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Abstract
Adynamicmodel called SqEAIIR for the COVID-19 epidemic is investigated with the
effects of vaccination, quarantine and precaution promotion when the traveling and
immigrating individuals are considered as unknown disturbances. By utilizing only
daily sampling data of isolated symptomatic individuals collected byMexican govern-
ment agents, an equivalent model is established by an adaptive fuzzy-rules network
with the proposed learning law to guarantee the convergence of the model’s error.
Thereafter, the optimal controller is developed to determine the adequate interven-
tion policy. The main theorem is conducted to demonstrate the setting of all designed
parameters regarding the closed-loop performance. The numerical systems validate
the efficiency of the proposed scheme to control the epidemic and prevent the overflow
of requiring healthcare facilities.Moreover, the sufficient performance of the proposed
scheme is achieved with the effect of traveling and immigrating individuals.

Keywords COVID-19 · SqEAIIR model · Optimal control · Discrete-time systems ·
Impulsive disturbance · Fuzzy rules emulated networks

1 Introduction

At the end of 2019, a new disease caused by the virus severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) or COVID-19 has been discovered in Wuhan,
China. Thereafter, an outbreak of COVID-19 continued to spread around theworld and
affected economic, education, food security and health issues (Worldometers 2022).
Several preventive measures such as social distancing, locking down, vaccination and
so on have been recommended and utilized to counteract the epidemic (Giordano et al.
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Fig. 1 Infected cases of Mexico’s COVID-19 epidemic: Data from CONACyT (Government of Mexico
2021a) (Color figure online)

2020). Therefore, the negative effects have been notified such that businesses shunting
down, unemploying, the ineffectiveness of online education and limited vaccination
and healthcare facilities (Wei et al. 2020; Ourworldindata 2022). To minimize those
effects, the development of a sufficient intervention policy with model dynamics for
forecasting the epidemic is imperative (Deka et al. 2020; Aghdaoui et al. 2021).

Moreover, the epidemic of COVID-19 has already spread to Mexico in four waves
from January 2020 until 23 February 2022. Figure 1 shows the record of daily infected
cases recorded by COVID-19 DataLab CONACyT, Mexico (Government of Mex-
ico 2021a). Causing by the omicron variant, the fourth wave has been detected since
November 2021 and the peak has been observed as 70,000 cases approximately. Obvi-
ously, this peak is very higher than the previous three waves. As a result, the healthcare
facilities have been over demanded (Government of Mexico 2021b, c). Thus, an effec-
tive intervention policy is rigidly required to control the epidemic according to the
limited resources.

By the formulations of nonlinear ODEs (ordinary differential equations), the
dynamics of epidemics have been utilized by mathematic models for sufficient infor-
mation to design the adequate intervention strategies (Leonardo and Xavier 2021;
Giordano et al. 2021; Sun and Wang 2020; Liu 2021). The set of equations has been
established by the developed SEIR model (Engbert et al. 2021; Jia and Chen 2021)
when the individuals have been classified by the following states: Susceptible (S),
Exposed (E), Infectious (I) and Recovered (R). By detailing classification, the mathe-
matical model called SIDARTHE (Giordano et al. 2020) has been developed under the
distinction between non-diagnosed and diagnosed individuals. Thereafter, the investi-
gations to design the sufficient policy have been conducted such as the next–generation
matrix optimization (Perkins and Guido 2020; Xie et al. 2020), the fuzzy fractional
derivatives optimal control (Dong et al. 2020), threshold dynamics vaccination (Al-
Darabsah 2020), optimal sliding mode control (Amiri-Mehra et al. 2019) and so on.
Even so, the performance of those schemes is strictly related to the model’s accuracy
and the intensive measurement of state variables.
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As a matter of fact, all state variables can not be easy to be obtained or monitored at
all times under the concept of continuous-time ODEs (Auger and Moussaoui 2021).
Thus, from the practical point of view, only some states are available at a daily interval
(Zhan et al. 2021; Sooknanan andMays 2021). Furthermore, immigration and traveling
can be considered as a factor that causes the spread of COVID-19 according to the
advanced air-traveling business (Government of Mexico 2021d; Abbasi et al. 2020).
Thus, the impulsive disturbances caused by traveling people can lead the epidemic
dynamics to be a class of impulsive control systems (ICS) when the disturbances
are considered occurring on the impulsive axis (Villa-Tamayo and Rivadeneira 2020;
Bachar et al. 2016; Ren et al. 2020).

For a class of discrete-time systems, ICS schemes have been proposed by some
works such that (Gao et al. 2011; Liguang and Shuzhi 2016). It is worth mentioning
that those controllers for ICS have focused on linear systems with well-definedmodels
(He and Xu 2015; Nieto et al. 2011). By considering optimal-control approaches with
ICS, only limited schemes have been recently proposed such as a linear-quadratic (LQ)
controller (Cacace et al. 2020), an adaptive dynamic programming (ADP) (Wei et al.
2020) and Pontryagin’s maximum principle (Abbasi et al. 2020). The performance of
those schemes is promptly related to the model’s accuracy and data-fitting to select
the model’s parameters. Furthermore, for the model-free approach, the neural optimal
controller (Hernandez-Mejia et al. 2018) and the optimal control based on passivity
(Hernandez-Mejia et al. 2020) have been developed but the full state observer has been
strongly required.

The focus of this work is to derive the intervention policy including vaccination,
quarantine and precaution promotion with the optimal control aspect by utilizing only
the daily data of isolated symptomatic infectious. Firstly, the conventional SEIR is
redesigned as the SqEAIIR epidemic model which includes quarantined individuals
and subgroups of infected individuals. By considering SqEAIIR as a class of discrete-
time controlled plants, the control effort u ∈ R

3≥0 denotes the intervention policy
and the output is the number of daily isolated infected individuals. Therefore, the
parameters of SqEAIIR are determined by data-fitting with the fourth wave of the
Mexico COVID-19 epidemic. Secondly, the affine equivalent model is established
by an adaptive fuzzy-rules emulated network (FREN) (Treesatayapun and Uatrongjit
2005; Treesatayapun 2020) to represent the discrete-time manner of the epidemic by
usingonly thedaily data (Government ofMexico2021a).The learning law is developed
to improve the equivalent model’s performance with the convergence analysis. The
proposed optimal controller is derived by the affine equivalent model which is linear
with respect to the observed individual. Finally, the intervention policy is determined
when the impulsive immigrating and traveling issues are considered as the unknown
disturbances. Moreover, the limitations of resources such that vaccines, promotion
budget and healthcare facilities are deliberated.

The structure of this paper is organized as follows. The problem formulation and
SqEAIIR epidemic model are given in Sect. 2 with a general class of non-affine
discrete-time systems. In Sect. 3, an adaptive network FREN is utilized to establish
the affine equivalent model by using only the daily data of isolated symptomatic
individuals. The optimal intervention policy is formulated in Sect. 4 with the closed-
loop analysis. In Sect. 5, numerical systems are provided to validate the proposed
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scheme altogether with the impulsive immigrating and traveling. In Sect. 6, the work
is concluded and summarized.

2 Problem Formulation

2.1 Mathematical Model of SqEAIIR Epidemic

In this section, a formulation of the extended SEIAR model called SqEAIIR is
derived by integrating state variables of quarantined people and vaccinated individu-
als. The total population is categorized into seven groups as follows: susceptible S(t),
exposed E(t), symptomatic infectious Is(t), asymptomatic infectious A(t), symp-
tomatic infectious who isolated in hospitals and health-care facilities Ii, recovered
R(t) and quarantined Q(t) individuals.

The flow diagram between individual groups of SqEAIIR is depicted in Fig. 2.
Therefore, the dynamic model is mathematically governed as the following:

Ṡ(t) = Λo − [βλ(t) + εvuv(t) + uq(t) + μ]S(t),

Q̇(t) = uq(t)S(t) − [zQ + μ]Q(t),

Ė(t) = βλ(t)S(t) − [δE + μ]E(t),

Ȧ(t) = (1 − ρ)δEE(t) − [zA + φA + rA + mA + μ]A(t),

İs(t) = ρδEE(t) + zAA(t) − [φs + rs + ms + μ]Is(t),
İi(t) = φAA(t) + φs Is(t) − [ri + mi + μ]Ii(t),
Ṙ(t) = εvuv(t)S(t) + rAA(t) + ri Ii(t) + rs Is(t) + zQQ(t) − μR(t), (1)

Fig. 2 SqEAIIR flow diagram and controlled plant concept (Color figure online)
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Table 1 Parameters for SqEAIIR dynamics

Parameter Description Parameter Description

φA Asymptomatic progressive rate β Transmission rate

φs Symptomatic progressive rate εv Vaccine efficacy

rA Asymptomatic recovery rate μ Natural mortality

rs Symptomatic recovery rate ρ Progressive rate

ri Isolated recovery rate δE Incubation periods

mA Asymptomatic mortality rate zA Transition rate of A(t)

ms Symptomatic mortality rate zQ Transition rate of Q(t)

mi Isolated mortality rate nA Infection coefficient of A(t)

and the infection force is defined as

λ(t) = [1 − um(t)][Is(t) + nAA(t)]
S(t) + E(t) + A(t) + Is(t) + R(t)

. (2)

All SqEAIIR’s parameters are described by Table 1 andΛo denotes the recruitment
rate.

The parameters uv(t), uq(t) and um(t) are non-negative control efforts ∈ [0, 1] or
the interventional policy including vaccination, quarantine and precaution promotion
such as social distancing and the use of face masks, respectively. It’s worth remarking
that themain objective of SqEAIIR in (1) is used to validate the proposed interventional
policy within the per-unit such that the works in Xie et al. (2020), Dong et al. (2020),
Amiri-Mehra et al. (2019). Therefore, the controlled plant is considered as the unknown
dynamics described by the block diagram in Fig. 2. Unlike the previous works such
as Dong et al. (2020), Abbasi et al. (2020), Perkins and Guido (2020), in this work,
the policy is determined by a model-free adaptive control without any requirement of
the dynamics in (1).

2.2 Discrete-Time Equivalent Model and Immigrating Disturbance

The aim of this work is to determine the optimal intervention policy including vacci-
nation: uv, quarantine: uq and precaution promotion: um. In this work, the dynamics
of SqEAIIR are considered as a class of non-affine discrete-time systems depicted in
Fig. 3 when the control inputs are uv(k), uq(k) and um(k) and the observed output
is Ii(k + 1). k denotes the sampling time index with the interval 1-day. It’s worth
emphasizing that from the practical point of view, Ii(k) can be daily obtained from the
official databases such as CONACYT (Government of Mexico 2021a) and the immi-
grant population can be considered as the disturbance d(k = κ j ) when κ j indicates
the date of immigration occurring.
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Fig. 3 SqEAIIR as a class of
unknown discrete-time systems
and immigrating disturbance
(Color figure online)

To simplify, the equivalent model for the discrete-time system in Fig. 3 can be
established as

Ii(k + 1) = Fd(Ii(k), uv(k), uq(k), um(k), d(k)), (3)

where Fd(−) is the unknown nonlinear function and

d(k) = 0 when k �= κ j . (4)

Bygeneralizing the problem formulationmentioned above, the discrete-time system
in (3) is reformulated as
Σ1: k �= κ j

Ii(k + 1) = Fd(Ii(k),U (k)), (5)

where U (k) = [uv(k) uq(k) um(k)]T and
Σ2: k = κ j

Ii(k + 1) = Fd(Ii(k),U (κ j ), d(κ j )). (6)

In this work, the disturbance d(κ j ) is considered as the unknown signal but its effect
can be monitored through Ii(k + 1) at Σ2 which can be obtained by the database. By
this motivation, the data-driven equivalent model will be established by using only the
daily data of Ii(k). Thereafter, the approximated optimal controller will be designed
by using the data-driven equivalent model.

3 Adaptive Data-Driven Affine Equivalent Model

3.1 Equivalent Model and Learning Laws

By utilizing the compact form dynamic-linearization (Hou et al. 2017; Treesatayapun
2017), it exists functions fo(Ii(k)) ∈ R≥0 and go(Ii(k)) ∈ R

3≥0 for the affine dynamics
which are equivalent with the system in (6) such that

Ii(k + 1) = fo(k) + gTo (k)U (k). (7)

According to the universal function approximation of FREN (Treesatayapun and
Uatrongjit 2005; Treesatayapun 2020), it exists the affine model based on the analytic
functions fm(Ii(k)) ∈ R≥0 and gm(Ii(k)) ∈ R

3≥0 such that
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Fig. 4 Data-driven affine equivalent model (Color figure online)

Îi(k + 1) = fm(k) + gTm(k)U (k), (8)

where Îi(k + 1) denotes the estimated Ii(k + 1). Without loss of generality, gm(k) can
be expressed as

gm(k) = [gm1(k) gm2(k) gm3(k)]T. (9)

Thus, the equivalent model in (8) is rearranged as

Îi(k + 1) = fm(k) + gm1(k)uv(k) + gm2(k)uq(k) + gm3(k)um(k). (10)

Therefore, functions fm(k) and gmi (k) for i = 1, 2, 3 are utilized by FRENs as the
following:

fm(k) = βT
f (k)φ(k), (11)

and
gmi (k) = βT

gi (k)φ(k), (12)

respectively, where φ(k) ∈ R
Nf is the basis vector of x(k) membership functions

and βf(k) ∈ R
Nf and βgi (k) ∈ R

Nf are adjustable weights. Nf is the number of
membership functions of FREN when the network architecture is illustrated in Fig. 4.

To improve the model performance by tuning all adjustable weights, the learning
laws are established with the estimation error ê(k + 1) given as

ê(k + 1) = Ii(k + 1) − Îi(k + 1). (13)

In order to establish the learning laws, the cost function Ê(k+1) over the k-iteration
is defined as

Ê(k + 1) = 1

2
ê2(k + 1). (14)
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Firstly, by applying the gradient search, the learning law of βf(k) is obtained as

βf(k + 1) = βf(k) − ηf
∂ Ê(k + 1)

∂βf(k)
, (15)

where ηf denotes as the learning rate. Therefore, let’s apply the chain rule along (8)
to (14), it leads to

∂ Ê(k + 1)

∂βf(k)
= ∂ Ê(k + 1)

∂ ê(k + 1)

∂ ê(k + 1)

∂ Îi (k + 1)

∂ Îi (k + 1)

∂βf(k)
,

= −ê(k + 1)φ(k). (16)

Thus, the learning law in (15) becomes

βf(k + 1) = βf(k) + ηf ê(k + 1)φ(k). (17)

Secondly, let’s repeat the same procedure as (15) to (17) with βgi (−) for i = 1, 2, 3,
we obtain

βgi (k + 1) = βgi (k) − ηgi
∂ Ê(k + 1)

∂βgi (k)
, (18)

where ηgi is the i th learning rate. Thereafter, by applying the chain rule, we have

∂ Ê(k + 1)

∂βgi (k)
= ∂ Ê(k + 1)

∂ ê(k + 1)

∂ ê(k + 1)

∂ Îi(k + 1)

∂ Îi (k + 1)

∂βgi (k)
,

= −ê(k + 1)φ(k)Ui(k). (19)

Thus, the learning law in (18) is rewritten as

βgi (k + 1) = βgi (k) + ηgi ê(k + 1)Ui(k)φ(k). (20)

It’s worth denoting that the learning rates ηf and ηgi can play an important role in
the model performance. Therefore, the selection of the proper learning rates will be
discussed next.

3.2 Performance Analysis

The performance of the learning laws can be guaranteed by setting ηf and ηgi according
to the following theorem.

Theorem 1 For the equivalent model proposed by (8) with the learning laws (17) and
(20), the estimation error (13) is a convergent sequence when the learning rates ηf
and ηgi are designed by the following conditions:

0 ≤ ηf <
γf

φM
, (21)
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and
0 ≤ ηgi <

γg

U 2
iMφM

, (22)

where 0 < γf < 2, 0 < γg < 2, UiM = max |Ui(k)|,∀k = 1, 2, . . . and

φM = sup
∀Ii≥0

{||φ(Ii(k))||2}. (23)

Proof Let’s define the Lyapunov function Lm(k) as

Lm(k) = 1

2
ê2(k). (24)

Therefore, the change of Lm(k) is derived as

�Lm(k) = Lm(k + 1) − Lms(k),

= 1

2
[ê2(k + 1) − ê2(k)],

= 1

2

[
ê(k) + �ê(k)]2 − ê2(k)

]
,

= 1

2
�ê(k)[2ê(k) + �ê(k)]. (25)

For the proof thereafter, the analysis is conducted by two parts for ηf and ηgi as the
following:
Part I (ηf ): According to the weight parameter βf(k), �ê(k) is estimated as �êf(k)
such that

�êf(k) ≈
[ ∂ ê(k)

∂βf(k − 1)

]T
�βf(k − 1). (26)

By recalling (8), (11) and (17) with one step backward, we obtain

�êf(k) ≈ −ηf ê(k)||φ(k − 1)||2. (27)

Substitute (27) into (25), it yields

�Lm(k)
.= −1

2
ηf ê(k)||φ(k − 1)||2[2ê(k) − ηf ê(k)||φ(k − 1)||2],

= −1

2
ηf ê

2(k)||φ(k − 1)||2[2 − ηf ||φ(k − 1)||2]. (28)

For the convergence of the sequence ê(k) or �Lm(k) ≤ 0, it requires that

2 − ηf ||φ(k − 1)||2 ≥ 0, (29)

or

ηf ≤ 2

||φ(k − 1)||2 . (30)
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It’s clear that the condition in (30) is fulfilled as

ηf <
γf

φM
≤ 2

||φ(k − 1)||2 . (31)

Thus, the proof of (21) is completed.
Part II (ηgi ): For the weight parameters βgi (k), the change of Lyapunov function
�ê(k) is approximated as �êgi (k) as

�êgi (k) ≈
[ ∂ ê(k)

∂βgi (k − 1)

]T
�βgi (k − 1). (32)

Let’s recall (8), (12) and (20) with one step backward, we have

�êgi (k) ≈ −ηgi ê(k)U
2
i (k)||φ(k − 1)||2. (33)

Substitute (33) into (32), we obtain

�Lm(k)
.= −1

2
ηgi ê(k)U

2
i (k)||φ(k − 1)||2[2ê(k) − ηgi ê(k)U

2
i (k)||φ(k − 1)||2],

= −1

2
ηgi ê

2(k)U 2
i (k)||φ(k − 1)||2[2 − ηgiU

2
i (k)||φ(k − 1)||2]. (34)

With negative semi-define �Lm(k), it leads to

ηgi ≤ 2

U 2
i (k)||φ(k − 1)||2 . (35)

Considering (22) with (35), it’s clear that

ηgi <
γg

U 2
iMφM

≤ 2

U 2
i (k)||φ(k − 1)||2 , (36)

for i = 1, 2, 3. Thus, the proof is completed here. �	

4 Model-Free Optimal Preventative Policy

To prevent the inundation of Ii individuals according to the limited resources of hos-
pitals or medical institutions, the optimal interventional policy including vaccination,
quarantine and precaution promotion is derived by the optimal control scheme. It’s
worth emphasizing that the daily data of Ii(k) is only required and utilized in this
approach.

The long term cost function V (k) is firstly defined as

V (k) =
∞∑

i=k

γ i−k[q I 2i (i) +UT(i)HU (i)], (37)
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where 0 < γ ≤ 1 is a discount parameter, q is a positive constant and H ∈ R
3×3 is a

positive diagonal matrix such that Hi > 0 for i = 1, 2, 3.
By rearranging the cost function (37), it yields

V (k) = q I 2i (k) +UT(k)HU (k) + γ

∞∑

i=k+1

γ i−(k+1)[q I 2(i) +UT(i)HU (i)],

= q I 2(k) + uT(k)Hu(k) + γ V (k + 1). (38)

Considering the cost function in (38) in the quadratic form, the following Lemma
is conducted.

Lemma 1 If the general formulation of the control lawU (k) in (38) can be rearranged
by the vector K (k) as

U (k) = −K (k)Ii(k), (39)

then the cost function V (k) in (38) can be reformulated as a quadratic form such that

V (k) = P I 2i (k), (40)

where P is a positive time-varying parameter.

Proof Let’s recall (37), thus, we have

V (k) =
∞∑

i=k

γ i−k[q I 2i (i) +UT(i)HU (i)],

=
∞∑

i=0

γ i [q I 2i (i + k) +UT(i + k)HU (i + k)]. (41)

Using (39) with (41), it yields

V (k) =
∞∑

i=0

γ i [q I 2i (i + k) + KT(i + k)HK (i + k)I 2i (k)]. (42)

Substituting (39) into (7), we obtain

Ii(k + 1) = [ f́o(k) − gTo (k)K (k)]Ii(k),
= ao(k)I (k), (43)

where
ao(k) = f́o(k) − gT(k)K (k), (44)

and
frmo = f́o(k)Ii(k). (45)
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By utilizing the dynamics in (43), it leads to

Ii(i + k) = [ao(k + i − 1)ao(k + i − 2) · · · ao(k)]Ii(k),
= a∏

o
(k + i − 1)Ii(k), (46)

where a∏
o
(k + i − 1) = ao(k + i − 1)ao(k + i − 2) · · · ao(k). Substituting (43) into

(42), we have

V (k) =
∞∑

i=0

γ i [qa2∏
o
(k + i − 1) + KT(i + k)HK (i + k)]I 2i (k),

= P I 2i (k), (47)

where P = ∑∞
i=0 γ i [qa2∏

o
(k + i − 1) + KT(i + k)HK (i + k)]. Thus, the proof is

completed. �	
Remark 1 It’s worth to emphasize that the parameter P is a time-varying one compar-
ing with the other quadratic value functions and optimization schemes (Abbasi et al.
2020).

According to the result of Lemma 1, it’s clear that the relation in (38) can be
rearranged with the parameter P such that

P I 2i (k) = q I 2i (k) +UT(k)HU (k) + γ P I 2i (k + 1). (48)

Thus, Hamiltonian equation Hm(Ii,U ) can be obtained as

Hm(k) = q I 2i (k) − P I 2i (k) +UT(k)HU (k) + γ P I 2i (k + 1). (49)

By utilizing (49) and the equivalent model (7), it leads to

∂Hm(k)

∂Uk
= 2HU (k) + 2γ P[ f́o(k)Ii(k) + gTo (k)U (k)]go(k). (50)

Considering ∂H(k)
∂Uk

= 0, the control law can be derived as

U (k) = −
[
H + γ Pgo(k)g

T
o (k)

]−1
γ P f́o(k)go(k)Ii(k),

= −K (k)Ii(k), (51)

where

K (k) =
[
H + γ Pgo(k)g

T
o (k)

]−1
γ P f́o(k)go(k). (52)

Therefore, the performance analysis of the closed loop system under the proposed
control law (51) is conducted by the following theorem.
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Theorem 2 For a class of discrete-time systems satisfied the equivalent model (7),
thus, the convergence of closed-loop systems under the control law (51) is guaranteed
when Ii(k) ≥ 0 and

f́o(k) − 1√
γ

≤ f́o(k) − 1 < gTo (k)K (k) < f́o(k) + 1 ≤ f́o(k) + 1√
γ

. (53)

Proof By recalling (48) with the control law (51) and the equivalent model (7), we
have

P I 2i (k) = q I 2i (k) + [K (k)Ii(k)]TH [K (k)Ii(k)]
+γ P[ f́o(k)Ii(k) + gTo (k)U (k)]2,

= q I 2i (k) + [K (k)Ii(k)]TH [K (k)Ii(k)]
+γ P[ f́o(k)Ii(k) − gTo (k)K (k)Ii(k)]2. (54)

For the case of infected individual Ii(k) > 0, it leads to

P = q + KT(k)HK (k)

+γ P
[
f́ 2o (k) − 2 f́o(k)g

T
o (k)K (k) + [gTo (k)K (k)]2

]

= q + KT(k)HK (k) + γ PλP (k), (55)

where
λP (k) = f́ 2o (k) − 2 f́o(k)g

T
o (k)K (k) + [gTo (k)K (k)]2. (56)

By considering
1 − γ λP(k) > 0, (57)

it requires that

λP (k) <
1

γ
,

[
f́o(k) − gTo (k)K (k)

]2
<

1

γ
, (58)

or
∣∣ f́o(k) − gTo (k)K (k)

∣∣ <
1√
γ

. (59)

Therefore, we have

f́o(k) − 1√
γ

< gTo (k)K (k) < f́o(k) + 1√
γ

. (60)

Next, let’s recall the closed-loop system in (43). It’s clear that I (k) is a convergence
sequence when

|ao(k)| ≤ 1. (61)
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That leads to
| f́o(k) − gTo (k)K (k))| ≤ 1, (62)

or
f́o(k) − 1 ≤ gTo (k)K (k)) ≤ f́o(k) + 1. (63)

By the setting of γ mentioned in (37), it yields

1 ≤ 1√
γ

, (64)

and

− 1√
γ

≤ −1. (65)

By utilizing (63–65) with (60), it leads to (53). Thus, the proof is completed. �	

For the practical point of view here, f́o(k) and go(k) are unknown. Therefore, the
affine equivalent model proposed in Sect. 3 is utilized. Thus, the gain vector K (k) in
(52) can be employed as

K (k) =
[
R + γ Pgm(k)gTm(k)

]−1
γ P fm(k)gm(k). (66)

Remark 2 For the conclusion, in this work, the equivalent model (8) is firstly estab-
lished by utilizing the actual data. Secondly, the interventional policy is appointed by
the optimal controller in Lemma 1: (39) when the gain vector K (k) is determined by
(66).

5 Numerical Results

5.1 Parameters Setting andModel Accuracy

To validate the accuracy of SqEAIIR, the raw data from the Mexican government
CONACyT (Government of Mexico 2021a) is utilized for the fourth wave of epidemic
according to the omicron variant from November 2021 to 23 February 2022. By using
the initial values given by Table 2 and the parameters represented by Table 3, Fig. 5
illustrates the plots of raw data and model’s results including Ii, Is and A individuals.
As a result, SqEAIIR’s dynamics (1) can predict and mimic the epidemic behavior.
Furthermore, according to the data from healthcare institutes in Mexico such as IMSS
(Government of Mexico 2021b) and ISSSTE (Government of Mexico 2021c), the
maximum capacity of COVID-19 cases who need hospital facilities is displayed by
the red dashed line in Fig. 5. The over-demand has occurred for the fourth wave of the
epidemic caused by the omicron variant.
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Table 2 Initial values of
individuals (Government of
Mexico 2021a)

Category Number of humans

S(1) 570, 000

Q(1) 1750

E(1) 1136

A(1) 1165

Is(1) 2376

Ii(1) 2578

R(1) 5675

Table 3 Values of parameters
for SqEAIIR dynamics

Parameter Value Parameter Value

φA 0.12533 β 0.98714

φs 0.1429 εv 0.65

rA 0.13978 μ 0.000023

rs 0.1 ρ 0.2586

ri 0.125 δE 0.1923

mA 0.5ms zA 0.13978

ms 0.00011 zQ 0.72195

mi ms nA 0.65

Fig. 5 SqEAIIR fitting with raw data according to 4th wave of omicron variant (Color figure online)

5.2 Optimal Control and Intervention

By utilizing SqEAIIR and its parameters in Sect. 5.1, the proposed equivalent model
(8) and the controller (39) and (66) are constructed and validated. Thereafter, the
parameters of the equivalent model and the upper bound of control efforts are designed
by using the following information: φM = 9, U1M = 0.07, U2M = 0.2 and U3M =
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Fig. 6 Policy intervention response without and with applying controller with maximum capacity of hos-
pitals (Government of Mexico 2021a, b, c) (Color figure online)

0.5 according to Auger and Moussaoui (2021), Abbasi et al. (2020), Government of
Mexico (2021b, c). According Theorem 1, let’s select γf = γg = 1, thus, the learning
rates are determined as

ηf = 1

9
= 0.11, (67)

ηg1 = 1

0.072 × 9
= 22.67, (68)

ηg2 = 1

0.22 × 9
= 2.78, (69)

and

ηg3 = 1

0.52 × 9
= 0.44. (70)

Secondly, all controller’s parameters are given according to Theorem 2 as followings:
γ =, P(1) = 10, H1 = 0.04, H2 = 0.07 and H3 = 0.1.

The control effort U (k) = [um(k) uq(k) uv(k)]T is determined by (39) and (66).
Thus, the response is depicted by the plot in Fig. 6 as the black line when the policy is
initiated at Day 1st. For a case of delay, the blue line in Fig. 6 represents the response
when the policy is initiated at Day 7th. As a result, the infected patients who require
healthcare facilities are still under capacity. Figure 7 illustrates the equivalent model
performance with the plots of Ii(k) and its estimated Îi(k). Thereafter, the policy
intervention is displayed in Fig. 8.
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Fig. 7 Controlled Ii(k) and Îi(k) (Color figure online)

Fig. 8 Control efforts or policy intervention (Color figure online)

5.3 Immigrating Disturbance

Next, the immigrating disturbance is considered for individuals. In this test, let’s define
the immigrating pattern by the plots in Fig. 9 according to the data from Government
of Mexico (2021a, d). That leads to the immigration of four individual groups as
dS(κ j ), dE(κ j ), dA(κ j ) and dR(κ j ) for disturbances of susceptible, exposed, asymp-
tomatic infectious and recovered individuals, respectively. It’s worth to remark that
the impulsive index is denoted as κ j for j = 1, 2, . . . 9 such that κ1 = 10 : [@k = 10].

The uncontrolled response of SqEAIIR with the immigration effect is plotted by
the solid-blue line in Fig. 10 when the response without immigrating is shown by the
dash-dotted line in Fig. 10. Therefore, by applying the proposed policy intervention,
the response is depicted by the black line in Fig. 10. Figure 11 shows the plots of the
optimal intervention policy.
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Fig. 9 Immigrating pattern (Color figure online)

Fig. 10 Policy intervention response without and with applying controller with populations immigration
(Color figure online)

It’s worth emphasizing that only Ii(k) is utilized for the controller and all impulsive
disturbances are considered as unknown signals. Thus, the proposed controller can
respond to the impulsive disturbances or immigration of individual groups

6 Conclusions

The dynamic model called SqEAIIR has been proposed to mimic the dynamics of the
COVID-19 epidemic. The accuracy of SqEAIIR has been validated by the raw data
collected by CONACyT, Mexico for the fourth wave caused by the omicron variant
from Nov. 2022 until 23 Feb. 2022. From the practical point of view, only the daily
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Fig. 11 Control efforts or policy intervention with populations immigration (Color figure online)

data of patients who require the medication and hospital facilities are appropriately
recorded and collected. For that reason, the discrete-time equivalent model has been
established by an adaptive network FREN by utilizing only the daily data of symp-
tomatic infectious who isolated in hospitals and healthcare facilities Ii(k). Thereafter,
the intervention policy including vaccination, quarantine and precaution promotion
has been developed by the aspect of model-free optimal control. The proposed policy
has reduced the number of infected individuals to prevent the overrun of healthcare’s
capacity. Moreover, the effect of traveling on migrating has been studied by consid-
ering the immigration of each individual as an unknown disturbance. As a result, the
proposed scheme has presented a sufficient policy to control the number of infected
individuals.

For the note of thiswork, the proposed interventionpolicymaybeused as a guideline
for the authority to control the epidemic.
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