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The original version of the article unfortunately contained mistakes. It has been
corrected in this correction.

1 Corrections

There was an incorrect citation of a theorem from Morse Theory (Forman 1998,
Corollary 3.6, page 107). Some assumptions were missing. This mistake is corrected
as follows.

1. Add the necessary assumptions in the theorem.
2. Complete the proof that uses this theorem (by showing that the assumptions hold

in the context of our proof).

Raimundo Saona and Ksenia A. Khudiakova contributed equally to this work.

The original article can be found online at https://doi.org/10.1007/s11538-022-01029-z.

B Ksenia A. Khudiakova
kseniia.khudiakova@ist.ac.at

Raimundo Saona
raimundojulian.saonaurmeneta@ist.ac.at

Fyodor A. Kondrashov
fyodor.kondrashov@ist.ac.at

1 Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Lower Austria,
Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-022-01118-z&domain=pdf
https://orcid.org/0000-0002-6246-1465
https://doi.org/10.1007/s11538-022-01029-z
https://doi.org/10.1007/s11538-022-01029-z


17 Page 2 of 3 R. Saona et al.

2 Morse Function Assumption

Theorem 2, Section 4, page 3 of 12, is a reference to a result from Morse Theory
given by Forman (1998, Corollary 3.6, page 107). The result was wrongly cited since
there is a missing assumption about the properties of the functions that the theorem
applies to. This does not invalidate the conclusions of Theorem 2 since the function
we construct satisfies these missing properties.

The necessary changes are as follows.

1. Theorem 2, Section 4, page 4 of 12, adds the assumption that the function f :
V ∪ E → R needs to be a Morse function.

2. Section 4.1, “Necessary definitions”, page 5 of 12, introduces the definition of
Morse function for graphs. Formally, the following definition.

Definition 1 (Morse function) LetG = (V , E) be a graph. The function f : V ∪E →
R is a Morse function if the following conditions hold.

(a) All vertices have at most one edge with lower or equal value. Formally, for all
v ∈ V ,

|{u ∈ V : e = {u, v} ∈ E, f (e) ≤ f (v)}| ≤ 1 .

(b) All edges have at most one vertex with lower or equal value. Formally, for all
e = {u, v} ∈ E ,

|{u ∈ V : ∃v ∈ V e = {u, v}, f (e) ≥ f (v)}| ≤ 1 .

3. Section 4.2, “Proof”, page 5 of 12, adds a step in the proof consisting of proving
that the function defined is a Morse function.

4. Section 4.2, “Proof”, page 5 of 12, proves that the function defined is a Morse
function as follows.

• By the definition of Morse functions, we have to show a property for each
vertex and each edge. For each vertex v, we need to show that there is at most
one edge connected to v whose value is lower or equal to f (v). Indeed this is
the case since edges in E2 have the highest value possible and, by construction,
there is at most one edge in E1 connecting v with its fittest mutation. All other
edges connected to v come from a vertex with strictly lower fitness. Therefore,
if v is not a peak, there is exactly one edge connected to v with a lower value.
If v is a peak, all edges connected to v have strictly higher values than f (v).

• For each edge e, we need to show that at most one of its vertices has a value
larger or equal to f (e), but not both. Indeed this is the case for e ∈ E1, since
the value of f (e) is the average of the value of its vertices. Edges in E2 have the
highest possible value, so this property also holds. In conclusion, the function
f is indeed a Morse function.
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