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Abstract
Cyclic predator–prey systems are often observed in nature. In a spatial setting, these can
manifest as periodic traveling waves (PTW). Environmental change and direct human
activity are known to, among other effects, increase the heterogeneity of the physical
environment, which prey and predator inhabit. Aiming to understand the effects of het-
erogeneity on predator–prey PTWs, we consider a one-dimensional infinite landscape
Rosenzweig–MacArthur reaction–diffusion model, with alternating patch types, and
study the PTWs in this system. Applying themethod of homogenisation, we show how
heterogeneity can affect the stability of PTW solutions.We illustrate how the effects of
heterogeneity can be understood and interpreted using Turchin’s concept of residence
index (encapsuling diffusion rate and patch preference). In particular, our results show
that prey heterogeneity acts to modulate the effects of predator heterogeneity, by this
we mean that as prey increasingly spend more time in one patch type over another the
stability of the PTWs becomes more sensitive to heterogeneity in predator movement
and behaviour.

Keywords Periodic travelling waves · Predator–prey · Reaction–diffusion ·
Homogenisation · Heterogeneity

1 Introduction

Population cycles are one of the most studied aspects of populations dynamics (Bar-
raquand et al. 2017), and such cycles can occur uniformly along the space that the
species inhabit, or, alternatively, more complex spatiotemporal phenomena can be
observed. One example of the latter happens in the red grouse population in north-
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east Scotland where population fluctuations in each location exhibited a decrease in
synchronicity the further apart these locations were (Moss et al. (2000)). Another par-
ticular example studied by Lambin et al. (1998) and Berthier et al. (2014) for field
voles in Kielder Forest in northern England, and in France, is a type of travelling wave
observed in cyclic populations. In this case, populations in different spatial locations
oscillate with the same temporal period, but exhibit a phase shift in space, giving the
appearance of a wave with temporal oscillations in its wake. Such patterns are called
periodic travelling waves (PTWs). PTWs happen when the populations move in a way
that present periodicity both in space and time, with peaks and troughs of individuals
moving across space at constant speed. A useful analogy is the wave-like phenomenon
that spectators perform in a stadium during a crowded sport event, where they raise and
lower their arms at similarmoments to their neighbours in such away that the net effect
is a wave of raising and falling arms propagating around the stadium. Tenow et al.
(2013) describes spatiotemporal data consistent with PTW for winter moth (Oper-
ophtera brumata) distributions in continental Europe. The study was able to estimate
wavelength, speed and direction of the PTW, which exhibited decade-long periodic
outbreaks. Sherratt and Smith (2008) review other past studies reporting populations
possibly exhibiting PTW behaviour.

Spatiotemporal data is often challenging to obtain (Bennett and Sherratt 2017),
since it involves a laborious and costly monitoring at several locations through usually
extensive periods of time (Berthier et al. 2014). Hence, a motivation behind under-
standing the properties of PTWs comes from the possibility of improving our ability to
track and predict the distribution of populations across space, e.g. in conservation field
studies. Pest management can also benefit from an improved ability to track and con-
trol future outbreaks by increasing the efficiency of costly data collection (Petrovskii
et al. 2014).

There are several frameworks for studying population dynamics in space, among
which we highlight reaction–diffusion equations (Cantrell and Cosner 2004). They
have been playing a fundamental role in modelling population movement since the
work of Skellam (1951). Populations exhibiting PTWs can then be studied as solutions
of reaction–diffusion models. Such solutions can be classified as either stable, with a
regular spatiotemporal structure as described above, and unstable, which can mani-
fest though irregular oscillations with no distinguishable shape (spatiotemporal chaos
(Sherratt et al. 1995)). Populations displaying irregular spatiotemporal oscillations can
be difficult to monitor and detect (Lambin et al. 1998). Therefore, by studying such
reaction–diffusion models it is possible to better understand the underlying causes of
spatiotemporal oscillations of natural populations. The seminal work of Kopell and
Howard (1973) first determined the conditions for existence and stability of PTW
solutions of coupled reaction–diffusion equations.

Amid the myriad of factors that may affect PTW stability, we investigate the effect
of heterogeneity in the environment. In line with this thought, Johnson et al. (2004)
argued how a mosaic-like heterogeneous environment alone can induce travelling
waves in larch budmoth. There are many ways in which environmental heterogeneity
affects populations. Different habitat types can be more or less suitable for population
growth, and boundaries between habitat types can affect behaviour and movement
(Schultz and Crone 2001; Bélisle and Desrochers 2002). For example, the grey shrike-
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thrush (Colluricincla harmonica) and the white-throated treecreeper (Cormobates
leucophaeus) were found to act differently in forests when compared to how they act
in open areas, even if they are adjacent, trying to avoid the latter moving through
them more quickly (Robertson and Radford 2009). The predation risk of forest birds’
nests by a nest predator (red squirrel, Tamiasciurus hudsonicus) can also vary spatially
depending on habitat quality (from the point of view of the predator) (Martin and Joron
2003).

Nonetheless, there have been a small number of studies examining the effect of envi-
ronmental heterogeneity specifically on PTWs. We are then motivated by the question
left open by Sherratt and Smith (2008): “What is the effect of spatial heterogeneity on
periodic travelling waves?” Sieber et al. (2010) showed that small temporal noise in
reaction–diffusion equations is able to supress PTWs. In contrast, we are interested in
considering spatial heterogeneity. Connected with such interest is the work of Sherratt
et al. (2003), who studied heterogeneity generated by obstacles in the landscape which
could not be traversed by the species. They found that the shape and size of obstacles
affect the wavelength of PTWs in a two-dimensional reaction–diffusion predator–prey
system.

However, spatial heterogeneity can be observed in different ways, such as in habitat
patches, i.e. regions with relative homogeneity but significantly different from their
immediate surroundings, being more or less suitable for each of the species inhabiting
them. For example, Gauduchon et al. (2013) studied the repercussions of heterogene-
ity by comparing the dynamics of two predator–prey models in a habitat composed of
three one-dimensional patches. The three patches differed by the species’ parameters
values from patch to patch. Their results showed that fragmentation via habitat loss
can decrease cycle amplitude and average density of prey and predator populations.
Shigesada et al. (1986) demonstrated that patch environmental heterogeneity in a
single-species reaction–diffusion system could generate PTW solutions. Their analy-
sis resulted in conditions for the population to either be able to invade the environment
through a PTW or become extinct. Alternatively, Kay and Sherratt (2000) showed that
environmental heterogeneity (through random spatial variation on the kinetic param-
eters) in a predator–prey system can allow persistence of PTWs that would otherwise
die out in a finite domain. However, they did not consider the spatial heterogeneity in
movement or the effects of habitat boundaries.

Many of the studies that consider heterogeneity via a collection of patches con-
template what we refer to as coarser grain environmental heterogeneity. By that we
mean that patch size was not necessarily assumed to be small compared to the scale of
movement rates. However, species can often encounter many habitat types during their
lifetime and rapidly move through a landscape. Such a scenario can be thought of as
finer grain heterogeneity, in which the effects of environmental heterogeneity can be
studied through a landscape composed of a large number of small patches of different
habitat types. One way to theoretically deal with such multiscale heterogeneity is via
asymptotic homogenisation (Holmes 2012).

Our work is based on the previous studies of Yurk and Cobbold (2018) and Cob-
bold et al. (2022), who developed an asymptotic homogenisation framework for
reaction–diffusion equations on a landscape composed of an infinite sequence of
one-dimensional patches of two types. The patches differed in population dynam-
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ics, movement and the organism’s response to patch boundaries. They studied how
environmental heterogeneities on the patch level (e.g. in the scale of meters) have
an impact on landscape level (e.g. in the scale of kilometres) population densities.
The focus species are assumed to move through the environment in a way that each
individual passes through a substantial number of different patches during its lifespan,
behaving differently in each patch type. This framework essentially corresponds to
finding a systematic way of “averaging” the patch level heterogeneity, resulting in
an approximate but potentially much simpler system of equations that describes the
aggregate effect of the many different patches. In particular, Cobbold et al. (2022),
Yurk and Cobbold (2018) developed the homogenisation theory that could handle dis-
continuities in population density at patch interfaces. Such discontinuities arise when
individuals show patch preference when they reach a patch boundary (Maciel and
Lutscher 2013; Schultz 1998).

Hence, the present work aims to understand how environmental heterogeneity
affects PTW solutions in predator–prey systems, using asymptotic homogenisation.
The PTW solutions of the homogenised model were analysed through the same
approach as Sherratt et al. (2003): the application of a normal form transformation as
an approximation to small amplitude PTWs. In Sect. 2, we present the homogenised
predator–prey model originally presented by Cobbold et al. (2022) and apply normal
formal analysis to study the PTW solutions. The approach provides conditions for
stability of the small-amplitude PTW solutions. In Sect. 3, we analyse the effects of
heterogeneity on both the period and amplitude of spatially uniform solutions and
on the stability of small amplitude PTW solutions. In particular, we consider how
PTW stability is affected by the interplay between heterogeneity in behaviour and
movement.

2 Methods

2.1 The Patchy LandscapeModel

The model describes a predator–prey system inhabiting an infinite one-dimensional
landscape composed of a sequence (indexed by i) of two alternating patch types,
1 and 2, with lengths l1 and l2. The prey (u(x, t)) and predator (v(x, t)) population
densities evolve in space (x) and time (t) according to the following reaction–diffusion
equations

∂u

∂t
= Du

i
∂2u

∂x2
+ fi (u, v),

∂v

∂t
= Dv

i
∂2v

∂x2
+ gi (u, v), for x ∈ (xi−1, xi ), i ∈ Z, (1)

where xi denote the boundaries of the patches.
Since Eq. (1) describes the dynamics in each patch, we refer to them as the patch-

level equations. The diffusion rates of u and v inside patch i are constant within the
patch and are denoted by Du

i , D
v
i , respectively. If i is odd, D

u
i = Du

1 , if i is even,
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Fig. 1 Example of the landscape structure composed of an infinite sequence of alternating patch types (1
and 2). The arrows represent the possibilities each prey individual has at the edge of the patch: it moves to
patch type 1 with probability αu and to patch type 2 with probability 1 − αu

Du
i = Du

2 , and analogously for v. The same holds for all the parameters indexed by i .
When a prey individual encounters the interface between the two patches, we assume
it chooses patch type 1 with probability αu and patch type 2 with probability 1 − αu

(analogously, probabilities αv and 1 − αv for a predator individual). In Fig. 1, we
illustrate the patch structure. The interface conditions for the prey population density
(u) are the same as used by Yurk and Cobbold (2018), which are

(1 − ξui )Du
i+1u(x+

i , t) = ξui D
u
i u(x−

i , t),

Du
i+1∂xu(x+

i , t) = Du
i ∂xu(x−

i , t),
(2)

where

ξui =
{

(1 − αu), if i is odd,
αu, if i is even,

(3)

and x+
i , x

−
i correspond to the right and left boundaries of patches i and i + 1, respec-

tively. Conditions (2) are derived from the assumption that the flux of individuals must
be constant across any two patches. Different assumptions over individual behaviour at
patch interface in the underlying random-walk model (Ovaskainen and Cornell 2003)
lead to different interface conditions. Our model assumes scenario 3 from (Maciel and
Lutscher 2013), in which individuals choose each patch with different probabilities as
described, but keep the step size constant once inside the patches. An analogous set
of conditions are assigned to the predator population density v.

We assume the reaction terms on each patch in equation (1) follow the Rosenzweig–
MacArthur model (Rosenzweig and MacArthur 1963):

fi (u, v) = (λi − μi u)u − aiuv

1 + ai hi u
, gi (u, v) = γ

aiuv

1 + ai hi u
− miv. (4)

The Rosenzweig–MacArthur model is a predator–prey model with cyclic solutions
for awell-known range of parameters (seeKot 2001).On each patch, the prey (u) grows
logistically at a per capita rate λi , with the strength of the intraspecific competition
denoted byμi . The predator (v) attacks the prey at rate ai and the consumption of prey
saturates (for fixed v) as u increases, as a consequence of each predator individual
expending a nonzero amount of time (the handling time hi ) to consume each prey
individual. The prey-to-predator conversion coefficient in this prey consumption is γ ,
and the predator is removed from the system at a per capita rate mi (mortality rate).
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The assumption that the landscape is periodic may seem relatively restrictive. How-
ever, from a sufficiently large scale, many real landscapes can be seen as collection
of repeating homogenous patches (Fitzgibbon et al. 2001). Therefore, the periodic
landscape described above can be a good approximation to many real ecological envi-
ronments (Garlick et al. 2011). The framework utilised in this paper (asymptotic
homogenisation, Sect. 2.2) is valid in more general heterogeneous environments. The
periodicity assumption is, however, mathematically convenient, providing simplifica-
tions that allows for analytical results.

2.2 Asymptotic Homogenisation

The patchy landscape model described by equations (1), (4) and (2) is computa-
tionally expensive to numerically simulate for our case of interest, where we must
consider large landscapes in order to observe PTW solutions. Asymptotic homogeni-
sation (Holmes 2012) consists of averaging over the landscape heterogeneity, resulting
in an approximated but much simpler version of the PDEs.We follow closely the work
from Cobbold et al. (2022), where the homogenisation technique was developed for
two-species reaction–diffusion systems on a patchy landscape, as presented in 2.1,with
discontinuities at patch boundaries. The core underlying assumption for the asymp-
totic homogenisation to hold is that the patches are small enough that each individual
is expected to go through a large number of patches during its lifetime. Through con-
siderations involving the dynamic level of the populations (see Turchin 1998), it is
possible to derive partial differential equations for the leading order of the power series
expansion of the two populations’ densities (leading orders named U for the prey, V
for the predator). Cobbold et al. (2022) obtain the set of homogenised equations for
U and V ,

∂tU = D̂u∂2xU + f̂ (U , V )

∂t V = D̂v∂2x V + ĝ(U , V ),
(5)

with

f̂ (U , V ) =
f1

(
ρu
1〈ρu〉U ,

ρv
1〈ρv〉V

)
l1 + f2

(
ρu
2〈ρu〉U ,

ρv
2〈ρv〉V

)
l2

l1 + l2
(6)

and f1, f2 given by Eq. (4). An analogous expression holds for g as an average of g1
and g2. The “averaging” brackets correspond to the formula

〈·〉 = ·1l1 + ·2l2
l1 + l2

.
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Table 1 Homogenised parameters from Eq. (9)

Parameter Expression Biological meaning

ρ
u,v
1

1
Du,v
1 (1−αu,v)

Residence index in patch type 1

ρ
u,v
2

1
Du,v
2 αu,v Residence index in patch type 2

Ai ai
ρv
i〈ρv〉

ρui〈ρu 〉
li

l1+l2
Homogenised attack rate in patch type i

Hi hi
(

ρv
i〈ρv〉

)−1( li
l1+l2

)−1
Homogenised handling time in patch type i

λ̂ λ1

(
ρu1〈ρu 〉

)(
l1

l1+l2

)
+ λ2

(
ρu2〈ρu 〉

)(
l2

l1+l2

)
Averaged prey growth rate

μ̂ μ1

(
ρu1〈ρu 〉

)2( l1
l1+l2

)
+ μ2

(
ρu2〈ρu 〉

)2( l2
l1+l2

)
Averaged prey intraspecific competition coefficient

m̂ m1

(
ρv
1〈ρv〉

)(
l1

l1+l2

)
+ m2

(
ρv
2〈ρv〉

)(
l2

l1+l2

)
Averaged predator mortality rate

The parameter ρ
u,v
i , given by

ρ
u,v
i = 1

Du,v
i ξ

u,v
i

, (7)

is called the residence index. At each given location in space, it can be interpreted as
a quantity, which is proportional to the steady-state population density at that location
if this population was only subject to diffusion. It is a “relative measure of the average
time that an organism spends between entering and leaving a unit area” Turchin (1998).
In our case, these unit areas are the individual patches of the landscape, and therefore,
the residence indices (ρu,v

1 , ρu,v
2 ) are proportional to the average time each organism

spends in each patch type. Equation (7) combines movement through diffusion (Du,v
i )

and behaviour through patch preference (ξu,v
1 = (1 − αu,v) and ξ

u,v
2 = αu,v). If the

residence index is large, it can be either because the individuals move slowly in that
location or they have a high preference for that patch type.

The homogenised diffusion rates of Eq. (5) are given by:

D̂u,v = 〈ρu,v〉−1〈ξu,v〉−1. (8)

By expanding Eq. (6), the analogous expression for ĝ and redefining the parameters
according to Table 1, we obtain the following expressions for the reaction terms of
Eq. (5):

f̂ (U , V ) = (λ̂ − μ̂U )U −
[ A1U

1 + A1H1U
+ A2U

1 + A2H2U

]
V ,

ĝ(U , V ) = −m̂V + γ
[ A1U

1 + A1H1U
+ A2U

1 + A2H2U

]
V .

(9)

The homogenised equations for U and V are similar to the ones at the patch level
(1) for u and v, but due to spatial heterogeneity, have different reaction terms f̂ and
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ĝ. Indeed, in the limiting case where all patch level parameters have the same values
between patch types 1 and 2 and there is no patch preference (i.e. the limiting case of
a homogeneous landscape), the reaction terms simplify and become identical to the
Rosenzweig–MacArthur model (4). In this limiting case, our model equations match
the ones studied by Sherratt et al. (2003).

It is worth highlighting that the factors
(

ρu
i〈ρu〉

)(
li

l1+l2

)
appearing as averaging

weights in the expression for the homogenised parameters (Table 1) correspond to
the relative amount of time that prey spends in type i patches if the system was only
governed by diffusion (Cobbold et al. 2022). A completely analogous argument holds

for the predator and the expression
ρv
i〈ρv〉

(
li

l1+l2

)
.

In order to be able to directly compare with the work of Sherratt et al. (2003) and to
simplify the analysis, we perform a non-dimensionalisation of (5) using the following
rescaled parameters:

T = λ̂t, X = x

√
λ̂

D̂u
, h = μ̂

λ̂
U , p = μ̂

λ̂2H1
V , C = A1H1

λ̂

μ̂
,

B1 = λ̂H1

γ
, E1 = γ

m̂H1
, β = H1

H2
, δ = D̂v

D̂u
, η = A2H2

A1H1
.

(10)

The resulting rescaled equations are:

∂T h = ∂2Xh + (1 − h)h −
[ Ch

1 + Ch
+ βCηh

1 + Cηh

]
p

∂T p = δ∂2X p − p

E1B1
+

[ Ch

B1(1 + Ch)
+ βCηh

B1(1 + Cηh)

]
p,

(11)

where h(X , T ) and p(X , T ) correspond to the rescaled prey and predator densities,
respectively. Note that if η = 1, Eq. (11) simplifies and the reaction terms have the
same functional form as the Rosenzweig–MacArthur model.

2.3 Normal Form Analysis

Equation (11) describes, with good approximation, the dynamics of the original patchy
landscape model presented in Sect. 2.1, but are considerably easier to analyse and to
numerically simulate. Equation (11) has up to 3nonnegative spatially uniformequibria:
extinction, prey-only, and coexistence. Cobbold et al. (2022) analysed the stability of
these equilibria and showed that stable limit cycles exist. We are interested studying
the region of parameter space where stable limit cycles occur. When our model is
considered in the limiting case of a homogeneous landscape, the parameter used as a
bifurcation parameter corresponds to the sameused bySherratt et al. (2003). Therefore,
throughout this paper we use C as the bifurcation parameter to allow comparison
between our work and Sherratt et al. (2003). There is a critical value of C (C =
Ccrit(E1, η, β)) at which the kinetics undergo a Hopf bifurcation, with stable limit
cycles for values of C above Ccrit . In the reaction–diffusion system, when C > Ccrit,

123



Heterogeneity in Behaviour and Movement can Influence . . . Page 9 of 30 1

Eq. (11) can exhibit PTW solutions and standard analysis of these solutions is possible.
We follow the script provided by the work of Sherratt et al. (2003), performing a
reduction to normal form Guckenheimer and Holmes (2013). In the case of δ = 1,
the kinetics in Eq. (11) can be approximated by Hopf normal form giving equations
of lambda-omega type (see, e.g. Murray 2001):

∂ h̃

∂t
= ∂2h̃

∂x2
+ (1 − r2)h̃ − (ω0 − ω1r

2) p̃,

∂ p̃

∂t
= ∂2 p̃

∂x2
+ (ω0 − ω1r

2)h̃ + (1 − r2) p̃,

(12)

where h̃ and p̃ are nonlinear combinations of h and p (determined by the reduction
to normal form (Sherratt et al. 2003) and r2 = h̃2 + p̃2. With the aid of a computer
algebra package, ω0 and ω1 can be written in terms of the homogenised parameters
E1, B1, β, η,C −Ccrit. The fullMathematica notebook for the normal form transfor-
mation and subsequent stability analysis are provided at the open-access repository
(Andrade and Cobbold 2022). The calculations involved in finding ω1(E1, B1, η, β)

were performed with Mathematica (Wolfram Research 2019). All plots produced in
this paper were made with Python’s Matplotlib library (Hunter 2007).

The reduction to normal form consists of a nonlinear transformation of Eq. (11) into
a simpler set of equations that approximate the original equations when C is close to
Ccrit , which we refer to as the small-amplitude regime. Thus, the stability of original
PTW solutions can be inferred from the stability of the approximated PTW solutions
that satisfy (12). Albeit limited to an approximation of small-amplitude solutions, the
lambda-omega system provides insights into the dependence of the stability of PTW
solutions on the ecological parameters. The work of Kopell and Howard (1973) shows
that the lambda-omega system (Eq. 12) has a family of PTW solutions of the form:

h̃(x, t) = R sin
[
(ω0 − ω1R

2)t ± (1 − R2)x
]
,

p̃(x, t) = R cos
[
(ω0 − ω1R

2)t ± (1 − R2)x
] (13)

parameterised by R, the amplitude of the PTWs.
Typically PTWs are generated by either boundary conditions or population inva-

sions. In order to studyPTWstability analytically,we therefore consider a semi-infinite
domain and we follow the approach from Sherratt et al. (2003), with zero-Dirichlet
boundary condition at the origin. The asymptotic homogenisation and the reduction
to normal form are still valid if the model described in Sect. 2.1 is semi-infinite. Sher-
ratt et al. (2003) obtained a stability condition for the PTW solutions of the family
(13) generated by Dirichlet boundary conditions if C is sufficiently close to Ccrit . The
derivation is overviewed in Appendix A. The condition is that a PTW solution (13)
generated by a zero-Dirichlet boundary conditions at the origin is stable if and only if

|ω1| < 1.110468. (14)
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Therefore, by transforming system (11) into its approximate version (12), we obtain
an expression for ω1 in terms of the homogenised parameters E1, B1, η and β. A
different criterion holds for stability of PTWs generated by invasion (Sherratt 1998,
2001). Criterion (14) is then used to classify regions of the parameter space separating
stable PTW and unstable PTW (spatiotemporal chaos). Figures 5, 7, 8, 9 and 10 in
Sect. 3.2 are made using criterion (14) to classify each point of the paramater space
as corresponding to a stable or an unstable PTW solution.

The reduction to normal form can only be applied to a particular form of Eq. (11),
where δ = 1. This corresponds to requiring the diffusion coefficients in equation (5)
to be identical (see Eq. 8):

δ = 1 �⇒ D̂u = D̂v. (15)

This constraint means that we have one less degree of freedom when choosing
values for the parameters related to movement and space, αu, αv, ρu

i , ρv
i , l1, l2. For

example, we can keep ρv
1 , ρ

v
2 , l1, l2, ρu

1 , αu, αv as free parameters and (15) determines
ρu
2 as

ρu
2 = l1 + l2

l2

[
D̂v〈αu〉−1 − l1

l1 + l2
ρu
1

]
. (16)

We explore the biological implications of this constraint in the discussion.

3 Results

Before analysing the behaviour of the homogenisedmodel, we compare the PTWsolu-
tions of the homogenised equations (5) to solutions of the patchy landscape model (1).
Figure 2 illustrates that the homogenised equations provide a very close approxima-
tion. In Fig. 2 (left), we illustrate a stable PTW moving in the positive x-direction.
Changing parameter values leads to unstable PTW, giving rise to irregular oscillations
and spatiotemporal chaos (Fig. 2 right). In the unstable PTW regime, for larger times
the homogenised solution begins to deviate from the corresponding patchy landscape
solution. This is a consequence of the spatiotemporal chaos associated with the unsta-
ble PTW, where small differences in the initial conditions due to the homogenisation
approximation result in the long-term deviation of the two solutions (Sherratt et al.
1995; Sherratt 1996). The stable PTW solutions remain close for all times.

3.1 Cyclic Properties of the Spatially Uniform Solutions

Before studying the PTW solutions of (11), we examine how patch heterogeneity
affects the stable limit cycle solutions of the kinetic ordinary differential equations,
which correspond to the spatially uniform equivalent of Eq. (11). At a particular
value of C = Ccrit , the non-trivial steady state undergoes a Hopf bifurcation and for
C > Ccrit the non-trivial steady state (h∗, p∗) is locally unstable and the kinetics have
a stable limit cycle solution. Ccrit is determined by standard linear stability theory
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Fig. 2 Comparison between the simulations of the patchy landscape model (blue, Eqs. 1, 2, 4) and the
homogenised approximation (black, Eq. 5) prey (U ) population densities. The upper and lower bounds are
obtained throughρu1U/〈ρu〉 andρu2U/〈ρu〉. Left (stable PTW): t = 450,m1 = m2 = 0.8, μ1 = μ2 = 5.0.
Right (unstable PTW): t = 50, m1 = m2 = 1.5, μ1 = μ2 = 1.0. Initial conditions for the homogenised
model areU (x, 0) = 4(1+sin(2πx/500)) for the prey and V (x, 0) = 2(1+sin(2πx/500)) for the predator.
The corresponding prey initial conditions for the patchy landscape model were ρu1U (x, 0)/〈ρu〉 in patch
type 1 and ρu2U (x, 0)/〈ρu〉 in patch type 2. Analogous conditions are used for the predator (V ). Boundary
conditions: zero-Dirichlet at x = 0 and zero-flux at x = 500. Other parameters: Du

1 = 21, Du
2 = 19, Dv

1 =
22, Dv

2 = 20, l1 = l2 = 0.5, αu = αv = 0.5, a1 = a2 = 3.0, γ = 0.9, h1 = h2 = 0.5, λ1 = λ2 =
10. The numerical simulations are carried out using the method described in Yurk and Cobbold (2018).
The Strang splitting is applied, with diffusion terms implemented with Crank–Nicholson and fourth-order
Runge–Kutta to update the kinetic step. For the patchy landscape model, derivatives that appear in the patch
interface conditions were implemented using second-order forward or backward difference. Discretisation:
t = 0.001,x = 0.1 (Color Figure Online)

(Glendinning 1994). The Hopf bifurcation occurs when the eigenvalues, λ∗, of the
Jacobian matrix (J ) of the kinetic ordinary differential equations evaluated at (h∗, p∗)
are purely imaginary, or equivalently when

Tr[J (h∗, p∗)] = 0.

Solving this equation for C gives an expression for Ccrit in terms of η, β, E1, B1. The
expression forCcrit is algebraically messy (see section 1 of the Mathematica notebook
(Andrade and Cobbold 2022)), but in the special case of η = 1 it simplifies to

Ccrit = E1(β + 1) + 1

E1(β + 1) − 1
. (17)

Close to the Hopf bifurcation (Tr[J (h∗, p∗)] ≈ 0), the temporal frequency of the
limit cycle solutions is approximated by the imaginary part of λ∗:

√
det(J (h∗, p∗)).

Therefore, the temporal period (τ ) of such solutions is approximated by:

τ = 2π√
det(J (h∗, p∗))

.
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Fig. 3 Period and amplitude of the spatially uniform prey temporal oscillations with respect to E1 for
different values of η. Other parameters β = 1.0, B1 = 10.0, C = 9.0 (Color Figure Online)

At η = 1, and C = Ccrit the temporal period simplifies to

τ |C=Ccrit = 2π

√
B1E1

(1 + β)E1 + 1

(1 + β)E1 − 1
. (18)

In the special case of η = 1, equation (18) demonstrates that for small amplitude
cycles increasing B1 increases period, while increasing E1 has a nonlinear effect
on period (Fig. 3). Our focus is on understanding the effects of heterogeneity, so we
interpret how changes in E1 and B1 relate to patch differences. From expressions 10we
see that E1 depends on m̂, the patch averaged predator mortality rate. Thus, increasing
E1 can correspond to decreasing m̂, or equivalently decreasing predator mortality rate
on one or both patches. Since m̂ is a weighted average of the patch mortality rates,
the weights (the proportion of time spent on each patch) control which patch most
strongly influences the value of m̂.

In addition to letting η = 1, if we assume predator mortality rate on both patches
is the same (m1 = m2) and also assume that prey handling time is constant across
the landscape (h1 = h2) then Eq. (18), and hence, cycle period is now independent of
predator residence index (see Appendix B). By expressing η in terms of dimensional
parameters as

η = a2ρu
2 h2

a1ρu
1 h1

, (19)

the expression for η gives us insights into the trade-offs between patch level parameters
of the system. Consider an example in which predator attack rate varies between
patch types. One might expect that if a predator spends more time in locations where
attack rate is high this would increase total predator density and decrease prey density,
impacting on population cycles, but this is not the case. Instead, the η = 1 constraint
ensures that any difference in patch attack rates is balanced by differences in prey
residence index. Prey spend less time on patches with high attack rates, so predators
would gain no advantage by spending more time in high attack rate patches and
therefore cycle period will be independent of predator residence index.
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Hence, η = 1 presents a special case in which predator residence index does not
affect population cycles, but preymovement does. In Fig. 3, we illustrate what happens
aswe relax this constraint onη. Asη increases both period and amplitude increases, and
forη 
= 1 predator residence index does affect population cycles (Fig. 4).Higher values
of η correspond to larger patch differences in predator attack rate or handling time,
which are not balanced by changes in preymovement. To fully understand these effects
of heterogeneity, it is useful to consider the dimensional model (5) and the dimensional
parameters (Table 1), allowing us to explicitly study the effects of prey and predator
residence index, and patch size. The dimensional model also allows us to consider
variation in patch prey growth rate, which we could not study in the non-dimensional
model as average prey growth rate was used to scale time (see expressions 10).

In Fig. 4, we consider a scenario where prey growth rate on patch 1 (good patch) is
greater than on patch 2 (bad patch), λ1 = 10 > λ2 = 5. We then vary the parameters
associated with movement: l1/l2 (the relative size of patch 1 compared to patch 2)
and prey and predator residence index. Predator amplitudes are shown in Appendix C.
From the plots in Fig. 4, three main results should be highlighted.

Firstly, the overall trend shown in Fig. 4 is that the amplitudes and periods of the
predator–prey cycles increase with the proportion of ‘good’ patch sizes (increasing
l1/l2). This effect is particularly clear for small l1/l2 and can be explained by the
fact that, if the good patches occupy a smaller proportion of the habitat, prey spend
more time in the bad patches, where prey growth rate is lower, leading to smaller
population cycle amplitudes. For larger l1/l2, our results suggest that both the period
and amplitude saturate at a fixed value, which varies depending on the value of prey
and predator residence indices. The only exception to the overall trend is shown at
the rightmost amplitude plot (ρu

1 = 6.0, ρu
1 = 2.0). For small l1/l2, increasing l1/l2

can lead to a decrease in amplitude without an increase in period if ρv
1 is close to

ρv
2 . This exception can be explained in the following way. Since ρu

1 is bigger than
ρu
2 , prey spend more time in the good patches (patch 1). However, unless ρv

1 is also
considerably bigger than ρv

2 , predator do not spend as much time in patch type 1 as the
prey, allowing prey to increase its population to larger values. The phenomenon of a
decrease in amplitude with l1/l2 vanishes, as the proportion of good patches increases.

Secondly, we observe the effects of heterogeneity in predator residence index alone.
In the centre and right plots of Fig. 4, the amplitude and periods of the cycles increase
as we increase ρv

1 and decrease ρv
2 (solid to dotted to dashed to dashed-dotted lines).

We obtain a similar qualitative result by just increasing ρv
1 or just decreasing ρv

2 (not
shown). As the predator spends proportionally more time in the good patch (patch 1),
where the prey also spends more time, there is an increase in the expected number
of prey–predator encounters. Thus, predation is intensified and predator population
grows to larger amplitudes. This causes prey oscillation amplitude to also be increased,
with a corresponding increase in the period of the system.

Finally, we highlight the interplay between heterogeneity in prey and predator
residence index. We find that the magnitude of the changes in period and amplitude is
increased when there is heterogeneity in prey residence index (compare left and centre
plots in Fig. 4). Moreover, the greater the heterogeneity in prey residence index, the
greater the effect of heterogeneity in predator residence index (compare centre and
right plots). In particular, if ρu

1 = ρu
2 , predator residence index has no effect on period
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Fig. 4 Amplitude (upper) and period (lower) of prey oscillations in the spatially uniform solution of (11) as
a function of relative patch size for different values of predator residence index. Patch type 1 is the ‘good’
patch type (λ1 = 10) and type 2, the ‘bad’ patch type (λ2 = 5). Patch sizes l1, l2 satisfy l1 + l2 = 1.
Left: ρu1 = 4, ρu2 = 4 (curves corresponding to each predator residence index pair are indistinguishable ).
Centre: ρu1 = 5, ρu2 = 3. Right: ρu1 = 6, ρu2 = 2. Other parameters h1 = h2 = 0.5, γ = 0.9,m1 = m2 =
1.0, μ1 = μ2 = 1.75, a1 = a2 = 3.0.

and amplitude of prey cycles. This indicates that the time populations spend in each
patch type are an important factor in determining the properties of the population
cycles.

3.2 Stability of Periodic TravellingWaves

3.2.1 Stability Boundaries of the Non-dimensional Homogenised Model

In this section,we consider the stability of the PTWsolutions of Eq. (11).We showhow
heterogeneity could affect the stability of real biological systems exhibiting PTWs. In
Fig. 5, we illustrate the stability regions for different values of ηwith respect to E1, B1,
in order to directly compare to the results fromSherratt et al. (2003). The plot illustrates
that stable PTWs are present for intermediate values of predator birth/death rates (E1)
and when the ratio of prey and predator maximum birth rate (B1) is sufficiently high.
Increasing the value of η (moving from the grey to the green and yellow curves)
corresponds to increasing landscape heterogeneity by making the two patch types
more distinct, either through increasing differences in prey residence index or through
increasing differences in attack rate. If we consider the three biological examples
discussed by Sherratt (2001), we find that increasing η shifts the hare-lynx system
from a stable to an unstable PTW, and the zooplankton–phytoplankton system shifts
from the unstable to the stable PTW region. On the other hand, the weasel-vole is
predicted to remain in the unstable regime. This suggests that landscape heterogeneity
could influence the dynamics observed in natural systems.

Such predictions are valid for small amplitude solutions. However, ecologists are
generally interested in larger-amplitude PTWs. In Fig. 6,we illustrate the shift in stabil-
ity with numerical simulations of the homogenised equations (11) for three amplitude
values, measured in terms of the difference between the bifurcation parameter C
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Fig. 5 Stability boundaries in termsof the dimensionless parameters E1, B1 for differentη, forβ = 1.0when
C is close to Ccrit . The areas above the curves correspond to parameter regions where the PTW solutions
are stable. The regions below each curve correspond to unstable PTW solutions. We plot with respect
to B1 (prey/predator maximum birth rate) and E1 (predator birth/death rate) so that in the limiting case
(η = 1.0 corresponding to spatial homogeneity) we obtain the corresponding stability boundary discussed
by Sherratt et al. (2003). The crosses denote the parameter sets given by Sherratt (2001) for three example
predator–prey systems: hare-lynx, zooplankton-phytoplankton and weasel-vole (Color Figure Online)

and its critical value Ccrit (ε = C − Ccrit = 0.01, 0.5, 1.0: upper, centre and lower
plots, respectively). We consider the parameters of the zooplankton–phytoplankton
system (E1 = 1.8, B1 = 4.0 (Sherratt 2001)) for two different values of η : 1 (left
plots) and 7 (right plots). We find that as predicted from Fig. 5, the solutions for
E1 = 1.8, B1 = 4.0 are unstable for η = 1 and stable for η = 7. Moreover, such
result holds both for smaller (ε = 0.01) and for larger amplitudes (ε = 0.5, 1.0).

However, the stability shift predicted for small amplitude does not necessarily
hold for larger amplitudes for all points of the (E1, B1)-parameter space. In fact, the
stability of larger-amplitude PTW solutions is still an open problem in the literature.
Moreover, the direct classification of PTW stability through numerical integrations
is additionally challenging since simulating Eq. (11) for E1, B1 values close to the
stability boundaries can require longer domains and simulation times to differentiate
between stable and unstable solutions. This is illustrated in Appendix D, where it is
shown plots for the numerical simulations for E1, B1 of the hare-lynx and weasel-vole
systems from Fig. 5.

3.2.2 Heterogeneity in Prey Residence Index

The remainder of the results section examines PTW solutions in terms of the param-
eters of the dimensional model (5). This allows us to isolate the effects of various
sources of landscape heterogeneity (e.g. patch variation in movement, attack rates,
etc.) that cannot be teased apart by looking at the non-dimensional model. We study
the (λ̂ − m̂)-parameter space, as these parameters appear in the expressions for E1
and B1, respectively. Throughout the results section, we consider the case where prey
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Fig. 6 Numerical simulations of the homogenised equations (11) for the zooplankton–phytoplankton system
parameter values (E1 = 1.80, B1 = 4.0), η = 1.0 (left plots) and η = 7.0 (right plots) and different values
of the bifurcation parameter C with respect to its critical value Ccrit : ε = C − Ccrit = 0.01 (upper plots),
0.5 (centre plots), 1.0 (lower plots). The solutions are plotted at T = 500,000. The Strang splitting is
applied, with diffusion terms implemented with Crank–Nicholson and fourth-order Runge–Kutta to update
the kinetic step. Discretisation: T = 0.1,X = 1. Boundary conditions: Dirichlet (h, p) = (h∗, p∗)

at X = 0 (steady state, dashed lines) and zero flux at X = L = 7000. Initial conditions for prey (h) and
predator (p) were step functions with constant random values between 0 and 1 inside each of 100 equal
size subdivisions of the full domain. Other parameters: β = 1, δ = 1 (Color Figure Online)

growth rates and predator mortalities are identical between the two patches (λ1 = λ2
and m1 = m2), so that λ̂ and m̂ do not depend on ρu

i and ρv
i . Therefore, we assume

the only parameters which vary between patches are prey residence index (ρu
i ), preda-

tor residence index (ρv
i ) and attack rate (ai ). The normal form analysis constrains

us to select prey and predator residence indices in such a way that the ratio of the
homogenised predator and prey diffusion coefficients is 1 (Eq. 15). For example, if
D̂v is fixed, increasingly higher values of ρu

1 must be accompanied of, e.g. decreas-
ingly smaller values of ρu

2 in such a way that D̂u has the same value for every pair
(ρu

1 , ρu
2 ) considered.

In this subsection, we consider the effects of prey residence index alone. In Fig. 7,
it is shown that the PTW stability boundary shifts towards smaller predator mortalities

and becomes narrower as heterogeneity in prey residence increases (increasing
ρu
1

ρu
2
).

The shift can be interpreted in the following way: increasing
ρu
1

ρu
2
means that the prey

tend to spend more time in patch type 1. The predator, whose residence index is
unchanged, encounters proportionally less prey in patch type 2. This causes lower
predator growth rate across the landscape. Hence, for stable periodic travelling waves
to be obtained, the predator needs to survive long enough in order to spend a sufficient
amount of time in the locations where the prey has a larger residence index (patch type
1). Longer predator survival corresponds to smaller values of m̂. Therefore, the stability

boundaries shift towards smaller values of predator mortality rate as
ρu
1

ρu
2
increases.
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Fig. 7 Stability boundaries for different values of prey residence index (coloured curves) in terms of the
per capita prey growth rate (λ̂) and the per capita predator mortality rate (m̂), when the system is close
to the Hopf bifurcation (when C is close to Ccrit ). The homogeneous boundary corresponds to do patch
variation in prey residence index (ρu1 = 4.0, ρu2 = 4.0). The areas above the curves correspond to regions
of parameters where the PTW solutions are stable, whereas the areas below the curves correspond to regions
where the PTW solutions are unstable. λ1 = λ2 and m1 = m2, hence λ̂ and m̂ do not depend on ρ

v,u
i . The

other parameters are ρv
1 = ρv

2 = 4.0, a1 = a2 = 0.5, h1 = h2 = 0.5, γ = 0.9, l1 = l2 = 0.5. (Color
Figure Online)

3.2.3 Heterogeneity of Attack Rate

Figure 8 shows stability boundaries for varying values of attack rate in patch type 2
(coloured curves). The main result is that heterogeneity in prey residence index can
compensate for the effects of heterogeneity in attack rate. This is precisely the trade-
off discussed in Sect. 3.1. The different curves in Fig. 8 correspond to different values
of attack rates in patch type 2 (a2), whereas a1 is fixed. In the left plot, prey residence
index is the same on both patch types. In the right plot, prey residence index is larger
in patch type 1 and smaller in patch type 2. If we increase prey residence index in
patch type 1 enough, it is possible to counter act the effect of heterogeneity in attack
rate, as we show in the right plot, where the green curve corresponds exactly to the
homogeneous landscape stability boundary in Fig. 7 since a2,a1,ρu

1 ,ρ
u
2 are such that

η = 1.
The opposing effects of heterogeneity in attack rate and prey residence index can

be interpreted as follows: if the predator attacks disproportionally more in one of the
patch types, it has an equivalent effect to the prey occupying the other patch type
proportionally more, where it is being preyed upon proportionally less often.

3.2.4 Heterogeneity of Predator and Prey Residence Indices

In Fig. 9,we show stability boundaries for varying predator residence indices (coloured
curves) in patch type 2. The overall result is that strong heterogeneity in prey residence
index increases the effect that heterogeneity in predator residence index has upon the
location of the stability boundary. As before, prey and predator residence indices are
selected in such a way that constraint (15) is satisfied. Different plots correspond to
different values of prey residence index. The leftmost plot illustrates that predator
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Fig. 8 The effect of varying the attack rate on patch type 2 (a2, coloured curves) in the stability boundaries
for different combinations of prey residence index (ρu2 , ρu1 ). Plots with respect to per capita prey growth

rate (λ̂) and the per capita predator mortality rate (m̂), when the system is close to the Hopf bifurcation
(when C is close to Ccrit ). The areas above the curves correspond to regions of parameters where the
PTW solutions are stable, whereas the areas below the curves correspond to regions where the solutions
are unstable. λ1 = λ2 and m1 = m2; hence, λ̂ and m̂ do not depend on ρ

v,u
i . The other parameters are

ρv
1 = ρv

2 = 4.0, a1 = 0.5, h1 = h2 = 0.5, γ = 0.9, l1 = l2 = 0.5. (Color Figure Online)

residence index has no effect on stability if prey residence index does not vary with
patch type (other parameters being fixed). This is consistent with the result from
Sect. 3.1. As we move from the left to right plot in Fig. 9, increasing heterogeneity in
prey residence index, we notice an increased sensitivity to heterogeneity in predator
residence index. The curves for different ρv

1 , ρv
2 pairs move further away from the

ρv
1 = ρv

2 curve as ρu
2 /ρu

1 gets large. We saw a similar interaction between the effects
of prey and predator residence indices in Sect. 3.1.

In the particular case where prey tend to spend equal time in both patches (Fig. 9,
leftmost plot), the stability of the PTW solutions is unaffected by heterogeneity in
predator residence index. This last result is explained from the fact that ω1 does not
depend on ρv

i (see Appendix B) when η = 1 and predator mortalities and handling
times are identical between the two patches (m1 = m2, h1 = h2).

In Fig. 10, we fix prey residence index so that it does not vary with patch type
and attack rate is chosen to be larger in patch type 2 (a2 > a1). Here we highlight
how heterogeneity in predator residence index interplays with heterogeneity in attack
rate and predator mortality. In particular, heterogeneity in residence index can act to
compensate or intensify the shift caused by heterogeneity in attack rate. The efficiency
of the predator in the landscape depends on where it spends its time, how frequently
it attacks prey in each location and how long it is alive. Hence, we see a trade-off
of these quantities when we examine PTW stability boundaries. Decreasing ρv

2/ρ
v
1

(from yellow to green to purple curves), so that predators spend more time in patches
of type 1 where attack rates are low. This causes the stability region to shift to the
left and become narrower, meaning that the predator needs to have smaller mortality
rate to ensure stable PTWs and that stable PTWs only exist in a small region of the
parameter space. The increased tendency of predator to occupy patch 1, where the
attack rate is smaller, acts to the reduce overall effectiveness of the predator. The
reduced effectiveness can be compensated for by lower predator mortality rates. The
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Fig. 9 The effect of varying predator residence index ((ρv
2 , ρv

1 ), coloured curves) on the stability boundaries
for different combinations of prey residence index (ρu2 , ρu1 ). Plots with respect to per capita prey growth

rate (λ̂) and the per capita predator mortality rate (m̂), when the system is close to the Hopf bifurcation
(when C is close to Ccrit ). The areas above the curves correspond to regions of parameters where the
PTW solutions are stable, whereas the areas below the curves correspond to regions where the solutions
are unstable. λ1 = λ2 and m1 = m2, hence λ̂ and m̂ do not depend on ρ

v,u
i . The other parameters are

a1 = a2 = 0.5, h1 = h2 = 0.5, γ = 0.9, l1 = l2 = 0.5. (Color Figure Online)
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Fig. 10 Stability boundaries for different levels of heterogeneity on predator residence index in terms of
the per capita prey growth rate (λ̂) and the per capita predator mortality rate (m̂), when the system is close
to the Hopf bifurcation (when C is close to Ccrit). The areas above the curves correspond to regions of
parameters where the PTW solutions are stable, whereas the areas below the curves correspond to regions
where the solutions are unstable. λ1 = λ2 and m1 = m2, hence λ̂ and m̂ do not depend on ρ

v,u
i . The other

parameters are ρu1 = ρu2 = 4.0, a1 = 0.5, a2 = 3.5, h1 = h2 = 0.5, γ = 0.9, l1 = l2 = 0.5. (Color
Figure Online)

samepredator efficacy could be obtained by a long-lived predatorwith a lowprey attack
rate, or a short-lived predator with a high attack rate. This last claim is supported by
the shift from yellow to blue and red curves as we increase ρv

2/ρ
v
1 . As the predators

tend to occupy patch type 2 more frequently, increased predator mortality rates can
maintain PTW stability (right shifting curves). In summary, stability can be controlled
by patch differences in predator residence index.

4 Discussion

PTWs are often observed in ecological systems (Sherratt 2008) and were the focus of
works that discussed their potential drivers (Kaitala and Ranta 1998; Petrovskii and
Malchow1999).As PTWs are an inherently spatial phenomena, it is natural to askwhat

123



1 Page 20 of 30 R. Andrade, C. A. Cobbold

are the implications of landscape alterations for such spatiotemporal dynamics. One
way bywhich such alterations can happen is through the introduction of heterogeneity,
which is expected to have an effect on ecological systems (Fahrig 2003).Environmental
heterogeneity is known to affect PTWs (Shigesada et al. 1986; Sherratt et al. 2003; Kay
and Sherratt 2000), but there is a lack of studies assessing the effects of heterogeneity
that manifests through speciesmovement and behaviour. Theoretical research can help
to elucidate such effects and help identify when we expect to observe stable PTWs.

Our approach is the application of asymptotic homogenisation to study PTW solu-
tions in a predator–prey model on a patchy landscape. Through a reduction to normal
form, the stability of the PTW solutions is then analysed in terms of heterogeneity
of residence index and attack rate. Our main result is that heterogeneity in prey and
predator residence indices alone can shift biological systems from stable to unstable
PTW regime and vice versa. This has implications for landmanagement. For example,
deforestation can change the proportion of forested to open areas. Many species show
preference for forested habitats (Bélisle and Desrochers 2002), resulting in individuals
spending more time in forested patches of land. This shift in residence index can be
accompanied by a shift in the stability of PTWs. A given predator–prey exhibiting
PTWs could see these destabilised resulting in irregular spatiotemporal oscillations.
For the well-studied lynx-hare system (Turchin 2003; Krebs et al. 2018), our results
suggest that introduction of environmental heterogeneity, such that hare spend more
time in some locations than in others while lynx movement is unchanged, could result
in the system being less likely to exhibit stable PTWs.

More generally, we contribute to the body of theoretical research that investigates
the effects of environmental heterogeneity on predator–prey interactions (Ryall and
Fahrig 2006; Stone and He 2007; Vitense et al. 2016). We showed that if prey spend
disproportionally more time in one patch, the PTW stability boundary curve shift
towards smaller predator mortalities. Such a shift can be reversed if the predator either
spends more time or attacks more prey in the patches of high prey residence index.
Our findings then illustrate the importance of the residence index as a useful tool to
understand landscape-level phenomena. Since the residence index combines the effects
of patch preference and diffusion, we stress the importance of patch-level properties
on landscape-level patterns. The significance of patch properties has also been echoed
by others, includingMaciel and Lutscher (2013), who found that increased preference
for a suitable (good) patch over an inhospitable (bad) surrounding patch decreased the
minimal size of the good patch required for survival of the focal species.

The findings we obtain can be related to the work of Kay and Sherratt (2000)
who considered PTWs generated by invasion on a finite domain. They showed that
sufficient spatial noise in the kinetic parameters can allow the persistence of PTWs.
However, if the noise is present at higher levels, irregular oscillations persist. In our
work, we show that the heterogeneity in movement and individual behaviour can have
complex effects on PTW stability, either fostering or suppressing stability of PTWs,
depending on the values of the other kinetic parameters.

We show that the effects of predator residence index heterogeneity on PTWstability
are increased as we increase the strength of heterogeneity in prey residence index.
Our results suggest that a key factor affecting cyclic phenomena in general is the
difference between the time prey and predator spend in each location. We argue that
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prey residence index should receive special attention in studies aiming to track and
monitor predator–prey systems potentially exhibiting PTWs. We predict that if prey
spend time relatively homogeneously across the landscape, heterogeneity in predator
residence index should have a relatively small effect on the stability of the PTWs.

When considering the temporal cycles of spatially uniform solutions, we found a
general increase in cycle period and amplitude with the relative good patch size. This
result agrees with the overall trend obtained by previous reaction–diffusion predator–
preymodels (Maciel andKraenkel 2014; Strohm andTyson 2009). In a study involving
coarse grain heterogeneity Gauduchon et al. (2013) showed that cycle amplitude in the
middle of the patch decreases with predator patch preference for the good patch in the
Rosenzweig–MacArthur model, but increases with predator patch preference in the
May model. Despite our patch level equations having Rosenzweig–MacArthur reac-
tion terms, our model shows a similar result to the May model studied by Gauduchon
et al. (2013). The reasons for this mismatch remain unclear, but likely relates to the dif-
fering effects of coarser and finer grain heterogeneity on the Rosenzweig–MacArthur
model.

Our analysis of the stability of the PTWs is constrained to the case where the
homogenised prey and predator diffusion rates were equal. In biological systems,
predator diffusion is typically larger than prey diffusion, so the δ = 1 constraint may
appear overly constrictive. Indeed, the ratio between prey and predator diffusion is
known to have an effect on the stability boundary of thePTWs in homogeneous systems
(Smith and Sherratt 2007; Bennett and Sherratt 2017). However, δ = 1 can be satisfied
while still allowing predator diffusion to be larger than prey diffusion at the patch level.
For example, we can consider a scenario where the predator moves faster than the prey
in both patches (namely, Du

1 < Dv
1 and D

u
2 < Dv

2). This can be achievedwhile keeping
δ = 1 if prey and predator prefer different patch types (see Appendix E). Differences
in prey and predator habitat preference have been observed in the Vicuñas-Puma
system (Smith et al. 2019) when prey chose habitat to avoid being attacked. Hence,
while the δ = 1 constraint is restrictive it still allows the study biologically plausible
scenarios. Future research with the use of alternative techniques would help elucidate
the effects of relaxing the δ = 1 constraint. Among such techniques, we highlight
numerical continuation, which can be used to numerically determine the essential
spectra of reaction–diffusion operators (Rademacher et al. 2007). The stability of
PTWs solutions can then be assessed through the study of such spectra (Sherratt
2013).

Our results are restricted to the scenario where asymptotic homogenisation is valid.
Namely, when patch sizes are small compared to species diffusion. Other approaches
would be necessary to investigate the effects of coarser grain heterogeneity and with
larger patch sizes (e.g. as done by Gauduchon et al. (2013), Maciel and Kraenkel
(2014), and Cobbold and Lutscher (2014)). However, even under this limitation, we
are able to show that heterogeneity in movement and behaviour is able to affect PTWs
in complex ways.

The greater part of our study is performed in the small-amplitude approximation. In
general, ecologists are interested in larger-amplitude population cycles. Merchant and
Nagata (2010), Merchant and Nagata (2015) developed approaches to study particular
PTWs solutions of predator–prey systems further away from the Hopf bifurcation.
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However, the analytical study of general PTW solutions for larger-amplitude oscil-
lations remains an open problem in the literature and is therefore a possible step
for future work. A natural question is whether our conclusions involving the effects
of heterogeneity in movement and behaviour on PTW stability continue to hold for
larger-amplitude PTWs. Nonetheless, the investigation of small amplitude is still used
in the literature (Bennett and Sherratt 2017, 2019) as it provides useful analytical
insights and limiting case predictions. Moreover, it produces a valuable framework
to numerically investigate larger amplitude scenarios and a guideline to explore the
parameter space through other non-analytical methods (e.g. numerical continuation).

Furthermore, another topic that deserves systematic study is the exploration of the
effects of heterogeneity on PTW speed. Predicting the speed at which populations
travel across the landscape is naturally a useful tool for monitoring and conservation
studies but was beyond the scope of this work. As argued by Cobbold et al. (2022)
and through our results, fine scale heterogeneity can lead to significantly different
predictions from those found in a homogeneous environment. Therefore, one may
expect that heterogeneity will also affect PTW speed.

In summary, our results shed light on factors affecting the stability of PTWs. In par-
ticular, we have shown that movement and behaviour in a heterogeneous environment
can change the stability of PTWs in regions of parameter space where real-world
examples of predator–prey dynamics can be found. We highlight that the strength
of spatial variation in predator and prey residence indices can have a strong influ-
ence on PTW stability. Hence, future empirical research aiming to predict the effects
of environmental heterogeneity (e.g. caused by human activity or climate change) on
population spatiotemporal oscillations should take into consideration its repercussions
on variation of individual movement and behaviour across the landscape.

Acknowledgements CCwas supported by a Leverhulme Research Fellowship RF-2018-577\9. Data shar-
ing not applicable to this article as no datasets were generated or analysed during the current study.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

Appendix A: Stability Criterion

In this work, we considered the stability of PTWs in terms of the heterogeneity in
parameters determining movement and behaviour of prey and predator throughout
the landscape. In this section, we review the mathematical background developed by
Sherratt et al. (2003) leading to the criterion (14) for determining PTW stability.

Kopell and Howard (1973) have shown that the PTW solutions (13) are stable if
and only if
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R >
(2 + 2ω2

1

3 + 2ω2
1

) 1
2
, (20)

where R corresponds to the amplitude of the PTW. Sherratt (2003) then showed that
the boundary condition h̃ = p̃ = 0 at x = 0 on Eq. (12) generates a particular solution
of the family (13), in which R takes the value of

R0 =
[
1

2

(
1 +

√
1 + 8

9
ω2
1

)]−1/2

. (21)

Solutions under boundary condition h̃ = p̃ = 0 at x = 0 correspond to solutions of
Eq. (11) under Dirichlet boundary conditions h = h∗ and p = p∗ at X = 0, where
(h∗, p∗) is the steady-state solution. Therefore, combining (20) and (21), stability
condition for the PTW solutions of Eq. (11) under Dirichlet boundary conditions
h = h∗ and p = p∗ at X = 0 is

R0 >
(2 + 2ω2

1

3 + 2ω2
1

) 1
2
,

which can be manipulated to obtain |ω1| < 1.110468.
Finally, Sherratt et al. (2003) give solid evidence that such condition is valid for

general Dirichlet boundary conditions at X = 0 provided the bifurcation parameter is
sufficiently close to its critical value. Therefore, condition (14) determines the stability
of solutions of Eq. (11) under zero-Dirichlet boundary condition at X = 0.

Appendix B: Stability Results in the Case of � = 1

We note that if η = 1, Ccrit (Eq. 17) and det(J (h∗, p∗)) (see Eq. 18) are composed
of the expressions E1(1 + β) and E1B1. Expressing these using the dimensional
parameters listed in Table 1, we obtain

E1(1 + β) = γ

m̂

( 1

H1
+ 1

H2

)
(22)

and

E1B1 = 1

m̂
. (23)

Through direct algebra, it is immediate to verify that if predator mortality rate and
prey handling time are constant across the landscape (namely, h1 = h2 = h and
m1 = m2 = m), then

m̂ = m
( ρv

1

〈ρv〉
l1

l1 + l2
+ ρv

2

〈ρv〉
l2

l1 + l2

)
= m

〈ρv〉
〈ρv〉 = m,
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( 1

H1
+ 1

H2

)
= h−1

( ρv
1

〈ρv〉
l1

l1 + l2
+ ρv

2

〈ρv〉
l2

l1 + l2

)
= h−1 〈ρv〉

〈ρv〉 = h−1,

and the dependency of expressions (22) and (23) on ρv
1,2 vanishes.

In the special case of η = 1, the conditions for PTW stability also simplify. The
reduction to normal form of Eq. (11) (with δ = 1) to Eq. (12) follows the script fully
described by Sherratt et al. (2003) based on Guckenheimer and Holmes (2013). The
first step in this script is to convert the linear part of the equations to normal form to
give

∂T H = ∂2X H + ε�0H + (�0 + ε�1)P + G(H , P),

∂T P = ∂2X P + ε�0P − (�0 + ε�1)H + F(H , P),
(24)

with H and P being linearly transformed versions of h and p.F(H , P) and G(H , P)

determine the stability of the PTW solutions (13) and are obtained with the aid of
Mathematica [see section 2 of Andrade and Cobbold (2022)]. The variable ε = C −
Ccrit is assumed to be small (small-amplitude approximation). The expressions for
�0,�0,�1 are computed from the eigenvalues of the Jacobian matrix associated with
Eq. (11) evaluated at the coexistence steady state.

The derivatives ofF(H , P) and G(H , P) with respect to H and P are evaluated to
calculate the expression of ω1 which determines the stability of the PTWs (see section
4 of Andrade and Cobbold (2022)). The full expression for ω1 is complicated and not
shown, but in the special case of η = 1, the expressions for F(H , P) and G(H , P)

simplify significantly:

F(H , P) = H

(√
E1(1 + β) − 1

B1E1(E1(1 + β) + 1)

−
((1 + β)E1 − 1)2

(
(β+1)E1

(E1(1+β)+1)2
− P

√
(1+β)E1−1

B1E1(E1(1+β)+1)

)
√
B1E1

(
(1+β)E1−1
E1(1+β)+1

)3/2
((β + 1)E1(H + 1) + H)

⎞
⎟⎠ ,

G(H , P) = −
H

(
−P

(
(β + 1)2E2

1 − 1
)√

E1(1+β)−1
B1E1((1+β)E1+1) + H2(E1(1 + β) + 1) + H

)
(β + 1)E1(H + 1) + H

.

As these expressions only depend on predator residence index only through (22) and
(23), we conclude that F ,G and consequently ω1 also do not depend on the predator
residence index when η = 1, m1 = m2 and h1 = h2.

Appendix C: Amplitude of the Spatially Uniform Predator Oscillations

See Fig. 11.

123



Heterogeneity in Behaviour and Movement can Influence . . . Page 25 of 30 1

0.05 0.50 1.00 1.50
l1/l2

0.0

0.1

0.2

0.3

0.4

P
re
d
am

pl
itu

de
ρu
1 = 4.0, ρu

2 = 4.0

ρv1 = 4.0, ρv2 = 4.0
ρv1 = 4.5, ρv2 = 3.5
ρv1 = 6.0, ρv2 = 2.0
ρv1 = 7.5, ρv2 = 0.5

0.05 0.50 1.00 1.50
l1/l2

0.0

0.1

0.2

0.3

0.4

ρu
1 = 5.0, ρu

2 = 3.0

0.05 0.50 1.00 1.50
l1/l2

0.0

0.1

0.2

0.3

0.4

ρu
1 = 6.0, ρu

2 = 2.0

Fig. 11 Amplitude of the spatially uniform predator oscillations as a function of the relative patch size for
different values of predator residence index. Patch type 1 is the ‘good’ patch type (λ1 = 10) and type 2, the
‘bad’ patch type (λ2 = 5). l1, l2 satisfy l1 + l2 = 1. Left: ρu1 = 4, ρu2 = 4. Centre: ρu1 = 5, ρu2 = 3. Right:
ρu1 = 6, ρu2 = 2. Other parameters h1 = h2 = 0.5, γ = 0.9,m1 = m2 = 1.0, μ1 = μ2 = 1.75, a1 =
a2 = 3.0.

AppendixD: ExtraNumerical Integrationsof theHomogenisedSystem

In this section, we exhibit numerical integrations for other points of the plot from
Fig. 5, complementing the plots in Fig. 6. Figure 12 shows numerical simulations of
the homogenised equations (11) with parameters values estimated for the hare-lynx
system, predicted to be stable for η = 1 and unstable for η = 7. These plots illustrate
how longer domains are necessary to determine the stability of the PTWs, as consider-
ing short domains can make unstable solutions to be misclassified as stable (compare
the solution of Fig. 12 for η = 7, ε = 0.5 for X ∈ [0, 800] to the same solution
for X ∈ [0, 7000]), both for small and large amplitudes. However, the simulations
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Fig. 12 Numerical simulations of the homogenised equations (11) for the demographic parameters of the
hare-lynx (E1 = 1.2, B1 = 4.4) system from Fig. 5. We consider the η = 1.0 (left plots) and η = 7.0
(right plots) cases, for different values of the bifurcation parameter C with respect to its critical value Ccrit :
ε = C − Ccrit = 0.01 (upper plots), 0.5 (centre plots), 1.0 (lower plots). The solutions are plotted at
T = 500,000. The same initial conditions, numerical scheme and discretisation from Fig. 6 were used.
Boundary conditions: Dirichlet (h, p) = (h∗, p∗) at X = 0 (steady state-dashed lines) and zero-flux at
X = L = 7000. Other parameters: β = 1, δ = 1 (Color Figure Online)
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Fig. 13 Numerical simulations of the homogenised equations (11) for the demographic parameters of the
weasel-vole system (E1 = 0.9, B1 = 2.4) system from Fig. 5. We consider the η = 1.0 (left plots) and
η = 7.0 (right plots) cases, for different values of the bifurcation parameter C with respect to its critical
value Ccrit : ε = C − Ccrit = 0.01 (upper plots), 0.5 (centre plots), 1.0 (lower plots). The solutions are
plotted at T = 500,000. The same initial conditions, numerical scheme and discretisation from Fig. 6 were
used. Boundary conditions: Dirichlet (h, p) = (h∗, p∗) at X = 0 (steady state—dashed lines) and zero-flux
at X = L = 7000. Other parameters: β = 1, δ = 1 (Color Figure Online)
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Fig. 14 Numerical simulations of the homogenised equations (11) for E1 = 4.0, B1 = 10.0. We consider
the η = 1.0 (left plots) and η = 7.0 (right plots) cases, for different values of the bifurcation parameter
C with respect to its critical value Ccrit : ε = C − Ccrit = 0.01 (upper plots), 0.5 (centre plots), 1.0
(lower plots). The solutions are plotted at T =500,000. The same initial conditions, numerical scheme and
discretisation from Fig. 6 were used. Boundary conditions: Dirichlet (h, p) = (h∗, p∗) at X = 0 (steady
state—dashed lines) and zero-flux at X = L = 2500. Other parameters: β = 1, δ = 1 (Color Figure
Online)
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of longer domains require very long computation times in order to transient effects
to vanish. Similar challenges arise when simulating the equations for the parameter
values of the weasel-vole system (Fig. 13), predicted to be unstable for η = 1 and
η = 7.

Moreover, the (E1, B1) pairs shown in Figs. 12 and 13 are close to the stability
boundaries of η = 1 and η = 7 in Fig. 5. This causes the solutions to exhibit long
transients, which require even longer simulations. In contrast, in Fig. 14 we simulate
Eq. (11) for a point in the (E1, B1)-space further away from the stability boundaries.
By comparing left and right plots in Fig. 14, there is clear shift in stability even
for a shorter domain, matching the prediction from Fig. 5 both for small and large
amplitudes: unstable for η = 1 and stable for η = 7.

Appendix E: Implications of the ı = 1 Constraint

In this section,we prove that the δ = 1 constraint can be satisfiedwhen the predators on
each patch diffuse further than prey despite the homogenised landscape scale diffusion
rates for prey and predator being equal.

From the expressions for D̂u,v (Eq. 8), the δ = 1 condition yields

D̂u = D̂v �⇒
(ρu

1 l1 + ρu
2 l2

l1 + l2

)( (1 − αu)l1 + αul2
l1 + l2

)

=
(ρv

1 l1 + ρv
2 l2

l1 + l2

)( (1 − αv)l1 + αvl2
l1 + l2

)
.

For simplicity, we assume that l1 = l2, with an analogous argument holding for general
relative patch sizes. Under such an assumption, the expression becomes

ρu
1 + ρu

2 = ρv
1 + ρv

2 �⇒ 1

Du
1 (1 − αu)

+ 1

Du
2α

u
= 1

Dv
1(1 − αv)

+ 1

Dv
2α

v
.

We further assume that prey and predator have preference for different patch types
such that αu = α and αv = 1−α. However, a similar argument still holds if αu > 0.5
and αv < 0.5, or if αu < 0.5 and αv > 0.5. The expression then becomes

Du
2α + Du

1 (1 − α)

Du
2D

u
1α(1 − α)

= Dv
2(1 − α) + Dv

1α

Dv
2D

v
1α(1 − α)

�⇒
α(Dv

2 − Du
1 )D

v
1D

u
2 + (1 − α)(Dv

1 − Du
2 )D

v
2D

u
1 = 0. (25)

Since 0 < α < 1, expression (25) is satisfied if

(I): Dv
2 > Du

1 and Dv
1 < Du

2 , or if
(II): Dv

2 < Du
1 and Dv

1 > Du
2 , or if

(III): Dv
2 = Du

1 and Dv
1 = Du

2 .
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Case (I) is valid, e.g. if Du
1 < Dv

1 < Du
2 < Dv

2 and case (II) if Du
2 < Dv

2 < Du
1 <

Dv
1 . In either case, we have shown that it is possible to have Dv

2 > Du
2 and Dv

1 > Du
1

despite δ = 1, provided predator and prey prefer different patch types.
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