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Abstract
We consider a two-patches SIR model where communication occurs through com-
muters, distinguishing explicitly permanently resident populations from commuters
populations. We give an explicit formula of the reproduction number and show how
the proportions of permanently resident populations impact it. We exhibit nonintuitive
situations for which allowing commuting from a safe territory to another one where
the transmission rate is higher can reduce the overall epidemic threshold and avoid an
outbreak.
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1 Introduction

Since the pioneer work of Kermack and McKendrick (1927), the SIR model has been
very popular in epidemiology, as the basic model for infectious diseases with direct
transmission (e.g., Anderson and May 1991). It retakes great importance nowadays
due to the recent coronavirus pandemic. While early models were not spatialized,
the importance of accounting for spatial heterogeneity has been often reported in the
literature (see, e.g., Angulo et al. 1979; Sattenspiel and Dietz 1995; Keeling et al.
2004; Keeling and Rohani 2007; Kelly et al. 2016; Li et al. 2021). However, different
mechanisms come into play to explain the spatial spreading of a disease. Although dif-
fusion appears to be a natural process to describe the local propagation of an infectious
agent among a population, which leads to models with partial differential equations
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(Murray 2003), it appears to be not well suited for describing long distance spreading.
In particular, transportation between cities comes into the picture as a major source of
rapid spreading among nonhomogeneous populations (Arino and van den Driessche
2003; Arino et al. 2007; Takeuchi et al. 2007; Liu and Stechlinski 2013; Mpolya et al.
2014; Chen et al. 2014; Yin et al. 2020; Tocto-Erazo et al. 2021; Lipshtat et al. 2021).
Meta-populations or multi-patches models are then more appropriate to describe the
spatial characteristics of the propagation (Wang and Mulone 2003; Wang and Zhao
2004; Arino and van den Driessche 2006; Gao 2007; Arino 2009), as already well con-
sidered in ecology (Hanski 1999; MacArthur 2001). These models require a precise
description of the movements between patches, which are most of the time assumed
to be linear and thus encoded into a connection matrix (Arino and van den Driessche
2006; Arino 2009). Typically one obtains a system of ordinary differential equations
on a graph, which couples the communication dynamics with the epidemiological one.

For diseases spreading among human populations living in different cities, com-
muters (individuals housing in a city, traveling regularly for short periods in a
neighboring city, and coming back to their home city) play a crucial role in the disease
propagation among territories (Keeling and Rohani 2002; Keeling et al. 2004; Keeling
and Rohani 2007;Mpolya et al. 2014; Yin et al. 2020). Such coupling between patches
have been already considered in the literature, distinguishing among populations Ni

attached to a city i the subpopulation Nii present in its permanent housing from other
subpopulations Ni j temporary present in another city j �= i [it can be also seen as
multi-groupsmodels as in Clancy (1996), Guo et al. (2006), Iggidr et al. (2012)]. How-
ever, such models explicitly assume that the whole population housing in a given city
can potentially commute to another one. We believe that this is not always fully real-
istic and that a subpopulation that never (or very rarely) moves to another city should
be distinguished from the subpopulation that visits at a regular basis another city.
Therefore, we consider an extension of such models, which explicitly takes into con-
sideration two kinds of movement: an Eulerian one which describes the flow between
patches that mixes populations, and an Lagrangian one which assigns home locations
of individuals, as described in the more general framework (Citron et al. 2021). The
study of this extension, which has not yet been analyzed analytically in the literature,
to our knowledge, and how it impacts the disease spreading, is the primary objective
of the present work. For this purpose, we establish an analytical expression of the
reproduction number [as the epidemic threshold formerly introduced and analyzed in
Diekmann et al. (1990), van den Driessche and Watmough (2002), Diekmann et al.
(2007), Dhirasakdanon et al. (2007)] for the two patches case (that is also valid for the
particular case when the whole populations travel, for which the exact expression of
the reproduction number has not been yet provided in the literature).

We also had in mind to consider heterogeneity among territories when disease
transmission differs from one city to another one. Typically, non-pharmaceutical inter-
ventions (such as reducing physical distance in the population) could be applied with
different strength in each city, providing distinct transmission rates. When one terri-
tory being isolated presents a higher reproduction number than the other territory, it
can be considered as a core group in the epidemiological terminology (Hadeler and
Castillo-Chavez 1995; Brunham 1997), and commuters contribute then to spread the
epidemics in both territories. We aim at analyzing more precisely how the proportions
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of commuters in each city can increase or decrease the overall reproduction number.
Intuitively, one may believe that the best way to reduce the spreading is to encourage
commuters from the city with the lowest transmission rate not to travel to the other city,
and on the opposite to encourage as much as possible commuters from the other city
to spend time in the safer city. Indeed, we shall see that this is not always true... The
second objective of the present work is thus to study the minimization of the epidemic
threshold of the two-patchesmodel with respect to these proportions, depending on the
commuting rates. This analysis can potentially serve for decisions making to prevent
epidemic outbreak [as in Knipl (2016), for instance].

The paper is organized as follows. In the next section, we present the complete
model in dimension 18 and give some preliminaries. Sect. 3 is devoted to the analysis
of the asymptotic behavior of the solutions of the model. We give and demonstrate an
explicit expression of the reproduction number, introducing four relevant quantities
qi j (i, j = 1, 2). In a corollary, we also give an alternative way of computation, which
is useful in the following. In Sect. 4, we study the minimization of the reproduction
number with respect to the proportions of commuters in each patch. Finally, Sect. 5
gives a numerical illustration of the results, considering two territories with intrinsic
basic reproduction numbers lower and higher than one. We depict the relative sizes
of the permanently resident populations that can avoid the outbreak of the epidemic
depending on the commuting rates, and discuss the various cases. We end with a
conclusion.

2 TheModel

Wefollow themodeling of commuters proposed inKeeling andRohani (2002) between
two patches (such as cities or territories), but here we consider in addition that a part
of the population in each patch do not commute (the permanently resident subpopu-
lation). We consider populations of size Ni whose home belongs to a patch i ∈ {1, 2},
structured in three groups:

1. permanently resident, being all the time in patch i , whose population size is denoted
Nir ,

2. commuters to patch j , but located in patch i at time t , of population size denoted
Nii ,

3. commuters to patch j and located in patch j at time t , of population size denoted
Ni j .

We shall denote Nic = Nii + Ni j the size of the total population of commuters with
their home in patch i . The individuals commutes to patch j at a rate λi with a return
rateμi . For each group g ∈ {ir , i i, i j}we denote by Sg , Ig , Rg the sizes of susceptible,
infected and recovered subpopulations. This modeling implicitly assumes that at any
time there is no individual out the territories, that is traveling time is negligible. This
assumption is therefore only valid for adjoining territories with short transportation
times (by train, road, etc.). It would not be valid between distant territories connected
for example by boat or plane with non-negligible crossing times. In this case, it would
be necessary to consider additional nodes of in-transit populations, as it has been
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considered for example in Colizza et al. (2006), Patil et al. (2021) or Ruan et al.
(2015) where distance between nodes are explicitly taken into consideration. This
would of course complicates the model and its study.

We consider the SIR model assuming that the recovery parameter γ is identical
everywhere while the transmission rate βi depends on the patch i but is identical
among each group. Typically lifestyle and hygienic measures may differ between two
cities, implying different values of β. Moreover, if two cities are on both sides of the
border between two countries, the strength of non-pharmaceutical interventions are
likely to be different, as is was, for instance, the case between European countries
during the SARS-2 outbreak. The model is written as follows (with i �= j in {1, 2}).

Ṡir = −βi Sir
Iir + Iii + I ji

Nir + Nii + N ji
,

İir = βi Sir
Iir + Iii + I ji

Nir + Nii + N ji
− γ Iir ,

Ṙir = γ Iir ,

Ṡi i = −βi Sii
Iir + Iii + I ji

Nir + Nii + N ji
− λi Sii + μi Si j ,

İi i = βi Sii
Iir + Iii + I ji

Nir + Nii + N ji
− γ Iii − λi Iii + μi Ii j ,

Ṙii = γ Iii − λi Rii + μi Ri j ,

Ṡi j = −β j Si j
I jr + I j j + Ii j

N jr + N j j + Ni j
+ λi Sii − μi Si j ,

İi j = β j Si j
I jr + I j j + Ii j

N jr + N j j + Ni j
− γ Ii j + λi Iii − μi Ii j ,

Ṙi j = γ Ii j + λi Rii − μi Ri j

Parameters λi ,μi represent switching rates of populations i , leaving home and return-
ing. This modeling implicitly assumes that movements between territories are not
synchronized, as often considered in multi-city models (see, e.g., Sattenspiel and
Dietz 1995; Keeling and Rohani 2002; Arino and van den Driessche 2003; Wang and
Mulone 2003;Wang and Zhao 2004; Keeling et al. 2004; Arino and van den Driessche
2006; Takeuchi et al. 2007; Keeling and Rohani 2007; Liu and Stechlinski 2013; Chen
et al. 2014). Note that we also consider, in all generality, that commuting is asym-
metrical (i.e., λ1 and λ2 may be different, as well as μ1, μ2). Typically, each territory
may offer different activities that attract commuters from the other territory and thus
different mean sojourn times. One can check that the population sizes Nir and Nic are
constant. Moreover Nii , Ni j fulfill the system of equations

{
Ṅii = −λi Nii + μi Ni j ,

Ṅi j = λi Nii − μi Ni j

whose solutions verify
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lim
t→+∞ Nii (t) = N̄ii := μi

λi + μi
Nic, lim

t→+∞ Ni j (t) = N̄i j := λi

λi + μi
Nic (1)

We shall assume that populations are already balanced at initial time, i.e., that one has
Nii = N̄ii , Ni j = N̄i j (constant). For simplicity, we shall drop the notation ¯ in the
following and denote

Nip := Nir + Nii + N ji

which represents the (constant) size of the total population present in patch i .

3 The Epidemic Threshold

We denote the vectors

I = (I1r , I11, I12, I2r , I22, I21)
�, S = (S1r , S11, S12, S2r , S22, S21)

�

and consider the state vector

X =
[
I
S

]

which belongs to the invariant domain

D := {X ∈ R
12+ ; MX ≤ N}

where N is the vector

N = (N1r , N11, N12, N2r , N22, N21)
�

andM the 6× 12 matrix which consists in the concatenation of the identity matrix I6
of dimension 6 × 6

M = [I6, I6]

The disease free equilibrium is defined as

X� =
[
0
N

]

Let Ri be the intrinsic reproduction number in the patch i (i.e., when there is no
connection between patches), that is

Ri := βi

γ
.
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We give now an explicit expression of the epidemic threshold when the two patches
communicates via commuters.

Proposition 1 Let

R1,2 := q11 + q22 + √
(q22 − q11)2 + 4q12q21

2
(2)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q11 = R1

(
N1r
N1p

+ N11
N1p

γ+μ1
γ+λ1+μ1

+ N21
N1p

γ+λ2
γ+λ2+μ2

)

q22 = R2

(
N2r
N2p

+ N22
N2p

γ+μ2
γ+λ2+μ2

+ N12
N2p

γ+λ1
γ+λ1+μ1

)

q21 = R1

(
N11
N1p

λ1
γ+λ1+μ1

+ N21
N1p

μ2
γ+λ2+μ2

)

q12 = R2

(
N12
N2p

μ1
γ+λ1+μ1

+ N22
N2p

λ2
γ+λ2+μ2

)
(3)

Then, one has the following properties.

1. IfR1,2 > 1, then X� is unstable.
2. IfR1,2 < 1, then X� is exponentially stable with respect to the variable1 I .
3. IfR1 = R2 := R, then R1,2 = R.

Proof Write the dynamics of X as Ẋ = f (X). The Jacobian matrix J of f at X� is of
the form

J =
[
A 0
� B

]
with A = F − V

where

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1
N1r
N1p

β1
N1r
N1p

0 0 0 β1
N1r
N1p

β1
N11
N1p

β1
N11
N1p

0 0 0 β1
N11
N1p

0 0 β2
N12
N2p

β2
N12
N2p

β2
N12
N2p

0

0 0 β2
N2r
N2p

β2
N2r
N2p

β2
N2r
N2p

0

0 0 β2
N22
N2p

β2
N22
N2p

β2
N22
N2p

0

β1
N21
N1p

β1
N21
N1p

0 0 0 β1
N21
N1p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ 0 0 0 0 0

0 γ + λ1 −μ1 0 0 0

0 −λ1 γ + μ1 0 0 0

0 0 0 γ 0 0

0 0 0 0 γ + λ2 −μ2

0 0 0 0 −λ2 γ + μ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 We refer to Vorotnikov (1998) for the definition of partial stability.
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and

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 −λ1 μ1 0 0 0

0 λ1 −μ1 0 0 0

0 0 0 0 0 0

0 0 0 0 −λ2 μ2

0 0 0 0 λ2 −μ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that F is a nonnegative matrix and V is a non-singular M-matrix. We recall [see,
for instance, from van den Driessche andWatmough (2002)] that one has the property

max Re(Spec(A)) <
>

0 ⇐⇒ ρ(FV−1) <
>

1

The computation of the matrix M := FV−1 gives the following expression

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1
N1r
N1p

R1
N1r (γ+μ1)

N1p (γ+λ1+μ1)
R1

N1rμ1
N1p (γ+λ1+μ1)

0 R1
N1r λ2

N1p (γ+λ2+μ2)
R1

N1r (γ+λ2)

N1p (γ+λ2+μ2)

R1
N11
N1p

R1
N11(γ+μ1)

N1p (γ+λ1+μ1)
R1

N11μ1
N1p (γ+λ1+μ1)

0 R1
N11λ2

N1p (γ+λ2+μ2)
R1

N11(γ+λ2)

N1p (γ+λ2+μ2)

0 R2
N12λ1

N2p (γ+λ1+μ1)
R2

N12(γ+λ1)

N2p (γ+λ1+μ1)
R2

N12
N2p

R2
N12(γ+μ2)

N2p (γ+λ2+μ2)
R2

N12μ2
N1p (γ+λ2+μ2)

0 R2
N2r λ1

N2p (γ+λ1+μ1)
R2

N2r (γ+λ1)

N2p (γ+λ1+μ1)
R2

N2r
N2p

R2
N2r (γ+μ2)

N2p (γ+λ2+μ2)
R2

N2rμ2
N1p (γ+λ2+μ2)

0 R2
N22λ1

N2p (γ+λ1+μ1)
R2

N22(γ+λ1)

N2p (γ+λ1+μ1)
R2

N22
N2p

R2
N22(γ+μ2)

N2p (γ+λ2+μ2)
R2

N22μ2
N1p (γ+λ2+μ2)

R1
N21
N1p

R1
N21(γ+μ1)

N1p (γ+λ1+μ1)
R1

N21μ1
N1p (γ+λ1+μ1)

0 R1
N21λ2

N1p (γ+λ2+μ2)
R1

N21(γ+λ2)

N1p (γ+λ2+μ2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let us consider the diagonal matrix

D :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1
N1r
N1p

R1
N11
N1p

R2
N12
N2p

R2
N2r
N2p

R2
N22
N2p

R1
N21
N1p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the matrix Q = D−1MD, whose computation gives the expression
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Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1
N1r
N1p

R1
N11(γ+μ1)

N1p (γ+λ1+μ1)
R2

N12μ1
N2p (γ+λ1+μ1)

0 R2
N22λ2

N2p (γ+λ2+μ2)
R1

N21(γ+λ2)

N1p (γ+λ2+μ2)

R1
N1r
N1p

R1
N11(γ+μ1)

N1p (γ+λ1+μ1)
R2

N12μ1
N2p (γ+λ1+μ1)

0 R2
N22λ2

N2p (γ+λ2+μ2)
R1

N21(γ+λ2)

N1p (γ+λ2+μ2)

0 R1
N11λ1

N1p (γ+λ1+μ1)
R2

N12(γ+λ1)

N2p (γ+λ1+μ1)
R2

N2r
N2p

R2
N22(γ+μ2)

N2p (γ+λ2+μ2)
R1

N21μ2
N1p (γ+λ2+μ2)

0 R1
N11λ1

N1p (γ+λ1+μ1)
R2

N12(γ+λ1)

N2p (γ+λ1+μ1)
R2

N2r
N2p

R2
N22(γ+μ2)

N2p (γ+λ2+μ2)
R1

N21μ2
N1p (γ+λ2+μ2)

0 R1
N11λ1

N1p (γ+λ1+μ1)
R2

N12(γ+λ1)

N2p (γ+λ1+μ1)
R2

N2r
N2p

R2
N22(γ+μ2)

N2p (γ+λ2+μ2)
R1

N21μ2
N1p (γ+λ2+μ2)

R1
N1r
N1p

R1
N11(γ+μ1)

N1p (γ+λ1+μ1)
R2

N12μ1
N2p (γ+λ1+μ1)

0 R2
N22λ2

N2p (γ+λ2+μ2)
R1

N21(γ+λ2)

N1p (γ+λ2+μ2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The matrix Q is nonnegative and irreducible. By Perron–Frobenius theorem [see,
for instance, Berman and Plemmons (1994)], this matrix admits a unique positive
eigenvector (up to a scalar multiplication) that corresponds to the simple (positive)
eigenvalue � = ρ(Q) = ρ(M).

Note that the rank of Q is two. We posit

Y = (1, 1, 0, 0, 0, 1)�, Z = (0, 0, 1, 1, 1, 0)�

and define QY , QZ the first and third lines, respectively, of the matrix Q. Then, for
any vector X ∈ R

6, one has QX = (QY X)Y + (QZ X)Z . We look for an positive
eigenvector X of the form X = αY + (1 − α)Z with α ∈ (0, 1). One has then

QX = αQY + (1 − α)QZ

= α
(
(QYY )Y + (QZY )Z

) + (1 − α)
(
(QY Z)Y + (QZ Z)Z

)
= (

α(QYY ) + (1 − α)(QY Z)
)
Y + (

α(QZY ) + (1 − α)(QZ Z)
)
Z (4)

On the other hand, as X is an eigenvector, one has

QX = �X = α�Y + (1 − α)�Z (5)

The vectors Y and Z being orthogonal, one obtains from (4)–(5) the conditions

{
αQYY + (1 − α)QY Z = α�

αQZY + (1 − α)QZ Z = (1 − α)�
(6)

Let r = 1−α
α

. Eliminating � in the two previous equations, r is the positive solution
of the polynomial

r2QY Z + r(QYY − QZ Z) − QZY = 0

and � = QYY + r QY Z . One obtains the expression of the eigenvalue

� = QYY + QZ Z + √
(QYY − QZ Z)2 + 4(QY Z)(QZY )

2
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Finally, from the expression of Q, one gets

q11 = QYY = R1

(
N1r
N1p

+ N11
N1p

γ+μ1
γ+λ1+μ1

+ N21
N1p

γ+λ2
γ+λ2+μ2

)

q22 = QZ Z = R2

(
N2r
N2p

+ N22
N2p

γ+μ2
γ+λ2+μ2

+ N12
N2p

γ+λ1
γ+λ1+μ1

)

q21 = QZY = R1

(
N11
N1p

λ1
γ+λ1+μ1

+ N21
N1p

μ2
γ+λ2+μ2

)

q12 = QY Z = R2

(
N12
N2p

μ1
γ+λ1+μ1

+ N22
N2p

λ2
γ+λ2+μ2

)

and thus � = R1,2, which is exactly ρ(M).
i. When R1,2 > 1, the matrix A has at least one eigenvalue with positive real part

and the matrix J as well. The equilibrium X� is thus unstable on D.
ii.WhenR1,2 < 1, thematrix A is Hurwitz, but X� is not an hyperbolic equilibrium.

However, on can write the dynamics of the vector I as an non-autonomous system

İ = g(t, I ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1S1r (t)
I1r+I11+I21

N1p
− γ I1r

β1S11(t)
I1r+I11+I21

N1p
− (γ + λ1)I11 + μ1 I12

β2S12(t)
I2r+I22+I12

N2p
+ λ1 I11 − (γ + μ1)I12

β2S2r (t)
I2r+I22+I12

N2p
− γ I2r

β2S22(t)
I2r+I22+I12

N2p
− (γ + λ2)I22 + μ2 I21

β1S21(t)
I1r+I11+I21

N1p
+ λ2 I22 − (γ + μ2)I21

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that this dynamics is cooperative and as for any t ≥ 0 one has Si j (t) ≤ Ni j for
i j ∈ {1r , 11, 12, 2r , 22, 21}, one gets

g(t, I ) ≤ ḡ(I ) := AI , I ≥ 0

Therefore, any solution I (·) of İ = g(t, I ) with I (0) = I0 ≥ 0 verifies 0 ≤ I (t) ≤
Ī (t) for any t ≥ 0, where Ī (·) is solution of the linear dynamics ˙̄I = ḡ( Ī ) with
Ī (0) = I0. As A is Hurwitz, we conclude that X� is exponentially stable with respect
to I , which proves point ii.

iii. For the particular case R1 = R2 := R, the transpose of the matrix M writes

M� = R

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1r
N1p

N11
N1p

0 0 0
N21
N1p

N1r (γ+μ1)

N1p (γ+λ1+μ1)

N11(γ+μ1)

N1p (γ+λ1+μ1)

N12λ1
N2p (γ+λ1+μ1)

N2r λ1
N2p (γ+λ1+μ1)

N22λ1
N2p (γ+λ1+μ1)

N21(γ+μ1)

N1p (γ+λ1+μ1)

N1rμ1
N1p (γ+λ1+μ1)

N11μ1
N1p (γ+λ1+μ1)

N12(γ+λ1)

N2p (γ+λ1+μ1)

N2r (γ+λ1)

N2p (γ+λ1+μ1)

N22(γ+λ1)

N2p (γ+λ1+μ1)

N21μ1
N1p (γ+λ1+μ1)

0 0
N12
N2p

N2r
N2p

N22
N2p

0

N1r λ2
N1p (γ+λ2+μ2)

N11λ2
N1p (γ+λ2+μ2)

N12(γ+μ2)

N2p (γ+λ2+μ2)

N2r (γ+μ2)

N2p (γ+λ2+μ2)

N22(γ+μ2)

N2p (γ+λ2+μ2)

N21λ2
N1p (γ+λ2+μ2)

N1r (γ+λ2)

N1p (γ+λ2+μ2)

N11(γ+λ2)

N1p (γ+λ2+μ2)

N12μ2
N1p (γ+λ2+μ2)

N2rμ2
N1p (γ+λ2+μ2)

N22μ2
N1p (γ+λ2+μ2)

N21(γ+λ2)

N1p (γ+λ2+μ2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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3 Page 10 of 22 A. Rapaport, I. Mimouni

One can check that one has M�U = RU where U = (1, 1, 1, 1, 1, 1)�. As U is a
positive vector, we deduce from the Perron–Frobenius theorem that one has ρ(M) =
ρ(MT ) = R, which ends the proof. ��
Remark 1 More generally, the next-generation matrix M = FV−1 can be shown to
have a rank equal to the number n of patches and that its Perron vector can be expressed
as a convex combination of a family of orthogonal vectors in the image of M . This
implies that the positive eigenvalue of M (i.e., the reproduction number) is also the
positive eigenvalue of the n-dimensional positive matrix given by the decomposition
of the image of this vectors by the matrix M .

Alternatively, one may consider the epidemic spread in a virgin population as a
Markov process, to determine the expected numbers of secondary cases in each patch,
and obtain this n × n matrix, as described in Diekmann et al. (2013). This method
consists in a first-step analysis by determining the mean residence times of an infected
individual of each group in each of the patches. Then, for a given patch the expected
numbers of new infected present in each path are given by the products of the mean
residence times by the transmission rate, averaged by the constant distribution given
in (1).

This explains why the formula (2) takes the expression of a root of the characteristic
polynomial of a 2 by 2 matrix.

Remark 2 The explicit expression (2) of the epidemic threshold given in Proposition 1
is also relevant in absence of permanently resident populations, which has not been
yet provided explicitly in the literature (up to our knowledge).

Corollary 2 One has

min (R1,R2) ≤ R1,2 ≤ max (R1,R2) .

Proof Denote by M(R1,R2) the matrix FV−1 for the parameters R1, R2, and let
R− := min (R1,R2),R+ := max (R1,R2). From the expression of the nonnegative
matrices M , one gets

M(R−,R−) ≤ M(R1,R2) ≤ M(R+,R+)

which implies [see, for instance, Berman and Plemmons (1994)] the inequalities

ρ(M(R−,R−)) ≤ ρ(M(R1,R2)) ≤ ρ(M(R+,R+))

and thus

R− ≤ R1,2 ≤ R+. ��
Alternatively, the number R1,2 can be determined as follows.
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Corollary 3 Assume R2 > R1. Then, one has

R1,2 = αR1 + (1 − α)R2 (7)

where α ∈ [0, 1) is the smallest root of the polynomial

P(α) = α2(R2 − R1) − α(R2 − R1 + q12 + q21) + q12

Proof One can check, from expressions (3), that one has q11 + q21 = R1 and q22 +
q12 = R2. Then, from (6), one get

R1,2 = l = αR1 + (1 − α)R2 (8)

where α is a root of the polynomial P obtained from (6) by eliminating l, that is

P(α) = α2(R2 − R1) − α(R2 − R1 + q12 + q21) + q12

From Corollary 2, we know that α belongs to [0, 1].
Note that one has P(0) = q12 ≥ 0 and P(1) = −q21 ≤ 0. Therefore, when

R2−R1 > 0, P admits exactly one root in [0, 1) and another one in [1,→). However,
if α = 1 one should have q21 = 0 and thus λ1 = 0,μ2 = 0, which implies N11 = N1c,
N12 = 0, N22 = 0, N21 = N2c. Then, one obtains q11 = R1, q22 = R2 and from
the expression (2) on gets R1,2 = max(R1,R2) = R2 which contradicts α = 1. We
conclude that α belongs to [0, 1) and is thus the smallest root of P . ��
Remark 3 When there is no communicationbetweenpatches (that is N1r = N1p = N1,
N2r = N2p = N2), one has q21 = 0 and q12 = 0. If R2 > R1, resp. R1 > R2, one
has α = 0, resp. α = 1, which gives

R1,2 = max(R1,R2).

We look now for a characterization of the minimum value of the threshold R1,2.

4 Minimization of the Epidemic Threshold

In this section, we assume that the mixing is fast compared to the recovery rate (as
its is often considered in the literature), which amounts to have numbers λi , μi large
compared to γ . Our objective is to study how the proportions of commuters in the
populations impact the value of R1,2.

Given R1, R2, we consider the approximation R̃1,2 of the threshold R1,2 which
consists in keeping γ = 0 in the expressions (3). For convenience, we posit the
numbers

ηi := λi

λi + μi
∈ (0, 1) (i = 1, 2)
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3 Page 12 of 22 A. Rapaport, I. Mimouni

One has a first result about the variations of R̃1,2 with respect to N1c, N2c.

Proposition 4 Fix parameters Ni , βi , γ , λi , μi (i = 1, 2) such that R2 > R1.

1. For any N1c ∈ (0, N1), the map N2c → R̃1,2(N1c, N2c) is decreasing.
2. The map N1c → R̃1,2(N1c, N2c) is increasing at (N1c, N2c) when

η2(1 − η2)N2c > (1 − η1)(N2 − η2N2c) (9)

3. The map N1c → R̃1,2(N1c, N2c) is increasing, resp. decreasing, at (N1c, N2c) if
the numbers A and B are negative, resp. positive, where

A := R2

N2
2 − η1(

1
2 − η1)N1c − ( 32 − η2)η2N2c

N2 − η2N2c + η1N1c

− R1

N1
2 − ( 32 − η1)η1N1c − η2(

1
2 − η2)N2c

N1 − η1N1c + η2N2c
,

B := R2
(1 − η1)(N2 − η2N2c) − η2(1 − η2)N2c

(N2 − η2N2c + η1N1c)2

− R1
(1 − η1)(N1 + η2N2c) + η2(1 − η2)N2c

(N1 − η1N1c + η2N2c)2

Proof Following Corollary 3, one has

R̃1,2 = α̃R1 + (1 − α̃)R2 (10)

where α̃ is the smallest root of the polynomial

P̃(α) = α2(R2 − R1) − α(R2 − R1 + q̃12 + q̃21) + q̃12

where q̃12, q̃21 are the approximations of q12, q21 defined in (3). Let us note that one can
write Nii = (1−ηi )Nic, Ni j = ηi Nic (for j �= i) and also Nip = Ni −ηi Nic+η j N jc,
which leads to the following expressions of q̃12, q̃21

q̃21 = R1
(1 − η1)η1N1c + η2(1 − η2)N2c

N1 − η1N1c + η2N2c
,

q̃12 = R2
η1(1 − η1)N1c + (1 − η2)η2N2c

N2 − η2N2c + η1N1c
(11)

For simplicity, we shall drop the notation˜ in the rest of the proof. Note than α being
the smallest root of P , it verifies

α <
R2 − R1 + q12 + q21

2(R2 − R1)
(12)
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Let us differentiate the equality P(α) = 0 with respect to q12 and q21:

2α
∂α

∂q12
(R2 − R1) − ∂α

∂q12
(R2 − R1 + q12 + q21) − α + 1 = 0

2α
∂α

∂q21
(R2 − R1) − ∂α

∂q21
(R2 − R1 + q12 + q21) − α = 0

which gives

∂α

∂q12
= 1 − α

R2 − R1 + q12 + q21 − 2α(R2 − R1)

∂α

∂q21
= −α

R2 − R1 + q12 + q21 − 2α(R2 − R1)

Then, one can write

∂α

∂Nic
= ∂α

∂q12

∂q12
∂Nic

+ ∂α

∂q21

∂q21
∂Nic

= (1 − α)
∂q12
∂Nic

− α
∂q21
∂Nic

R2 − R1 + q12 + q21 − 2α(R2 − R1)
(i = 1, 2)

and from inequality (12), we obtain that the signs of the derivatives ∂α
∂Nic

are given by
the sign of the numbers

σi := (1 − α)
∂q12
∂Nic

− α
∂q21
∂Nic

(i = 1, 2) (13)

We begin by the dependency with respect to N2c. One has first

∂q12
∂N2c

= R2η2
(1 − η2)(N2 + η1N1c) + η1(1 − η1)N1c

(N2 + η1N1c − η2N2c)2
> 0

Note that one has

q21 = R1(N2 + η1N1c − η2N2c)

R2(N1 − η1N1c + η2N2c)
q12 (14)

and thus

∂q21
∂N2c

= R1(N2 + η1N1c − η2N2c)

R2(N1 − η1N1c + η2N2c)

∂q12
∂N2c

− R1η2(N1 + N2)

R2(N1 − η1N1c + η2N2c)2
q12

Then, one gets the inequality

σ2 >

(
1 − α − α

R1(N2 + η1N1c − η2N2c)

R2(N1 − η1N1c + η2N2c)

)
∂q12
∂N2c
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3 Page 14 of 22 A. Rapaport, I. Mimouni

On another hand, one gets from P(α) = 0 the inequality

(1 − α)q12 − αq21 = α(1 − α)(R2 − R1) > 0

and with (14)

(1 − α)q12 − αq21 =
(
1 − α − α

R1(N2 + η1N1c − η2N2c)

R2(N1 − η1N1c + η2N2c)

)
q12 > 0

We then conclude that σ2 is positive, and from (10) we deduce that the map N2c →
R1,2 is decreasing. This proves the point i.

We study now the dependency with respect to N1c. A calculation of the partial
derivative gives

∂q12
∂N1c

= R2η1
(1 − η1)(N2 − η2N2c) − η2(1 − η2)N2c

(N2 − η2N2c + η1N1c)2
(15)

and

∂q21
∂N1c

= R1η1
(1 − η1)(N1 + η2N2c) + η2(1 − η2)N2c

(N1 − η1N1c + η2N2c)2
> 0 (16)

When ∂q12
∂N1c

< 0, we can conclude that σ1 is negative andR1,2 is thus increasing with
respect to N1c. This condition is equivalent to (9). This proves the point ii. When this
last condition is not satisfied, having ∂q12

∂N1c
<

∂q21
∂N1c

with α > 1
2 is another sufficient

condition to obtain σ1 < 0 from expression (13). However, having α > 1
2 amounts to

have P( 12 ) > 0, that is

R2 − R1

4
− R2 − R1 + q12 + q21

2
+ q12 > 0

or equivalently

R2

2
− q12 <

R1

2
− q21

One can check that this last condition is equivalent to A < 0 and that the condition
∂q12
∂N1c

<
∂q21
∂N1c

is equivalent to B < 0. In the same manner, having A > 0 and B > 0

implies α < 1
2 and ∂q12

∂N1c
>

∂q21
∂N1c

, which is a sufficient condition to have σ1 > 0, and
thus R1,2 increasing with respect to N1c. This proves the point iii. ��

This result suggests that the map N1c → R̃1,2(N1c, N2c) is not necessarily
monotonic, differently to the map N2c → R̃1,2(N1c, N2c). We show now that the
possibilities of its variations are limited.

Proposition 5 Under hypotheses of Proposition 4, for each N2c ∈ (0, N2) the map
N1c → R̃1,2(N1c, N2c) possesses one of the three properties
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1. it is decreasing on (0, N1),
2. it is increasing on (0, N1),
3. there exists N �

1c ∈ (0, N1) such that it is decreasing on (0, N �
1c) and increasing on

(N �
1c, N1).

Proof Fix N2c ∈ (0, N2). If the map N1c → R̃1,2(N1c, N2c) is not monotonic, there

exists N̂1c ∈ (0, N1) such that ∂R̃1,2
∂N1c

(N̂1c, N2c) = 0. For simplicity, we shall drop
the notation ˜ in the rest of the proof. Following the proof of Proposition 4, one has
R1,2 = αR1 + (1 − α)R2 with

∂α

∂N1c
= (1 − α)

∂q12
∂N1c

− α
∂q21
∂N1c

R2 − R1 + q12 + q21 − 2α(R2 − R1)
:= σ1

ν

where ν > 0. Therefore, one has ∂α
∂N1c

= 0 and σ1 = 0 at N1c = N̂1c, and thus

∂2α

∂N 2
1c

∣∣∣∣∣
N1c=N̂1c

=
∂σ1
∂N1c

ν

∣∣∣∣∣
N1c=N̂1c

=
(1 − α)

∂2q12
∂N2

1c
− α

∂2q21
∂N2

1c

ν

∣∣∣∣∣∣∣
N1c=N̂1c

From expressions (15) and (16), a calculation of the partial derivatives gives

∂2q12
∂N 2

1c

= −2η1
∂q12
∂N1c

N1 − η1N1c + η2N2c
,

∂2q21
∂N 2

1c

= 2η1
∂q21
∂N1c

N2 − η2N2c + η1N1c

where ∂q21
∂N1c

> 0 and from σ1 = 0 one gets ∂q12
∂N1c

> 0 for N1c = N̂1c. Finally, one
obtains

∂2R1,2

∂N 2
1c

(N̂1c, N2c) = −(R2 − R1)
∂2α

∂N 2
1c

(N̂1c, N2c) < 0

Consequently, any extremum of the map N1c → R1,2(N1c, N2c) is a local minimizer,
which implies that this map has at most one local minimizer. ��

Finally, we give conditions for which the minimization of the threshold R1,2
presents a trichotomy.

Proposition 6 Let parameters βi , γ be such that R2 > R1 and assume that N1, N2
satisfy N1R2 > N2R1. Then, provided that γ is small enough compared to λi andμi ,
the function (N1c, N2c) → R1,2(N1c, N2c) admits an unique minimum at (N �

1c, N
�
2c)

with N �
2c = N2. Moreover, one has the following properties.

1. N �
1c = 0 if η2 > 1 − η1,

2. N �
1c = N1 if η1 and η2 are sufficiently small,

3. there exists η1, η2 for which N �
1c ∈ (0, N1).
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Proof We first show that the announced properties are satisfied for the approximate
function R̃1,2.

From Propositions 4 and 5 , we know that R̃1,2 admits an unique minimum at
(N̂1c, N̂2c)with N̂2c = N2. For N2c = N2, the condition (9) simply writes η2 > 1−η1
which implies from point ii. of Proposition 4 that one has N̂1c = 0 when this condition
is fulfilled. This shows that point 1 is verified for the function R̃1,2.

One obtains the limits

lim
η1,η2→0

A = R2

2
− R1

2
> 0, lim

η1,η2→0
B = R2

N2
− R1

N1
> 0

which show that numbers A and B are positive when η1, η2 are small, and thus one
has N̂1c = N1 from point iii of Proposition 4. This shows that point 2 is verified for
the function R̃1,2.

Take now any N1c ∈ (0, N1). When η2 > 1−η1, one has
∂R̃1,2
∂N1c

(N1c, N2) > 0, and

for η1, η2 small, ∂R̃1,2
∂N1c

(N1c, N2) < 0 is verified. Then, by continuity of the function

R̃1,2 with respect to parameters η1, η2, one deduce that the existence of values η̂1,

η̂2 for which ∂R̃1,2
∂N1

(N1c, N2) = 0. As the function R̃1,2 cannot have more than a
local extremum (see Proposition 5), we deduce that N1c realizes the minimum of the
function N1c → R̃1,2(N1c, N2) when η1 = η̂1 and η2 = η̂2. This shows that point 3
is verified for the function R̃1,2.

Finally, note that the exact threshold R1,2 amounts to replace in the expression
of q̃12, q̃21 the numbers ηi by

λi+γ
λi+μi+γ

, which is continuous with respect to γ and

equal to ηi for γ = 0. By continuity of R̃1,2 with respect to q̃12, q̃21 , we deduce that
uniqueness of the minimizer of R1,2 and properties 1. to 3. are also fulfilled by the
function (N1c, N2c) → R1,2, provided that γ is small enough. ��

5 Numerical Illustration

We consider two territories of same population size N = N1 = N2 with different
transmission rates such that one has R1 < 1 < R2 (values are given in Table 1).
Typically, some precautionary measures (such as social distance) are taken in the
first territory so that the disease cannot spread in this territory if it is closed, while the
epidemic can spread in the second territory in absence of communication with territory
1. We aim at studying how the epidemic can die out when commuting occur between
territories, depending on the proportions of resident in each population, denoted

pi =:= Nir

N
= 1 − Nic

N
, (i = 1, 2)
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Table 1 Characteristics numbers
of the epidemic

γ β1 β2 R1 R2

0.3 0.27 0.33 0.9 1.1

Table 2 Three sets of
commuting parameters

Case λ1 μ1 λ2 μ2 η1 η2

A 10 10 10 1 0.5 0.9090909

B 10 100 10 100 0.009901 0.009901

C 10 10 10 70 0.5 0.125

Table 3 Quality of the
approximation R̃1,2

Case A B C

∫
max
p1,p2

|R̃1,2 − R1,2| 1.9 10−3 1.4 10−4 6 10−4

(in otherwords, how toobtainR1,2 < 1playingwith p1, p2).Note thatwhen N1 = N2,
the threshold R1,2 depends on the proportions p1, p2 independently of N .

Conditions of Proposition 6 are satisfied provided that commuting parametersλi ,μi

are large enough. We have considered three sets of these parameters, given in Table 2,
that correspond to the three possible situations depicted in Proposition 6.

The approximate expression R̃1,2 turns out to be a very good approximation of the
exact value R1,2, even in case A for which γ is not so small compared to μ2 (see
Table 3).

Figures 1, 2 and 3 show families of curves p1 → R1,2 for different values of p2 ∈
[0, 1].One canobserve that theses curves possess the properties givenbyPropositions 4
and 5:

– they are either decreasing, increasing or decreasing down to a minimum and then
increasing,

– they are ordered and the lower one is obtained for p2 = 0 (i.e., N2c = N2).

This last feature is intuitive: the more there are commuters from territory 2 (that spend
time in territory 1 where the conditions of transmission disease is lower), the less the
epidemic spreads. A way to reduce the value ofR1,2 is thus to encourage commuting
toward territory 1 (whatever are the commuting rates). However, the role of the resident
population in territory 1 is far less intuitive because it does depends on the commuting
rates.
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Fig. 1 R1,2 as a function of p1 in case A (each curve corresponds to a value of p2 ∈ [0, 1]) (Color Figure
Online)

1. In case A, commuters from territory 2 return more rarely to home than commuters
from territory 1 do. The condition of point 1 of Proposition 6 is fulfilled. Then, the
threshold R1,2 can be made small (and below 1) when the proportion of resident
in territory 1 is high, i.e., when the inhabitants of territory 1 are encouraged not to
commute.

2. In case B, both commuters return rapidly to their home. This means that the
numbers of commuters from one territory present in the other one at a given time
is low. Then the condition of point 2 of Proposition 6 is fulfilled. Here, it is better
to encourage inhabitants of territory 1 to commute to the other territory where
the disease spreads yet more easily which is counterintuitive at first sight. Indeed,
commuters do not spendmuch time in the other territory and therefore heuristically
have less time to encounter and transmit the disease...

3. In case C, commuters from territory 2 returnmore rapidly to home than commuters
from territory 1 do, on the opposite of case A. Conditions of points 1 and 2 of
Proposition 6 are not fulfilled here, and we are in an intermediate situation for
which point 3 of Proposition 6 occurs. It is theoretically possible to haveR1,2 < 1
on the condition that the proportion of commuters of territory 1 is well balanced.
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Fig. 2 R1,2 as a function of p1 in case B (each curve corresponds to a value of p2 ∈ [0, 1]) (Color Figure
Online)

Finally, this example shows that changing only the return rates μ1, μ2 allows to
obtain the three possible scenarios, but other changes could also exhibit them.

6 Conclusion

In this work, we have been able to provide an explicit expression of the reproduction
number, although themodel is in dimension 18. This expression has allowed us to study
its minimizationwith respect to the proportions of permanently resident populations in
each patch.Wediscovered a trichotomyof cases,with some counterintuitive situations.
In each case, it is always beneficial to have commuters traveling to a safer city where
the transmission rate is lower. However, for the safer city, three situations occur:

– either it is better to avoid commuting to the other city,
– or on the opposite encouraging commuting to the more risky city reduces the
reproduction number,

– and in a third case there exists an optimal intermediate proportion of commuters
of the safer city which minimizes the epidemic threshold.

In some sense, the permanently resident populations, which have been ignored in
former modeling, can play an hidden role in an epidemic outbreak. This is illustrated
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Fig. 3 R1,2 as a function of p1 in case C (each curve corresponds to a value of p2 ∈ [0, 1]) (Color Figure
Online)

on an example forwhichonly right proportions of commuters (or permanently resident)
avoid the outbreak. This suggests that counterintuitive situations may also occur when
considering networks with more than two nodes. The present study focuses on the
reproduction number and how it can be reduced. The impacts of resident proportions
on other epidemiological characteristics, such as the peak level or the finite size, may
be the matter a future work. The extension of the present results to more general
networks is also a future perspective.
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