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Abstract
Targeted vaccination policies can have a significant impact on the number of infections
and deaths in an epidemic. However, optimising such policies is complicated, and the
resultant solution may be difficult to explain to policy-makers and to the public. The
key novelty of this paper is a derivation of the leading-order optimal vaccination
policy under multi-group susceptible–infected–recovered dynamics in two different
cases. Firstly, it considers the case of a small vulnerable subgroup in a population
and shows that (in the asymptotic limit) it is optimal to vaccinate this group first,
regardless of the properties of the other groups. Then, it considers the case of a small
vaccine supply and transforms the optimal vaccination problem into a simple knapsack
problem by linearising the final size equations. Both of these cases are then explored
further through numerical examples, which show that these solutions are also directly
useful for realistic parameter values. Moreover, the findings of this paper give some
general principles for optimal vaccination policies which will help policy-makers and
the public to understand the reasoning behind optimal vaccination programs in more
generic cases.

Keywords Vaccination · Epidemiology · Epidemics · SIR modelling

1 Introduction

The trajectory of an epidemic can be dramatically changed by the implementation of a
vaccination program, as has been shown in the case of COVID-19 (Bloom et al. 2021).
These vaccination programs are most effective when they target specific groups in a
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population (Fitzpatrick and Galvani 2021), although the optimal targeting strategy is
dependent on the properties of the disease and vaccine (Moore et al. 2021). Thus, it is
important to have robust methods to determine the optimal strategy whenever a new
epidemic emerges.

In recent years, the epidemiological literature has grown rapidly, and awide range of
models have been developed and analysed. These include branching-process models
(Pakkanen et al. 2021); network-based models (Bedson et al. 2021); and machine-
learning-based models (Muhammad et al. 2021), among many others (Brauer et al.
2019).

However, despite these innovations, compartmental models, where the population
is split into a number of subgroups and disease transmission is modelled by a system
of differential equations (Abou-Ismail 2020), remain a popular choice for epidemi-
ologists and have been widely used for modelling the COVID-19 pandemic (Kong
et al. 2022). As discussed in (Kong et al. 2022), a number of different compart-
ment structures have been used, while many authors have also sought to model the
effect of government interventions and quarantining procedures (Vardavas et al. 2021;
de Camino-Beck 2020; Adhikari et al. 2020).

One such compartmental model that is widely used (Ram and Schaposnik 2021;
Acemoglu et al. 2021; Kuniya 2019) is the multi-group SIR (susceptible–infected–
recovered) model. This is an extension of the classical SIR model (Kermack and
McKendrick 1927) and has been used to model a range of diseases such as measles
(Sattenspiel and Dietz 1995), influenza (Brauer 2008) and COVID-19 (Ellison 2020).
It provides a general frameworkwith which to assess the effectiveness of different vac-
cination policies, while also remaining mathematically tractable, allowing theorems
about its behaviour to be rigorously proved (Penn and Donnelly 2022). It splits a pop-
ulation up into a number of interconnected subgroups (such as age groups (Longini Jr
et al. 1978) and captures the different transmission dynamics between each group.
This construction highlights the dual benefit that vaccination can have—vaccines
that are infection-reducing directly protect the individuals that are vaccinated while
transmission-reducing vaccines can also indirectly protect unvaccinated individuals
(Eichner et al. 2017).

This dual benefit can significantly complicate the optimal vaccination problem
when there is a negative correlation between the infectiousness of a group and the
vulnerability of itsmembers to the disease. Examples of this occurwhen the population
is divided by age for diseases such as COVID-19 (Miura et al. 2021) and seasonal
influenza (Molinari et al. 2007). In such cases, the optimal strategymay not be obvious
and could be highly dependent on uncertain parameters (Saadi et al. 2021), while the
seemingly intuitive solution may be significantly sub-optimal (Delmas et al. 2021).
Moreover, the complicatedmethods used tofind the optimal solution, involving solving
the adjoint equations derived via Pontryagin’s maximum principle (Boutayeb et al.
2021; Lee et al. 2012), mean that the optimal solution may be difficult to understand
or qualitatively justify to policy-makers.

When attempting to understand a complicated problem such as finding the optimal
vaccination policy, it is often helpful to look at cases with extreme parameter values
via asymptotic analysis, which helps the problem to be analytically solvable (at least to
leading order). This can help from general principles for optimal vaccination policies.
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These principles can then be used both to form heuristics for finding the true optimal
policy in a more general setting and also to explain the resultant optimal solution, as
it is often comprised of a mixture of policies resulting from these principles.

There have been a number of recent papers that have used asymptotic analysis
to derive general principles. Gavish and Katriel (2022) discusses a model with high
reproduction numbers and shows that in this case, it is often optimal to vaccinate the
less infectious groups in a population. Moreover, Rao and Brandeau (2021), building
on the work of Zaric and Brandeau (2001), linearises the model equations and derives
a simple knapsack problem, although the solution to this problem is only optimal
when considering the short-term evolution of the epidemic. Other special cases are
investigated in Duijzer et al. (2018) (which looks at a population with disconnected
subgroups) and Duijzer et al. (2016) (which examines the critical vaccination fraction
for a population with separable mixing).

Two cases will be considered in this paper, which both provide novel contributions
to the literature. Firstly, the case of a population with a small vulnerable subgroup
will be analysed, and it will be shown that, in the asymptotic limit (as the size of this
population group tends to zero and its vulnerability tends to infinity), any vaccination
policy is eventually outperformed by one where this group is vaccinated first. Of
course, the concept that vaccinating vulnerable groups is important has been raised
in many previous papers, such as Moore et al. (2021) and Dushoff et al. (2007), but
the mathematically rigorous asymptotics presented here provide new evidence for the
importance of this principle.

The second case to be discussed is that of a small total vaccination supply. The key
novel result thatwill be shown is that (to leadingorder) the optimal vaccinationproblem
reduces to a linear knapsack problem, which can be easily solved. This knapsack
problem differs from the one in Rao and Brandeau (2021) because, by linearising the
final size equations rather than the model ODEs (ordinary differential equations), the
optimal solutions and predictions of their behaviour are valid for the full evolution
of the epidemic, rather than just in the short term. Again, the case of a small vaccine
supply has been examined in many papers such as Shim (2021, 2011) and Medlock
and Meyers (2009), but these papers have simply analysed the optimisation problem
in the standard way, without deriving the explicit leading-order solution as is done in
this paper.

In order to prove these results, it is necessary to build on previous literature. A
number of results from Penn and Donnelly (2022) (found in Appendix D) are used
in the course of the proof alongside some well-established results, such as the final
size of an epidemic in SIR-type models (Anderson and May 1992). However, the
theorems presented in the main text are completely novel, with their proofs requiring
a significant extension of the current literature. In particular, the various propositions in
the proofs (found in Appendices A–C) are, to the best of the authors’ knowledge, new
to the literature. Some of these results, such as, for example, the proof that epidemic
final size is continuously dependent on initial conditions and the vaccination policy
found in Proposition 5 may also be helpful to those seeking to prove similar results.

The main analytic results will be further investigated through examples, and, in
particular, the small supply case will be used to show that it is not always optimal to
vaccinate the most infectious group, even when all groups are equally vulnerable. The
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UK population’s age structure will be used to relate these results to a realistic example,
and optimal small-supply vaccination policies will be approximated for diseases with
different age-dependent case fatality ratios.

The paper is structured as follows: Firstly, the multi-group SIR model will be
introduced. Then, analytic results will be presented in the case of a small vulnerable
subgroup,whichwill be explored through numerical examples. Finally, analytic results
related to a small vaccination supply will be presented and again, examples will be
used to illustrate the findings.

2 Modelling

2.1 Disease Transmission andVaccinationModel

The model used in this paper is identical to the model presented in Penn and Donnelly
(2022), and this section is simply a summary of the modelling section in Penn and
Donnelly (2022). The population is divided into n subgroups, and each subgroup i is
further divided into six compartments:

Si :=Number of people that are in group i, are susceptible, and are unvaccinated
(1)

Ii :=Number of people that are in group i, are currently infected, and

were infected while unvaccinated (2)

Ri :=Number of people that are in group i, are recovered, and

were infected while unvaccinated (3)

SVi :=Number of people that are in group i, are susceptible and are vaccinated (4)

I Vi :=Number of people that are in group i, are infected

and were infected after being vaccinated (5)

RV
i :=Number of people that are in group i, are recovered and were infected

after being vaccinated. (6)

Using SIR principles, the model becomes

dSi
dt

= −
n∑

j=1

(β1
i j I j + β2

i j I
V
j )Si − Ui (t)Si

Ni − Wi (t)
(7)

dIi
dt

=
n∑

j=1

(β1
i j I j + β2

i j I
V
j )Si − μ1

i Ii (8)

dRi

dt
= μ1

i Ii (9)
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dSVi
dt

= −
n∑

j=1

(β3
i j I j + β4

i j I
V
j )SVi + Ui (t)Si

Ni − Wi (t)
(10)

dI Vi
dt

=
n∑

j=1

(β3
i j I j + β4

i j I
V
j )SVi − μ2

i I
V
i (11)

dRV
i

dt
= μ2

i I
V
i (12)

where

Wi (t) :=
∫ t

0
Ui (s)ds, (13)

and

Ni = Si (t) + Ii (t) + Ri (t) + SVi (t) + I Vi (t) + RV
i (t) (14)

is the size of group i . Moreover, the βα
i j terms represent transmission from group j

to group i and the μα
i terms give the infectious period of the relevant individuals in

group i .
Here, Ui (t)dt gives the number of individuals in group i that are vaccinated in the

small time interval [t, t + dt], and hence,Wi (t) is the number of individuals that have
been vaccinated in group i in [0, t]. It is assumed that these vaccinations are assigned
randomly to the unvaccinated members of group i , so that each vaccine is given to a
susceptible member of group i with probability

number of susceptible members

number of unvaccinated members
= Si

Ni − Wi (t)
(15)

Thus, the total rate of susceptibles being vaccinated is Ui (t)Si
Ni−Wi (t)

.
Note that there is a slight difference between this model and the one commonly

found in the literature (in Hansen and Day 2011; Zaman et al. 2008; Kar and Batabyal
2011 among many others) which set the vaccination term equal to SiUi (t) instead of
Ui (t)Si
Ni−Wi (t)

. As discussed in Penn and Donnelly (2022), this corresponds to vaccines that
are randomly distributed to the whole population, which can be seen by rewriting the
vaccination term as:

SiUi (t)dt = Si
Ni

× NiUi (t)dt (16)

The first term on the right-hand side is then the probability of a randomly chosen
member of group i being susceptible, while the second term is the total number of
vaccines assigned in a small time interval [t, t + dt], noting that here the dimension
of Ui (t) is 1/time (compared to the model used in this paper where the dimension of
Ui (t) is population/time), and hence, it is necessary to scale by Nidt to convert Ui (t)
into a number of vaccines.
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This is in contrast to the model in this paper which corresponds to vaccines that are
randomly distributed only to the unvaccinated population. Penn and Donnelly (2022)
provides justification for the use of this “unvaccinated-only model”, which is therefore
the one that will be used in this paper. However, they are structurally very similar, and
so it would be possible to apply the results in this paper to the more commonly found
model.

To dealwith the (removable) singularity that can occurwhenWi = Ni , it is assumed
that

Wi (t) ≤ Ni ∀t ≥ 0 and Wi (t) = Ni ⇒ Ui (t)Si
Ni − Wi (t)

= 0 (17)

To capture the benefits of vaccination, there are additional constraints put on the βα
i j

and μα
j terms which are

β1
i j ≥ β2

i j , β
3
i j ≥ β4

i j and μ1
i ≤ μ2

i . (18)

Finally, it will be assumed throughout the remainder of this paper that the population
sizes are normalised so that

n∑

i=1

Ni = 1 (19)

Further details are given in Penn and Donnelly (2022).

2.2 Optimisation Problem

The optimal vaccination problem considered in this paper aims to find the vaccination
policy, U , which minimises a weighted sum of the total number of infections in each
group. Thus, the problem is:

min

{ n∑

i=1

pi

(
Ri (∞) + κi R

V
i (∞)

)
:

n∑

i=1

Ui (t) ≤ A(t),
n∑

i=1

Wi (t) ≤ B(t),

Ui (t) ≥ 0, Wi (t) ≤ Ni ∀t ≥ 0

}
. (20)

Here, A(t) represents the maximal vaccination rate, B(t) represents the maximal
vaccine supply and Ri (∞) and RV

i (∞) are the limiting values of Ri (t) and RV
i (t)

as t → ∞. The weights pi and piκi could be interpreted in a number of ways,
depending on the quantity of interest. For example, pi = κi = 1 if one wanted to
minimise infections, or pi and piκi could be the case fatality ratio of unvaccinated
and vaccinated members of group i , respectively, if one wanted to minimise deaths.
However, it is important to note that κi ≤ 1 for each i as vaccinated members of
the population should be no more vulnerable to the disease that their unvaccinated
counterparts.
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It is helpful to define H(U) to be the objective function—that is

H(U) =
n∑

i=1

pi

(
Ri (∞) + κi R

V
i (∞)

)
, (21)

where Ri and RV
i are found from solving the model equations with vaccination policy

given by U .
It will be assumed throughout this paper that all “feasible”U are sufficiently smooth

for all the quoted theorems to hold. In general, this does not significantly restrict U—
for example, the results in Penn and Donnelly (2022) simply require that each Ui (t)
is bounded and Lebesgue integrable, while Theorems 1 and 2 require only that U has
finite support. Moreover, it is assumed that B(t) is non-decreasing (as total supply
should not decrease over time) and piecewise differentiable.

3 Results

3.1 A Small, Vulnerable Subgroup

Consider the case where one of the groups in the population (which, without loss of
generality, will be assumed to be group 1) is very small and vulnerable. That is, the
population N1 satisfies

N1(ε) = ε << 1 (22)

while the weights satisfy

p1(ε) = p1 and pi (ε) = p∗
i ε ∀i 	= 1 (23)

for some constants p1 and p∗
i . It will be assumed that all κi are constant. In this setting,

group 1 contains a very small proportion of the population, but each member of group
1 is much more vulnerable than the rest of the population.

Thus, this case is practically valid when there is a small subsection of the population
that carries themajority of the vulnerability to a disease. Aswill be discussed further in
Section 3.2.3, this has applicability to diseases such as COVID-19, where the majority
of the deaths occur significantly older people, while it could also apply to diseases
where there are rare conditions that cause a minority of people to be much more
vulnerable.

It is mathematically convenient to rescale the parameters pi so that only p1 depends
on ε. This can be done by multiplying all the pi terms by 1

p1ε
so that

p̃1(ε) = 1

ε
and p̃i (ε) = p∗

i

p1
:= p̃i ∀i 	= 1. (24)
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This leads to an equivalent optimisation problem in the sense that the optimal vacci-
nation policy will be the same. This occurs because the only change to the objective
function is a scalar multiplication of 1

p1ε
to each of the terms. Note that while this

multiplicative factor tends to infinity as ε tends to 0, this system is only analysed for
nonzero values of ε, and hence, this rescaling is valid.

3.1.1 Analytic Results

The first result presented in this section shows that, in the limit of a group with small
size and large vulnerability (with the total cost of the whole group being infected,
N1 p̃1, remaining constant) any fixed vaccination policy where the vulnerable group is
not vaccinated first will eventually (that is, for sufficiently small ε) be outperformed
by a similar policy where the vulnerable group is vaccinated first.

Group 1 will be given a population size N1 = ε and an infection cost p̃1 = 1
ε
(recall

that the p̃i represent the rescaled values of pi , and so it is acceptable that p̃1 > 1 for
small ε). It will be assumed that the initial conditions in the group are proportional to
ε, so that there exists some σ ∈ (0, 1] such that the initial susceptible population is
σε and the initial infected population is (1 − σ)ε.

Before stating the full theorem, it is helpful to explain the various constraints and
variables that will be introduced. Define, for each value of ε ≥ 0, U(t; ε) to be
the “fixed” vaccination policy where group 1 is not vaccinated first. Of course, the
vaccination policy cannot be completely fixed, as the size, ε, of group 1 is decreasing,
and so it will simply be assumed that the vaccines given out to each group satisfies

|Wi (t; ε) − Wi (t; 0)| < ε ∀t ≥ 0 and ∀i ∈ {1, . . . , n} (25)

Note that all groups are allowed to have small changes in the number of vaccinations
they receive—this allows, for example, for vaccinations that would have been given
to group 1 being reassigned as group 1’s population shrinks.

Moreover, to reduce the lengths of the proofs, it will be assumed that U has uni-
formly bounded finite support—that is, there is some constant tU such that for each
i ∈ {1, . . . , n},

t > tU ⇒ Ui (t; ε) = 0 ∀t, ε ≥ 0 (26)

In order for group 1 to not be vaccinated first in the limit as ε → 0, there must be some
time τ at which some fixed proportion w of the other groups have been vaccinated,
while at least some fixed proportion (1− α) of group 1 has not been vaccinated. That
is,

W1(τ ; ε) < αε and
n∑

i=1

Wi (τ ; ε) > w. (27)

One can also define a vaccination policy Ũ(t; ε) where group 1 is vaccinated first.
This will be done by re-directing all vaccinations from the U(t; ε) policy to group 1
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until it is fully vaccinated, and keeping the same vaccination policy after group 1 is
fully vaccinated (ignoring any vaccines thatU(t; ε) assigns to group 1 after this time).

To ensure convergence of the model at ε = 0, given �(ε) defined by

�(ε) :=
{
i : ∃t ≥ 0 s.t. Ii (t; ε) > 0

}
, (28)

it will be assumed that �(ε) = {1, . . . , n} for all ε > 0 (as any groups which never
suffer any infections can be ignored) and that �(0) = {2, . . . , n}. While this second
condition may not be strictly necessary for the theorem to hold, it is unrestrictive and
ensures convergence—if this were not the case, then it would be possible that infection
in some set of groups were seeded only by group 1. Thus, when ε = 0, these groups
would suffer no infections, while for any ε > 0, they would have an epidemic of size
independent (at leading order) of ε.

The final condition on the model is that the people in group 1 can be infected
by other groups and that vaccinated members of group 1 gain protection from this
infection. That is, there is some i ∈ {1, . . . , n} such that

β1
1i > β3

1i ≥ 0. (29)

This is an important condition, as if people group 1 could only be infected by other
members of group 1 the total number of infections in group 1 would decay as ε → 0,
meaning that it would no longer necessarily be optimal to vaccinate group 1 first (as
most people in group 1 would not catch the disease anyway for small ε).

With these considerations, Theorem 1 can now be stated.

Theorem 1 Suppose that for all ε > 0,

N1(ε) = ε, S1(0; ε) = εσ, I1(0; ε) = (1 − σ)ε and p̃1(ε) = 1

ε
(30)

for some σ ∈ (0, 1) and that all other parameter values and initial conditions are
independent of ε.

Consider any vaccination policy with uniformly bounded finite support given by
U(t; ε) and suppose that there exists fixed α, τ,w > 0 such that

W1(τ ; ε) < αε and
n∑

i=1

Wi (τ ; ε) > w ∀ε > 0. (31)

Define a new policy, Ũ(t; ε), given by

Ũ1(t; ε) =
{∑n

i=1Ui (t) if
∑n

i=1 Wi (t; ε) ≤ ε

0 otherwise
(32)
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and, for i 	= 1,

Ũi (t; ε) =
{

0 if
∑n

i=1 Wi (t; ε) ≤ ε

Ui (t; ε) otherwise
. (33)

Suppose that for each i ∈ {1, . . . , n} and t ≥ 0,

|Wi (t; 0) − Wi (t; ε)| < ε. (34)

Define

�(ε) := {i : ∃t ≥ 0 s.t. Ii (t; ε) > 0} (35)

and suppose that �(ε) = {1, . . . , n} for any ε > 0 and that �(0) = {2, . . . , n}.
Finally, suppose that there exists an i ∈ {2, . . . , n} such that

β1
1i > β3

1i ≥ 0. (36)

Then, the policy Ũ is feasible and for sufficiently small ε,

H(U(t; ε)) > H(Ũ(t; ε)). (37)

For the second theorem, it is helpful to note that, using the results in Penn andDonnelly
(2022), if one defines

χ(t) :=
{

A(t) if
∫ t
0 A(s)ds < B(t)

min(A(t), B ′(t)) if
∫ t
0 A(s)ds ≥ B(t)

, (38)

then (assuming that there is an optimal solution, and undermild smoothness conditions
on U , A and B) there must be an optimal solution satisfying

n∑

i=1

Wi (t) = max

(∫ t

0
χ(s)ds, 1

)
. (39)

The following theorem then proves that the limiting optimal vaccination policy vac-
cinates the vulnerable group as quickly as possible. To reduce the length of the proof,
it will be assumed that σ = 1, so that (in the small ε limit) all members of group 1
can be vaccinated before being infected.

Theorem 2 With the definitions of Theorem 1, suppose additionally that

n∑

j=2

(β1
1 j − β3

1 j )I j (0; ε) > 0. (40)
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That is, the initial difference between the infective force on vaccinated and unvacci-
nated members of the population is positive. Suppose further that

σ = 1. (41)

Suppose an optimal vaccination policy for each ε is given byU(t; ε) and suppose that
U(t; ε) has uniformly bounded finite support. Then, there exists an η depending only
on α, τ , w and the model parameters such that, for any U satisfying the condition
(31) as defined in Theorem 1

ε ∈ (0, η) ⇒ H(U) > H(U). (42)

Moreover, there is a sequence of optimal vaccination policies,U(t; ε), which satisfies

lim
ε→0

(
W 1(t; ε)

ε

)
= 1 ∀t s.t.

∫ t

0
χ(s)ds > 0. (43)

Note that the existence of an optimal vaccination policy has been assumed in the
statement of this theorem. The authors believe that an optimal policy should exist,
as Proposition 5 in the appendices can be used to show that H(U) is continuous.
However, more care would need to be taken with the smoothness assumptions on U
to create a rigorous proof of this.

Theorems 1 and 2 are proved in the appendices.

3.1.2 Examples

To illustrate these analytic results, consider a simple two-group example. Suppose that
group 1 is small, vulnerable, and non-infectious, while group 2 is large, invulnerable
and infectious. These groups could be interpreted as “old” and “young”, respectively,
although there is no specific physical situation being modelled here.

Suppose the transmission matrices are given by

β1 =
(
1 2
2 4

)
, β2 = χβ1 β3 = ρβ1 and β4 = χρβ1 (44)

for some parameters χ and ρ which will be varied. This corresponds to the case
of vaccination having (independently) an effectiveness χ at stopping people being
infected and ρ at stopping infected people transmitting the disease.Moreover, suppose
that

μα
i = 1 ∀i, α (45)

and

N1 = ε, p̃1 = 1

ε
, κ1 = 1 N2 = 1, p̃2 = p∗ and κ2 = 1, (46)
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for some parameter p∗ that will be varied. Finally, suppose that the initial conditions
are

S1(0; ε) = ε, I1(0; ε),= 0 S2(0; ε) = 1 − I ∗ and I2(0; ε) = I ∗, (47)

for some parameter I ∗ that will be varied and that the vaccination constraints are given
by:

A(t) = 1 and B(t) = max(t, 1). (48)

Consider therefore a vaccination policy where group 2, the infectious group, is vac-
cinated first (and hence, as B(∞) = N2, it is the only group that is vaccinated). That
is,

U1(t; ε) = 0 and U2(t; ε) =
{
1 if t ≤ 1
0 otherwise

. (49)

Hence, with Ũ defined as in Theorem 1, one has

Ũ1(t; ε) =
{
1 if t ≤ min(1, ε)
0 otherwise

and Ũ2(t; ε) =
{
1 if t ∈ (ε, 1]
0 otherwise

. (50)

Figure 1shows a comparison of the objective values H(U(t; ε)) and H(Ũ(t; ε)) for
different values of ε. As expected, when ε = 1, vaccinating the more infectious group
first is optimal (as they have the same vulnerability in this case), while for ε smaller
than around 0.1, it becomes more effective to vaccinate the vulnerable group first,
illustrating the results of Theorem 1.

It is useful to consider the approximate smallness of ε required in Theorem 1. That
is, how small ε needs to be in order for Ũ(t; ε) to be the better vaccination policy. To
explore this, define, for each value of I ∗ and p∗,

ε∗(I ∗, p∗) := inf

({
ε : H(Ũ(t; ε)) > H(U(t; ε))

}
∪ {1}

)
. (51)

That is, ε∗(I ∗, p∗) is the smallest value of ε such that vaccinating group 2 first is better
that the Ũ policy, with a cut-off value at 1 (as it is possible that for some parameter
values, the Ũ policy is always better).

Figure 2shows the behaviour of ε∗(I ∗, p∗). As expected, ε∗ is decreasing in I ∗—
this is because when there are fewer initial infectives, there is more time to vaccinate
the infectious group before the epidemic has a chance to grow, reducing the peak of
the epidemic. Moreover, ε∗ is decreasing in p∗, as higher values of p∗ mean that the
number of infections in group 2 is valued higher.

Moreover, Fig. 2 suggests that, for each fixed p∗, ε∗ is uniformly bounded below for
all I ∗. Indeed, this is expected as when I ∗ is very small, there are negligible infections
within the interval t ∈ [0, 1] and so the vaccination policies U and Ũ are in effect
being carried out in a completely uninfected population. As the R0 (that is, the initial
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Fig. 1 (Color Figure Online) A comparison of the two vaccination policies, U(t; ε) (where the infectious
group is vaccinated first) and Ũ(t; ε) (where the vulnerable group is vaccinated first) for different values
of ε. Note that here, I∗ = 0.01, χ = ρ = 0.5 and p∗ = 1
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Fig. 2 (Color Figure Online) A plot of ε∗(I∗, p∗), the highest value of ε for whichU , is a better vaccination
policy that Ũ . Note that ε∗ is capped at 1, so that a value of 1 indicates that there were no values found of
ε∗ such that U was the better policy. Note that here, χ = ρ = 0.5
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Fig. 3 (Color Figure Online) A plot of ε∗(I∗, p∗), the highest value of ε for whichU is a better vaccination
policy that Ũ , in the case of complete vaccination effectiveness (so χ = ρ = 0). Note that because the
values of the objective function are O(I∗), there is some numerical instability which has caused some
non-smoothness of the plot

growth rate of the disease) number of a fully vaccinated population (in this case) is
greater than 1, I (t; ε) will reach an O(1) value regardless of the vaccination policy.
Thus, while decreasing I ∗ will increase the time to reach this O(1) value, it will not
significantly change the final infections in the epidemic, and hence, ε∗ should converge
to a fixed value for small I ∗.

When the fully vaccinated population has an R0 lower than 1, the difference between
U and Ũ is more distinct. Indeed, provided I ∗ is small enough for vaccination to be
completed before many infections have occurred, one would expect O(I ∗) infections
in group 2 in either of the two vaccination policies (for sufficiently small ε), as in both
policies, the size of the infected compartment will be decreasing after the vaccination
has been completed. However, in the U case, one would expect O(I ∗ε) infections in
total in group 1 (as there is an O(I ∗) infection force on a group of size O(ε) for O(1)
time), while in the Ũ case, one would expect O(I ∗ε2) infections in total in group 1,
as the population of this group is only of size O(ε) for O(ε) time. This behaviour is
illustrated in Fig. 3, which shows that ε∗ converges to significantly higher values than
in Fig. 2—indeed, in the case that p∗ = 0, it appears that U is never optimal for any
ε ≤ 1.
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3.2 A Small Vaccination Supply

In this section, the case of a small, immediately available vaccine supply will be
considered. In this case, itwill be possible to analytically derive the optimal vaccination
policy (in the limit of small supply).

This case may be particularly relevant if there was an outbreak of a disease where
a vaccine already existed (so that some vaccinations are available immediately), but
where supplies were limited, and scaling production would take a significant amount
of time. An example of this can be found in the recent monkeypox outbreak (Mahase
2022) where the UK initially purchased 20 000 smallpox vaccines. This small figure—
not even enough to vaccinate 0.1% of the UK population (UN 2019)—would certainly
fall within the small vaccination supply case.

Moreover, one can use the results in this section regardless of the time at which
vaccinations become available (that is, they are not only relevant at the start of an
epidemic). This would be of practical use whenever vaccine production is slow, or
when the disease is sufficiently mild (or vaccine production is sufficiently expensive)
that a large-scale vaccination program is not deemed economically feasible.

3.2.1 Analytic Results

To state the analytic result from this section, it is helpful to define

β ′
i j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β1
i j if i, j ≤ n

β2
i(n− j) if i ≤ n < j ≤ 2n

β3
(n−i) j if j ≤ n < i ≤ 2n

β4
(n−i)(n− j) if n < i, j ≤ 2n

, . (52)

This large transmission matrix captures the dynamics of all 2n susceptible and infec-
tious groups in themodel (both vaccinated and unvaccinated). Indeed, after vaccination
has been completed, there is no movement from Si to SVi so β ′ allows for the model
to be considered as a 2n-group SIR model without vaccination. Thus, in particular,
one can derive a simple final size relation for the total number of infections in the
epidemic. Similarly, define

μ′
i =

{
μ1
i if i ≤ n

μ2
(i−n) if n < i ≤ 2n

(53)

and

p′
i =

{
pi if i ≤ n

κ(i−n) p(i−n) if n < i ≤ 2n
. (54)

In this case of small supply, it is possible to effectively differentiate the final size
of the epidemic with respect to the vaccination policy and use the resultant linear
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approximation to form a simple knapsack problem for the optimal vaccination policy.
This will involve writing the objective in the form:

H(U(t; ε)) = H(0) + yTW(τ (ε); ε) + o(ε) (55)

where W is the final vaccination amounts in each group. To define the gradient, y, it
is necessary to use the inverse of a matrix Q given by

Qi j = 1

1 − e
−∑2n

j=1

β′
i j

μ′
j
R j (∞;0)

[
δi j + Si (0; 0)e

−∑2n
j=1

β′
i j

μ′
j
R j (∞;0)

β ′
i j

μ′
j

]
, (56)

where as before, the variables fi (t; η) indicate the value of the relevant model variable
at time t , given that the parameter ε is equal to η, and δi j is the Kronecker delta. Then,
y is defined by:

x = Q−T p′ and yi = Si (0; 0)
Ni

(xi+n − xi ) ∀i ∈ {1, . . . , n}. (57)

These definitions allow for the theorem to be stated.

Theorem 3 Suppose that, for all ε > 0

B(t; ε) = ε ∀t ≥ 0. (58)

and that all other parameter values and initial conditions are independent of ε. Suppose
that A(t) is a continuous function with

A(0) > 0 (59)

and that the matrix M is invertible. For sufficiently small ε, define

τ(ε) := inf

{
t :
∫ t

0
A(s)ds = ε

}
. (60)

Suppose that U satisfies the condition

n∑

i=1

Ui (s) = min

(∫ t

0
χ(s)ds, 1

)
, (61)

where χ is defined in (B169). Then, for sufficiently small ε, the objective function is
given by:

H(U(t; ε)) = H(0) + yTW(τ (ε); ε) + o(ε). (62)
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Moreover, if there is a unique element of y equal to the minimum of y then the optimal
vaccination policy (to leading order in ε) is uniquely given by:

Ui (t; ε) =
{
A(t) if i = min{yi : i ∈ {1, . . . , n}} and ∫ t0 A(s)ds < ε

0 otherwise
. (63)

The second part of the theorem assumes a unique minimal element of y. This is
not guaranteed to happen, and if there were multiple groups with equal values of y,
this would mean that the effectiveness of vaccinating these groups would be equal to
O(ε). However, any sets of parameters satisfying this condition would be unstable to
small perturbations (as a trivial example, consider perturbing the initial susceptible
populations Si (0, 0) of the groups with a minimal values of yi ). Thus, in any practical
scenario, the probability that the best estimates of the parameters givemultipleminimal
values of yi is very small.

Theorem 3 is proved in the appendices.

3.2.2 Vaccinating a Homogeneous Population

To illustrate the effectiveness of this approximation, consider first an example of a
homogeneous population (so n = 1). Consider the case where β1 = β, β2 = β3 =
0.5β and β4 = 0.25β for some parameter β that will be varied. Suppose moreover
that

N1 = μ1
1 = μ2

1 = p1 = κ1 = A(t) = 1, S1(0) = 1 − 10−4 and I1(0) = 10−4.

(64)

Finally, suppose B(t) = ε where ε will be varied.
Figure 4shows a comparison of the predicted and actual change in number of deaths,

ρ1 for two values of ε. It illustrates that, even when ε = 0.1, a relatively large value, y
gives a good approximation of the true value (found by simulation). Moreover, when
ε = 0.01, the two lines are almost indistinguishable. This is useful validation for the
approximation, as the correction term was simply proved to be o(ε) rather than, for
example, O(ε2), and so it is encouraging that the predictions are so close.

An interesting property of Fig. 4 is that the value of β for which vaccination is
most effective appears to be very close to S(0)β = 1 (as S(0) ∼ 1). Note that here,
as μ = 1, this is equal to the initial reproduction number of the disease. This has
the perhaps surprising consequence that if one has a set of disconnected, equally
vulnerable subgroups, a small vaccination supply should be assigned to a group with
initial reproduction number close to 1, rather than giving it to the groupwith the highest
value of β (that is, the most group with the most infectious individuals). This result is
in line with the findings of Gavish and Katriel (2022), which showed that vaccinating
less infectious groups can be more effective, and is an important consideration for
vaccination policy planning.
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Fig. 4 (Color Figure Online) A comparison of the predicted and actual values of the change in deaths, ρ1,
in the case of a homogeneous population for two different values of vaccination supply, ε and for different
values of infectivity, β. Note the different scales on the two y axes

3.2.3 Application to Age-Structured Populations

Consider assigning a small quantity of vaccinations to an age-structured population,
using the example of the UK. The disease model has been estimated using the inter-
age-group contact matrices� from Prem et al. (2017), alongside population estimates
N from UN (2019). As in Prem et al. (2017), this gives a transmission matrix of

β1
i j = β

i j

N j
(65)

for some scalar parameter β. As in the previous section, it will be assumed that

μα
i = 1 ∀i, α (66)

and

β2 = 0.5β1, β3 = 0.5β1 and β4 = 0.25β1. (67)

It will also be assumed that the initial infected population is small, so that, for each i

Si (0; ε) = (1 − 10−4)Ni and Ii (0; ε) = 10−4Ni . (68)
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Fig. 5 (Color Figure Online) A heatmap of the next-generation matrix for the age-structured UK population

In the following examples, β will be chosen so that the disease-free next-generation
matrix of a completely unvaccinated population, given by

Ri j = Niβ
1
i j

μ1
j

= β1
i j (69)

has a spectral radius (that is, largest eigenvalue) equal to 4. This sets the R0 number
in the overall population to be 4. To illustrate the population structure, Fig. 5shows
a heatmap of the matrix Ri j . This highlights the strongly assortative nature of the
contacts (that is, members of a subgroup are most likely to be contacts with members
of their own subgroup),while also showing that contacts are lower for older age groups.

Now, two different age-dependent case-fatality ratios will be considered—uniform
case-fatality and approximate COVID-19 case fatality, taken from Dyer (2021). In
both cases, it will be assumed that vaccination reduces the case fatality ratio by 90%
(following the results of Dyer (2021) for the COVID-19 vaccines) so that κi = 0.1 for
all i . However, it is worth emphasising that this model is simply based on real-world
data and does not seek to accurately model the COVID-19 pandemic.

Figure 6shows the effectiveness of vaccinating each age group in the two different
cases, as a proportion of the optimal effectiveness. Note that here the proportion of
effectiveness of assigning vaccine to group i is given by yi

min j (y j )
, as each y j is non-

positive. It highlights that the significantly highermortality rates for COVID-19 for the
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Fig. 6 (Color Figure Online) The effectiveness of assigning a small quantity of vaccines to each age group
as a proportion of the optimal effectiveness

older age groups mean that vaccinating them is much more effective than vaccinating
the other age groups. This is an example of Theorems 1 and 2, as the oldest age group
makes up a relatively small percentage (around 9%) of the population, but, if one
scales p such that it has median value 1, the pi Ni value for the oldest age group is
approximately 20, and so is definitely O(1) rather than O(ε).

A perhaps surprising exception to the general correlation between effectiveness
and mortality is the relatively low effectiveness of vaccinating the 55–59-year-old
age group, which is lower than the 45–49-year-old and 50–54-year-old groups. This
illustrates the non-intuitive nature that optimal vaccination policies can take, and the
importance of investigating their behaviour fully. The main reason for this low effec-
tiveness is that, while the 55–59-year-old age group is more vulnerable to COVID-19
than the younger groups, according to Prem et al. (2017), they have much less contact
with the 75+-year-old age group, and thus, vaccinating this group provides signifi-
cantly less secondary protection to most vulnerable members of the population. The
authors speculate that this could be due to a significant number of the parents of the
55–59-year-old age group having died (particularly in comparison with the younger
groups), reducing their links with the 75+-year-old age group. Moreover, those in the
55–59-year-old age group may also not be old enough to have many 75+-year olds in
their social circles (in comparison with members of older groups). However, further
investigation would be needed to justify this claim.

In the case of uniformmortality, the vaccination policy becomes even less intuitive,
as Fig. 6 shows that the optimal age group to vaccinate is the 40–44-year olds. Indeed,
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from Fig. 5, it may seem that the 15–19-year-old group would be the best group to
vaccinate, as they have the highest overall transmission—that is, the maximum value
of

Total infectious force of group j :=
16∑

i=1

Ri j . (70)

However, if instead, one considers

Total external infectious force of group j :=
16∑

i=1,i 	= j

Ri j , (71)

then it is the 35–39 and the 40–44 age groups which have the highest values. This can
be considered in conjunctionwith the results of the previous subsection, which showed
that vaccinating groups with R0 numbers close to 1 is optimal for disconnected popu-
lations. Indeed, the “secondary effect” of vaccinations (that is, the number of people
who are not vaccinated, but are protected from the disease because of vaccines given
to others) can be higher for groups with lower internal infectious force, particularly
when their external infectious force is higher.

Finally, it is useful to again explore the range of values for ε for which y gives a good
approximation of the true number of infections. As the minimum (scaled so that the
total population size is 1) value of Ni is 0.0498 in this case, ε will be tested at 0.0498.
The results of this are shown in Fig. 7 , which again illustrates the effectiveness of
this approximation. Indeed, the largest error across either case is of order 10−4, which
in turn is of order ε2 y. This suggests that the o(ε) correction term in Theorem 3 is
significantly smaller than ε, which increases the usefulness of this approximation.
However, further investigation is needed to determine whether this correction is of
O(ε2 y) for all parameter values.

4 Discussion

This paper has shown two general principles for optimal vaccination policies by look-
ing at the asymptotic behaviour of the optimal policy in the case of extreme parameters.
Firstly, it has shown that small, vulnerable groups should in general be vaccinated
first, regardless of the overall timetable of vaccination. This is an important result as
it requires very little data on the population—merely the case fatality ratios and pop-
ulations of the different subgroups—and in particular needs no forecasting of future
transmission trends or vaccine supply.

The analytically derived results (in the limiting case) also show that the effect of
vaccinating this small group far outweighs the effect of vaccinating any of the other
groups. Indeed, if the size of the vulnerable group is O(ε) and the case fatality ratio of
the other groups is O(ε), then Theorem 1 shows that vaccinating the vulnerable group
will lead to an O(ε) decrease in the number of fatalities, while vaccinating the same
number of people from another groupwill only decrease this by O(ε2). As discussed in
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(a): COVID-19 Case Fatality Ratio
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Fig. 7 (Color Figure Online) A comparison of the predicted and simulated change in the objective function
when vaccinating each individual group at ε = 0.0498. Both the cases of a COVID-19 case fatality ratio
(in a) and a uniform case fatality ratio (in b) are presented

Sect. 3.2.3, this result is of practical importance for diseases such as COVID-19, where
the majority of the fatalities would be from certain age groups within the population.
In particular, it provides strong evidence for the importance of sharing vaccines on
a global scale, as this is the only way to ensure that vaccinations can be given to all
people who are most vulnerable to the disease.

However, this result should be used with caution, as it certainly does not imply
that a population should always be vaccinated in order of decreasing vulnerability to
the disease. The optimal vaccination policy is, in general, a balance between directly
protecting the vulnerable by vaccinating them and by indirectly protecting them by
vaccinating those groups with the highest infectiousness. This is shown in Fig. 6 by
the fact that, when a COVID-19 case fatality ratio is used, the relative effectiveness
of vaccinating each age group does not decrease everywhere with age. The results of
Theorems 1 and 2 simply provide a principle that in the asymptotic limit, the optimal
strategy is to vaccinate small, vulnerable groups first. In the absence of data on vac-
cination effectiveness (which is crucial in determining whether indirectly protecting
the more vulnerable population may be better), this provides a mathematically sound
justification for beginning with the most vulnerable members of a population while
gathering data to determine the rest of the vaccination policy.

123



Asymptotic Analysis of Optimal Vaccination Policies Page 23 of 72 15

The second principle derived in this paper was a linear approximation to the change
in number of fatalities from a disease, which allows for the estimation of the optimal
vaccination policy in the case of a small total supply. Again, this principle is flexible,
applying for any set of parameters and provides a computationally cheap way of the
approximating the optimal solution, even for large numbers of groups, as it merely
requires the solution of a linear system involving the same number of variables as the
number of groups.

A useful feature of this approximation is that it appears to have high accuracy even
for reasonably large values of the total supply, such as when 10% of the population
can be vaccinated. Figures4 and 7 show that there is very little deviation between
the predicted and actual values of the objective function and so suggest that this is a
flexible and widely applicable method of approximation, even when the population
contains a large number of subgroups. However, it would be helpful to strengthen the
results of Theorem 3 to get a stronger bound on the error for small ε to ensure that
this similarity holds for all models.

The results of the examples presented in Sect. 4 are also informative for vaccination
policy. As shown in Fig. 4, in a completely homogeneous population, vaccination has
the most effect when the reproduction number ( β

μ
in this case) is slightly bigger than

1, with a steep decline in effectiveness for reproduction numbers below 1 and a more
gradual decline for large reproduction numbers. This result allows one to consider the
“vaccination leverage” of a population—that is, the effectiveness that a small quantity
of vaccination can have—and shows that, even in the case of homogeneous case fatality
ratios, vaccinating in order of infectiousness may be far from optimal, as it is much
more difficult to reduce infections in a highly infectious population.

Indeed, a similar idea was shown to apply when the UK age structure was consid-
ered. In the case of uniform case fatality, the optimal group to assign a small amount
of vaccinations was the 40–44 age group which, as shown in Fig. 5, is not the most
infectious group. This perhaps counter-intuitive result highlights the importance of
mathematically justifying the principles one uses to decide on optimal vaccination
policies, as “common-sense” arguments may in fact give false conclusions. Commu-
nicating such principles to governments and policy-makers will be crucial in future
pandemics, particularly ones with more homogeneous case fatality ratios where the
optimal policy is not as intuitive as for diseases like COVID-19.

An important limitation of Theorem 3 is that the optimal policies for small vac-
cination supplies do not necessarily generalise to give the beginning of the optimal
vaccination policy in the case of a much larger vaccination supply. Indeed, it is possi-
ble to have bifurcations in the optimal vaccination policy as the supply increases—for
example, it can become possible to completely avoid an epidemic by vaccinating a
large quantity of an infectious group. Thus, while the linear approximation can be a
useful starting point when attempting to estimate the optimal strategy, it is important
to consider alternatives when a large proportion of the population can be vaccinated.

The results of this paper are only applicable if the trajectory of the disease in question
can be well-approximated by multi-group SIR dynamics. In particular, this requires
there to be reasonably high levels of the disease in a population [otherwise stochastic
dynamics change the epidemic behaviour (Ball and Neal 2002)], and for population
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subgroups to be sufficiently large (again to prevent stochasticity dominating). More-
over, the model assumptions would not hold if individuals could be re-infected, or if
the effect of vaccination was not eternal (though if the timescale of the epidemic was
sufficiently shorter than the timescale of immunity decay, then the model would still
provide a good approximation).

A final barrier to using the results in this paper is that estimation error in the model
parameters could lead to the optimal solutions being incorrectly calculated. Estimat-
ing the βα

i j parameters is particularly complicated, especially in a multi-group setting
where it is difficult to establish the chain of transmission between different groups.
Because of this, building models based on contact rates between groups [estimated
using surveys (Prem et al. 2017)] or proxies such as commuting patterns (Keeling and
White 2011) may be the best method, at least to provide priors on the parameters. The-
orems 1 and 2 are significantly less susceptible to errors in parameters, as they do not
require any of the βα

i j orμ
α
j parameters to be known, although the level of “smallness”

of ε would vary depending on the disease in question. Theorem 3 is significantly more
susceptible to error, as all the model parameters are needed. However, while there
may be bifurcations in the optimal strategy, the optimal value of the objective func-
tion should depend continuously on the parameters (a fact which could be proved by
extending the results of Proposition 5), limiting the effect of small estimation errors.

Despite this, the authors expect that similar results to those presented in Theorem
3 will hold for a very wide class of deterministic models. Essentially, the only nec-
essary characteristic of the model that is required by Theorem 3 is that the objective
function, H(U), is a continuously differentiable function of the vaccination policy U
in some neighbourhood of 0. Indeed, y in Theorem 3 can be replaced by ∇H(0)
in a general setting. Certainly, it should be conceptually simple (though perhaps
algebraically complicated) to generalise this result to other compartmental models
such as SEIR (Susceptible–Exposed–Infected–Recovered) and even those modelling
vector-transmitted diseases.

The authors also expect that Theorem 1 will hold for general models where the
effect of vaccination is eternal. The essential points in the proof of Theorem 1 are
that vaccinating the small group does not affect the overall vaccination program (to
leading order) and that it does have an O(1) effect on the objective function. Both of
these should still hold in a wide range of models, although it may be difficult to define
the meaning of “very small group” and “very vulnerable group”—particularly in more
complicated settings such as individual-based models.

This work could be extended by deriving more principles for extreme parame-
ter values and investigating whether they generalise to realistic model parameters.
By combining the existing results in this paper and others such as Gavish and Katriel
(2022) with potential new ones, one could create an algorithm that creates good heuris-
tics of optimal vaccination policies that could be used as starting points for accurately
approximating the optimal policy for a general parameter set. This could have sig-
nificant implications for the design of vaccination policies, as it would enable the
optimisation problem to be estimated for very complex models, as the time taken
to converge to an optimal solution would significantly decrease given good initial
heuristics.
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5 Conclusion

The results of this paper are summarised below:

• If a sufficiently vulnerable, sufficiently small population exists in a multi-group
SIR model, it is optimal to vaccinate this group first.

• For small overall vaccination supplies, the optimal vaccination problem can be
well approximated by a simple knapsack problem.

• This linearisation appears to be a good approximation even for relatively large
vaccination supplies (such as 10% of the population).

• This linearisation shows that, in the case of uniformcase fatality, it is not necessarily
optimal to vaccinate the most infectious group.
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Appendix A: Proof of Theorem 1

Note that, throughout this section, the tilde will be removed from the rescaled pi terms
to reduce notation (and hence all pi terms used here will be assumed to be rescaled).

Theorem 1 Suppose that for all ε > 0

N1(ε) = ε, S1(0; ε) = εσ, I1(0; ε) = (1 − σ)ε and p1(ε) = 1

ε
(A1)

for some σ ∈ (0, 1). Suppose that all other parameter values and initial conditions
are independent of ε.
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Consider any vaccination policy given by U(t; ε) and suppose that there exists fixed
α, τ,w > 0 such that

W1(τ ; ε) < αε and
n∑

i=1

Wi (τ ; ε) > w ∀ε > 0. (A2)

Define a new policy Ũ(t; ε)

Ũ1(t; ε) =
{∑n

i=1Ui (t) if
∑n

i=1 Wi (t; ε) ≤ ε

0 otherwise
(A3)

and, for i 	= 1

Ũi (t; ε) =
{

0 if
∑n

i=1 Wi (t; ε) ≤ ε

Ui (t; ε) otherwise
. (A4)

Suppose that for each i ∈ {1, . . . , n} and t ≥ 0,

|Wi (t; 0) − Wi (t; ε)| ≤ ε. (A5)

Define

�(ε) := {i : ∃t ≥ 0 s.t. Ii (t; ε) > 0} (A6)

and suppose that �(ε) = {1, . . . , n} for any ε > 0 and that �(0) = {2, . . . , n}.
Finally, suppose that there exists a i ∈ {2, . . . , n} such that

β1
1i > β3

1i ≥ 0. (A7)

Then, the policy Ũ is feasible and for sufficiently small ε,

H(U(t; ε)) > H(Ũ(t; ε)). (A8)

Proof It is first important to prove that the Ũ is feasible. Firstly,

n∑

i=1

Ũi (t; ε) ≤
n∑

i=1

Ui (t; ε) (A9)

which, as U is feasible, means that the supply and rate constraints are satisfied.
Moreover, as each Ui (t; ε) ≥ 0,

Ũi (t; ε) ≥ 0 ∀i ∈ {1, . . . , n}. (A10)

Also, for i 	= 1,

Ũi (t; ε) ≤ Ui (t; ε) ⇒ W̃i (t; ε) ≤ Wi (t; ε) ≤ Ni . (A11)
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Finally, define

t∗ := sup

{
t :

n∑

i=1

Wi (t; ε) ≤ ε

}
∈ � ∪ {∞} (A12)

and then

U1(t; ε) ≤
∫ t∗

0

n∑

i=1

Ui (s; ε)ds ≤ ε = N1 (A13)

as required. ��
Define Si (t; ε) to be the number of susceptibles given the parameters N1(ε), S1(0; ε)

and I1(0; ε) and the vaccination policy U(t; ε), and define S̃i (t; ε) to be the number
of susceptibles given the parameters N1(ε), S1(0; ε) and I1(0; ε) and the vaccination
policy Ũ(t; ε). Use similar definitions for the other variables in the model.

Proposition 4

Proposition 4 For each t ≥ 0 and i ∈ {1, . . . , n},

|W̃i (t; ε) − W̃i (0; ε)| ≤ 2ε. (A14)

Proof Firstly, note that

W̃1(t; ε) ≤ ε (A15)

so

|W̃1(t; ε) − W̃1(0; ε)| ≤ ε. (A16)

Now, suppose that i 	= 1. Then, for each ε, t ≥ 0, with t∗ defined as in (A12),

|Wi (t; ε) − W̃i (t; ε)| =
∣∣∣∣
∫ t

0
Ui (s)ds −

∫ max(t,t∗)

t∗
Ui (s)ds

∣∣∣∣. (A17)

If t < t∗, then

|Wi (t; ε) − W̃i (t; ε)| ≤
∣∣∣∣
∫ t

0
Ui (s)ds

∣∣∣∣ ≤
∣∣∣∣
∫ t∗

0
Ui (s)ds

∣∣∣∣ ≤ ε (A18)

while if t ≥ t∗, then

|Wi (t; ε) − W̃i (t; ε)| =
∣∣∣∣
∫ t∗

0
Ui (s)ds

∣∣∣∣ ≤ ε. (A19)
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Thus, noting

Wi (t; 0) = W̃i (t; 0) (A20)

and using (34),

|W̃i (t; ε) − W̃i (0; ε)| ≤ |W̃i (t; ε) − Wi (t; ε)| + |Wi (t; ε) − Wi (t; 0)| ≤ ε + ε = 2ε

(A21)

as required. ��

Proposition 5

Next, it is helpful to consider the continuous dependence of the final size of the
epidemic on the initial conditions and the vaccination policy. Aweaker result is proved
in Penn and Donnelly (2022) (and is referenced in this proof as Lemma 14). However,
that result only holds for finite times, and extending it to hold for the final sizes requires
a significant amount of extra work.

Proposition 5 Suppose that the Ui have uniformly bounded support for each ε > 0.
Moreover, for each of the model variables, fi , suppose that

| fi (0; ε) − fi (0; 0)| < K ε (A22)

for some constant K and that

|Wi (t; ε) − Wi (t; 0)| < K ′ε (A23)

for some constant K ′. Finally, suppose all parameters are independent of ε with the
exception that N1(ε) = ε. Then, for each δ > 0, there exists some � > 0 such that

ε ∈ [0, �] ⇒ | fi (∞; ε) − fi (∞; 0)| < δ ∀ f ∈ {Ii (t; ε), I Vi (t; ε), Ri (t; ε), RV
i (t; ε)}.

(A24)

Note that this holds both in the case of Theorem 1 (where N1 → 0,�(ε) = {1, . . . , n}
for ε > 0 and �(0) = {2, . . . , n}) or, in the case where each Ni is independent of ε

(by adding a disconnected group of size ε).

Proof Choose any δ > 0. Now, it is possible to write the system for I and IV in the
form

d J(t; ε)

dt
= M(t; ε)J(t; ε), (A25)
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where M depends on the values of S(t; ε), SV (t; ε), βα
i j and μα

i and

J =
(

I
IV

)
. (A26)

Hence, in particular, by using Proposition 4 and Lemma 14 for any fixed t ≥ 0,

lim
ε→0

(M(t; ε)) = M(t; 0). (A27)

Moreover, if the support of each Ui (t; ε) is bounded by tU (which exists by assump-
tion), then for t > tU , each Si (t; ε) and SVi (t; ε) is non-increasing in t and so M(t; ε)

is non-increasing. As it is bounded below, it therefore must converge to some matrix
M(∞; ε), and, for t > tU ,

d J(t; ε)

dt
≥ M(∞; ε)J(t; ε). (A28)

Hence, by Lemma 9,

J(tU + t ′; ε) ≥ et
′M(∞;ε) J(tU ; ε). (A29)

Moreover, by Lemma 11,

lim
t ′→∞

(
J(tU + t ′; ε)

) = 0 (A30)

and hence (by non-negativity)

lim
t ′→∞

(
et

′ Q(∞;ε) J(tU ; ε)
)

= 0. (A31)

Now, define

max
i,α

(μα
i ) := μmax (A32)

and then define

M(∞; 0) := M(∞; 0) + μmaxI2n, (A33)

where I2n is the 2n by 2n identity matrix. Thus, in particular, M(∞; 0) is non-
negative and so

eM(∞;0) = e−μmaxeM(∞;0) (A34)

is non-negative as the exponential of a non-negative matrix is non-negative (as it is
a weighted sum of powers of that matrix with positive weights). Thus, by Perron–
Frobenius theory, summarised in Berman and Plemmons (1994), there exists a real
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non-negative eigenvalue λ(∞; 0) (called the Perron eigenvalue) of eM(∞;0) such that
any other eigenvalues ρ(∞; 0) satisfy

|ρ(∞; 0)| ≤ |λ(∞; 0)| (A35)

so, in particular

�(ρ(∞; 0)) ≤ �(λ(∞; 0)). (A36)

��
Claim 0 < |λ(∞; 0)| < 1

Proof Note that λ(∞; 0) > 0, as

trace

(
eM(∞;0)

)
≥ trace

(
e−μmaxI2n

)
> 0 (A37)

and thus, λ(∞; 0) 	= 0.
From Berman and Plemmons (1994), there is a non-negative eigenvector, v, with

eigenvalue λ(∞; 0). Now, v must be an eigenvector of M(∞; 0) (as eigenvectors of
a matrix and its exponential are the same). Thus, there is some λ∗(∞; 0) such that

M(∞; 0)v = λ∗(∞; 0)v. (A38)

In particular, writing v = (v1, . . . , v2n)
T

λ∗(∞; 0)v1 = (M(∞; 0)v)1 = −μ1
1v1 (A39)

and thus, either λ∗(∞; 0) = −μ1
i < 0 or v1 = 0. Suppose first that λ∗(∞; 0) = −μ1

1.
Then, this means that (as the eigenvalues of eM(∞;0) are the exponentials of the
eigenvalues of M(∞; 0)),

|λ(∞; 0)| = |e−μ1
1 | < 1. (A40)

Similarly, vn+1 	= 0 implies that

|λ(∞; 0)| = |e−μ2
1 | < 1. (A41)

Thus, suppose for the remainder of the proof of this claim that v1 = vn+1 = 0. Now,
for i ≤ n, the entries on the ith row of M(∞; 0) are given by:

M(∞; 0)i j =
⎧
⎨

⎩

Si (∞; 0)β1
i j − δi jμ

1
i if j ≤ n

Si−n(∞; 0)β3
i( j−n) if j > n

(A42)
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and for i > n, they are given by

M(∞; 0)i j =
⎧
⎨

⎩

SVi (∞; 0)β2
i j if j ≤ n

SVi−n(∞; 0)β4
i( j−n) − δi jμ

2
i if j > n

, (A43)

where δi j is the Kronecker delta.

Now, as �(0) = {2, . . . , n}, by Lemma 13, it is necessary that

Ji (t; 0) > 0 ∀t > 0 and i ∈ {2, . . . , n}. (A44)

Moreover, if I Vi (t; 0) = 0 for some t > 0, then, by Lemma 15, as �(0) = {2, . . . , n},
it is necessary that

SVi (t; 0)β3
j i = SVi (t; 0)β4

j i = 0 ∀ j ∈ {2, . . . , n} (A45)

and so, if t ≥ tU , then this implies

SVi (∞; 0)β3
j i = SVi (∞; 0)β4

j i = 0 ∀ j ∈ {2, . . . , n}. (A46)

Thus, in this case, for j /∈ {1, n + 1}

M(∞; 0)i j = −μ2
(i−n)δi j . (A47)

Therefore, suppose J i (tU ; 0) = 0 for some i /∈ {1, n + 1} (and so, necessarily,
i ∈ {n + 2, . . . , 2n}). Then,

(M(∞; 0)v)i =
2n∑

j=1

M(∞; 0)i jv j (A48)

= M∞; 0)i1v1 + M(∞; 0)i(n+1)v(n+1) + M(∞; 0)i ivi (A49)

= −μ2
i vi (A50)

and so

|λ(∞; 0)| = |e−μ2
i | < 1. (A51)

Consequently, this holds if any J i (tU ; 0) = 0. Conversely, suppose that J i (tU ; 0) 	= 0
for all i /∈ {1, (n + 1)}. Then, there exists some α > 0 and some non-negative vector
w such that

J(tU ; 0) = αv + w. (A52)

123



15 Page 32 of 72 M. J. Penn, C. A. Donnelly

Therefore, for any positive integer n,

enM(∞;0) J(tU ; 0) = enM(∞;0)(αv + w) = λ(∞; 0)nαv + enM(∞;0)w ≥ λ(∞; 0)nαv.

(A53)

Now, v is an eigenvector so it has a nonzero component, which means that

(
lim
n→∞(enM(∞;0) J(tU ; 0)) = 0

)
⇒
(

lim
n→∞(λ(∞; 0)nαv) = 0

)
⇒
(

|λ(∞; 0)| < 1

)

(A54)

and so |λ(∞; 0)| < 1 holds in all cases, which finishes the proof of this claim.

Claim There exists some constant X independent of δ such that
∫∞
T Ji (s; ε)ds ≤ Xδ

Proof Now, the exponentials of the eigenvalues of M(∞; 0) are the eigenvalues of
eM(∞;0) which means that, if η(∞; 0) is an eigenvalue of M(∞; 0) then there exists
some κ > 0 such that

|eη(∞;0)| ≤ |λ(∞; 0)| < e−4κ < 1 ⇒ |e�(η(∞;0))| < e−4κ ⇒ �(η) < −4κ (A55)

and so all eigenvalues of M(∞; 0) have strictly negative real part. Thus, by continuous
dependence of eigenvalues on thematrix, asM(t; 0) converges toM(∞; 0) as t → ∞,
there exists some T > tU such that

�(η(t; 0)) < −2κ ∀t > T (A56)

where η(t; 0) is an eigenvalue of M(t; 0). Now, fix δ > 0. From Lemma 11, by
choosing T to be sufficiently large, one can assume that

Ji (T ; 0) < δ ∀i ∈ {1, . . . , 2n}. (A57)

Moreover, there exists some � (which is dependent on T ) such that

�(η(T ; ε)) < −κ ∀ε ∈ [0,�]. (A58)

Now, similarly, by choosing � to be sufficiently small, one can assume that by
Lemma 14

|Ji (t; ε) − Ji (t; 0)| < δ ∀t < T ⇒ |Ji (T ; ε)| < 2δ ∀i ∈ {1, . . . , 2n} and ∀ε ∈ [0,�]
(A59)

and , for all t < T ,

|Ri (T ; ε) − Ri (T ; 0)|, |RV
i (T ; ε) − RV

i (T ; 0)| < δ ∀i ∈ {1, . . . , 2n}, and ∀ε ∈ [0,�].
(A60)
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Now, for any t > 0,

M(t + T ; ε) ≤ M(T ; ε). (A61)

Thus, as the solution to the system

dz
dt

= M(T ; ε)z, z(0) = J(T ; ε) (A62)

is

z(t) = eM(T ;ε)t J(T ; 0); (A63)

one has, by Lemma 9,

J(t + T ; ε) ≤ eM(T ;ε)t J(T ; 0). (A64)

Now, noting that M(T ; ε) is invertible as all its eigenvalues have strictly negative real
part, for any t > 0

∫ t+T

T
J(s; ε)ds ≤

∫ t

0
eM(T ;ε)s J(T ; ε)ds (A65)

= M(T ; ε)−1(eM(T ;ε)t J(T ; ε) − J(T ; ε)) (A66)

and so, taking t to∞ and noting that all eigenvalues of eM(T ;ε) have real part less than
1 shows that

∫ ∞

T
J(s; ε)ds ≤ −M(T ; ε)−1 J(T ; ε). (A67)

Now, each element of M(t; ε) is uniformly bounded (for any bounded range of ε and
all t ≥ 0) as the parameters and variables are uniformly bounded. Thus, by expressing
the inverse in terms of determinants of sub-matrices of M(t; ε) (each of which must
be uniformly bounded as M(t; ε) is uniformly bounded) by Cramer’s rule (Blyth and
Robertson 2002), one can see that there exists a constant M∗ such that for each i and
j ,

det(M(t; ε)) 	= 0 ⇒ |M(t; ε)−1
i j | ≤

∣∣∣∣
M∗

det(M(t; ε))

∣∣∣∣. (A68)

Note that

|det(M(T ; ε))| =
∣∣∣∣∣∣

∏

λ eigenvalue of M(T ;ε)
(λ)

∣∣∣∣∣∣
≥ κn (A69)
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because all eigenvalues of M(T ; ε) have real part at most −κ and hence modulus at
least κ . Thus, there exists some constant X (independent of δ) such that for each i and
j ,

∣∣∣∣M(T ; ε)−1
i j

∣∣∣∣ ≤ X

4n
. (A70)

Thus, by the conditions on J(T ; ε),

∫ ∞

T
Ji (s; ε)ds ≤ Xδ (A71)

which completes the proof of this claim. ��
As all the parameters and variables are uniformly bounded for all ε, there exists a

constant Y (independent of δ) such that

∣∣∣∣
dJi
dt

∣∣∣∣ ≤ Y ∀i ∈ {1, . . . , 2n}. (A72)

Now, suppose there exists some Ji (t; ε) > δ
1
3 for t > T and ε ∈ [0, η1]. Then, by

non-negativity of Ji

∫ ∞

T
Ji (s; ε)ds ≥

∫ t+δ
1
2

t
Ji (s; ε)ds ≥

∫ δ
1
2

0
δ
1
3 − Ysds = δ

5
6 − Y

2
δ. (A73)

Thus, taking δ sufficiently small such that

δ
5
6 − Y

2
δ > Xδ (A74)

gives a contradiction. This means that, for each i ∈ {1, . . . , 2n}

Ji (t; ε) ≤ δ
1
3 ∀t ≥ T and ∀ε ∈ [0,�] (A75)

and hence, combining this with (A59) (and assuming δ < 1 so δ < δ
1
3 ) shows that

|Ji (t; ε) − Ji (t; 0)| ≤ δ
1
3 ∀t and ∀i ∈ {1, . . . , 2n}. (A76)

Moreover, by (A71), for any t > 0

|Ri (T + t; ε) − Ri (T + t; 0)| ≤ |Ri (T ; ε) − Ri (T ; 0)| + |Ri (T ; 0) − Ri (T + t; 0)|
(A77)

≤ δ + |Ri (T + t; ε) − Ri (T ; ε)| + |Ri (T + t; 0)
− Ri (T ; 0)| (A78)
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≤ δ + 2Xμ1
i (ε)δ + 2Xμ1

i (0)δ (A79)

≤ X∗δ (A80)

for some constant X∗, alongside an identical result for RV
i . Combining this with (A60)

(and redefining δ → δ3), the result of the proposition is proved.

Theorem 1

Note that Proposition 5 also holds for the vaccination policies Ũ(t; ε), using Propo-
sition 4. Thus, one can define a function δ(ε) such that for all sufficiently small
ε

| fi (t; ε) − fi (t; 0)|, | f̃i (t; ε) − fi (t; 0)| ≤ δ(ε) ∀ f ∈ {I , I V , R, RV } (A81)

and

δ(ε) = o(1) as ε → 0. (A82)

Then, using, for example

|Ri (∞; ε) − R̃i (∞; ε)| ≤ |Ri (∞; ε) − R̃i (∞; 0)| + |Ri (∞; ε) − R̃i (∞; 0)| (A83)

(as R(∞; 0) = R̃(∞; 0)) shows that

|Ri (∞; ε) − R̃i (∞; ε)|, |RV
i (∞; ε) − R̃V

i (∞; ε)| < 2δ(ε) ∀ε ∈ [0, η] (A84)

which means

∣∣∣∣
n∑

j=2

p j

(
R j (∞; ε) + κ j R

V
j (∞; ε)

)
−

n∑

j=2

p j

(
R̃ j (∞; ε) + κ j R̃

V
j (∞; ε)

) ∣∣∣∣ = O(δ).

(A85)

Thus, the aim of the remainder of the proof is to show that the leading-order changes
to R1(∞; ε) are of exactly O(ε), and so p1R1(∞; ε) changes by an O(1) amount,
meaning these changes to the objective function will eventually dominate the other
changes given in (A85). This can be done by taking advantage of the fact that the
quantities f1(t; ε) are small, and so a linearised version of the equations for group 1
can be used.
Before beginning this process, it is helpful to note the following. From (A56) in the
proof of Proposition 5, there exists some T ∗ > tU independent of δ and ε such that

λ(T ∗; 0) < e−2κ < 1 (A86)
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whereλ(T ∗; 0) is the (necessarily real and non-negative) Perron eigenvalue of eM(T ∗;0)
(and is the exponential of the η(∞; 0) referenced in (A56)). Moreover, by the conti-
nuity of eigenvalues on the entries of the matrix, there exists some � > 0 such that
the analogously defined λ(T ∗; ε) also satisfies

λ(T ∗; ε) < e−κ < 1 ∀ε ∈ [0,�]. (A87)

Now, note that, for t ≥ T ∗ > tU , the matrix M(t; ε) and hence the matrix eM(t;ε)
is non-increasing. Thus, as eM(t;ε) is non-negative (as proved in Proposition 5), it is
necessary fromPerron–Frobenius theory (Berman and Plemmons 1994) that its Perron
eigenvalue, λ(t; ε) satisfies

λ(t; ε) ≤ λ(T ∗; ε) < e−κ < 1. (A88)

Then, following the method used to derive (A67), one has, for any t ≥ T ∗

∫ ∞

t
I1(t; ε)dt ≤ (M(t; ε)−1 J(t; ε))1 ∀ε ∈ [0,�]. (A89)

This is exactly the same equation as (A67), except that here, T ∗ is independent of δ

(as no conditions on J(T ; 0) are assumed). Now, note that

M(t; 0)1 j = −μ1
1δ1 j and M(t; 0)(n+1) j = −μ2

1δ(n+1), j (A90)

where here δi j is the Kronecker delta. This means that, for any vector y, the equation

M(t; 0)x = y (A91)

must satisfy

x1 = −y1
μ1
1

xn+1 = − yn+1

μ2
1

and x = M−1 y. (A92)

Thus, in particular

M−1
1 j (t; 0) = −1

μ1
1

δ1 j and M−1
(n+1) j (t; 0) = −1

μ2
1

δ(n+1) j , (A93)

where here δi j denotes the Kronecker delta. Now, note that, as the inverse of a matrix
is a rational function of its entries,

M−1(t; 0) = M−1(t; ε) + O(ε) (A94)

and hence

M−1
1 j (t; 0) = −1

μ1
1

δ1 j + O(ε). (A95)
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Moreover, defining

μmin := min{μ1
i , μ

2
i }, (A96)

there must exist a T (ε) ∈
(
T ∗, T ∗ + 2n

δ
1
3 μmin

)
such that for each i ,

Ii (T (ε); ε) < δ
1
3 Ni (ε). (A97)

Otherwise,

n∑

i=1

d

dt

(
Ri (t; ε)

μ1
i Ni (ε)

+ RV
i (t; ε)

μ2
i Ni (ε)

)
≥ ∑n

i=1

(
μ1
i Ii (t;ε)

μ1
i Ni (ε)

+ 0

)
≥ δ

1
3

∀t ∈
(
T ∗, T ∗ + 2n

δ
1
3 μmin

)
(A98)

and integrating this between T ∗ and T ∗ + 2n

δ
1
3 μmin

gives

n∑

i=1

⎡

⎢⎢⎣

Ri

(
T ∗ + 2n

δ
1
3 μmin

; ε

)

μ1
i Ni

+
RV
i

(
T ∗ + 2n

δ
1
3 μmin

; ε

)

μ2
i Ni (ε)

⎤

⎥⎥⎦ ≥ 2nδ
1
3

δ
1
3 μmin

>
n

μmin
. (A99)

Thus, as μmin
μα
i

≤ 1 for each i and α,

n∑

i=1

⎡

⎢⎢⎣

Ri

(
T ∗ + 2n

δ
1
3 (μmin+1)

; 0
)

+ RV
i

(
T ∗ + 2n

δ
1
3 (μmin+1)

; 0
)

Ni (ε)

⎤

⎥⎥⎦ > n (A100)

which means, for some i

Ri

(
T ∗ + 2n

δ
1
3 (μmin+1)

; 0
)

+ RV
i

(
T ∗ + 2n

δ
1
3 (μmin+1)

; 0
)

Ni (ε)
> 1, (A101)

which is a contradiction as the total population size in group i cannot exceed Ni (ε)

by definition of Ni (ε). Thus, for each ε ∈ [0,�],
∫ ∞

T (ε)

I1(t; ε)dt ≤ (M(T ; ε)−1 J(T (ε); ε))1 (A102)
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= (
O(1) O(ε) ... O(ε)

)

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

O(εδ
1
3 )

O(δ
1
3 )

.

.

.

O(δ
1
3 )

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(A103)

= O(εδ
1
3 ) (A104)

while similarly

∫ ∞

T (ε)

I V1 (t; ε)dt = O(εδ
1
3 ). (A105)

Moreover,

∫ T (ε)

0
δεdt = O(εδ

2
3 ). (A106)

These results allow for the linearisation to be carried out. To reduce notation, define

T := T (ε). (A107)

Now, to begin the linearisation, define

X(t) =
n∑

j=1

[
β1
1 j I j (t; 0) + β2

1 j I
V
j (t; 0)

]
, (A108)

which is the leading-order infective force on group 1. By Proposition 5,

X(t) =
n∑

j=1

[
β1
1 j I j (t; ε) + β2

1 j I
V
j (t; ε)

]
+ O(δ). (A109)

Then, as S1(t; ε) ≤ ε,

dI1
dt

(t; ε) + μ1
1 I1(t) = S1(t; ε)X(t) + O(δε). (A110)

Now, note that

R1(∞; ε) = μ1
1

∫ ∞

0
I1(t; ε)dt (A111)

= μ1
1

∫ T

0
I1(t; ε)dt + μ1

1

∫ ∞

T
I1(t; ε)dt (A112)
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=
∫ T

0

(
S1(t; ε)X(t) − dI1

dt
(t; ε) + O(εδ)

)
dt + O(δ

1
3 ε) (A113)

= I1(0; ε) − I1(T ) +
∫ T

0
S1(t; ε)X(t)dt + O(δ

1
3 ε) (A114)

= I1(0; ε) +
∫ T

0
S1(t; ε)X(t)dt + O(δ

1
3 ε). (A115)

Now, the equations for I V are of the same form, but with SV in place of S and a
different leading-order infection function Y (t) given by

Y (t) =
n∑

j=1

[
β3
1 j I j (t; 0) + β4

i j I
V
j (t; 0)

]
. (A116)

Thus, an analogous derivation (noting that I V (0; ε) = 0) shows that

RV
1 (∞; 0) =

∫ T

0
Y (t)SV1 (t; ε)dt + O(εδ

1
3 ) (A117)

while analogous results hold for R̃1 and R̃V
1 (with S̃1 and S̃V1 in place of S1 and SV1 ).

Now, note that

S1(t; ε) = S1(t; ε)

(
N1(ε) − W1(t; ε)

N1(ε)

)
exp

⎡

⎣−
n∑

j=1

(
β1
1 j R j (t; ε)

μ1
j

+ β2
1 j R

V
j (t; ε)

μ2
j

)⎤

⎦

(A118)

= σ(N1(ε) − W1(t; ε)) exp

⎡

⎣−
n∑

j=1

(
β1
1 j R j (t; ε)

μ1
j

+ β2
1 j R

V
j (t; ε)

μ2
j

)⎤

⎦ . (A119)

Define

P(t) := exp

⎡

⎣−
n∑

j=1

(
β1
1 j R j (t; 0)

μ1
j

+ β2
1 j R

V
j (t; 0)

μ2
j

)⎤

⎦ (A120)

and then, note that by Proposition 5

P(t) = exp

⎡

⎣−
n∑

j=1

(
β1
1 j R j (t; ε)

μ1
j

+ β2
1 j R

V
j (t; ε)

μ2
j

)⎤

⎦+ O(δ) (A121)

which means (as (N1(ε) − W1(t; ε)) ≤ ε and σ < 1)

S1(t; ε) = σ(N1 − W1(t; ε))P(t) + O(δε) (A122)
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with an identical result for S̃. It is helpful to note for later that, asW1(t; ε) ≤ W̃ (t; ε),
this means that

S1(t; ε) ≥ S̃1(t; ε) + O(δε). (A123)

Now, this means

∫ T

0
X(t)S1(t; ε)dt =

∫ T

0
X(t)σ (N1 − W1(t; ε))P(t)dt + O(εδ

2
3 ) (A124)

and so

R1(∞; ε) = I1(0; ε) +
∫ T

0
X(t)σ (N1 − W1(t; ε))P(t)dt + O(εδ

1
3 ). (A125)

Now, note that

∫ T

0
X(t)σ (N1 − W1(t; ε))P(t)dt =

(∫ τ

0 + ∫ T
τ

)(
X(t)σ (N1 − W1(t; ε))P(t)dt

)

(A126)

and that, as W1(t; ε) ≤ W̃1(t; ε),

∫ T

τ

X(t)σ (N1 − W1(t; ε))P(t)dt ≥
∫ T

τ

X(t)σ (N1 − W̃1(t; ε))P(t)dt . (A127)

Now, define z(ε) to be

z(ε) = inf

{
t :

n∑

i=1

Wi (t) = ε

}
. (A128)

Note that, for ε < w, z exists and is bounded above by τ as

n∑

i=1

Wi (τ ) = w. (A129)

Now, define a fixed value

z0 := z
(w

2

)
(A130)

so that, by continuity of W , z0 < τ (and is independent of ε). Suppose that ε < w
2

(which will be assumed for the rest of the proof). Note that

∫ z0

0
X(t)σ (N1 − W1(t; ε))P(t)dt ≥

∫ z0

0
X(t)σ (N1 − W̃1(t; ε))P(t)dt(A131)
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and that

∫ τ

z0
X(t)σ (N1 − W̃1(t; ε))P(t)dt = 0 (A132)

as W̃1(t; ε) = N1 for all t > z(ε). Moreover, by (A2)

∫ τ

z0
X(t)σ (N1 − W1(t; ε))P(t)dt ≥ (1 − α)εσ

∫ τ

z0
X(t)P(t)dt . (A133)

Now, note that P(t) is strictly positive for t > 0 as it is an exponential, while, as
β1 j > 0 for some j 	= 1,

X(t) ≥ βi j I j (t; 0) > 0 as j ∈ �(0). (A134)

Thus,

(1 − α)

∫ τ

z0
X(t)P(t)dt > 0 (A135)

and this is independent of ε. This means that

R1(∞; ε) − R̃(∞; ε) ≥ ε(1 − α)

∫ τ

z
X(t)P(t)dt + O(εδ

1
3 )

= ε(1 − α)

∫ τ

z
X(t)P(t)dt + o(ε) (A136)

and so the leading-order change in R1(∞; ε) is indeed of order exactly ε.
Now, it is important to check the leading-order change in RV

1 (∞; ε). Note that, as
S1(t; ε) and SV1 (ε) are at most ε,

d

dt

(
S1(t; ε) + SV1 (t; ε)

)
= −X(t)S1(t; ε) − Y (t)SV1 (t; ε) + O(εδ). (A137)

Using (A122), this can be written as:

d

dt

(
S1(t; ε) + SV1 (t; ε)

)
+ Y (t)(S1(t; ε) + SV1 (t; ε)) = (Y (t) − X(t))S1(t; ε) + O(εδ).

(A138)

This equation can be integrated by defining

Y(t) :=
∫ t

0
Y (s)ds (A139)
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so that

d

dt

(
eY(t)(S1(t; ε) + SV1 (t; ε)

)
= eY(t)(Y (t) − X(t))S1(t; ε) + O(εδ). (A140)

Thus, for any t ≤ T

S1(t; ε) + SV1 (t; ε) =e−Y(t)(S1(0; ε) + SV1 (0; ε))

+
∫ t

0
eY(s)−Y(t)(Y (s) − X(s))S1(s; ε)ds + O(εδ

2
3 ) (A141)

which means that

S1(t; ε) + SV1 (t; ε) − S̃1(t; ε) − S̃V1 (t; ε)

=
∫ t

0
eY(s)−Y(t)(Y (s) − X(s))

(
S1(s; ε) − S̃1(s; ε)

)
ds + O(εδ

2
3 ) (A142)

Thus,

∫ t

0
Y (s)

[
S1(s; ε) + SV1 (s; ε) − S̃1(s; ε) − S̃V1 (s; ε)

]
ds (A143)

=
∫ t

0

∫ s

0
Y (s)eY(k)−Y(s)(Y (k) − X(k))

(
S1(k; ε) − S̃1(k; ε)

)
dkds + O(εδ

1
3 ) (A144)

=
∫ t

0

∫ t

k

[
Y (s)e−Y(s)

]
eY(k)(Y (k) − X(k))

(
S1(k; ε) − S̃1(k; ε)

)
dsdk + O(εδ

1
3 )

(A145)

=
∫ t

0
(e−Y(k) − e−Y(t))eY(k)(Y (k) − X(k))

(
S1(k; ε) − S̃1(k; ε)

)
dk + O(εδ

1
3 ) (A146)

=
∫ t

0
(1 − eY(k)−Y(t))(Y (k) − X(k))

(
S1(k; ε) − S̃1(k; ε)

)
dk + O(εδ

1
3 ). (A147)

Now, note that, as Y is non-decreasing, and non-negative

0 ≤ 1 − eY(k)−Y(t) ≤ 1 − e−Y(t). (A148)

Moreover, one has

Y(t) =
∫ t

0

n∑

j=1

[
β3
1 j I j (s; 0) + β4

1 j I
V
j (s; 0)

]
ds (A149)

=
n∑

j=1

[
β3
1 j R j (t; 0)

μ1
j

+ β4
1 j R j (t; 0)

μ2
j

]
(A150)

≤
n∑

j=1

[
β3
1 j N j (1)

μ1
j

+ β4
1 j N j (1)

μ2
j

]
(A151)
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and so Y(t) is bounded above by some constant (for ε ≤ 1). This in turn means that
there exists some Y∗ such that

1 − e−Y(t) ≤ Y∗ < 1. (A152)

Thus, as Y (t) − X(t) ≤ 0 and S1(k; ε) ≥ S̃1(k; ε) + O(δε), for any k ≤ t

∫ t

0
Y (s)

[
S1(s; ε) + SV1 (s; ε) − S̃1(s; ε) − S̃V1 (s; ε)

]

≥ Y∗
∫ t

0
(Y (k) − X(k))

(
S1(k; ε) − S̃1(k; ε)

)
dk + O(εδ

1
3 ). (A153)

Now, adding inequalities (A115) and (A117) together gives

R1(∞; ε) + RV
1 (∞; ε) = I1(0; ε) +

∫ T

0
X(t)S1(t; ε) + Y (t)SV1 (t; ε)dt + o(ε). (A154)

Note that

X(t)S1(t; ε) + Y (t)SV1 (t; ε) = (X(t) − Y (t))S1(t; ε) + Y (t)(S1(t; ε) + SV1 (t; ε))

(A155)

and hence

R1(∞; ε) + RV
1 (∞; ε) = I1(0; ε)+

∫ T

0
(X(t) − Y (t))S1(t; ε) + Y (t)(S1(t; ε) + SV1 (t; ε))dt + o(ε). (A156)

This means that

R1(∞; ε) + RV
1 (∞; ε) − R̃1(∞; ε) − R̃V

1 (∞; ε)

≥ (1 − Y∗)
∫ T

0
(X(t) − Y (t))

(
S1(t; ε) − S̃1(t; ε)

)
dt + O(εδ

1
3 ). (A157)

Now, as there is some i 	= 1 such that

β1
1i > β3

1i ≥ 0 (A158)

and (as i 	= 1), i ∈ �(0) which means that

β1
1i Ii (t) > β3

1i Ii (t) ∀t > 0. (A159)

This means that X(t) > Y (t) for all t > 0 and hence

∫ T

0
(X(t) − Y (t))dt > 0. (A160)
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Thus, following the arguments from before, one can see that

∫ t

0
(X(s) − Y (s))

(
S1(s; ε) − S̃1(s; ε)

)
ds > ε(1 − Y∗)

∫ τ

z0
(X(t) − Y (t))P(t)dt + o(ε)

(A161)

where the leading-order term is positive as required (as P(t) is positive). Hence, from
(A157)

R1(∞; ε) + RV
1 (∞; ε) − (R̃1(∞; ε) + R̃V

1 (∞; ε))

≥ (1 − Y∗)ε(1 − α)

∫ τ

z0
(X(t) − Y (t))P(t)dt + o(ε). (A162)

Thus, for any κ1 ∈ [0, 1], combining (A136) and (A162)

R1(∞) + κ1R
V
1 (∞) = κ1(R1(∞) + RV

1 (∞)) + (1 − κ1)R1(∞)

≥ ε

∫ τ

z0
(1 − α)P(t)

[
(1 − Y∗)κ1(X(t) − Y (t)) + (1 − κ1)X(t)

]
dt (A163)

+ κ1 R̃
V
1 (∞) + R̃1(∞) + o(ε). (A164)

Thus, recalling (A85) and that p1 = 1
ε

H(U) ≥ H(Ũ) +
∫ τ

z0
(1 − α)[κ1(X(t) − Y (t)) + (1 − κ1)X(t)]dt + o(1) (A165)

for some constant K . Moreover, for sufficiently small ε,

∫ τ

z0
α[κ1(X(t) − Y (t)) + (1 − κ1)X(t)]dt + o(1) > 0 (A166)

and hence

H(U(t; ε)) > H(Ũ(t; ε)), (A167)

as required.

Appendix B Proof of Theorem 2

Note that, throughout this section, the tilde will be removed from the rescaled pi terms
to reduce notation (and hence all pi terms used here will be assumed to be rescaled).
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Recall from the main text that, using the results in Penn and Donnelly (2022), if
one defines

χ(t) :=
{

A(t) if
∫ t
0 A(s)ds < B(t)

min(A(t), B ′(t)) if
∫ t
0 A(s)ds ≥ B(t)

, (B168)

then (assuming that there is an optimal solution, and undermild smoothness conditions
on U , A and B) there must be an optimal solution satisfying

n∑

i=1

Wi (t) = max

(∫ t

0
χ(s)ds, 1

)
. (B169)

Theorem 2 With the definitions of Theorem 1, suppose additionally that

n∑

j=2

(β1
1 j − β3

1 j )I j (0; ε) > 0. (B170)

That is, the initial difference between the infective force on vaccinated and unvacci-
nated members of the population is positive. Suppose further that

σ = 1. (B171)

Suppose an optimal vaccination policy for each ε is given byU(t; ε) and suppose that
U(t; ε) has uniformly bounded finite support. Then, there exists an η depending only
on α, τ , w and the model parameters such that, for any U satisfying the condition
(A2) as defined in Theorem 1

ε ∈ (0, η) ⇒ H(U(t; ε)) > H(U(t; ε)). (B172)

Moreover, there is a sequence of optimal vaccination policies U(t; ε) satisfying

lim
ε→0

(
W 1(t; ε)

ε

)
= 1 ∀t s.t.

∫ t

0
χ(s)ds > 0. (B173)

To make things clearer in the course of this proof, note that H will be written as

H(U; ε) (B174)

where the ε refers to the size of the population N1 under consideration.

Proposition 6

It remains to show that, for sufficiently small ε and fixed α, τ and w, there is no U
satisfying the conditions (A2) that is the optimal vaccination policy.
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To do this, it is necessary to prove the function H(U(t; ε); ε) is non-increasing in ε.
This uses the work of Penn and Donnelly (2022) as the main result of that paper gives
a method of finding inequalities between the objective values of different vaccination
policies. However, it is a meaningful extension, as here the population sizes are not
identical when objective values are compared.

Proposition 6 Suppose that I1(0; ε) = 0 for all ε. Consider, for ε ≤ 1 any bounded
vaccination policy U(t; ε) given by

U1(t; ε) =
{
U1(t; 1) if W1(t; 1) < ε

0 otherwise
and Ui (t; ε) = Ui (t; 1) ∀i 	= 1.(B175)

Then, if H(U(t; ε); ε) is the value of the objective function for a given value of ε,

ε > ε′ ⇒ H(U(t; ε); ε) ≥ H(U(t; ε′); ε′). (B176)

Proof Fix ε and ε′ such that ε > ε′. Define the vaccination policy U∗(t,�; ε) to be

U∗
1 (t,�; ε) =

{
(ε−ε′+W1(�;ε′))

�
if t < �

U1(t; ε′) otherwise
and U∗

i (t,�; ε) = Ui (t; 1) ∀i 	= 1.

(B177)

Then, in particular

W ∗
1 (t,�; ε) = t(ε − ε′ + W1(�; ε′))

�
∀t < �. (B178)

Now, asU(t; ε) is bounded by some M , it is necessary thatW1(t; ε) is bounded above
by tM . Conversely, W ∗

1 (t; ε) is bounded below by (ε−ε′)t
�

for t < �. Thus, taking �

sufficiently small gives

W ∗
1 (t,�; ε) > W1(t; ε) ∀t < �. (B179)

Moreover, note that, assuming� < ε′, if t > � is chosen such thatW1(t; 1) < ε′ < ε,
then

U∗
1 (t,�; ε) = U1(t; ε′) = U1(t; ε) = U1(t; 1) (B180)

and hence

W ∗
1 (t,�; ε) > W1(t; ε) ∀t s.t. W1(t; 1) < ε′. (B181)

Finally, note that if W1(t; 1) ≥ ε′ then W1(t; ε′) = ε′ and hence

W ∗
1 (t,�; ε) = W ∗

1 (�;�) +
∫ t

�

U1(s; ε′)ds (B182)

123



Asymptotic Analysis of Optimal Vaccination Policies Page 47 of 72 15

= ε − ε′ + W1(�; ε′) +
∫ t

�

U1(s; ε′)ds (B183)

= ε − ε′ + W1(�; ε′) + W1(t; ε′) − W1(�; ε′) (B184)

= ε (B185)

and so

W ∗
1 (t,�; ε) = ε ≥ W1(t; ε) ∀t ≥ 0. (B186)

Moreover,

W ∗
i (t,�; ε) = Wi (t; ε) ∀t ≥ 0 and ∀i ∈ {2, . . . , n}. (B187)

Thus, in particular, by Theorem 17, proved in Penn and Donnelly (2022), for each
i ∈ {1, . . . , n},

I ∗
i (t,�; ε) + R∗

i (t;�; ε) + I V
∗

i (t,�; ε) + RV ∗
i (t,�; ε)

≤ Ii (t; ε) + Ri (t; ε) + I Vi (t; ε) + RV
i (t; ε) (B188)

and

R∗
i (t;�; ε) ≤ Ri (t; ε) (B189)

where the f ∗
i (t,�; ε) are the values of the model variables under the U∗(t,�; ε)

vaccination policy and the fi (t; ε) are their values under the U(t; ε) vaccination
policy. ��

Now, for all � > 0 and all f and i

f ∗
i (0,�; ε) = fi (0; ε) (B190)

so, as all model variables except Si and SVi have derivatives that are
bounded independently , there exists some L such that, for all f ∈
{Ii (t,�; ε), I Vi (t,�; ε), Ri (t,�; ε), RV

i (t,�; ε)},

| f ∗
i (�;�; ε) − fi (0; ε)| = | f ∗

i (�;�) − f ∗
i (0;�)| < L�. (B191)

Moroever, the initial conditions are the same for f (0; ε) and f (0; ε′) except in the
case of S1(0; ε). Thus,

| f ∗
i (�; �; ε) − fi (0; ε′)| < L� ∀ f ∈ {Ii (t, �; ε), I Vi (t, �; ε), Ri (t, �; ε), RV

i (t, �; ε)}.
(B192)

123



15 Page 48 of 72 M. J. Penn, C. A. Donnelly

As only the W1 policy has an unbounded derivative in the � → 0 limit, it is also true
that

| f ∗
i (�;�; ε) − fi (0; ε′)| < L� ∀ f ∈ {Si (t,�; ε), SVi (t,�; ε)} and i 	= 1. (B193)

Moreover, note that (here suppressing the dependence on ε)

S∗
1 (�;�) = S∗

1 (0;�)

N1(ε)
(N1(ε) − W ∗

1 (�;�))e

∑n
j=1

[
β11 j

μ1j
R∗
j (�;�)+ β31 j

μ2j
RV ∗
j (�;�)

]

(B194)

= σ(ε − (ε − ε′) − W1(�; ε′))e
∑n

j=1

[
β11 j

μ1j
R j (0;ε)+

β31 j

μ2j
RV
j (0;ε)

]

+ O(�)

(B195)

= σ(ε′ − W1(0; ε′))e
∑n

j=1

[
β11 j

μ1j
R j (0;ε′)+ β31 j

μ2j
RV
j (0;ε′)

]

+ O(�) (B196)

= S1(0; ε′) + O(�) (B197)

and hence,

|S1(�;�; ε) − S1(0; ε′)| < L ′� (B198)

for some L ′ > 0. Now, as (again suppressing the dependence on ε)

S1(�;�) + I1(�;�) + R1(�;�) + SV1 (�;�) + I V1 (�;�) + RV
1 (�;�) = ε,

(B199)

it is necessary that

|SV1 (�;�; ε) − (ε − ε′)| ≤ L ′′� (B200)

for some L ′′ > 0. Thus, in particular, the values of the model variables f ∗
i at time �

converge to the initial conditions of the ε′ case, except that

lim
�→0

(SV ∗
1 (0;�)) > SV1 (0; ε′). (B201)

Moreover, note that for any t ≥ 0,

W ∗
i (� + t,�; ε) − W ∗

i (�;�; ε) = Wi (� + t; ε′) − W1(�; ε′) (B202)

and so, as U∗ is bounded in [�,∞)

∣∣∣∣

(
W ∗

i (� + t,�; ε) − W ∗
1 (�;�; ε)

)
− Wi (t; ε′)

∣∣∣∣ < L ′′′� ∀t > 0 (B203)
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for some L ′′′. Thus, define variables with a hat to denote those from the disease
trajectory with initial conditions given by

f̂i (0; ε′) := lim
�→0

(
f ∗
i (�;�; ε)

)
(B204)

and with vaccination policy given by Wi (t; ε′). Then, by considering the starred
variables to come from an epidemic started at time t = �, Lemma 14 shows that

lim
�→0

( f ∗
i (t;�; ε)) = f̂i (t; ε′). (B205)

Thus, one can take the � → 0 limit in (B188) and (B189) to show
Îi (t; ε′) + R̂i (t; ε′) + Î Vi (t; ε′) + R̂V

i (t; ε′) ≤ Ii (t; ε) + Ri (t; ε) + I Vi (t; ε) + RV
i (t; ε)

(B206)

and

Ri (t; ε′) ≤ Ri (t; ε). (B207)

Taking t → ∞ in these inequalities shows that

R̂i (∞; ε′) + R̂i (∞; ε′) ≤ Ri (∞; ε) + RV
i (∞; ε) and R̂i (∞; ε′) ≤ Ri (∞; ε) (B208)

and hence, for any κi ∈ [0, 1],

R̂i (∞; ε′) + κi R̂i (∞; ε′) = (1 − κi )R̂i (∞; ε′) + κi (R̂i (∞; ε′) + R̂i (∞; ε′))
(B209)

≤ (1 − κi )Ri (∞; ε) + κi (Ri (∞; ε) + RV
i (∞; ε))

(B210)

= Ri (∞; ε) + κi R
V
i (∞; ε). (B211)

Summing these inequalities over i gives

Ĥ(Ŵ(t; ε′); ε′) ≤ H(W(t; ε); ε). (B212)

Finally, note that by Lemma 16, as the only change between cases Ĥ and H is an
increase in one of the values of SV ,

H(W(t; ε′); ε′) ≤ Ĥ(W(t; ε′); ε′) (B213)

which, combined with (B212), completes the proof of this proposition.
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Theorem 2

This allows the overall proof of Theorem 2. The proof will rely on Theorem 1, which
allows the creation of an O(1) decrease in the objective function by reducing ε. By
comparing a sequence of policies satisfying (A2) with a sequence that does not satisfy
(A2) and using Proposition 6, one can then create a sequence of optimal policies such
that the associated sequence of objective values decreases by at least a fixed quantity
at each step (and thus will eventually become negative, giving a contradiction).
Suppose (for a contradiction) that Theorem 2 does not hold for some fixed α, τ and
w. Thus, for any η > 0, there is an ε ∈ (0, η) such that, for some U satisfying (A2),

H(U(t; ε); ε) ≤ H(U(t; ε); ε). (B214)

By optimality of U(t; ε), (B214) must in fact be an equality, and so it can be assumed
that U(t; ε) = U(t; ε), which will be done in the remainder of this proof (that is, if
for some ε there is an optimal solution satisfying (A2), then it will be assumed that U
satisfies (A2)). Thus, there is some ε0 such that

H(U(t; ε0); ε0) ≤ H(Ũ(t; ε0); ε0) (B215)

where Ũ is defined by (A4). Now, for ε < ε0, define U0(t; ε) by

U0
1 (t; ε) =

{
U1(t; ε0) if W1(t; ε0) < ε

0 otherwise
and Ui (t; ε) = U0

i (t; ε0) ∀i 	= 1 (B216)

and note that this means that

U0(t; ε0) = U(t; ε0) ∀t ≥ 0. (B217)

By (A163) in the proof of Theorem 1, there exists some δ1 > 0 such that, for all
ε < δ1,

H(U0(t; ε); ε) > H(Ũ
0
(t; ε); ε) (B218)

+ 1
2

∫ τ

z0
(1 − α)P(t)

[
(1 − Y∗)κ1(X(t) − Y (t)) + (1 − κ1)X(t)

]
dt .

where

X(t) =
n∑

j=1

β1
1 j I j (t; ε) + β3

1 j I
V
j (t; ε), (B219)

Y (t) =
n∑

j=1

β2
1 j I j (t; ε) + β4

1 j I
V
j (t; ε) (B220)
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and

P(t) = exp

[
−

n∑

j=1

(
β1
1 j R j (t; 0)

μ1
j

+ β2
1 j R

V
j (t; 0)
μ2

j

)]
. (B221)

Note that ρ0, τ and Y∗ are independent of U0, but X(t), Y (t) and P(t) are not.
However, note that

dIi (t; ε)

dt
≥ −μ1

i Ii (t; ε) (B222)

and so

X(t) − Y (t) ≥
n∑

j=2

(β1
1 j − β3

1 j )e
−μ1

j t I j (0; ε) > 0, (B223)

by assumption (B170), giving a bound that is independent of U0. Moreover,

X(t) ≥ X(t) − Y (t) > 0. (B224)

Finally, for ε ≤ 1,

P(t) ≥ exp

[
−

n∑

j=1

(
β1
1 j N j (ε)

μ1
j

+ β2
1 j N j (ε)

μ2
j

)]

≥ exp

[
−

n∑

j=1

(
β1
1 j N j (1)

μ1
j

+ β2
1 j N j (1)

μ2
j

)]
> 0 (B225)

and this bound is again independent of U0. Thus,

H(U0(t; ε); ε) > H(Ũ
0
(t; ε); ε) + K ∀ε < δ1 (B226)

for some constant K > 0 where this is now independent of U0. Now, by assumption,
there must exist some ε1 ∈ (0, δ1) such that U(t; ε1) meets the conditions (A2) so

H(U(t; ε1); ε1) ≤ H(Ũ(t; ε1); ε1) (B227)

while by optimality

H(U(t; ε1); ε1) ≤ H(Ũ
0
(t; ε1); ε1) < H(U0(t; ε1); ε1) − K . (B228)

Now, moreover, note that by Proposition 6,

H(U0(t; ε1); ε1) ≤ H(U0(t; ε0); ε0) = H(U(t; ε0); ε0) (B229)
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and so

H(U(t; ε1); ε1) ≤ H(U(t; ε0); ε0) − K . (B230)

Now, this can be continued iteratively so that, for any n ≥ 0,

H(U(t; εn); εn) ≤ H(U(t; ε0); ε0) − Kn (B231)

However, this means that eventually, one finds

H(U(t; εn); εn) < 0 (B232)

which is a contradiction. Thus, for each fixed α,w and τ , there must exist some η such
that for any ε ∈ (0, η), the optimal solution does not satisfy (A2).
Now, suppose that

∫ t
0 χ(s)ds > 0 and suppose U(t; ε) is an optimal solution for each

value of ε such that, for each t

n∑

i=1

Wi (t; ε) = min

(∫ t

0
χ(s)ds, 1

)
(B233)

(note that this can be assumed by Theorem 2 in Penn and Donnelly (2022)). Now,
suppose that, for some t

lim
ε→0

(
W 1(t; ε)

ε

)
	= 1 and min

(∫ t

0
χ(s)ds, 1

)
> 0. (B234)

This means that there exists some δ > 0 such that there is a subsequence εm satisfying

W 1(t; εm)

εm
< 1 − δ < 1 and lim

m→∞(εm) = 0 (B235)

noting that

W 1(t; εm)

εm
≤ 1 ∀εm > 0. (B236)

However, this means that for eachm,U(t; εm) satisfies the condition (A2) with τ = t ,

α = 1 − δ and w = min

(∫ t
0 χ(s)ds, 1

)
. This is a contradiction to the previous part

of the proof (as limm→∞(εm) = 0) and hence

lim
ε→0

(
W ∗

1 (t; ε)

ε

)
= 1 ∀t s.t. min

(∫ t

0
χ(s)ds, 1

)
> 0, (B237)

as required.
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Appendix C Proof of Theorem 3

Recall the definitions from the main text.

β ′
i j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β1
i j if i, j ≤ n

β2
i(n− j) if i ≤ n < j ≤ 2n

β3
(n−i) j if j ≤ n < i ≤ 2n

β4
(n−i)(n− j) if n < i, j ≤ 2n

, (C239)

μ′
i =

{
μ1
i if i ≤ n

μ2
(i−n) if n < i ≤ 2n

, (C240)

p′
i =

{
pi if i ≤ n

κ(i−n) p(i−n) if n < i ≤ 2n
, (C241)

Qi j = 1

1 − e
−∑2n

j=1

β′
i j

μ′
j
R j (∞;0)

[
δi j + Si (0; 0)e

−∑2n
j=1

β′
i j

μ′
j
R j (∞;0)

β ′
i j

μ′
j

]
, (C242)

and

x = Q−T p′ and yi = Si (0; 0)
Ni

(xi+n − xi ) ∀i ∈ {1, . . . , n}. (C243)

Theorem 3 Suppose that, for all ε > 0

B(t; ε) = ε ∀t ≥ 0 (C244)

and that all other parameter values and initial conditions are independent of ε. Suppose
that A(t) is a continuous function with

A(0) > 0 (C245)

and that the matrix M is invertible. Assuming that ε is sufficiently small so that it
exists, define

τ(ε) := inf

{
t :
∫ t

0
A(s)ds = ε

}
. (C246)

Suppose that U satisfies the condition

n∑

i=1

Ui (s) = min

(∫ t

0
χ(s)ds, 1

)
(C247)

123



15 Page 54 of 72 M. J. Penn, C. A. Donnelly

where χ is defined in (B169). Then, for sufficiently small ε, the objective function is
given by

H(U(t; ε)) = H(0) + yTW(τ (ε); ε) + o(ε). (C248)

Moreover, if there is a unique element of y equal to the minimum of y then the optimal
vaccination policy (to leading order in ε) is uniquely given by

Ui (t; ε) =
{
A(t) if i = min{yi : i ∈ {1, . . . , n}} and ∫ t0 A(s)ds < ε

0 otherwise
. (C249)

Proposition 7

Note that the n-group model can be considered as a 2n-group model once vaccination
has finished—an idea that is formalised in the below proposition. This moderately
extends the previous work by incorporating the initial vaccination policy into the final
size equation, but is not a major advancement on well-known results found in books
such as Anderson and May (1992).

Proposition 7 Define for i ∈ {1, . . . , n},

(Sn+i , In+i , Rn+i ) := (SVi , I Vi , RV
i ). (C250)

Define further

σi (ε) =
{

− Si (0;0)Wi (τ (ε))
Ni

if i ≤ n
Si−n(0;0)Wi−n(τ (ε))

Ni−n
if n < i ≤ 2n

(C251)

and

ρi (ε) := Ri (∞; ε) − Ri (∞; 0) ∀i ∈ {1, . . . , 2n}. (C252)

Then, ρi (ε) is o(1) as ε → 0 and

σi =
ρi + Si (0; 0)e

−∑2n
j=1

β′
i j

μ′
j
R j (∞;0)(∑2n

j=1
β ′
i j

μ′
j
ρ j

)
+ o(σi ) +∑2n

j=1 o(ρ j ) + O(ε2)

1 − e
−∑2n

j=1

β′
i j

μ′
j
R j (∞;0)

.

(C253)

Proof As A is continuous, there is some region (0, δ) such that

A(0)

2
< A(t) < 2A(0) (C254)
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and hence

∫ δ

0
A(t)dt >

δA(0)

2
. (C255)

This lower bound is independent of ε, and hence, for sufficiently small ε,

∫ δ

0
A(t)dt > ε. (C256)

Now, by assumption,

n∑

i=1

Ui (t; ε) =
{
A(t) if

∫ t
0 A(s)ds < ε

0 otherwise
. (C257)

By continuity and the definition of τ(ε),

∫ τ(ε)

0
A(t)dt = ε (C258)

and note that it is necessary that τ(ε) = O(ε) as

τ(ε) ≤ 2ε

A(0)
(C259)

for sufficiently small ε.

Now, all of the variables are bounded independently of ε in the interval [0, τ (ε)]
(including U , which is bounded by 2A(0)). Moreover, assuming Ni > 0 for each
i ∈ {1, . . . , n},

Ni − Wi > Ni − ε >
mini (Ni )

2
(C260)

for sufficiently small ε. Thus, in particular, all of the derivatives of the model variables
are bounded and so

Si (τ (ε); ε) = Si (0; 0) + O(ε) (C261)

with analogous results for the other model variables, noting that the initial conditions
are identical in each case. Thus, in particular,

dSi
dt

(t; ε) = dSi
dt

(0; ε) − Si (0; 0)(Ui (t; ε) −Ui (0; ε))

Ni − Wi (0; ε)
+ O(ε) ∀t ∈ (0, ε),

(C262)
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noting that the Ui (t; ε) are the only quantities that can change by an O(1) amount in
O(ε) time. Now, one can set Ui (0; ε) = 0 to reduce notation (noting that the model
depends only on the integral of Ui ). Moreover, as Wi (0; ε) = 0, the initial conditions
are independent of ε and τ(ε) = O(ε), integrating gives

Si (τ (ε); ε) = Si (0; 0) + τ(ε)
dSi
dt

(0; 0) − Si (0; ε)Wi (τ (ε); ε)

Ni
+ O(ε2). (C263)

Similarly,

SVi (τ (ε); ε)) = SVi (0; 0) + τ(ε)
dSVi
dt

(0; 0) + Si (0; 0)Wi (τ (ε); ε)

Ni
+ O(ε2) (C264)

while for the other model variables, fi , there is no O(1) change to the derivative so

fi (τ (ε); ε)) = f (0; 0) + τ(ε)
d fi
dt

(0; 0) + O(ε2). (C265)

Now, for times t ≥ τ(ε), one has Ui (t; ε) = 0 and so a standard multi-group SIR
model (with initial conditions given by the model variables evaluated at time τ(ε)) is
recovered. Thus in particular, the final number infected can be formulated in terms of
a final size equation, following the work of Anderson and May (1992) among others.
Define, for i ∈ {1, . . . , n},

(Sn+i , In+i , Rn+i ) = (SVi , I Vi , RV
i ). (C266)

This new 2n group model has the same behaviour as the original model if the
parameters are

β ′
i j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β1
i j if i, j ≤ n

β2
i(n− j) if i ≤ n < j

β3
(n−i) j if j ≤ n < i

β4
(n−i)(n− j) if n < i, j

, μ′
i =

{
μ1
i if i ≤ n

μ2
(i−n) if i > n

(C267)

and

p′
i =

{
pi if i ≤ n

κ(i−n) p(i−n) if i > n
. (C268)

Thus, integrating the Si equation between τ(ε) and t + τ(ε) gives:

d

dt
(log(Si )) = −

2n∑

j=1

β ′
i j

μ′
j

dR j

dt
(C269)
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⇒ ln(Si (t + τ(ε); ε)) = ln(Si (τ (ε); ε)) −
2n∑

j=1

β ′
i j

μ′
j

[
R j (t + τ(ε); ε) − R j (τ (ε); ε)

]

(C270)

⇒ Si (t + τ(ε); ε) = Si (τ (ε); ε)e
−∑2n

j=1

β′
i j

μ′
j

[
R j (t+τ(ε);ε)−τ(ε)

dR j
dt (0;0)

]

+ O(ε2) (C271)

as R j (0; 0) = 0 for each j . Now, note that for any t ≥ 0,

Si (τ (ε); ε) + Ii (τ (ε); ε) + Ri (τ (ε); ε)

= Si (t + τ(ε); ε) + Ii (t + τ(ε); ε) + Ri (t + τ(ε); ε) (C272)

and hence, taking t → ∞ and using Lemma 11 shows that

Si (τ (ε); ε) + Ii (τ (ε); ε) + Ri (τ (ε); ε) = Si (∞; ε) + Ri (∞; ε). (C273)

Hence, by (C265),

Si (τ (ε); ε) + Ii (0; 0) + τ(ε)

[
dIi
dt

(0; 0) + dRi

dt
(0; 0)

]
= Si (∞; ε) + Ri (∞; ε) + O(ε2).

(C274)

Now, substituting this into the limit of (C269) as t → ∞ shows that

Ri (∞; ε) =Si (τ (ε); ε) + Ii (0; 0) + τ(ε)

[
dIi
dt

(0; 0) + dRi

dt
(0; ε)

]

− Si (τ (ε); ε)e
−∑2n

j=1

β′
i j

μ′
j

[
R j (∞;ε)−τ(ε)

dR j
dt (0;0)

]

+ O(ε2). (C275)

By treating thismodel as amodel that has initial conditions given by the variable values
at time τ(ε), one sees that these initial conditions differ from the initial conditions of
the ε = 0 model by O(ε) (where no vaccination occurs in either case). This means
that Proposition 5 can be used (as the vaccination policies U must have uniformly
bounded finite support for sufficiently small ε) and so there exists some function δ(ε)

such that, for all sufficiently small ε,

|R j (∞; ε) − R j (∞; 0)| < δ(ε) ∀ j and δ(ε) = o(1). (C276)

Thus, in particular, one can define functions ρ j (ε) such that

R j (∞; ε) = R j (∞; 0) + ρ j (ε) ∀ j ∈ {1, .., 2n} (C277)

and

ρ j (ε) = o(1) as ε → 0. (C278)
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Furthermore, defining σi such that

σi (ε) =
{ − Si (0;0)Wi (τ (ε))

Ni
if i ≤ n

Si−n(0;0)Wi−n(τ (ε))
Ni−n

if n < i ≤ 2n
(C279)

gives

Si (τ (ε); ε) = Si (0; 0) + τ(ε)
dSi
dt

(0; 0) + σi (ε) + O(ε2) ∀i ∈ {1, .., 2n}. (C280)

Now, when σi (ε) = 0 for all i , it must be the case that ρi (ε) = 0 for all i as the final
size is unchanged (as no vaccination has taken place). Thus, in this case, (C275) can
be linearised to give

O(ε2) = τ(ε)

[
dSi
dt

(0; 0) + dIi
dt

(0; 0)

+ dRi

dt
(0; 0)e

−∑2n
j=1

β′
i j

μ′
j
R j (∞;0)

⎛

⎝−dSi
dt

(0; 0) + Si (0; 0)
2n∑

j=1

β ′
i j

μ′
j

dR j

dt
(0; 0)

⎞

⎠
]
.

(C281)

Note that this equality does indeed hold, as in the no vaccination case

dSi
dt

(0; 0) + dIi
dt

(0; 0) + dRi

dt
(0; 0) = 0 (C282)

is the conservation of population law, while

−dSi
dt

(0; 0) + Si (0; 0)
2n∑

j=1

β ′
i j

μ′
j

dR j

dt
(0; 0) = −dSi

dt
(0; 0) + Si (0; 0)

2n∑

j=1

β′i j ′I j (0; 0) = 0.

(C283)

This means that, for nonzero σi , all terms not dependent on σi or ρi cancel and so the
linearisation becomes

ρi = σi − σi e
−∑2n

j=1

β′
i j

μ′
j
R j (∞;0)

− Si (0; 0)e
−∑2n

j=1

β′
i j

μ′
j
R j (∞;0) 2n∑

j=1

β ′
i j

μ′
j
ρ j

+ o(σi ) +
2n∑

j=1

o(ρ j ) + O(ε2) (C284)
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and so

σi =
ρi + Si (0; 0)e

−∑2n
j=1

β′
i j

μ′
j
R j (∞;0)(∑2n

j=1
β ′
i j

μ′
j
ρ j

)
+ o(σi ) +∑2n

j=1 o(ρ j ) + O(ε2)

1 − e
−∑2n

j=1

β′
i j

μ′
j
R j (∞;0)

.

(C285)

as required.

Proposition 8

The result of Proposition 7 can be written as a system of equations for vectors σ and
ρ

σ = Qρ + o(σ ) +
2n∑

j=1

o(ρ j ) + O(ε2) (C286)

for some matrix Q with nonzero determinant by assumption. However, it is impor-
tant to establish the dominant balance in these equations, which is done through the
following proposition, another result that the authors believe is novel to the literature.

Proposition 8

ρi (ε) = O(ε) ∀i ∈ {1, . . . , 2n}. (C287)

Proof Suppose that this does not hold. Thus, there must be some sequence εm such
that, for some i

lim
m→∞

(
ρi (εm)

εm

)
= ∞ and lim

m→∞(εm) = 0. (C288)

Define J ∗(ε) such that

J ∗(ε) = argmax
{|ρ j (ε)| : j ∈ {1, . . . , 2n}} . (C289)

Now, by the finiteness of {1, . . . , 2n}, there exists some subsequence εmk and some
fixed J ∈ {1, . . . , 2n} such that

J ∗(εmk ) = J ∀k. (C290)
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For notational convenience, assume that the original sequence εm has this property.
Note that

lim
m→∞

(
σ j (εm)

ρJ (εm)

)
= lim

m→∞

(
σ j (εm)

ε
× ε

ρJ (εm)

)
= 0. (C291)

as σ j (ε) = O(ε) and ε = o(ρi (ε)) ≤ o(ρJ (ε)). Moreover,

lim
m→∞

(
O(ε2m)

ρJ (εm)

)
= lim

m→∞

(
εm × O(εm)

ρJ (εm)

)
= 0, (C292)

lim
m→∞

(
o(σ j (εm)))

ρJ (εm)

)
= lim

m→∞

(
o(1) × σ j (εm)

ρJ (εm)

)
= 0 (C293)

and
∣∣∣∣ lim
m→∞

(
o(ρ j (εm))

ρJ (εm)

)∣∣∣∣ ≤ lim
m→∞

(∣∣∣∣
o(ρ j (εm))

ρ j (εm)

∣∣∣∣

)
= 0. (C294)

Note that there is some abuse of notation in these calculations, but, for example, an
O(ε2) term in the limit represents any function which is O(ε2). Thus, dividing (C286)
by ρJ (εm) and taking m to ∞ shows that

lim
m→∞

(
Qρ

ρJ (εm)

)
= 0. (C295)

Define

ρ̂(ε) := ρ(ε)
∑2n

j=1|ρ j (ε)|
(C296)

and note that

∣∣∣∣

(∑2n
j=1|ρ j (εm)|
ρJ (εm)

)∣∣∣∣ ∈ [1, 2n] (C297)

and thus remains finite and nonzero. Thus,

0 = lim
m→∞

(
Qρ

ρJ (εm)

)
(C298)

= lim
m→∞

(∑2n
j=1|ρ j (εm)|
ρJ (εm)

× Qρ̂(εm)

)
, (C299)

which means

0 = limm→∞
(
Qρ̂(εm)

)
. (C300)
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However, note that

2n∑

j=1

|ρ̂i (ε)| = 1 (C301)

and hence the sequence ρ̂ is bounded. Thus, by the Bolzano–Weierstrass theorem,
there must be some subsequence mk such that limk→∞(ρ̂(εmk )) exists and is equal to
some ρ∗ where

2n∑

j=1

|ρ∗
j | = 1. (C302)

However, then, by continuity and the fact that Q is invertible,

Qρ∗ = 0 ⇒ ρ∗ = 0 (C303)

which is a contradiction to (C302) as required. Thus, it must be the case that ρ(ε) =
O(ε) ��

Theorem 3

Combining Proposition 8 with the fact that σi = O(ε) means that (C286) can be
written as

σ = Qρ + o(ε). (C304)

Thus, one can multiply the equation by M−1 to get

ρ = Q−1σ + o(ε). (C305)

Hence, given vectors p and q where

pi := pi and qi = piκi ∀i ∈ {1, . . . , n}, (C306)

the change to the objective function is given by:

( p, q)T ρ = ( p, q)T
[
Q−1σ + o(ε)

]
(C307)

:= xT σ + o(ε). (C308)

Now, note that, for i ∈ {1, . . . , n},

σi = − Si (0; 0)Wi (τ (ε); ε)

Ni
(C309)
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while, for i ∈ {n + 1, . . . , 2n}

σi = −σi−n . (C310)

Hence, one can write (C308) as

( pT , qT )ρ = yTW(τ (ε); ε) + o(ε), (C311)

where

y = Si (0; 0)
Ni

[
− (x1, ....xn)

T + (xn+1, . . . , x2n)
T
]
, (C312)

as required by Theorem 3. The only restriction is that all the Wi are non-negative and
that

n∑

i=1

Wi (τ (ε); ε) = ε (C313)

and so the optimisation problem becomes

min{ yTw : w ≥ 0 and
n∑

i=1

wi = ε}. (C314)

Now, byTheorem17, proved inPenn andDonnelly (2022) and stated in the appendices,
itmust be the case that the objective function is non-increasing inw. Thus, in particular,
one must have

y ≤ 0 (C315)

as otherwise, if yi > 0 then settingw = εei (where ei is the ith canonical basis vector)
means that

H(U(t; ε)) = H(U(t; 0)) + yiε + o(ε) (C316)

and so, for sufficiently small ε,

H(U(t; ε)) > H(U(t; 0)) (C317)

which is a contradiction. Hence, y ≤ 0 which means that the optimisation problem is
an example of a continuous knapsack problem and one can readily see that a solution
is given by

w∗
i =

{
ε if i = min{yi }
0 otherwise

. (C318)
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As this minimum is unique by assumption, this is the unique leading-order optimal
solution to the optimisation problem.

A technical note is that this only proves the form of the optimal solution to leading
order. Indeed, if

wi = w∗
i + o(ε), (C319)

then the optimal objective value is unchanged to leading order. Hence, this restriction
is given in the statement of the theorem (although in practice is unimportant).

Appendix D Supplementary Lemmas

This section contains the supplementary lemmas that have been used in the proofs
of Theorems1–3. All but two of these lemmas were proved in Penn and Donnelly
(2022) and so their proofs will not be reproduced here, but they have been included
for completeness and for ease of access. The exceptions are Lemma 15 and 16.

Lemma 9

Lemma 9 Consider a continuous, time-dependent, matrix A(t) which satisfies

A(t)i j ≥ 0 ∀t ≥ 0 and ∀i 	= j (D320)

and a constant matrix B that satisfies

Bi j ≥ 0 ∀t ≥ 0 and ∀i 	= j . (D321)

Then, suppose that each element of A(t) is non-increasing with t and that

A(t)i j ≥ Bi j ∀t ≥ 0 and ∀i 	= j . (D322)

Moreover, define an initial condition v and suppose that y and z solve the systems

d y
dt

= A(t) y and
dz
dt

= B z (D323)

with

y(0) = z(0) = v ≥ 0. (D324)

Then,

y(t) ≥ z(t) ≥ 0 ∀t ≥ 0. (D325)

Proof This was proved as Lemma B.2 in Penn and Donnelly (2022)
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Lemma 10

Lemma 10 Define the set of functions

Fi (t) :=
{
Si (t), Ii (t), Ri (t), S

V
i (t), I Vi (t), RV

i (t)

}
. (D326)

Then, for all t ≥ 0 and i ∈ {1, . . . , n},

0 ≤ f ≤ Ni ∀ f ∈ Fi (t). (D327)

Proof This was proved as Lemma B.3 in Penn and Donnelly (2022).

Lemma 11

Lemma 11 For each i ,

lim
t→∞(Ii (t)) = lim

t→∞(I Vi (t)) = 0. (D328)

Proof This was proved as Lemma B.4 in Penn and Donnelly (2022). ��

Lemma 12

Lemma 12 Suppose that Ii (t) > 0 for some t ≥ 0 and some i ∈ {1, . . . , n}. Then

Ii (s) > 0 ∀s > t . (D329)

An analogous result holds for I Vi (t).

Proof This was proved as Lemma B.5 in Penn and Donnelly (2022).

Lemma 13

Lemma 13 Define

� :=
{
i : ∃t ≥ 0 s.t. Ii (t) > 0 or I Vi (t) > 0

}
. (D330)

Moreover, define

�0 := {i : Ii (0) > 0} (D331)

and the n by n matrix M by

Mi j = Si (0)β
1
i j . (D332)
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Then, define the connected component C of �0 in M as follows. The index i ∈
{1, . . . , n} belongs to C if and only if there is some sequence a1, . . . , ak such that

a j ∈ {1, . . . , n} ∀ j ∈ {1, . . . , k}, (D333)

Ma1,a2Ma2,a3 ..., Mak−1ak > 0 (D334)

and

a1 = i and ak ∈ �0. (D335)

Then,

(a) i ∈ C ⇒ Ii (t) > 0 ∀t > 0.
(b) � = C ∪ �0.

Thus, in particular,

i ∈ C ∪ �0 = � ⇔ I (t) > 0 ∀t > 0. (D336)

Proof This was proved as Lemma B.6 in Penn and Donnelly (2022).

Lemma 14

Lemma 14 Define the set of functions

F :=
{
Si (t; ε), Ii (t; ε), Ri (t; ε), SVi (t; ε), I Vi (t; ε), RV

i (t; ε) : i ∈ {1, . . . , n}, ε, t ≥ 0

}
,

(D337)

where for each fixed ε, these functions solve the model equations with parameters

P =
{
βα
i j (ε), μ

γ

i (ε) : i, j ∈ {1, . . . , n}, α ∈ {1, 2, 3, 4}, γ ∈ {1, 2} and ε ≥ 0

}
,

(D338)

initial conditions

I =
{
f (0; ε) : i ∈ {1, . . . , n}, f ∈ F and ε ≥ 0

}
(D339)

and vaccination policy U(t; ε). Suppose further that the population sizes are
independent of ε, except in group 1 where N1(ε) satisfies

|N1(ε) − N1(0)| ≤ ε and
S1(0; ε)

N1
= σ (D340)
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for some constant σ .
Suppose that

|p(ε) − p(0)| ≤ ε ∀p ∈ P, (D341)

| fi (0; ε) − fi (0; 0)| ≤ ε ∀ f ∈ F (D342)

and that

|Wi (t, ε) − Wi (t, 0)| < ε ∀t ≥ 0. (D343)

Moreover, suppose that for each i ∈ {1, . . . , n} and ε ≥ 0,

Ui (s; ε) ≥ 0 and
∫ t

0
Ui (s; ε)ds ≤ Ni ∀t ≥ 0. (D344)

Then, for each δ > 0 and each T > 0 there exists some η > 0 (that may depend on T
and δ) such that

ε ∈ (0, η) ⇒ | f (t; ε) − f (t; 0)| < δ ∀ f ∈ F and ∀t ∈ [0, T ]. (D345)

Proof An almost identical result is proved in Lemma B.8 from Penn and Donnelly
(2022), with the only exception being that N1 can vary in this example. However, note
that by replacing S1(0;ε)

N1(ε)
with σ , this lemma can be proved identically.

Lemma 15

The following lemma is a new result, proved using similar techniques to results in
Penn and Donnelly (2022) such as Lemma 13.

Lemma 15 Suppose that i ∈ �, with � defined as in Lemma 13. Then, for t > 0,

I Vi (t) = 0 ⇒ SVi (t)β3
j i = SVi (t)β4

j i = 0 ∀ j ∈ �. (D346)

Proof Suppose that there exists some t and some i, j ∈ � such that

SVi (t)β3
j i > 0 and I Vi (t) = 0. (D347)

Then, by continuity, there exists some a < t such that

SVi (s)β3
j i > 0 ∀s ∈ (a, t). (D348)

Moreover, by Lemma 12, it is necessary that

I Vi (s) = 0 ∀s ∈ (a, t), (D349)
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while, by Lemma 13

I j (t) > 0 ∀s ∈ (a, t) (D350)

and hence (using the fact that I Vi (s) = 0 ∀s ∈ (a, t))

dI Vi
dt

≥ SVi (s)β3
j i I j (t) > 0 ∀s ∈ (a, t) (D351)

and so

I Vi (t) > I Vi (a) = 0, (D352)

which is a contradiction as required. The final equality then follows as β3
j i ≥ β4

j i ≥ 0.
��

Lemma 16

The following result extends the main theorem from Penn and Donnelly (2022) in a
similar way to Proposition 6 to provide an additional inequality on the objective values
from the optimal vaccination problem.

Lemma 16 Suppose that the disease trajectories S and S̃ are given by the same model
equations, parameters, vaccination policy U and initial conditions except for the fact
that

SV1 (0) > S̃V1 (0). (D353)

Then, if the objective functions are denoted by H and H̃ for the two policies,

H(U) ≥ H̃(U). (D354)

Proof Define a new diseasemodel, denoted by hats where a new group (n+1) is added
in such that its unvaccinated compartments behave like the vaccinated compartments
of group 1 and its vaccinated compartments are perfectly immune from the disease.
That is,

β̂1
(n+1) j = β3

1 j , β̂2
(n+1) j = β4

1 j , and β̂3
(n+1) j = β̂4

(n+1) j = 0 ∀ j ∈ {1, ...n},
(D355)

β̂1
j(n+1) = β3

j1 β̂2
j(n+1) = β4

j1 and β̂3
j(n+1) = β̂4

j(n+1) = 0 ∀ j ∈ {1, . . . , n},
(D356)

βα
(n+1)(n+1) = 0 ∀α ∈ {1, 2, 3, 4} (D357)

and

μ̂1
n+1 = μ2

1 and μ̂2
n+1 = 1. (D358)
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Suppose further that all other parameter values are identical and that the only
differences in the initial conditions are that

ŜV1 (0) = S̃V1 (0) and Sn+1(0) = SV1 (0) − S̃V1 (0) > 0. (D359)

Then, note that

d(ŜV1 + Ŝn+1)

dt
= −

n+1∑

j=1

[
ŜV1 (β̂3

1 j Î j + β̂4
1 j Î

V
j ) + Ŝn+1(β̂

1
(n+1) j Î j + β̂2

(n+1) j Î
V
j )

]
...

... − Ŝn+1Ûn+1

N̂n+1 − Ŵn+1

= −(ŜV1 + Ŝn+1)

n+1∑

j=1

[
β̂3
1 j Î j + β̂4

1 j Î
V
j

]
− Ŝn+1Ûn+1

N̂n+1 − Ŵn+1
. (D360)

Moreover, for i 	= 1

d

dt
(Ŝi ) = −Ŝi

n+1∑

j=1

[
β1
i j Îi + β2

i j Î
V
i

]
− Ŝi Ûi

N̂i − Ŵi
(D361)

= −Ŝi

⎛

⎝
n∑

j=2

[
β1
i j Îi + β2

i j Î
V
i

]
+ β1

i j Î1 + β2
i j ( Î

V
1 + În+1)

⎞

⎠− Ŝi Ûi

N̂i − Ŵi
.

(D362)

Thus, with similar calculations for Î , Î V , R̂ and R̂V , by the initial conditions and by
the uniqueness of solution, in the case that Ûn+1 = 0,

ŜV1 + Ŝn+1 = SV1 Î V1 + În+1 = I V1 and R̂V
1 + R̂n+1 = RV

1 . (D363)

Thus, setting

pn+1 = p1κ1, (D364)

this means that

Ĥ(Û) = H(U) (D365)

for any Û such that Ûn+1 = 0 and Ûi = Ui for any i 	= n.

Now, define a vaccination policy Û
∗
(t;�) such that

Û∗
i (t;�) = Ûi (t) ∀t ≥ 0 and i 	= n + 1 (D366)
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and

Û∗
n+1(t;�) =

⎧
⎨

⎩
1
�

(
SV1 (0) − S̃V1 (0)

)
if t ≤ �

0 otherwise
. (D367)

Then, this means that

Ŝn+1(�;�) = 0 and ŜVn+1(�;�) = SV1 (0) − S̃V1 (0) + O(�) (D368)

while all other variable values at time � differ by at most O(�) from their initial
values. Thus, define by an overbar the model given by the initial conditions which are
the same as those in the hat model, but with

Sn+1(0) = 0 and S
V
n+1 = SV1 (0) − S̃V1 (0). (D369)

Suppose also that the vaccination policy in this case is equal to U , which is the point-
wise limit of the vaccination policy Û

∗
(t;�) (for t > 0). Then, using Proposition 5,

by considering the values of the variables f̂ at time � to be the initial conditions, one
finds that for any finite time t ,

lim
�→0

(Ĥ(U∗(t;�))) = H(U). (D370)

Note this holds as it is assumed that U is bounded and so

|Wi (t + �;�) − Wi (�;�) − Wi (t)| = O(�). (D371)

Moreover, note that the only difference between the bar model and the tilde model is
in group (n+1). However, by the fact that β3

i j = β4
i j = 0 if (n+1) ∈ {i, j}, the value

of S
V
n+1 is constant and the other variable values are independent of it. Thus, by the

uniqueness of solution, this means that

H(U) = H̃(U). (D372)

Finally, note that by Theorem 17, it must be necessary that for any � > 0

Ĥ(U(t;�)) ≤ Ĥ(U(t;∞)) = H(U), (D373)

where� = ∞ corresponds to no vaccination taking place in group (n+1) (and hence
the original objective function H is recovered). Thus,

H̃(U) ≤ H(U), (D374)

as required.
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Theorem 17

Theorem 17 Suppose that U and Ũ are feasible, bounded, Lebesgue-integrable
vaccination policies. Suppose further that for each i ∈ {1, . . . , n} and t ≥ 0

∫ t

0
Ui (s)ds ≤

∫ t

0
Ũi (s)ds. (D375)

Then, for each t ≥ 0 and i ∈ {1, . . . , n}

Ii (t) + Ri (t) + I Vi (t) + RV
i (t) ≥ Ĩi (t) + R̃i (t) + Ĩ v

i (t) + R̃V
i (t) (D376)

and

Ri (t) ≥ R̃i (t). (D377)

Moreover,

H(U) ≥ H(Ũ). (D378)

Proof A proof of this theorem is given in Penn and Donnelly (2022), where it is
Theorem 1. Note that the first two results are not in the statement of Theorem 1 in
Penn and Donnelly (2022), but can be found at the end of the proof.

Theorem 18

Theorem 18 Suppose that B is differentiable and that there is an optimal solution U .
Then, define the function

χ(t) :=
{

A(t) if
∫ t
0 χ(s)ds < B(t)

min(A(t), B ′(t)) if
∫ t
0 χ(s)ds ≥ B(t)

(D379)

and suppose that χ(t) exists and is bounded. Then, there exists an optimal solution Ũ
such that

n∑

i=1

W̃i (t) = max

(∫ t

0
χ(s)ds, 1

)
. (D380)

Moreover, if χ(t) is continuous almost everywhere, there exists an optimal solution Ũ
such that

n∑

i=1

Ũi (t) =
{
χ(t) if

∫ t
0 χ(s)ds < 1

0 otherwise
(D381)
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Proof A proof of this theorem is given in Penn and Donnelly (2022) where it is
Theorem 2.
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