probabilities A and B satisfy

Nθ∑
i=1

Ah(i) = 1, ∀ h = 1, . . . , Nθ ,

Nλ∑
j=1

Nθ∑
i=1

Bsr
hk(i, j) = 1, ∀ h,k,= 1, . . . , Nθ , ∀ s,r ∈ Iλ. (2)
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By considering the above-defined terms, Eq. (1) can be written as

∂t f
j
i (t, x) + divx(vi [ρ](t, x) f j

i (t, x))︸ ︷︷ ︸
transport

= J j
i [ f ](t, x)︸ ︷︷ ︸

interactions

= μ[ρ(t, x)]
( Nθ∑
h=1

Ah(i) f
j
h (t, x) − f j

i (t, x)

)

+η[ρ(t, x)]
⎛
⎝ Nλ∑

s,r=1

Nθ∑
h,k=1

Bsr
hk(i, j)[ρ] f sh (t, x) f rk (t, x) − f j

i (t, x)ρ(t, x)

⎞
⎠ (3)

for i = 1, . . . , Nθ , j ∈ Iλ, and where vi [ρ] = v[ρ](cos θi , sin θi ). The terms μ and
η are the interaction rates modeling the frequency of interactions with the geome-
try and with other pedestrians, respectively. Moreover, conditions (2) guarantee the
conservation in the number of total pedestrians.

This mathematical structure offers a general framework suitable to derive specific
models. It is more general than the model proposed in Agnelli et al. (2015) since it
includes the presence of different groups featured by different walking abilities and
strategies to develop the dynamics.

2.3 Modeling Interactions

Let us now focus on the modeling of interactions that results in the specification of
the right-hand side of Eq. (3). Interactions involve three types of particles (Bellomo
et al. 2021): test particles with micro-state (x, θi , λ j ) which are representative
of the whole system; field particles with micro-state (x, θk, λr ), whose presence
triggers the interactions of the candidate particles; and candidate particles with
micro-state (x, θh, λs), which can reach in probability the state of the test particles
after individual-based interactions with field particles or with the environment. In what
follows we refer to an i-particle to mean a pedestrian moving with direction θi .

Two types of interactions are considered: (i) those between candidate and field
particles and (ii) those between candidate particles and the environment where the
dynamics occurs, that is with its geometrical and qualitative properties.

2.3.1 Towards the Selection of the Desired Direction

We introduce the dynamics that generates changes in the direction of movement of
active particles and describe how the decision process, which consists in selecting the
desired direction for each pedestrian, is modeled.

We assume that not only binary interactions induce a change in the state of a particle,
but pedestrians make a decision according to a combination of different causes, as
detailed below.

• Trend to move toward the exit. During an evacuation, pedestrians may try to reach
the exit by moving through the shortest path from their current location. Given a
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� �

� �

E2

E1

Ω

�

x

dE(x)�ν(x)

�
�ν(x∗)

x∗
� �

� �

E2

E1

Ω

�

�
�

x

xW
�τ(x, θh)

θh

dW (x, θh)

(a) (b)

Fig. 2 a We denote the distance to the exit of a particle located in x by dE (x) and the vector pointing from
x to the exit by �ν(x). b A particle in x moving with direction θh is expected to collide the wall in xW , then
it computes the tangent direction to the wall that would take it toward the exit

candidate particle at the point x, we define its distance to the exit as

dE (x) = min
y∈E ‖x − y‖, (4)

where ‖ · ‖ denotes the Euclidian norm in R
2, and we consider the unitary vector

�ν(x), pointing from x to the exit, see Fig. 2(a).
• Trend to avoid the collision with walls. If a particle at x moves with direction

θh , and if this direction does not point it towards the exit, then it is expected to
collide (unless it changes direction) with the wall at a point xW (x, θh), which is
located at a distance dW (x, θh) from the particle, as shown in Fig. 2(b). Then, the
particle should choose a suitable direction capable to prevent it hitting the wall
after some time. Following the model in Agnelli et al. (2015), the unitary tangent
vector �τ(x, θh) to ∂� at xW pointing in the direction that would let a pedestrian
get closer to the exit is chosen.

• Tendency tomove towards less congested areas. In order to facilitate its movement,
a candidate particle at x, moving with direction θh , may decide to change direction
by moving towards less congested areas. This can be achieved by choosing the
direction that gives the minimal directional derivative of the density at the point
x. This direction is denoted by the unitary vector �γ (θh, ρ).

• Tendency to follow the stream. Binary interactions, at each time t and position x,
involve test, candidate, and field particles. A candidate particle modifies its state,
in probability, into that of the test particle, due to interactions with field particles,
while the test one loses its state as a result of these interactions. This dynamics
is inserted in the model in order to take into account the fact that a (candidate)
pedestrian interacting with a (field) pedestrian may decide to follow him/her. We
define the unitary vector �σk = (cos θk, sin θk) to describe the movement of the
field k-particle.

Let us observe that the first two effects are related to purely geometric aspects of
the domain, meaning that candidate particles take into account the presence of doors
or walls but without caring about other people’s behavior. Conversely, the last two
effects take into consideration that people’s behavior is strongly affected by that of the
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others. In fact, on the one hand a candidate particle is capable to scan its surroundings
in order to choose, at each moment and position, a proper direction that will prevent
it to move into congested areas, while on the other hand the interaction with a field
particle will try to bring its direction closer to that of the latter.

The modeling approach is based on the following assumptions:

(A1) The trend to the exit increases as particles get closer to it.
(A2) Particles are subject to a stronger influence to avoid the wall as they get closer

to it.
(A3) The tendency to look for less congested areas depends on the local density.
(A4) The tendency to follow the stream depends on the local density.

Notice that the effects related to assumptions (A3)-(A4) compete with each other. In
other words, higher densities will induce a higher tendency to look for less congested
areas but at the same time to follow the stream.We introduce a parameter ε ∈ [0, 1] that
reinforces one effect or the other according to the particular situation to be modeled.
The value ε = 0 corresponds to the situation in which only the research of less
congested areas is considered, while ε = 1 corresponds to the situation in which only
the tendency to follow the stream is taken into account.

2.3.2 Interaction Terms and Selection of the Desired Direction

Pedestrians change their velocity direction according to a not purely deterministic
decision which is taken by considering all the above introduced effects. This feature
can be efficiently modeled in a probabilistic manner, since different pedestrians are
not expected to react in the same way when facing a certain particular situation. More
precisely, at each interaction, each pedestrian is assumed to play a game whose payoff
is the updating of his/her direction accordingly to his/her strategy.

Dynamics induced by the shape of the environment.
This type of dynamics is modeled by means of the following two interaction terms.

• The interaction rate μ[ρ] models the frequency of interactions between candidate
particles and the boundary of the domain. We suppose that μ decreases with local
density, since the lower this quantity is, the easier is for pedestrians to realize about
the presence of walls and doors. Following this idea, we assume μ[ρ] ∼ 1 − ρ.

• The transition probability Ah(i) is the probability that an h-candidate particle
adjusts its direction into that of the test particle θi , induced by the presence of
walls and exit areas.

Themodeling approach assumes that particles change direction, in probability, only
to an adjacent (clockwise or anticlockwise) direction in the discrete set Iθ . This means
that a candidate h-particle may eventually end up into the states h−1, h+1 or remain
in the state h. Notice that in the case h = 1 we set θh−1 = θNθ , while in the case
h = Nθ we set θh+1 = θ1.

The set of all transition probabilities A = {Ah(i)}h,i=1,...,Nθ forms the so-called
table of games that models the game played by active particles interacting with the
geometry of the environment.
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According to assumptions (A1)-(A2), we define the vector

�ωG(x, θh) = [1 − dE (x)] �ν(x) + [1 − dW (x, θh)] �τ (x, θh),

whose direction θG is the geometrical preferred direction, meaning the ideal
direction that a pedestrian should take in order to reach the exit and avoid the walls in
an optimal way.

Since directions are discretized, an h-particle will update its direction by choosing
among the three allowed outputs θh−1, θh and θh+1 the closest to θG . The compact
form of the table of games A is given by

Ah(i) = βh(α)δs,i + [1 − βh(α)] δh,i , i = h − 1, h, h + 1,

where

s = argmin j∈{h−1,h+1}{d(θG, θ j )},

d(θ∗, θ∗) =
⎧⎨
⎩

|θ∗ − θ∗|, if |θ∗ − θ∗| ≤ π,

2π − |θ∗ − θ∗|, if |θ∗ − θ∗| > π,

δ j,i denotes the Kronecker delta function, and the coefficient βh , proportional to the
parameter α, is introduced to describe the fact that even in the case that the geometrical
preferred direction θG is close to θh , a transition may occur, and the more distant the
two states are, the more probable is this transition:

βh(α) =
⎧⎨
⎩

α, if d(θh, θG) ≥ �θ,

α
d(θh ,θG )

�θ
, if d(θh, θG) < �θ,

where �θ = 2π/n. Notice that if θG = θh , then βh = 0 and Ah(h) = 1, meaning
that a pedestrian keeps the same direction, at least due to the geometrical effects, with
probability 1.
Dynamics induced by interactions between pedestrians.
In this case, the interaction dynamics can be modeled as follows:

• The interaction rate η[ρ], defines the number of binary encounters per unit time.
We assume that the interaction rate increases with increasing local density. As
proposed in Bellomo et al. (2013), we assume η[ρ] = η0ρ, where η0 is the rate,
to be measured by experimental data, corresponding to the spatially homogeneous
case at low densities.

• The transition probability B1
hk(i)[ρ] is the probability that a candidate particle

modifies its direction into that of the test particle θi induced by a decision that
combines the research of less congested areas and the interaction with a field
particle moving with direction θk . The square brackets denote the dependence on
the density ρ.
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Concerning the so-called vacuum direction �γ , we have to consider how pedestrians
react according to their perception of the density around them, and the game consists
in the choice of the less congested direction among the three admissible ones. This
direction can be computed for a candidate h-pedestrian in position x by taking

� = �(θh, ρ(t, x)) = argmin j∈{h−1,h,h+1}{∂ jρ(t, x)},

where ∂ jρ denotes the derivative of ρ in the direction θ j . In this way, we have
�γ (θh, ρ) = (cos θ�, sin θ�).
According to assumptions (A3)-(A4) and recalling that �σk denotes the vector point-

ing in the direction of the field particle, we define the vector

�ωP (θh, θk, ρ) = ε �σk + (1 − ε) �γ (θh, ρ),

where the subscript P stands for pedestrians, and the direction θP of �ωP is the
interaction-based preferred direction, obtained as a weighted combination
between the trend to follow the stream and the tendency to avoid crowded zones.
Then, we propose the following table of games:

B1
hk(i)[ρ] = βhk(α)ρδr ,i + [1 − βhk(α)ρ] δh,i , i = h − 1, h, h + 1,

where r and βhk are defined as in the previous case

r = argmin j∈{h−1,h+1}{d(θP , θ j )},

βhk(α) =
⎧⎨
⎩

α, if d(θh, θP ) ≥ �θ,

α
d(θh ,θP )

�θ
, if d(θh, θP ) < �θ.

2.4 Modeling the Contagion Dynamics

Each individual is carrier of an internal micro-state accounting for their condition
related to an infectious disease. Let us first consider the simplest case in which the pop-
ulation is partitioned into four mutually exclusive compartments (that can be treated as
well as functional subsystems in our theoretical framework) with Iλ = {S, E, I , R}.
Here, S, E , I and R denote, respectively, susceptible, exposed, infectious and recov-
ered hosts.

Since the time scale of interest for movement and evacuation from a room is too
short (order of minutes) compared to the period from time of infection to time of
being contagious or infectious (order of days), it is imperative to include in our model
the disease latency period and, thus, the exposed compartment E . When a susceptible
individual interacts with an infectious one, shemay get infected but -during the latency
period-will not transmit the disease, until a transition from E to I takes place. Thismay
occur for sure after the evacuation and we are interested in monitoring the dynamics
of contagion during evacuation.
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The dynamics of anSEIRmodel can be described by the following reaction scheme:

S + I
irS−→ E + I

E
pE I−−→ I

I
pI R−−→ R,

(5)

where permanent waning immunity is being assumed (thus, individuals belonging to
the R compartment remain there).

Here, we assume that contagion occurs following the law of mass action, with
infection rate irS at which a susceptible individual may become exposed after an
interaction with an infected individual. The transitions from E to I and from I to
R depend only on the compartment sizes, with pE I and pI R denoting the respective
transition rates.

As mentioned above, since we are only interested in the evacuation time interval,
our table of games shall only consider the first transition in Eq. (5). Thus, rates pE I

and pI R can be neglected and the only non-trivial entry in the table of games for
contagion dynamics takes the form B2

SI (E) = irS , while all the other interactions do
not undergo any kind of transition.

It is useful to include a vaccinated class, as will be considered in the numerical
experiments afterwards. To do so, we simply add a compartment V including suscep-
tible individuals that can get infected but with a lower infection rate. In the case of a
perfect sterilizing vaccine, the infection rate would be 0 but in general we shall assume
a non-negative value irV ≤ irS .

The reaction scheme for the so-called SEIRV model is:

S + I
irS−→ E + I

V + I
irV−→ E + I

E
pE I−−→ I

I
pI R−−→ R,

(6)

and the transition probability densities shall be changed accordingly by adding the
non-trivial entry B2

V I (E) = irV .

Remark 6 It is worth noticing that the addition of a V -FS can model two possible
scenarios:
• Firstly, the straightforward interpretation of having immunized particles that can
contract the disease with a rate irV ≤ irS .
• On the other hand, V can also be thought as a class of individuals with a larger
awareness level, namely following recommendations and taking cautions to avoid
contagion (e.g., wearing masks). That is translated in a lower probability of getting
infected, with irV ≤ irS .
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Fig. 3 Dependence of the dimensionless velocity modulus v on the dimensionless density ρ for different
values of the parameter α representing the quality of the environment. In the free flow zone (ρ ≤ ρc(α) =
α/5) pedestrians move with the maximal velocity modulus vm (α) = α allowed by the environment. In the
slowdown zone (ρ > ρc(α)) pedestrians have a velocity modulus which is here heuristically modeled by
the third order polynomial joining the points (ρc(α), vm (α)) and (1, 0) and having horizontal tangent in
such points (Color figure online)

2.5 Modeling theVelocity Modulus

The decay or increase of the velocity modulus depends on the interactions between
pedestrians. It is assumed that people adjust their speed according to the level of con-
gestion around them. We assume that the maximal reachable dimensionless velocity
modulus vm = vm(α) depends linearly on the quality of the environment, in such away
that vm(0) = 0—any movement is hindered—and vm(1) = 1—the maximal speed
can be reached. Here, we assume that the speed depends on the local perceived density.
In particular, the highest reachable speed vm(α) is kept under low density conditions
(free flow regime), up to a certain critical density ρc(α) that can be experimentally
measured. For values of ρ greater than ρc, the velocity modulus decreases to zero
(slowdown zone). In the slowdown zone, we choose a polynomial-type dependence
of the velocity modulus on the local density, see Fig. 3. We refer to Sec. 2.3 of Agnelli
et al. (2015) for more details.

3 Numerical Results and Case Studies

This section presents some numerical simulations of the above introduced model, in
order to capture the overall dynamics of disease spreading under a variety of scenarios.

As a starting point, we endow system (3) with initial conditions f j
i (0, x), for i =

1, . . . , Nθ and j ∈ Iλ = {S, E, I , R, V }. Following the reasonings in Agnelli et al.
(2015), boundary conditions are not explicitly imposed, but are induced by the non-
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local action over the particles given by the term J j
i . Indeed, individuals feel the

presence of walls at a distance and modify their dynamics in order to avoid them (see
Sect. 2.3.1 for more details). The numerical solution of the system is obtained by using
a splitting method (Holden et al. 2010), where the overall evolution operator is seen as
the sum of evolution operators for each term in the model. Then, each term is solved
by means of an appropriate scheme, and finally all the pieces are attached together. In
particular, Eq. (1) is splitted into two subequations:

∂t f
j
i (t, x) + divx(vi [ρ](t, x) f j

i (t, x)) = 0, (7)

and

∂t f
j
i (t, x) = J j

i [ f ](t, x), (8)

for j ∈ Iλ, i = 1, . . . , Nθ . Equation (7) is a 2D homogeneous transport equation that
we solve using a finite volume scheme. This method guarantees conservation of the
total number of particles and we refer to LeVeque (2002); Piccoli and Tosin (2011);
Schäfer (2006) for more details on the implementation. On the other hand, Eq. (8) is
solved by means of a first order Euler explicit method to go forward in time.

In the following we consider a square domain of side length 10 m with an exit door
of width 2 m. This is the same domain used in Agnelli et al. (2015); Kim and Quaini
(2019) and it is useful to analyze how evacuation and epidemiological dynamics are
merged in the model. Details on how to compute the vectors pointing to the exits or
letting pedestrian avoid the walls can be found in those references. The set Iθ is defined
as a discrete size of n = 8 directions:

Iθ =
{
θi = i − 1

8
2π, i = 1, . . . , 8

}
,

while the velocity modulus is assumed to depend on the perceived density and on
the quality of the environment, as described in Agnelli et al. (2015). We will deal
with non-dimensional quantities, that are obtained by referring the spatial coordinates
relative to the longest dimension of the domain L = 10

√
2 m, velocity modulus to

VM = 2 m/s and density to ρM = 7 m−2 as in Buchmueller and Weidmann (2006).
From these values, we get the reference time TM = 5

√
2 s.

Figure 4 shows some snapshots of the evacuation process. We start with around 50
pedestrians initiallymovingwith direction θ1. The proportion of individuals belonging
to S, I and V compartments are, respectively, 60%, 25% and 15%, while none of them
is initially exposed. In Fig 4 (d) we see how the proportion of exposed individuals
evolves as the evacuation takes place. Notice that contagion is considered only within
the domain as we do not monitor disease dynamics once individuals are outside the
room. For this case, we took α = 1.

In the following we present three case studies aiming to analyze the model perfor-
mance under different scenarios. The first case study is devoted to the sensitivity to
parameters α and ε, the second case study deals with the role of the infection rate,
while the third one refers to the role of immunization and/or contagion awareness.
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Fig. 4 Figures a, b and c show three snapshots of the evacuation process and d the evolution of exposed
population E(t) vs t . For this experiment, the population is initially distributed in the following proportions:
60% in S, 25 % in I , 15% in V and 0% in E (Color figure online)

3.1 Case-Study 1: Sensitivity to˛ and "

InAgnelli et al. (2015) a great deal of attentionwas given to understand the dependence
of the evacuation time on the quality of the environment α and the parameter weighing
“stream vs vacuum” effects ε. Now, since we are dealing with the coupled contagion
model, wewant to understand the influence of these two parameters on the spread of an
infectious disease. Consequently, we study the evacuation and contagion dynamics as
wemove in the (α, ε) space, while keeping the infection rates irS = 0.1 and irV = 0.01
fixed. In particular, as shown in Fig. 5a it is clear that poor environment conditions
lead to a tougher evacuation, and thus larger evacuation times. As observed in Fig. 5b
for fixed α the variation with respect to ε is not much significant.

Figure 6 shows the final proportion of exposed pedestrians (when the evacuation is
over) as a function of (a) α for different values of ε and (b) ε for different values of α.
We see that larger ε values generate higher levels of contagion, since this is correlated
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Fig. 5 a Evacuation time as a function of α for different values of ε. b Evacuation time as a function of ε

for different values of α (Color figure online)

Fig. 6 Final proportion of exposed pedestrians (when the evacuation is over) as a function of a α for
different values of ε and b ε for different values of α. One can observe that larger ε values generate higher
levels of contagion. On the other hand, larger values of α are related, in general, to smaller fractions of
exposed individuals, due to shorter exposure times. However, the relationship is not always monotonic due
since the role of ε and crowding is acting as well (Color figure online)

with a stronger tendency to follow the stream and, consequently, larger gatherings:
pedestrians remain closer and the transmission of a pathogen is facilitated.

On the other hand, we see that larger values of α are related, in general, to smaller
fractions of exposed individuals, due to shorter exposure times (as observed above).
However, the relationship is not always monotonic as for the evacuation time, since
the role of ε and crowding is acting as well.

Finally, Fig. 7 shows the combined sensitivity analysis on α and ε, where the above
described phenomena is jointly observed.

These qualitative results are in agreement with the empirical evidence of a strong
exposure time-risk relationships for airborne transmitted diseases. For instance, know-
ing the exposure time of healthy subjects in closed venues, is a useful tool to estimate
the corresponding individual infection risk, as quantitatively discussed in Buonanno
et al. (2020) for several scenarios in the case of SARS-CoV-2. In addition, in Costanzo
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Fig. 7 Final proportion of exposed pedestrians (when the evacuation is over). Each dot shows the evacuation
time (horizontal axis) and the proportion of exposed individuals at exit time (vertical axis) for a given
combination of α and ε. Notice that experiments with the same α value form clusters of points illustrated
with different colors (moving to the right for decreasing α’s). For each fixed α, the evacuation time is
roughly the same, and points move up in the plane (higher levels of contagion) as ε increases (Color figure
online)

and Flores (2022) authors present a contagion risk estimator model based on Wells-
Riley probabilistic approach for interior spaces in which people share the same
so-called “airborne shared space”. Starting from a single infectious individual in the
simulated environments, results show a positive correlation between probability of
infection and permanence time.

3.2 Case-study 2: On the Role of the Infection Rate

The infection rate measures the risk of infection upon interaction between infected and
susceptible individuals.As a key parameter appearing inmost epidemiologicalmodels,
highly related to outbreak formation, appearance of endemic states and extinction of
a disease (Brauer et al. 2019), it is important to understand its role within the context
of our evacuation model. This case-study is devoted to a qualitative understanding of
the role of the infection rate on the overall contagion dynamics.

To do so, let us now vary the infection rates irS and irV for non-vaccinated and
vaccinated (or aware) pedestrians, respectively,while keepingfixedα = 1and ε = 0.4.

Initially, we consider that 75% of the population is initially healthy, with 60%
belonging to the S compartment and 15% the V compartment.

Figure 8 shows the exposed population after the evacuation is over for different
combinations of the infection rates. It can be seen that increasing infection rates lead
to larger proportion of exposed individuals, as expected. In particular, by comparing
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Fig. 8 Case-study 2: On the role of the infection rate. Final proportion of exposed pedestrians (when the
evacuation is over) as a function of a irS for different values of irV and b irV for different values of irS . It can
be observed that increasing infection rates lead to larger proportion of exposed individuals. Additionally,
note that contagion is much more sensitive to irS than to irV (Color figure online)

Figs. 8a and b we see that contagion is much more sensitive to irS than to irV in a pre-
dominantly susceptible population. This is especially relevant when designing social
distancing and containment measures for the transmission of a respiratory disease
within a closed domain. In order to keep the spread of the disease under certain levels,
and particularly when large fractions of population are not immunized -as we will
discuss in the next case-study- non-pharmaceutical interventions to keep irS and irV
under control must be implemented.

3.3 Case-study 3: The Role of Immunization

In this last exploratory scenario, we study the role of immunization (or awareness)
programs. In particular, the aim is to qualitatively understand if larger proportions of
individuals with a lower probability of contracting the disease lead to a reduction in
contagion.

In the following numerical experiments, α = 1 and ε = 0.4 are still fixed, but now
the infection rates irS = 0.1 and irV = 0.01 are kept fixed as well. The proportion of
infected pedestrians I goes from 20% to 70% (thus 80% to 30% for initially healthy
individuals). Among healthy individuals, we change the ratio between vaccinated or
aware V (0) and non-vaccinated susceptible S(0) pedestrians.

In the following, we analyze the influence of the fraction of immunized (or aware)
individuals on the overall dynamics.

Figure 9 shows the fraction of exposed individuals relative to initially healthy
pedestrians after evacuation for different initial proportions ofwhether vaccinated indi-
viduals or individuals with larger levels of awareness. It is clear from this experiment
that both immunizing the population and/or reaching larger proportion of individual
awareness have a strong effect on reducing the spread of the disease. Two important
conclusions arise from this experiment. First, notice that larger proportions of infected
individuals lead to a higher level of contagion at the end of the evacuation. Second, as
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Fig. 9 Case-study 3: On the role of the immunization. Final proportion of exposed pedestrians when the
evacuation is over relative to initially healthy population for different proportions of whether vaccinated
individuals or individual awareness levels. Each line corresponds to a different fraction of infected pedes-
trians (Color figure online)

we move to the right in the figure (namely, increasing V (0)/[V (0) + S(0)]) the lines
become closer. This supports the fact that reaching high levels of immunity or aware-
ness helps to keep contagion under control independently of the force of infection in
the range under study.

This result confirms the evidence that, for several diseases, application of appro-
priate measures (in this case, immunization or suitable awareness controls such as
social distancing, mask wearing or hand hygiene) aimed at enlarging the proportion
V related to V + S is of major importance to reduce the likelihood of transmission
and thereby protect the population (Morawska et al. 2020).

4 Conclusions

Anextension of a kineticmodel for crowd evacuation frombounded domains presented
in Agnelli et al. (2015) to deal with the spread of an infectious respiratory disease
within indoor venues has been presented in this work. Some contributions dealing
with individual awareness to contagion were discussed and incorporated in Kim and
Quaini (2020), while in Bellomo et al. (2020, 2022); Aguiar et al. (2021) treated
specifically the epidemiological problem of contagion. The main contribution of this
present paper is to merge both approaches, by considering that pedestrians moving
within a domain can be described not only by their position and velocity but also by
a microscopic variable accounting for their state regarding the disease (susceptible,
exposed, infectious, recovered, vaccinated).

Even if a huge amount of epidemiologicalmodeling peer reviewed articles appeared
since the COVID-19 pandemic started (Else 2020), the model is suitable to explore
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any airborne transmitted infectious disease that needs proximity among individuals to
be spread (Tang et al. 2011), e.g., influenza A (Teunis et al. 2010; Modchang et al.
2012), tuberculosis (Deol et al. 2022) or pneumococcal pneumonia (Torén et al. 2022).
For all of them, inhalation of droplets, from either persons with the disease or healthy
carriers, constitute a major transmission route.

As a result, we obtained a rich model that is highly versatile to explore several
scenarios and situations. For example, the V functional subsystem might represent
both the presence of an immunized class or of a group of individuals with larger
awareness levels. Thus, through simple modifications of the transition probabilities
the model is suitable to deal with a variety of different assumptions both from the
epidemiological and the evacuation points of view.

The numerical experiments showed that the model is robust and let us explore
several features of the dynamics while moving the parameter space or changing initial
conditions. The proposed case-studies summarize situations that need to be tackled
to propose specific policies to reduce contagion in closed venues. In particular, the
considered exploratory scenarios show a strong agreement with empirical evidence
related to exposure time and risk awareness. Very useful tools have been recently
developed and confirm our results that, as time indoors increases, infections can occur
in shared room air despite distancing (Peng et al. 2022; Peng and Jimenez 2021;Miller
et al. 2021). Our results qualitatively agree with observed contagion dynamics in the
case of SARS-CoV2, as discussed in Srikrishna (2020) in the case of closed room or
a classroom with comparable number of individuals.
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