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Abstract
Phylogenetic trees describe relationships between extant species, but beyond that their
shape and their relative branch lengths can provide information on broader evolution-
ary processes of speciation and extinction.However, currentlymany of themostwidely
used macro-evolutionary models make predictions about the shapes of phylogenetic
trees that differ considerably from what is observed in empirical phylogenies. Here,
we propose a flexible and biologically plausible macroevolutionary model for phylo-
genetic trees where times to speciation or extinction events are drawn from a Coxian
phase-type (PH) distribution. First, we show that different choices of parameters in our
model lead to a range of tree balances as measured by Aldous’ β statistic. In particular,
we demonstrate that it is possible to find parameters that correspond well to empirical
tree balance. Next, we provide a natural extension of the β statistic to sets of trees.
This extension produces less biased estimates of β compared to using the median β

values from individual trees. Furthermore, we derive a likelihood expression for the
probability of observing an edge-weighted tree under a model with speciation but
no extinction. Finally, we illustrate the application of our model by performing both
absolute and relative goodness-of-fit tests for two large empirical phylogenies (squa-
mates and angiosperms) that compare models with Coxian PH distributed times to
speciation with models that assume exponential or Weibull distributed waiting times.
In our numerical analysis, we found that, in most cases, models assuming a Coxian
PH distribution provided the best fit.
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1 Introduction

Understanding how biodiversity is maintained and changed throughout time has been
of long-standing interest in evolutionary biology (Quental andMarshall 2010; Morlon
2014). Fossil records are commonly used to make inferences about changes through
time in speciation and extinction rates (Simpson 1944; Stanley 1998; Morlon et al.
2011). However, most clades do not possess sufficiently complete fossil records to
make such inferences (Ricklefs 2007; Quental and Marshall 2010). In contrast, dated
molecular trees are increasingly available; nevertheless, these “reconstructed phyloge-
nies” only give relationships between extant species (Nee et al. 1992, 1994a; Stadler
2013b). These reconstructed phylogenies can also be used to study how diversification
processes change throughout time (Nee et al. 1994a), although some have argued that
the use of reconstructed phylogenies needs to be accompanied with availability of fos-
sil records (Quental and Marshall 2010; Morlon 2014; Hagen et al. 2018). However,
reconstructed phylogenies remain useful to study diversification and diversity dynam-
ics when accompanied by biologically well-justified constraints (Louca and Pennell
2020).

Several mathematical models have been proposed for studying macroevolutionary
processes. These range from the constant-rate birth and death (crBD) model where
speciation and extinction rates are assumed to be constant through time (Nee et al.
1994b), to models where speciation and extinction rates change according to species
age (Hagen et al. 2015), to models where an evolving trait can affect speciation and
extinction rates (Maddison et al. 2007; FitzJohn 2012). For models under the gen-
eral birth–death process, in which speciation and extinction rates can vary over time,
a recent paper by Louca and Pennell (2020) shows that many parameter choices are
indistinguishable as they generate the same expected lineage-through-time (LTT) plot.
Despite the problems identified by Louca and Pennell (2020), these fitted parameters
still provide some insight into speciation and extinction rates or structure of relation-
ships between species through time (Harvey and Pagel 1991; Stadler 2013b).

Given a choice of a model, various methods can be applied to use empirical (or
simulated) data such as branch lengths from reconstructed trees to estimate the param-
eters of the model. For example, it is possible to derive an expression for the likelihood
of observing these branch lengths and find the best-fitting parameters of the model
using maximum-likelihood estimation (MLE) to make inference about the speciation
and extinction rates (Morlon et al. 2011). In order to see which model fits empirical
data best, we can assess models via the likelihood ratio test (LRT) or the Akaike’s
Information Criterion (AIC) (Anderson and Burnham 2004) or via the comparison of
their simulated LTT plot, which counts the number of species that existed at each given
time in the past, with an empirical LTT plot (Morlon 2014). Then, given a model with
best choice of parameters, we can assess whether it fits well to the empirical data by
comparing tree balance or tree topology and branch length distributions from empirical
and simulated trees generated from the model.
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The balance of a phylogenetic tree describes the branching pattern of the tree, rang-
ing from imbalanced shape where sister clades tend to be very different in sizes to
balanced shape where the clades are of similar sizes. Tree balance is important for
understanding macroevolutionary dynamics on a tree (Hagen et al. 2015) as it gives
indication of heterogeneity of diversification rate across the tree without requiring
information on branch lengths. Several statistics for assessing tree balance have been
proposed in the literature. These include the Colless index (Colless 1982), the Sackin
index (Sackin 1972) and Aldous’ β (Aldous 1996)—Section 3.3 of Steel (2016) gives
a detailed description of all three measures. In this paper, we focus exclusively on the
β statistic as, unlike the other two statistics, it is easily comparable between trees of
different size. The β statistic arises as a parameter of the Aldous’ β-splitting model; in
thismodelβ is in the range [−2,∞)where values close to− 2mean that taxa are likely
to split into unbalanced subsets and large values mean that splits are likely to be bal-
anced. Many models in phylogenetics fail to resemble empirical datasets which often
have β value around − 1 (Aldous 1996). For example, the simplest macroevolution-
ary model is the pure birth model, also known as the Yule–Harding (YH) model (Yule
1925), where each species is equally likely to speciate. It has been shown that trees
under this model have the expected value β = 0 (Aldous 1996; Hagen et al. 2015). In
other words, the YH model predicts trees that are too balanced compared to empirical
data (Aldous 1996, 2001). Likewise, models that include diversity-dependent (Eti-
enne et al. 2012) and time-dependent speciation and extinction have been shown to
produce the same expected tree balance as the YHmodel (Lambert and Stadler 2013).
These models fall under a general class of species-speciation-exchangeable models as
described in Stadler (2013b). This suggests that this class of models is not adequate
to explain the macroevolutionary dynamics that has produced empirical trees.

Another statistic that has been widely used to compare empirical trees with macro-
evolutionary models is the γ statistic. The γ statistic was introduced in Pybus and
Harvey (2000) and unlike the tree balance statistics it makes use of the branch lengths.
The statistic is designed to have a zero mean standard normal distribution under a pure
birth model. Negative values of γ mean that more diversification has occurred earlier
in the tree than expected under a pure birth model, i.e., the edges nearer the root tend
to be shorter relative to the other edges. Correspondingly, positive values of γ mean
that more diversification has occurred later in the tree and that edges nearer the root
tend to be relatively longer. It has been shown that γ values for empirical phylogenies
tend to be below 0, which has sometimes been taken to indicate a slowdown in the
diversification rate (Phillimore and Price 2008; Rabosky and Lovette 2008; Morlon
et al. 2010).

In this paper, we construct a stochastic model for generating species phylogenies in
which we apply Coxian PH distributions (Neuts 1981; Marshall and McClean 2004)
for times to speciation and times to extinction. PH distributions describe the time to
absorption in a continuous-time Markov chain (CTMC) with a single absorbing state
and a finite number of non-absorbing states. Biologically, this could be thought of
as a species passing through different phases where it may be more or less likely to
speciate depending on a current underlying phase (Fig. 1).While these phases need not
represent any particular biological state, the PH distribution gives great flexibility to
model different ways that rates of speciation may depend on a species’ age. Similarly,
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New Species
Following a

Speciation Event
Phase 1 Phase 2 Phase 3 Phase n

The Species
Speciates

Fig. 1 A new species passes through different phases during its ‘lifetime’ until the next speciation event.
Each phase corresponds to a non-absorbing state in a CTMC and speciation corresponds to the single
absorbing state. At the start, the species directly goes to phase 1 where it can either undergo speciation or
move to the next phase with certain rates. The process can continue up to a finite number of n phases, each
corresponding to a different rate of speciation

times to extinction can also be modeled using PH distributions. We show that different
parameter choices for age-dependent speciation rates produce phylogenetic trees that
can range from highly balanced to highly unbalanced. In particular, we find parameters
that give similar tree balance statistics to empirical trees.

An additional contribution of the paper is that we develop a new approach for
computing the β statistic based on a set of trees rather than computing β from a single
tree. We suggest that this approach leads to more accurate estimates of the β statistic
compared to computing β for single trees and then taking an average and that this is
particularly true for trees with fewer extant species.

For a special case of our model, in which only speciation (and not extinction)
occurs, we derive a likelihood expression for the probability of observing any edge-
weighted tree. For two very large phylogenies—squamates (Zheng and Wiens 2016)
and angiosperms (Zanne et al. 2014)—we performmodel selection for different clades
of both trees to compare our Coxian PH model for the speciation process to the
exponential and Weibull distributions.

The rest of our paper is structured as follows. In the mathematical methods sec-
tion we: (1) summarize the key properties of the PH distribution, (2) introduce some
examples of Coxian PH distributions, (3) present our method for calculating the β

statistic for a set of trees, (4) and derive a likelihood expression based on our model
for fitting empirical branch length data. The next section contains simulations that:
(1) demonstrate the use of treeset β, (2) show that the model can produce trees with
a wide range of tree shapes, (3) examine how well fitted models do in recovering the
speciation process in scenarios with andwithout extinction. In the section on empirical
data we apply our model to two large published phylogenies—squamates (Zheng and
Wiens 2016) and angiosperms (Zanne et al. 2014). In summary, we find that Coxian
PH distributions are a useful tool for studying macroevolutionary dynamics.
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2 Mathematical Methods

2.1 PH Distribution and Relevant Properties

In this section, we introduce the PH distribution and some of its key properties.

Definition 1 (Continuous PH distributions) Let {X(t) : t ≥ 0} be a continuous time
Markov chain defined on state space S = Ŝ

⋃{n + 1}, where Ŝ = {1, 2, . . . , n} is the
set of non-absorbing states and n + 1 is an absorbing state, initial distribution vector
α = [αi ]i∈Ŝ , and generator matrix

Q∗ = [Q∗
i, j ]i, j∈S =

[
Q q
0 0

]

, (1)

whereQ = [Qi, j ]i, j∈Ŝ is a square matrix with dimension n that records the transition

rates between non-absorbing states i, j ∈ Ŝ, q = [Qi,n+1]i∈Ŝ is a column vector that

records the transition rates from non-absorbing states i ∈ Ŝ to the absorbing state
n + 1, and 0 is the row vector with corresponding dimension. By the definition of
generator matrixQ, we have Qi,i < 0, for all i , Qi, j ≥ 0 for i �= j , andQ1+ q = 0,
where q is the exit rate vector.

Let Z = inf {t ≥ 0 : X(t) = n + 1} be the random variable recording the time until
absorption, then Z is said to be continuous PH distributed with parameters α and Q,
which we denote Z ∼ PH (α,Q).

Theorem 1 (The cumulative distribution and density functions of continuous PH
distribution) Suppose Z ∼ PH (α,Q), then the cumulative distribution and the prob-
ability density function of Z are given, respectively, by

FZ (z) = 1 − αeQz1, (2)

fZ (z) = αeQzq, (3)

and its mean and variance are given by

E(Z) = −αQ−11, (4)

Var(Z) = 2αQ−21 −
(
αQ−11

)2
. (5)

Proof of this theorem is originally given in Neuts (1975), and a clear exposition is
given in Verbelen (2013). �	

123



118 Page 6 of 45 A. C. Soewongsono et al.

Definition 2 (Coxian PH distribution) If α and Q are defined as

α = [1, 0, . . . , 0], (6)

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−λ1 p1λ1 0 . . . 0 0

0 −λ2 p2λ2
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0
. . . −λn−2 pn−2λn−2 0

0 0 . . . 0 −λn−1 pn−1λn−1
0 0 . . . 0 0 −λn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7)

where 0 < pi ≤ 1 and λ1, . . . , λn > 0 for all i = 1, 2, . . . n − 1, then we say that the
random variable T ∼ PH (α,Q) follows Coxian PH distribution.

Cumani (1982) showed that any acyclic PH (APH) distribution (including Coxian
PH distributions), that is, a distribution with an upper triangular generator matrix
(Asmussen et al. 1996), can be restructured to a canonical form such as shown above
and thus only requires 2n parameters as opposed to n2 + n parameters for a general
PH distribution. This reduction in the number of parameters makes it computationally
simpler to fit parameters (Thummler et al. 2006). Further, Cumani (1982) and Dehon
and Latouche (1982) showed that for any APH distribution, there exists an equivalent
representation as a Coxian PH distribution with λ1 ≤ λ2 ≤ · · · ≤ λn .

To fit a PH distribution to data it is necessary to fix the number of non-absorbing
states. Thummler et al. (2006) stated that it is difficult to fit general PH distributions
if the number of non-absorbing states is larger than four, due to the increased com-
putational cost and the dependence on the initial values. They also state that having a
PH distribution of low order (less than four non-absorbing states) is not sufficient to
get parameter values that correspond to small coefficients of variation (CV).

In Sects. 2.3 and 3.2 where we simulate data under different conditions, we focus
solely on PH distributions with four non-absorbing states. In Sect. 4, where we fit
models to empirical data, we explore a wider range of options for the number of
non-absorbing states.

2.2 Coxian-BasedMacro-Evolutionary Model

Now, we develop a stochastic model for generating species phylogenies, in which we
assume that the time spent by each newly formed lineage before the next speciation or
extinction event is drawn from a Coxian PH distribution. Our model is a special case
of the well-studied Bellman–Harris model which allows any distribution of waiting
times to extinction or speciation (Bellman and Harris 1948). This model is discussed
in Hagen and Stadler (2018) and they provide an R package (Hagen and Stadler 2018)
that allows users to simulate trees under a general Bellman–Harris model. However,
while it is possible to simulate trees under this very general class of models, it is not
possible to fit parameters of a general Bellman–Harris distribution to empirical data.
A novelty of our approach is that we are able derive a likelihood expression for the
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probability of observing a reconstructed phylogeny under our model in the case with
no extinction and that we can therefore fit parameters.

In our model, we primarily focus on symmetric speciation. This means that after
a speciation event two “child” species are created that are identical and of age 0.
Thus, each branch length on a given tree can be thought of as an independent random
variable drawn from the imposedCoxianPHdistribution.We also consider asymmetric
speciation in which the “parent” species is considered to continue and one new “child”
species is created with age 0. Both symmetric and asymmetric speciation modes are
supported by the R package TreeSimGM (Hagen and Stadler 2018).

We also construct two examples of the Coxian PH distribution as given in Def-
inition 2. We parameterize the two examples so as to enforce either monotonically
increasing or monotonically decreasing rates of absorption. In Example 1, the rate of
speciation (or extinction) decreases as species get older, and in Example 2 the rate of
speciation (or extinction) increases as species get older. We chose a parameterization
with three free variables (x , y and z), as this gives flexibility to pick instances of each
example with a given mean and variance, while at the same time reducing the number
of free parameters for faster computational time (Okamura and Dohi 2016). Moreover,
these two examples follow canonical form 3 of an APH distribution as stated in Oka-
mura and Dohi (2016) (see also the derivation of the form by Cumani 1982). Note that
there are different parameterizations that can be derived from the general Coxian PH
distribution defined in Definition 2 which have either decreasing or increasing rate.
However, these particular examples still provide some flexibility to choose different
parameter values that give a wide range of coefficients of variation (CV) needed in
Sect. 3.2.

Example 1 (Coxian PH Distributed Model for Decreasing Rate)

Q =

⎡

⎢
⎢
⎣

−z (1 − y)z 0 0
0 −(1 + x)

(
1 − y2

)
(1 + x) 0

0 0 − (
1 + x2

) (
1 − y3

) (
1 + x2

)

0 0 0 −x3

⎤

⎥
⎥
⎦ , q =

⎡

⎢
⎢
⎣

yz
y2(1 + x)
y3

(
1 + x2

)

x3

⎤

⎥
⎥
⎦ ,

(8)

where 0 < x ≤ 1, 0 < y < 1, z ≥ 2 and q is the exit rate vector.

The restrictions on x and y imply that each entry of the exit rate vector q is less
than the preceding entry.
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Example 2 (Coxian PH Distributed Model for Increasing Rate)

Q =

⎡

⎢
⎢
⎣

− (
1 + x3

) (
1 − y4

) (
1 + x3

)
0 0

0 − (
1 + x2

) (
1 − y3

) (
1 + x2

)
0

0 0 −(1 + x)
(
1 − y2

)
(1 + x)

0 0 0 −z

⎤

⎥
⎥
⎦ ,

q =

⎡

⎢
⎢
⎣

y4
(
1 + x3

)

y3
(
1 + x2

)

y2 (1 + x)
z

⎤

⎥
⎥
⎦ , (9)

where 0 < x ≤ 1, 0 < y < 1, z ≥ 2 and q is the exit rate vector.

Here, the restrictions on x and y imply that each entry of the exit rate vector q is
greater than the preceding entry.

From now on, we refer Examples 1 and 2 as PHDec and PHInc, respectively. By
standard theory of the PH distribution, the first and second moments of the Coxian PH
distribution in PHDec and PHInc are given by

EPH(X) = 1

z
+ (1 − y)

(
1

1 + x
+

(
1 − y2

)(
1

1 + x2
+ 1 − y3

x3

))

,

EPH

(
X2

)
= 2

z2
+ 2(1 − y)

1 + x
(
1

z
+ 1

1 + x

)

+ 2(1 − y)
(
1 − y2

)

1 + x2

(
1

z
+ 1

1 + x
+ 1

1 + x2

)

+2(1 − y)
(
1 − y2

) (
1 − y3

)

x3

(
1

z
+ 1

1 + x
+ 1

1 + x2
+ 1

x3

)

,(10)

and

EPH(X) = 1

1 + x3
+

(
1 − y4

)(
1

1 + x2
+

(
1 − y3

)(
1

1 + x
+ 1 − y2

z

))

,

EPH

(
X2

)
= 2

(
1 + x3

)2 + 2
(
1 − y4

)

1 + x2

(
1

1 + x3
+ 1

1 + x2

)

+ 2
(
1 − y4

) (
1 − y3

)

1 + x
(

1

1 + x3
+ 1

1 + x2
+ 1

1 + x

)

+ 2
(
1 − y4

) (
1 − y3

) (
1 − y2

)

z
(

1

1 + x3
+ 1

1 + x2
+ 1

1 + x
+ 1

z

)

,

(11)

respectively. The derivations of Eqs. 10 and 11 are shown in “Appendix.”
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2.3 Computingˇ for a Set of Trees

We propose a new approach for estimating the tree-balance statistic β from a set
of rooted trees {T1, . . . , TM }, which can be either empirical trees or simulated trees
under some model of interest. For each subtree with four or more tips in each tree in
{T1, . . . , TM } we compute the probability qn(i, β) of observing i tips on the left out
of the n tips of that subtree. This is done using Eq. 4 from Aldous (1996),

qn(i, β) = 1

an(β)

Γ (β + i + 1)Γ (β + n − i + 1)

Γ (i + 1)Γ (n − i + 1)
, 1 ≤ i ≤ n − 1, (12)

where an(β) is the normalizing constant. We note that subtrees of size 2 or 3 are not of
interest as there is only one possible division of the tips. In the case where the tree size
is too large, the above expression is not numerically tractable, so we use the following
approximation instead (which is also used in the apTreeShape package (Bortolussi
et al. 2006)), given by

qn(i, β) = 1

ân(β)

(
i

n

)β (

1 − i

n

)β

, (13)

where ân(β) is the normalizing constant. (Justification for the approximation in Eq. 13
is given in “Appendix.”)

We then use numerical optimization to find the value of β in the range [−2, 10]
whichmaximizes the product of all theqn(i, β) values. This is themaximum likelihood
estimate of β for the set of trees. Our custom R script, based on maxlik.betasplit
function from the apTreeShape package (Bortolussi et al. 2006) to estimate β from
sets of trees, is available as a Supplementary Material on Dryad (https://doi.org/10.
5061/dryad.w9ghx3fpk).

2.4 Fitting PH Distributions to Branch Length Data

In this section, we propose a method for finding parameters of a PH distribution using
branch length data from a phylogenetic tree.We assume that the time until a speciation
event on a branch follows a PH distribution and that there is no extinction. We write
the likelihood expression using parameters from the PH distribution to calculate the
probability of observing a tree with a given number of extant species.

Assuming that a tree evolves under a symmetric speciation mode, and that times to
speciation events are drawn from a PH distribution, we can treat each branch length
on the tree as independently drawn from the same PH distribution. We illustrate this
in Fig. 2, in which the lengths of internal branches and pendant branches are denoted
by {b1, b2, b3, b4} and {b̃1, b̃2, b̃3, b̃4, b̃5}, respectively.

In general, we denote the lengths of internal and pendant branches by bi , for i =
1, . . . , k, and b̃ j , for j = 1, . . . , �, where the total number of internal branches and
pendant branches is denoted by k and �, respectively. Here, because we consider the
root branch, we note that k = � − 1. Both internal and pendant branches follow a
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Fig. 2 Phylogenetic tree with five extant tips evolving under a symmetric speciation mode. Branch lengths
are independent and drawn from the same PH distribution PH (α,Q)

PH distribution with parameter α and rate matrix Q, that is, bi , b̃ j ∼ PH (α,Q). It
follows from the properties of the PH distribution (Neuts 1981), that the likelihood of
observing an internal branch of length bi is the probability density of the distribution
along the branch given by αeQbi q and the likelihood of observing a pendant branch
of length b̃ j is the probability that the branch has survived until time t (i.e., one minus

the cumulative probability of the distribution) given by αeQb̃ j 1, where 1 is a column
vector of ones. Therefore, by independence of the branch lengths, the likelihood of
observing tree T can be written as,

L (T | α,Q) =
k∏

i=1

(
αeQbi q

)
×

�∏

j=1

(
αeQb̃ j 1

)
, (14)

withα = [1, 0, . . . , 0], sincewe applyCoxianPHdistribution.Note that ifwe consider
all the possible permutations on the tips of the tree, then the likelihood becomes,

L (T | α,Q) = (� − 1)! ×
k∏

i=1

(
αeQbi q

)
×

�∏

j=1

(
αeQb̃ j 1

)
. (15)

Given the branch lengths of a single tree T , we perform numerical optimization to
find parameter values that maximize the likelihood equation given in Eq. 14. In the
case of the general Coxian PH model this amounts to finding the best values of pi ’s
and λi ’s as in Definition 2, for PHDec and PHInc it means finding the best values of x ,
y, and z.

Alternatively, given the branch lengths of a tree set {T1, . . . , TM }, we apply maxi-
mum likelihood estimation to maximize the product

L ({T1, . . . , TM } | α,Q) = L (T1 | α,Q) × · · · × L (TM | α,Q) , (16)

where we assume trees are independent and apply Eq. 14 to compute the likelihood
of observing the individual trees T1, . . . , TM .
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Fig. 3 Original tree T and the reconstructed tree T ∗, where S (in black) denotes observed speciation events
and E (in red) denotes unobserved extinction events. Speciation events S (in red) followed by extinction
events E (in red) on the original tree T , are not observed on the branches (highlighted in red) of the
reconstructed tree T ∗. The internal branch 1 on T ∗ was born at time t1◦ and the next observed speciation
event on that branch (on T ∗) was at time t1• . The external branch 2, 3, and 4 on T ∗ was born at time t2◦ , t3◦ ,

and t4◦ , respectively, and no speciation events are observed on that branch (on T ∗) (Color figure online)

To optimize parameters for the exponential and Weibull distribution, we derive an
equivalent expression to Eq. 14 for both distributions. The likelihood expression for
the exponential distribution is given by

L (T | λ) =
k∏

i=1

λ exp−λbi ×
�∏

j=1

exp−λb̃ j , (17)

and for the Weibull distribution

L (T | ψ, φ) =
k∏

i=1

ψ

φ

(
bi
φ

)ψ−1

exp−(bi /φ)ψ ×
�∏

j=1

exp
−
(
b̃ j /φ

)ψ

, (18)

where ψ and φ are scale and shape parameters, respectively.
Then, we apply maximum likelihood estimation to search for λ > 0 that maximizes

Eq. 16. Similarly, we search for ψ > 0 and φ > 0 parameters that maximize Eq. 16.
Finally, we consider a birth-and-death process (BDP) with constant birth rate λ and

constant death rate μ. The likelihood expression for the reconstructed tree under such
BDP is given in Eq. 20 of Nee et al. (1994b), it is a conditional probability conditioning
on the survival of both original branches descending from the root.

Note that the likelihood for the reconstructed tree under any process that includes
extinction events needs to consider the possibility that speciation events that end with
extinction may occur on internal or external branches and so are not observed on the
reconstructed tree (see Fig. 3).

Below,wepresent our alternative likelihood formula for the reconstructed tree under
a BDP. This formula provides new physical interpretations given by Eqs. 19–23, in
the context of the dynamics of the process driving the evolution of the phylogenetic
tree in time.
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Assume that t is the age of the tree with 0 is the time at the start of the root branch
and let xi be the elapsed time from the end of the internal branch i until the end
of tree T . That is, if internal branch i is born at time t i◦ and gives birth at time t i•
to another branch, then xi = t − t i• and its length is bi = t i• − t i◦. For the external
branch j descending from the internal branch i , we have its branch length given by
b̃ j = t − t i• = xi .

Then, the likelihood of observing a reconstructed species tree T ∗ is given by

L(T ∗ | λ,μ) = (� − 1)!
k∏

i=1

Gxi ,t (bi )λ
�∏

j=1

D(1)
t (b̃ j ), (19)

where Gxi ,t (bi ) is the probability of observing reconstructed internal branch i , and

D(1)
t (b̃ j ) is the probability of observing reconstructed external branch j , whereGx,t (z)

is the solution of

Gx,t (z) = e−(λ+μ)z +
∫ z

u=0
e−(λ+μ)(z−u)λ

(
2Gx,t (u)E(u + x)

)
du, (20)

dGx,t (z)

dz
= −(λ + μ)Gx,t (z) + 2λGx,t (z)E(z + x), (21)

and D(1)
t (z) is the solution of

D(1)
t (z) = e−(λ+μ)z +

∫ z

u=0
e−(λ+μ)uλ

(
2D(1)

t (z − u)E(z − u)
)
du, (22)

dD(1)
t (z)

dz
= −(λ + μ)D(1)

t (z) + 2λE(z)D(1)
t (z), (23)

where by Kendall (1948)

E(z) = μ − μe(μ−λ)z

λ − μe(μ−λ)z
(24)

is the probability that a branch born at time zero becomes extinct by time z. Solving
the above equations gives

Gx,t (z) =
(

λ − μe(μ−λ)x

λ − μe(μ−λ)(z+x)

)2

e(μ−λ)z, (25)

D(1)
t (z) =

(
(λ − μ)eμz

λ − μe(μ−λ)z

)2

e−(λ+μ)z . (26)

The derivation of the differential equations for D(1)
t (z) andGx,t (z) along with their

solutions and some intuition are shown in “Appendices 6.4 and 6.5.”
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Next, we apply our likelihood expression in Eq. 19 to the reconstructed tree T ∗ in
Fig. 3 (ignoring the age of the root) to see that

LNee(T
∗ | λ,μ) = L(T ∗ | λ,μ)

(1 − E(x2))2
, (27)

where LNee(T ∗ | λ,μ) is the likelihood expression given in Eq. 20 in Nee et al.
(1994b), and x2 is the elapsed time from the starting time of the two original branches
descending from the root until the end of the tree T ∗, as defined in Nee et al. (1994b).
This relationship is as expected, since LNee(T ∗ | λ,μ) is a conditional probability of
observing the tree T ∗ given that both original branches have survived until the end of
the tree.

3 Simulations

3.1 Comparing Treesetˇ to the Standardˇ

To compare β values estimated from individual trees to those estimated for a set of
trees, we performed the following simulation. We simulated sets of 1000 trees using
TreeSimGM package (Hagen and Stadler 2018), where each set of trees had the same
number of extant tips n ∈ {10, 20, 30, . . . , 200} and their times to speciation were
drawn from PH distribution with rate matrix

Q =

⎡

⎢
⎢
⎣

−2 1 0 0
0 −1.1 1 0
0 0 −1.01 1
0 0 0 −0.001

⎤

⎥
⎥
⎦ , q =

⎡

⎢
⎢
⎣

1
0.1
0.01
0.001

⎤

⎥
⎥
⎦ . (28)

We note that the structure of the exit rate vector q implies that the probability of getting
absorbed from later states is less likely than from earlier states. We then repeated the
above procedure for sets of trees evolving under the YH model. The YH case is
interesting because it is representative of a wider class of models that are known to
have E(β) = 0 (Aldous 2001).

For each set of trees, we computed individual estimates of β for each tree as well
as a β estimate for the entire tree set. We also computed 95% confidence intervals for
the estimated β values, denoted β̂, from each tree set. In order to get the lower and
upper bound for the confidence intervals, we performed a numerical search over 500

equidistant points between β̂ − 5 × SE
(
β̂
)
and β̂ to find the point that corresponds

to the lower bound and 500 equidistant points between β̂ and β̂ + 5 × SE
(
β̂
)
to

find the point that corresponds to the upper bound. The lower and upper bounds were
chosen such that their likelihood is equal to the likelihood of the MLE minus a half of
the chi-square value with 1 degree of freedom; this gives a 95% confidence interval
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(Pawitan 2001). The standard error for β̂, SE
(
β̂
)
, was evaluated using

SE
(
β̂
)

= 1
√

I
(
β̂
) , (29)

where I
(
β̂
)
is the Fisher information of β̂.

The results are summarized in Fig. 4. For both of the generating processes, the
distribution of β values is right-skewed (Fig. 4a, c) and the median value for individual
trees is higher than the value estimated using the entire tree set particularly for trees
with fewer tips (Fig. 4b, d). For the trees generated under the YH process, when
estimating the value of β for trees with fewer extant tips we obtained β ≈ 0 when
applying the method based on treesets, but median β > 0 for estimates based on
individual trees (Fig. 4c, d). We conclude that the method based on treesets is more
accurate for the Yule process, as evidenced by the 95% confidence interval in Fig. 4d.
The β values estimated from different sets of trees concentrate around β = 0 in
agreement with the theoretical value for trees evolving under the YHmodel. We think
that the upwards bias in estimation of β arises because, for trees with fewer tips, it not
unlikely to get a tree that is maximally balanced (or close to it) and in this case the
maximum likelihood procedure for fitting β prefers to make β as large as possible.

3.2 Coxian-PHModels can Generate a Range of Tree Shapes

In Hagen et al. (2015), the authors found that using a Weibull distribution for age
dependent speciation had an effect on tree balance (as measured by the β statistic),
whereas using a Weibull distribution for extinction had an effect on diversification (as
measured by the γ statistic). To test if using PH distributions gives similar results,
we simulated trees using the two examples PHDec and PHInc. We did not see obvious
changes in the β and γ statistics under different parameter values using PHInc, so we
only report results for PHDec. The simulation procedure was a follows:

– As an example, we set z = 10 and mean waiting time to both speciation and
extinction EPH(X) = 2. The choice of EPH(X) scales the branch lengths of gener-
ated phylogenies, but results will be invariant to this choice of the mean since we
only consider tree balance and relative branch lengths. Likewise, the z parameter
is chosen arbitrarily as long as it is larger than or equal to 2 in order to preserve a
decreasing rate as described in PHDec.

– We then selected 4 pairs of parameters 0 < x ≤ 1 and 0 < y < 1 to give a
wide range of coefficients of variation (CV). We found choices of x and y where
CV = σ

μ
∈ {30.08, 13.50, 5.56, 1.49}. These 4 pairs of x and y are as follows:

(x, y) ∈ {(0.1, 0.93), (0.17, 0.88), (0.3, 0.78), (0.68, 0.45)}. We also note that
fixing either x or y parameters gives less flexibility in choosing (y, z) or (x, z)
pairs corresponding to a wide range of CV.

– Using the TreeSimGM package (Hagen and Stadler 2018) in R, we generated 300
trees with 100 extant tips in which times to speciation followed a PH distribution
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Fig. 4 Estimates of β for individual trees with n ∈ {10, 20, 30, . . . , 200} tips (a–d). Estimates of β from
treesets are indicated by red dots (a) and blue dots (c). Trees are simulated according to either Coxian PH
distribution for times to speciation events (a) or the YH process (c). The area of 95% confidence interval
of β values from treesets following Coxian PH distribution and the YH process are plotted in (b), (d),
respectively. The black lines represent the treeset β values, and the gray area represents the confidence
interval for each treeset β value. The red lines represent the median β values from individual trees. The
blue-dashed line represents the theoretical β value for the YH trees (β = 0) (Color figure online)

with parameters x , y and z, while times to extinction followed an exponential
distribution with rate λ = 0.25. The main goal in choosing trees of size 100
was to have trees that were large enough for β to be accurately estimated for
individual trees, but small enough to have reasonable running time. We repeated
this procedure for both symmetric and asymmetric speciation modes. Then we
repeated everything again but using an exponential distribution for the times to
speciation (with λ = 20) and the PH distributions described above for the times
to extinction.

– We measured the effect of different parameter choices above on tree balance using
the β statistic. We computed the β statistic both for individual trees, using the
apTreeshape package (Bortolussi et al. 2006), and for sets of trees based on our
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Fig. 5 Effect of speciation and extinction processes on tree balance as measured by the β statistic,
and on relative branch lengths as measured by the γ statistic. For each pair of parameters (x, y) in
PHDec used to generate either times to speciation (in a, c) or times to extinction (in b, d), we sim-
ulated 300 trees with 100 extant tips. In a, c the parameters of the times to speciation are (x, y) ∈
{(0.1, 0.93), (0.17, 0.88), (0.3, 0.78), (0.68, 0.45)} and mean speciation time is EPH(X) = 2, while times
to extinction are drawn from exponential distribution with rate λ = 0.25. In b, d times to speciation are
drawn from exponential distribution with rate λ = 20, while the parameters of the times to extinctions
are (x, y) ∈ {(0.1, 0.93), (0.17, 0.88), (0.3, 0.78), (0.68, 0.45)} and mean extinction time is EPH(X) = 2.
The red dots show the β statistic for sets of trees (Color figure online)

new approach. We also measured the effect on relative branch lengths as measured
by the γ statistic (Pybus and Harvey 2000), which we computed using the APE
package (Paradis et al. 2004).

The results are presented inFig. 5. Tree balance is affected byvarying the parameters
for times to speciation (Fig. 5a), in particular, there are choices of model parameters
that match the tree-shape statistics of empirical phylogenies (β = −1). Tree balance
is not significantly affected by the parameters for times to extinction (Fig. 5b). In
contrast to the behavior of β, relative branch lengths, as measured by the γ statistic
are not affected by the parameters for times to speciation (Fig. 5c), while they are
affected by the parameters for times to extinction (Fig. 5d). We did not observe a
significant difference in our results between the symmetric and asymmetric speciation
modes. These results are congruent with what was found in Hagen et al. (2015).
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Table 1 KS tests for hypothesis
testing that both fitted and
simulated log branch lengths in
Fig. 6, 7 and 8 come from the
same distribution

Extinction rate λ KS Statistic p value

0 0.025 0.101

0.1 0.034 0.007

0.4 0.115  0.001

3.3 Fitting Coxian-PH Distributions to Branch Length Data

In this section, we test if the maximum likelihood approach outlined in Sect. 2.4 is
able to fit the speciation process well in cases where: (a) there is no extinction, and
(b) the generating model includes extinction. As an example to illustrate the bias
introduced by not considering the extinction process in the likelihood function in
Eq. 16, we simulated trees using the PHDec distribution with known parameter values,
for the speciation process and an exponential distribution for the extinction process
with rate λ ∈ {0, 0.1, 0.4}, and then fitted the parameters of the PHDec distribution to
the generated branch length data. In total, we generated 50 trees with 50 extant tips
each, using TreeSimGM package (Hagen and Stadler 2018), which produced 4900
branches.

Using Eq. 14–16, we found the parameters x , y, and z that maximized the likelihood
of observing the given set of branch lengths. The optimization was carried out using
the built-in R function, optim, with the “L-BFGS-B” method (Byrd et al. 1995) and
multiple starting points for x, y, z, followed by local optimization using the “Nelder-
Mead” method (Nelder and Mead 1965).

To compare the fitted distribution to the generating distribution we plotted the
density of the fitted distribution and the known distribution used to simulate the data.
Additionally, using the fitted parameters x , y and z, we generated trees with the same
number of tips as in the simulated data, and compared their distribution of branch
lengths with that of the simulated trees. Note that we cannot simply compare the
branch length histogram from trees generated under the known distribution with its
fitted frequency density plot since the generated trees are truncated at some time t
(the tree’s age). Therefore, to compare distributions of branch lengths we used the two
sample Kolmogorov-Smirnov (KS) test of the null hypothesis that both simulated and
fitted log branch lengths come from the same distribution (using the built-in ks.test
function in R). The results of this analysis are shown in Figs. 6, 7, 8 and Table 1.

In the scenario without extinction (Fig. 6) the fitting process was able to recover the
parameters since the generated trees do not assume extinction, the KS statistic found
no significant difference in the log branch lengths produced by the true generating
model and the fitted PHDec model (Table 1). In the scenarios that included extinction,
the fitting process was not able to correctly recover the true generating model (Figs. 7,
8). The bias in estimating the speciation process becomesmore apparent aswe increase
the extinction rate (Fig. 8).
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Fig. 6 True density function (black line in a) and the fitted density function (red line in a) from PHDec
distribution. The values of x-axis on panel a show the branch lengths from both fitted and simulated trees.
The histograms of the simulated and fitted branch length distributions, shown in log scale, are displayed in
(b), (c), respectively. Data were simulated with no extinction (Color figure online)

4 Empirical Data

In this section, we apply the techniques developed in Sect. 2.4 to two large empirical
phylogenies (Zheng and Wiens 2016; Zanne et al. 2014). In order to view these phy-
logenies and to extract clades of interest, we used Dendroscope 3 software (Huson
and Scornavacca 2012). For each dataset, we compared nine models. These included
models where the speciation process followed a PH distribution: the general Coxian
distribution (Definition 2) with 3, 4, 5, and 6 non-absorbing states, and the two exam-
ples PHDec and PHInc developed in Sect. 2.2, one model where the speciation process
follows an exponential distribution, one where it follows a Weibull distribution, and
one where we fit to the constant rate birth–death model (crBD) using the likelihood
formula of observing a tree conditioned on survival in Eq. 20 in Nee et al. (1994b) or
using the likelihood in Eq. 27. We note that our likelihood formula as in Eq. 14 does
not consider permutation on the tips of tree, so it differs from the likelihood from the
crBD model by (N − 1)! where N denotes the number of tips on tree.

Our general approach formodel comparisonwas to use the Akaike Information Cri-
terion (AIC) (Akaike 1998) which is essentially the log likelihood penalized according
to the number of parameters used in themodel.We followed the approach suggested in
Anderson and Burnham (2004) which is that models with an AIC difference (ΔAIC)
of less than two are essentially as good as the best model, and models with ΔAIC less
than 6 should not be discounted.
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Fig. 7 True density function (black line in a) and the fitted density function (red line in a) from PHDec
distribution. The values of x-axis on panel a show the branch lengths from both fitted and simulated trees.
The histograms of the simulated and fitted branch length distributions, shown in log scale, are displayed in
(b), (c), respectively. Here, extinction events follow an exponential distribution with rate λ = 0.1 (Color
figure online)

In addition to assessing relative goodness-of-fit via the AIC, and bearing in mind
that all of our models are likely to be wrong given that they ignore extinction, we
also assessed absolute goodness-of-fit using the KS statistic to compare fitted branch
length densities to empirical branch length densities.

Lastly we show the hazard rate function for speciation from the best-fitting model
for each clade. We were interested to see how different these would be to the con-
stant hazard rate assumed by most macroevolutionary models or the monotonically
decreasing hazard rate given by a Weibull distribution.

4.1 Squamate Phylogeny

We fit the models under consideration to the branch lengths from the squamate phy-
logeny in Zheng and Wiens (2016). We also examined three major clades of the
tree separately, namely the gekkota clade (1318 branches), the iguania clade (1936
branches), and the anguimorpha clade (200 branches), to see if there are any notable
differences.

The model comparison results are summarized in Table 2. The general Coxian
model is strongly preferred for the overall tree and for all the clades being studied. In
particular, the general Coxian model with three non-absorbing states fits best, but the
model with four non-absorbing states is essentially indistinguishable. Additionally,
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Fig. 8 True density function (black line in a) and the fitted density function (red line in a) from PHDec
distribution. The values of x-axis on panel a show the branch lengths from both fitted and simulated trees.
The histograms of the simulated and fitted branch length distributions, shown in log scale, are displayed in
(b), (c), respectively. Here, extinction events follow an exponential distribution with rate λ = 0.4 (Color
figure online)

fitting to the PHInc example model is significantly worse than other distributions.
Moreover, fitting to the crBD model returns zero extinction rate for all the cases and
returns the same parameter values for speciation process, comparable to the model
that follows exponential speciation rate without extinction.

The absolute goodness-of-fit of different models is assessed in Fig. 9. Visually both
general Coxian PH distribution with three and four non-absorbing states give fairly
similar densities. These two appear to fit better compared to the other distributions
(in agreement with the AIC results in Table 2). Both of these distributions seem to
capture the tail behavior fairly well, but do a poorer job of matching the density for
shorter branch lengths. The lack of fit to the reconstructed squamate tree and to most
clades is supported by the KS tests which show a significant difference between the
empirical branch lengths and branch lengths of 10 simulated trees from each best-
fitting distribution (Table 3). We use the phytools package (Revell 2012) to simulate
trees under the crBDmodel. Given that earlier results (Hagen et al. (2015) and Fig. 5d)
show that the extinction process affects relative branch lengths, we hypothesize that
this result could be due to ignoring extinction events in themodels. Interestingly, all the
distributions, except for PHInc, show a good fit between the empirical branch lengths
of the anguimorpha clade and branch lengths of 10 simulated trees from each of these
best-fitting distributions (Table 3). We note that this result could be due to the clade
having a relatively small number of extant tips (101 tips); therefore, there is a lack of
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Fig. 9 Histograms of empirical branch length density from the whole squamate tree (a), the iguania clade
(b), the gekkota clade (c), and the anguimorpha clade (d) with the fitted branch length densities from the six
distributions mentioned above. The yellow and blue lines are the fitted densities using the general Coxian
PH distribution defined in Definition 2 with 3 and 4 non-absorbing states, respectively, the red line is the
fitted density using the Coxian PHDec example, the green line is the fitted density using the Coxian PHInc
example, and black and orange lines are the fitted density using Weibull and exponential distributions,
respectively. The fitted densities for the general Coxian PH distribution with 5 and 6 non-absorbing states
are not included because in most cases the distribution with 3 and 4 non-absorbing states fit better, while
the fitted density from the crBD model is not included because it is identical to the fitted density using
exponential distribution (see Table 2) (Color figure online)

power to distinguish between models. Alternatively, extinction may occur at a lower
rate in this clade compared to the other clades.

The hazard rate functions for speciation from the best-fitting general Coxian PH
distribution with four non-absorbing states for each the overall squamate phylogeny
and the three major clades are shown in Fig. 10. For the overall tree and for each clade,
the instantaneous rate of speciation seems to show a slight decline (almost constant)
as species get older.
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Table 2 Model selection is based on the likelihood of observing the branch lengths given the specified
model for times to speciation and no extinction (as per Sect. 2.4)

Model # branches # parameters LogL AIC ΔAIC

(a)

General Coxian PH 3 8336 5 −16727.93 33465.86 0

General Coxian PH 4 7 −16727.02 33468.04 2.18

General Coxian PH 5 9 −16726.87 33471.74 5.88

General Coxian PH 6 11 −16727.22 33476.44 10.58

PHDec 3 −17793.08 35592.15 2126.29

PHInc 3 −68410.67 136827.34 103361.50

Exponential distribution 1 −17322.14 34646.29 1180.43

Weibull distribution 2 −17024.64 34053.27 587.41

Constant rate birth–death 2 −17322.14 34648.29 1182.43

(b)

General Coxian PH 3 1318 5 −2958.58 5927.16 0

General Coxian PH 4 7 −2958.08 5930.15 2.99

General Coxian PH 5 9 −2958.48 5934.96 7.80

General Coxian PH 6 11 −2958.51 5939.02 11.86

PHDec 3 −3092.96 6191.91 264.75

PHInc 3 −18783.21 37572.42 31645.25

Exponential distribution 1 −3048.34 6098.69 171.53

Weibull distribution 2 −3006.61 6017.21 90.05

Constant rate birth–death 2 −3048.34 6100.69 173.53

(c)

General Coxian PH 3 1936 5 −3775.66 7561.33 0

General Coxian PH 4 7 −3774.20 7562.39 1.07

General Coxian PH 5 9 −3773.78 7565.55 4.23

General Coxian PH 6 11 −3773.75 7569.49 8.17

PHDec 3 −3963.97 7933.93 372.61

PHInc 3 −12852.02 25710.05 18148.72

Exponential distribution 1 −3860.30 7722.61 161.28

Weibull distribution 2 −3827.23 7658.46 97.14

Constant rate birth–death 2 −3860.30 7724.61 163.28

(d)

General Coxian PH 3 200 5 −398.14 806.28 0

General Coxian PH 4 7 −398.11 810.22 3.94

General Coxian PH 5 9 −398.12 814.25 7.96

General Coxian PH 6 11 −398.08 818.17 11.88

PHDec 3 −417.02 840.05 33.76

PHInc 3 −1607.49 3220.98 2414.69

123



The Shape of Phylogenies Under Phase-Type Distributed… Page 23 of 45 118

Table 2 continued

Model # branches # parameters LogL AIC ΔAIC

Exponential distribution 1 −410.18 822.37 16.08

Weibull distribution 2 −402.24 808.47 2.18

Constant rate birth–death 2 −410.18 824.37 18.08

The constant rate birth–death (crBD) model is the only model that includes extinction in this comparison.
The numbers (3, 4, 5, 6) in the row labels for the general Coxian PH indicate the number of non-absorbing
states. For the crBDmodel fromNee et al. (1994b), we adjust the log likelihood by subtracting log((�−1)!)
where � is the number of tips on tree.We select themodel that has the lowest AIC value as the basemodel and
compute ΔAIC= AICother model −AICbest model. We use branch lengths from (a) the whole reconstructed
squamate tree; and from different clades from the tree, namely (b) the gekkota clade, (c) the iguania clade,
and (d) the anguimorpha clade

Table 3 KS tests for hypothesis testing that empirical branch length data of the reconstructed squamate tree
and its following clades come from these fitted distributions

Distribution Squamate Iguania Gekkota Anguimorpha

KS statistic KS statistic KS statistic KS statistic

Constant rate birth–death 0.028 0.038 0.037 0.071

General Coxian PH 3 0.063 0.059 0.079 0.085

General Coxian PH 4 0.059 0.063 0.075 0.091

General Coxian PH 5 0.059 0.062 0.076 0.085

General Coxian PH 6 0.057 0.059 0.072 0.075

PHDec 0.062 0.059 0.061 0.069

PHInc 0.576 0.550 0.716 0.572

Weibull 0.069 0.064 0.071 0.081

Exponential 0.030 0.033 0.041 0.046

For the reconstructed squamate tree, the iguania, and the gekkota clades, the resulting p values from theseKS
statistics are all significant (p < 0.05), indicating that branch lengths drawn from these fitted distributions
are significantly different than the empirical branch lengths. However, in the case of the anguimorpha clade,
the p value are not significant (p > 0.05) in most distributions, except for PHInc. This indicates that branch
lengths drawn from these fitted distributions are not statistically different compared to the empirical branch
lengths

4.2 Angiosperm Phylogeny

To see how each model performs on an even larger tree, we also fit branch lengths
from four different clades of the angiosperm phylogeny of (Zanne et al. 2014). The
four different clades we use are: the monocotyledoneae clade (14,118 branches), the
magnoliidae clade (2092 branches), the superrosidae clade (11,323 branches), and the
superasteridae clade (20,016 branches).

The model comparison results are summarized in Table 4. The general Coxian
model are very strongly preferred over all the other models for all of the individual
clades. Additionally, fitting to the model that follows PHInc example is significantly
worse than other distributions. Moreover, unlike the results in Table 2, the general
Coxian model with four non-absorbing states fit best in this case. Interestingly, fitting
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Fig. 10 Hazard rate functions for speciation show the change in the instantaneous probability of speciation
as species age, as determined using the best-fitting general Coxian PH distribution with four non-absorbing
states for the whole squamate tree (a), the iguania clade (b), the gekkota clade (c), and the anguimorpha
clade (d). For each tree, branches are scaled by dividing each branch length leading to speciation event with
height of the tree

to the crBDmodel to this set of empirical data returns non-zero extinction rate for all of
the individual clades and it fits better compared to the model following an exponential
speciation rate without extinction. The absolute goodness-of-fit of different models
is assessed in Fig. 11. Visually, both general Coxian PH distributions with three and
four non-absorbing states give fairly similar densities. These two appear to fit better
compared to the other distributions (in agreement with the AIC results in Table 4).
Both of these distributions seem to capture the tail behavior fairly well, but do a poorer
job of matching the density for shorter branch lengths. The lack of fit is supported by
the KS tests which show a significant difference between the empirical branch lengths
and branch lengths of 10 simulated trees from each best-fitting distribution (Table 5).
Again, we hypothesize that this result could be due to ignoring extinction events in
the model. Here, as with the squamate data, we observe that the density of the fitted
distribution of PHInc, which imposes increasing speciation rates as species age, does
not follow the shape of the empirical histograms for any of the clades (Fig. 11).

The hazard rate functions for speciation from the best-fitting general Coxian PH
distribution with four non-absorbing states for the four major clades of the angiosperm
phylogeny are shown in Fig. 12. The instantaneous rate of speciation declines in each
case and the rate of decline appears to be different in major clades of the angiosperm
tree.
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Table 4 Model selection is based on the likelihood of observing the branch lengths given the specified
model for times to speciation and no extinction (as per Sect. 2.4)

Model # branches # parameters LogL AIC ΔAIC

(a)

General Coxian PH 3 14118 5 −18498.30 37006.59 112.74

General Coxian PH 4 7 −18439.92 36893.85 0

General Coxian PH 5 9 −18439.56 36897.13 3.28

General Coxian PH 6 11 −18439.46 36900.92 7.07

PHDec 3 −18788.38 37582.76 688.91

PHInc 3 −45591.17 91188.34 54294.49

Exponential distribution 1 −22149.68 44301.37 7407.52

Weibull distribution 2 −18633.08 37270.16 376.31

Constant rate birth–death 2 −19979.50 39962.99 3069.14

(b)

General Coxian PH 3 2092 5 −3369.34 6748.68 40.07

General Coxian PH 4 7 −3347.30 6708.60 0

General Coxian PH 5 9 −3346.96 6711.93 3.33

General Coxian PH 6 11 −3346.95 6715.89 7.29

PHDec 3 −3476.51 6959.01 250.41

PHInc 3 −8926.00 17857.99 11149.39

Exponential distribution 1 −3633.44 7268.87 560.27

Weibull distribution 2 −3395.17 6794.34 85.73

Constant rate birth–death 2 −3493.25 6990.51 281.90

(c)

General Coxian PH 3 20016 5 −29808.68 59627.35 117.45

General Coxian PH 4 7 −29747.95 59509.90 0

General Coxian PH 5 9 −29747.57 59513.15 3.25

General Coxian PH 6 11 −29747.56 59517.11 7.21

PHDec 3 −30533.85 61073.71 1563.81

PHInc 3 −59551.17 119108.33 59598.44

Exponential distribution 1 −33668.54 67339.07 7829.17

Weibull distribution 2 −30064.19 60132.39 622.49

Constant rate birth–death 2 −31765.43 63534.87 4024.97

(d)

General Coxian PH 3 11323 5 −29977.30 59964.60 0

General Coxian PH 4 7 −29977.32 59968.64 4.04

General Coxian PH 5 9 −29977.33 59972.66 8.06

General Coxian PH 6 11 −29977.35 59976.71 12.11

PHDec 3 −30717.66 61441.32 1476.72

PHInc 3 −72613.88 145233.76 85269.16

Exponential distribution 1 −33136.25 66274.49 6309.89
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Table 4 continued

Model # branches # parameters LogL AIC ΔAIC

Weibull distribution 2 −30183.84 60371.68 407.08

Constant rate birth–death 2 −31791.90 63587.81 3623.21

The constant rate birth–death (crBD) model is the only model that includes extinction in this comparison.
The numbers (3, 4, 5, 6) in the row labels for the general Coxian PH indicate the number of non-absorbing
states. For the crBDmodel fromNee et al. (1994b), we adjust the log likelihood by subtracting log((�−1)!)
where � is the number of tips on tree. We select the model that has the lowest AIC value as the base model
and compute ΔAIC= AICothermodel − AICbestmodel. We use branch lengths from different clades of the
angiosperm phylogeny, namely (a) the monocotyledoneae clade, (b) magnoliidae clade, (c) superasteridae
clade and (d) the superrosidae clade

5 Discussion and Conclusion

Our macroevolutionary model for phylogenetic trees where times to speciation or
extinction events are drawn from a Coxian PH distribution can produce phylogenetic
trees with a range of tree shapes. The model provides a good fit to empirical data com-
pared to exponential and Weibull distributions. The idea of applying PH distributions
is motivated by the following two properties. First, it is well known that PH distribu-
tions are dense in the field of all positive-valued distributions (Asmussen et al. 1996),
and thus, they are very flexible when fitting to empirical distributions. In particular, it
implies that waiting times to either speciation or extinction events that follow any pos-
itive real-value distributions, such as exponential and Weibull, are well approximated
using PH distribution with some given structure. Second, evolution of species trees or
a species tree can be modeled as a forward-in-time process which follows an acyclic
PH distribution. It is also known in the literature that any acyclic PH distribution can
be represented as a Coxian PH distribution (Cumani 1982; Asmussen et al. 1996).
Using a Coxian distribution is particularly useful here because its structure allows
for the process to reach the absorbing state from any of the non-absorbing states, as
described in Definition 2. This implies, using a general Coxian PH distribution, we
can create an example where either speciation or extinction rates decrease or increase
over time, by only changing parameter values inside the rate matrixQ, such as ones in
PHDec and PHinc. However, we recommend using the general Coxian PH distribution
when used to fit to empirical data.

We have demonstrated that trees generated under our model can have a range of
different levels of tree balance as measured by the β statistic (Fig. 5). Thus, it is
possible to fit parameters of our model to empirical tree shapes. The ability to get
tree shapes that vary from the uniform distribution on ranked tree shapes (URT) in
our model is expected based on the work of Lambert and Stadler (2013). A model
with Coxian PH distributed times to speciation and exponentially distributed times to
extinction is in class 4 of the scheme given in Lambert and Stadler (2013), in which
the speciation process depends on a non-heritable trait (in this case species age).

In our simulations, we found that tree balance is mainly controlled by the speciation
process and is largely invariant to the extinction process. In contrast to the behavior
of β, the relative branch lengths, as measured by the γ statistic, are to a large extent
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Fig. 11 Histograms of empirical branch length density from the monocotyledoneae clade (a), the magnoli-
idae (b), the superasteridae clade (c) and the superrosidae clade (d) with the fitted branch length densities
from the six distributions mentioned earlier. The yellow and blue lines are the fitted densities using the
general Coxian PH distribution defined in Definition 2 with 3 and 4 non-absorbing states, respectively, the
red line is the fitted density using the Coxian PHDec example, the green line is the fitted density using
the Coxian PHInc example, and black and orange lines are the fitted density using Weibull and exponen-
tial distributions, respectively. The fitted densities for the general Coxian PH distribution with 5 and 6
non-absorbing states are not included because in most cases having the distribution with less number of
non-absorbing states (e.g., four non-absorbing states) fit better (see Table 4) (Color figure online)

controlled by the extinction process, but relatively invariant to the speciation process.
Interestingly, unlike the β statistic where we found model parameters that gave values
around −1, we did not find any model parameters that led to negative values of γ . We
also found that using symmetric or asymmetric speciation modes did not have much
effect on tree balance. These findings agree with the results in Hagen et al. (2015) in
which speciation and extinction processes were modeled using Weibull distribution.

We proposed a method of computing the β statistic based on sets of trees. We have
demonstrated that computing the β statistic based on individual trees can be upwardly
biased, particularly for trees with smaller numbers of taxa. For trees generated by a
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Table 5 KS tests for hypothesis testing that empirical branch length data of the following clades from the
reconstructed angiosperm come from these fitted distributions

Distribution Monocotyledoneae Magnoliidae Superasteridae Superrosidae

KS statistic KS statistic KS statistic KS statistic

Constant rate birth–death 0.232 0.169 0.179 0.178

General Coxian PH 3 0.080 0.057 0.048 0.044

General Coxian PH 4 0.082 0.039 0.042 0.043

General Coxian PH 5 0.078 0.047 0.042 0.044

General Coxian PH 6 0.076 0.047 0.043 0.040

PHDec 0.073 0.072 0.045 0.055

PHInc 0.217 0.290 0.188 0.264

Weibull 0.100 0.080 0.066 0.061

Exponential 0.261 0.173 0.183 0.178

The resulting p values from these KS statistics are all significant (p < 0.05), indicating that branch lengths
drawn from these fitted distributions are significantly different than the empirical branch lengths
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Fig. 12 Hazard rate functions for speciation show the change in the instantaneous probability of speciation
as species age, as determined using the best-fitting general Coxian PH distribution with four non-absorbing
states for the monocotyledoneae clade (a), the magnoliidae clade (b), the superasteridae clade (c), and
superrosidae clade (d)

YH process, computing the β statistic based on sets of trees gives a more accurate
result (Fig. 4). This approach of computing a β value for a set of trees is useful in
the context of simulated tree data, but beyond simulation studies, there may be other
contexts where it is useful to estimate β for a set of trees. For example, when studying
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bio-geographic patterns researchers may have multiple species trees for the same set
of geographic regions. It would also be possible to compute a single β value for a set
of gene trees.

We derived a likelihood expression for the probability of observing any recon-
structed tree (Eqs. 14–16) that has evolved with PH distributed times to speciation
(and no extinction); we applied it to both simulated and empirical data by applying
the maximum likelihood method. We note that fitting parameters based on branch
lengths taken from trees that include extinction, produces some bias in estimation of
the speciation process (Fig. 7). The bias becomes more apparent with increasing rates
of extinction (Fig. 8). In future work, we aim to generalize Eq. 14 to include extinction.
Such an extension can potentially be done in a similar manner as the derivation for the
likelihood under a BDP process as described in Eq. 19. Once we derive a generalized
likelihood function, we will compare its performance with likelihood functions that
consider both speciation and extinction events, such as in Rabosky (2006).

In Sect. 2.4, we have also given a different approach for deriving the likelihood
expression of observing a tree evolving under a constant rate birth–death process.
This expression in Eq. 19 provides new physical interpretations in the context of the
process driving the evolution of phylogenetic tree, and it also has a nice relationship
with the formula in Nee et al. (1994b) as described in Eq. 27. In terms of fitting the
model to empirical data, we note that the likelihoodmust be conditioned on the survival
of the original two branches descending from the root of the tree as seen in Eq. 27.
This agrees with what Stadler (2013a) stated in her paper.

Finally, we have fitted the parameters of our model to the empirical data consisting
of branch lengths from various clades in the squamate and angiosperm reconstructed
phylogenies (Zheng and Wiens 2016; Zanne et al. 2014). In both cases, we found that
the extra flexibility permitted by the Coxian PH distribution was favored by the AIC
over the simpler Weibull and Exponential models. Interestingly, in both cases, the
model using the Coxian PH distribution without extinction process still fits better than
the constant rate birth–death model from Nee et al. (1994b) that includes extinction.
Moreover, in one example, fitting using the Coxian PH distribution with three non-
absorbing states is preferable, but fitting using the distributionwith four non-absorbing
states is mostly preferred. Meanwhile, fitting to the same distribution with more than
four non-absorbing states was always less favorable in the examples we looked at
while also adding more computational time.

In the squamate phylogeny (Zheng and Wiens 2016), all the clades we examined
(iguania, gekkota, anguimorpha) showed rates of speciation that declined slightly
as species got older (Fig. 10). The whole squamate phylogeny also showed slight
declining rates of speciation (almost constant rate). On the other hand, two clades
(monocotyledoneae, superasteridae) from angiosperm phylogeny (Zanne et al. 2014)
considered in this study showed apparent declining rates of speciation as species got
older (Fig. 12a, c), while the other clades in the phylogeny (magnoliidae, superrosidae)
only showed rates of speciation that decreased slightly (Fig. 12b, d).We caution against
reading toomuch into these results as the model does not include extinction or account
for incomplete sampling.

In summary, we have demonstrated that our macroevolutionary model with Coxian
PH distribution, provides a better fit to empirical phylogenies, when compared to
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models with other distributions, including exponential and Weibull (Tables 2, 4). We
conclude that it is necessary to use distributions with sufficient complexity, such as
Coxian PH distributions, to provide a better fit to empirical phylogenies.

Acknowledgements We would like to thank the Australian Research Council for funding this research
through Discovery Project DP180100352. We also would like to thank Oskar Hagen from ETH Zürich for
the insight in solving an issue with generating trees using the TreeSimGM package.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions

Data Availability The datasets and all the relevant code, including functions for fitting empirical data to a
phase-type model and for computing treeset β values, are available in the DRYAD repository, https://doi.
org/10.5061/dryad.w9ghx3fpk

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

6 Appendix

6.1 Equivalence of Formulas for qn(i, ˇ)

There are two different formulas for computing the probability of observing i tips
on the left given n extant tips on a tree, qn(i, β). The first expression includes a
product of gamma functions with a normalizing constant, an(β), as seen in Eq. 4
from Aldous (1996), while the second expression includes a product of beta func-
tions with a normalizing constant, ân(β), as seen in the maxlik.betasplit command
from apTreeShape package (https://github.com/bcm-uga/apTreeshape/blob/master/
R/maxlik.betasplit.R). Here, we show that both expressions are equivalent by show-
ing that both normalizing constants are related.

Recall from Aldous (1996), we have

qn(i, β) = 1

an(β)

Γ (β + i + 1)Γ (β + n − i + 1)

Γ (i + 1)Γ (n − i + 1)
, 1 ≤ i ≤ n − 1, (30)

where an(β) is a normalizing constant and Γ (x) is the gamma function.
Recall from the maxlik.betasplit command, we have

q̂n(i, β) = 1

ân(β)

B(β + i + 1, β + n − i + 1)

B(i + 1, n − i + 1)
, 1 ≤ i ≤ n − 1, (31)
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where ân(β) is a normalizing constant and B(x, y) is beta function.

Proof Using the relation between gamma and beta functions where B(x, y) =
Γ (x)Γ (y)
Γ (x+y) , we can write Eq. 31 as,

q̂n(i, β) = 1

ân(β)

Γ (β+i+1)Γ (β+n−i+1)
Γ (2β+n+2)

Γ (i+1)Γ (n−i+1)
Γ (n+2)

(32)

= Γ (n + 2)

ân(β)Γ (2β + n + 2)

Γ (β + i + 1)Γ (β + n − i + 1)

Γ (i + 1)Γ (n − i + 1)
(33)

= Γ (n + 2)

ân(β)Γ (2β + n + 2)
an(β)qn(i, β). (34)

Hence, q̂n(i, β) = qn(i, β) if and only if 1
ân(β)

= Γ (n+2)
an(β)Γ (2β+n+2) . That is, ân(β) =

an(β)Γ (2β+n+2)
Γ (n+2) . �	

6.2 Equivalent Formula of qn(i, ˇ) for Large n and i

Here, we show the work to approximate Eqs. 30 and 31 for large n and i , where n is
the number of extant tips on the tree and i is the number of left tips on the tree. We use
this approximation due to computational limitation of evaluating gamma function for
large number. The formula also appears in the maxlik.betasplit from the TreeSimGM
package (Hagen and Stadler 2018).

Lemma 1 Given large n and i , Eqs. 30 and 31 can be approximated using the following
formula,

q̂n(i, β) = 1

ân(β)

(
i

n

)β (

1 − i

n

)β

, (35)

where ân(β) is the normalizing constant for q̂n(i, β).

Proof Recall the Stirling’s approximation for gamma function is given by

Γ (z) ≈
√
2π

z

( z

e

)z
. (36)

Then, we claim that

Lemma 2

Γ (x + β + 1)

Γ (x + α + 1)
≈ xβ−α for large x . (37)
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Proof By Stirling’s approximation with z = x + β and z = x + α, we have

Γ (x + β + 1)

Γ (x + α + 1)
= (x + β)Γ (x + β)

(x + α)Γ (x + α)
, since x + βand x + α ∈ Z (38)

≈
(x + β)

√
2π
x+β

(
x+β
e

)x+β

(x + α)

√
2π
x+α

( x+α
e

)x+α
(39)

=
√
2π(x + β)

(
x+β
e

)x+β

√
2π(x + α)

( x+α
e

)x+α
(40)

=
(
x + β

x + α

) 1
2 (x + β)x+β

(x + α)x+α

1

eβ−α
(41)

= (x + β)x+β+1/2

(x + α)x+α+1/2

1

eβ−α
(42)

= (x + α + β − α)x+α+1/2

(x + α)x+α+1/2

(x + β)β−α

eβ−α
(43)

=
(

1 + β − α

x + α

)x+α+1/2 ( x + β

x

)β−α xβ−α

eβ−α
(44)

=
(

1 + β − α

x + α

)x+α+1/2 (

1 + β

x

)β−α ( x

e

)β−α

. (45)

We observe here that
(
1 + β−α

x+α

)x+α+1/2 → eβ−α as x → ∞ and
(
1 + β

x

)β−α → 1

as x → ∞. Therefore,

Γ (x + β + 1)

Γ (x + α + 1)
≈ eβ−α

( x

e

)β−α

(46)

= xβ−α. (47)

�	
Recall that qn(i, β) = 1

an(β)
Γ (β+i+1)Γ (β+n−i+1)

Γ (i+1)Γ (n−i+1) . Then, we apply Eq. 47 for large
n and i ,

qn(i, β) = 1

an(β)

Γ (β + i + 1)

Γ (i + 1)

Γ (β + n − i + 1)

Γ (n − i + 1)
(48)

≈ 1

an(β)
iβ(n − i)β (49)

= n2β

an(β)

(
i

n

)β (

1 − i

n

)β

. (50)

That is, qn(i, β) = q̂n(i, β) if and only if ân(β) = an(β)

n2β
. �	

To verify the result, we conduct a simulation for n = 500 and β = −1 (see Fig. 13).
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Fig. 13 Comparison of the
probability qn(i, β) defined in
Eqs. 35 and 30 for n = 500 and
β = −1. The x-axis represents
the probability defined in Eq. 35
while the y-axis represents the
probability defined in Eq. 30
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6.3 Expression of First and SecondMoments from Coxian PH Distribution

In this section, we derive the expressions for first and second moments from a Coxian
PHdistribution, thenwe also derive those expressions for the two examples of aCoxian
PH distribution used on this paper. The structure of the rate matrixQ follows canonical
form 3 described in Okamura and Dohi (2016).

Consider a Coxian PH distribution with four non-absorbing states defined by its
rate matrix given as follows

Q =

⎡

⎢
⎢
⎣

−λ1 p1λ1
−λ2 p2λ2

−λ3 p3λ3
−λ4

⎤

⎥
⎥
⎦ , (51)

where 0 < p1, p2, p3 ≤ 1. Furthermore, we have the condition that λ1 ≥ λ2 ≥ λ3 ≥
λ4 based on the result in Cumani (1982) and Dehon and Latouche (1982) for acyclic
PH distributions.

In order to derive the expression of first and second moments of a Coxian PH
distribution, we compute the inverse matrix in Eq. 51 using the identity matrix of the
same size and performing elementary row operations to derive

(
I|(Q)−1

)
from (Q|I).

⎛

⎜
⎜
⎝

−λ1 p1λ1 0 0 1 0 0 0
−0 −λ2 p2λ2 0 0 1 0 0
0 0 −λ3 p3λ3 0 0 1 0
0 0 0 −λ4 0 0 0 1

⎞

⎟
⎟
⎠

− 1
λ1

r1−−−−→
− 1

λ2
r2−−−−→

⎛

⎜
⎜
⎜
⎝

1 −p1 0 0 − 1
λ1

0 0 0

0 1 −p2 0 0 − 1
λ2

0 0
0 0 −λ3 p3λ3 0 0 1 0
0 0 0 −λ4 0 0 0 1

⎞

⎟
⎟
⎟
⎠
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r1+p1r2−−−−−→
− 1

λ3
r3−−−−→

⎛

⎜
⎜
⎜
⎝

1 0 −p1 p2 0 − 1
λ1

− p1
λ2

0 0

0 1 −p2 0 0 − 1
λ2

0 0

0 0 1 −p3 0 0 − 1
λ3

0
0 0 0 −λ4 0 0 0 1

⎞

⎟
⎟
⎟
⎠

r1+p1 p2r3−−−−−−−→
r2+p2r3−−−−−→

⎛

⎜
⎜
⎜
⎝

1 0 0 −p1 p2 p3 − 1
λ1

− p1
λ2

− p1 p2
λ3

0

0 1 0 −p2 p3 0 − 1
λ2

− p2
λ3

0

0 0 1 −p3 0 0 − 1
λ3

0
0 0 0 −λ4 0 0 0 1

⎞

⎟
⎟
⎟
⎠

− 1
λ4

r4−−−−→

⎛

⎜
⎜
⎜
⎝

1 0 0 −p1 p2 p3 − 1
λ1

− p1
λ2

− p1 p2
λ3

0

0 1 0 −p2 p3 0 − 1
λ2

− p2
λ3

0

0 0 1 −p3 0 0 − 1
λ3

0

0 0 0 1 0 0 0 − 1
λ4

⎞

⎟
⎟
⎟
⎠

r1+p1 p2 p3r4−−−−−−−−→
r2+p2 p3r4−−−−−−−→
r3+p3r4−−−−−→

⎛

⎜
⎜
⎜
⎝

1 0 0 0 − 1
λ1

− p1
λ2

− p1 p2
λ3

− p1 p2 p3
λ4

0 1 0 0 0 − 1
λ2

− p2
λ3

− p2 p3
λ4

0 0 1 0 0 0 − 1
λ3

− p3
λ4

0 0 0 1 0 0 0 − 1
λ4

⎞

⎟
⎟
⎟
⎠

.

Therefore,

Q−1 =

⎡

⎢
⎢
⎢
⎣

− 1
λ1

− p1
λ2

− p1 p2
λ3

− p1 p2 p3
λ4

0 − 1
λ2

− p2
λ3

− p2 p3
λ4

0 0 − 1
λ3

− p3
λ4

0 0 0 − 1
λ4

⎤

⎥
⎥
⎥
⎦

and QQ−1 = I where I is the identity matrix.
Furthermore,

Q−2 =
(
Q−1

)2

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
λ21

p1
λ2

(
1
λ1

+ 1
λ2

)
p1 p2
λ3

(
1
λ1

+ 1
λ2

+ 1
λ3

)
p1 p2 p3

λ4

(
1
λ1

+ 1
λ2

+ 1
λ3

+ 1
λ4

)

0 1
λ22

p2
λ3

(
1
λ2

+ 1
λ3

)
p2 p3
λ4

(
1
λ2

+ 1
λ3

+ 1
λ4

)

0 0 1
λ23

p3
λ4

(
1
λ3

+ 1
λ4

)

0 0 0 1
λ24

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Hence, the expressions for first and second moments from a Coxian PH distribution
with the initial probability distribution α = [1, 0, 0, 0] and the rate matrix given by
Eq. 51 are as follows

EPH(X) = −αQ−11
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= − [
1 0 0 0

]

⎡

⎢
⎢
⎢
⎣

− 1
λ1

− p1
λ2

− p1 p2
λ3

− p1 p2 p3
λ4

0 − 1
λ2

− p2
λ3

− p2 p3
λ4

0 0 − 1
λ3

− p3
λ4

0 0 0 − 1
λ4

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦

= 1

λ1
+ p1

λ2
+ p1 p2

λ3
+ p1 p2 p3

λ4
,

EPH(X) = 1

λ1
+ p1

(
1

λ2
+ p2

(
1

λ3
+ p3

λ4

))

. (52)

EPH

(
X2

)
= 2αQ−21

= 2
[
1 0 0 0

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
λ21

p1
λ2

(
1
λ1

+ 1
λ2

)
p1 p2
λ3

(
1
λ1

+ 1
λ2

+ 1
λ3

)
p1 p2 p3

λ4

(
1
λ1

+ 1
λ2

+ 1
λ3

+ 1
λ4

)

0 1
λ22

p2
λ3

(
1
λ2

+ 1
λ3

)
p2 p3
λ4

(
1
λ2

+ 1
λ3

+ 1
λ4

)

0 0 1
λ23

p3
λ4

(
1
λ3

+ 1
λ4

)

0 0 0 1
λ24

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦ ,

EPH

(
X2

)
= 2

[
1

λ21
+ p1

λ2

(
1

λ1
+ 1

λ2

)

+ p1 p2
λ3

(
1

λ1
+ 1

λ2
+ 1

λ3

)

+ p1 p2 p3
λ4

(
1

λ1
+ 1

λ2
+ 1

λ3
+ 1

λ4

)]

. (53)

Next, to get the expressions for first and secondmoment fromPHDec, we use Eqs. 52
and 53 and the following substitutions,

λ1 = z, λ2 = 1 + x, λ3 = 1 + x2, λ4 = x3,

p1 = 1 − y, p2 = 1 − y2, p3 = 1 − y3. (54)

On the other hand, to derive the expressions for both moments from PHInc, we use
the following substitutions to Eqs. 52 and 53,

λ1 = 1 + x3, λ2 = 1 + x2, λ3 = 1 + x, λ4 = z

p1 = 1 − y4, p2 = 1 − y3, p3 = 1 − y2 (55)

6.4 Deriving and Solving the Differential Equation of D(1)
t (z)

In this section, we show the derivation of the differential equation of the probability of
observing a reconstructed external branch with length z on a tree with age t , D(1)

t (z),
shown in Eq. 23, using physical interpretations. Then, we derive the solution to the
differential equation as shown in Eq. 26.

We can write D(1)
t (z) by conditioning on the time of the first event on that external

branchwith elapsed time z on a treewith age t . That is, (1) the branch has not undergone
any observable event yet at time z, which occurs with probability e−(λ+μ)z or (2) the
branch has a child at some time u ≤ z, which occurs with probability e−(λ+μ)uλ,
and so the two branches evolve independently of each other where the child branch
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becomes extinct by time z with probability E(z − u) and the initial branch survives
at time z with probability D(1)

t (z − u) or vice versa. Thus,

D(1)
t (z) = e−(λ+μ)z +

∫ z

u=0
e−(λ+μ)uλ

(
2D(1)

t (z − u)E(z − u)
)
du.

Then, by taking derivative with respect to z in the above equation, we have,

dD(1)
t (z)

dz
= d

dz

(
e−(λ+μ)z

)
+ d

dz

(∫ z

u=0
e−(λ+μ)uλ

(
2D(1)

t (z − u)E(z − u)
)
du

)

.

Next, by applying the Leibniz integral rule and noting that E(z − z) = E(0) = 0, we
have,

dD(1)
t (z)

dz
= −(λ + μ)e−(λ+μ)z +

(∫ z

u=0

∂

∂z

(
e−(λ+μ)uλ

(
2D(1)

t (z − u)E(z − u)
))

du

)

= −(λ + μ)e−(λ+μ)z +
∫ z

u=0
e−(λ+μ)u2λ

(
∂D(1)

t (z − u)

∂z
E(z − u) + D(1)

t (z − u)
∂E(z − u)

∂z

)

du.

Next, applying integration by parts and noting:

∂

∂u
(D(1)

t (z − u)E(z − u)) = −
(

∂D(1)
t (z − u)

∂z
E(z − u) + D(1)

t (z − u)
∂E(z − u)

∂z

)

we get,

dD(1)
t (z)

dz
= −(λ + μ)e−(λ+μ)z

+
(
−2λe−(λ+μ)u D(1)

t (z − u)E(z − u)|zu=0

−
∫ z

u=0
2λ(λ + μ)e−(λ+μ)u D(1)

t (z − u)E(z − u)du

)

= −(λ + μ)e−(λ+μ)z + 2λD(1)
t (z)E(z) − (λ + μ)

∫ z

u=0
2λe−(λ+μ)u D(1)

t (z − u)E(z − u)du

= −(λ + μ)

(

e−(λ+μ)z +
∫ z

u=0
e−(λ+μ)uλ

(
2D(1)

t (z − u)E(z − u)
)
du

)

+2λD(1)
t (z)E(z)

dD(1)
t (z)

dz
= −(λ + μ)D(1)

t (z) + 2λE(z)D(1)
t (z), as in Eq. (23)
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Lemma 3

D(1)
t (z) =

(
(λ − μ)eμz

λ − μe(μ−λ)z

)2

e−(λ+μ)z

is the solution to the differential equation,

dD(1)
t (z)

dz
= −(λ + μ)D(1)

t (z) + 2λE(z)D(1)
t (z),

where D(1)
t (0) = 1.

Proof Substitute E(z) from Eq. (24) (see also Kendall 1948) to the above differential
equation, we have,

dD(1)
t (z)

dz
= −(λ + μ)D(1)

t (z) + 2λ

(
μ − μe(μ−λ)z

λ − μe(μ−λ)z

)

D(1)
t (z). (56)

Then,

dD(1)
t (z)

dz
= −(λ + μ)D(1)

t (z) + 2λ

(
μ − μe(μ−λ)z

λ − μe(μ−λ)z

)

D(1)
t (z)

dD(1)
t (z)

dz
= −(λ + μ)D(1)

t (z) + g(z)D(1)
t (z), g(z) = 2λ

(
μ − μe(μ−λ)z

λ − μe(μ−λ)z

)

dD(1)
t (z)

dz
= (g(z) − (λ + μ)) D(1)

t (z)

∫
dD(1)

t (z)

D(1)
t (z)

=
∫

(g(z) − (λ + μ))dz + C

ln
(
D(1)
t (z)

)
= −(λ + μ)z +

∫

g(z)dz + C . (57)

Next, we solve
∫
g(z)dz,

∫

g(z)dz = 2λ
∫

μ − μe(μ−λ)z

λ − μe(μ−λ)z
dz

= 2λ

⎛

⎜
⎜
⎜
⎝

∫
μdz

λ − μe(μ−λ)z
︸ ︷︷ ︸

I

−
∫

μe(μ−λ)zdz

λ − μe(μ−λ)z
︸ ︷︷ ︸

I I

⎞

⎟
⎟
⎟
⎠

.
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We solve the integrals in I and I I ,

I =
∫

μdz

λ − μe(μ−λ)z

= μ

μ − λ

∫
dv

v(λ − v)
, v = μe(μ−λ)z, dv = v(μ − λ)dz

= μ

μ − λ

[∫
dv

λv
+

∫
dv

λ(λ − v)

]

= μ

μ − λ

[
1

λ
ln v − 1

λ
ln (λ − v) + c0

]

= μ

λ(μ − λ)

[

ln

(
v

λ − v

)

+ c0

]

I = μ

λ(μ − λ)
ln

(
μe(μ−λ)z

λ − μe(μ−λ)z

)

+ c1,

and

I I =
∫

μe(μ−λ)zdz

λ − μe(μ−λ)z

=
∫

mdm

(μ − λ)m(λ − m)
, m = μe(μ−λ)z, dm = (μ − λ)mdz

= 1

μ − λ

∫
dm

λ − m

= 1

λ − μ
ln (λ − m) + c

I I = 1

λ − μ
ln

(
λ − μe(μ−λ)z

)
+ c.

Thus,

∫

g(z)dz = 2λ

(
μ

λ(μ − λ)
ln

(
μe(μ−λ)z

λ − μe(μ−λ)z

)

− 1

λ − μ
ln

(
λ − μe(μ−λ)z

)
)

+ c

= 2λ

(
μ

λ(μ − λ)
ln

(
μe(μ−λ)z

)
+ λ − μ

λ(μ − λ)
ln

(
λ − μe(μ−λ)z

))

+ c

= 2

(
μ

μ − λ
ln

(
μe(μ−λ)z

)
− ln

(
λ − μe(μ−λ)z

))

+ c.
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Substituting back into Eq. (58), we get,

ln
(
D(1)
t (z)

)
= −(λ + μ)z + 2

(
μ

μ − λ
ln

(
μe(μ−λ)z

)
− ln

(
λ − μe(μ−λ)z

))

+ C

ln
(
D(1)
t (z)

)
= −(λ + μ)z + 2 ln

⎛

⎝

(
μe(μ−λ)z

) μ
μ−λ

(
λ − μe(μ−λ)z

)

⎞

⎠ + C

D(1)
t (z) = K

⎛

⎝

(
μe(μ−λ)z

) μ
μ−λ

(
λ − μe(μ−λ)z

)

⎞

⎠

2

e−(λ+μ)z .

Since D(1)
t (0) = 1, we have

K =
(

λ − μ

μ
μ

μ−λ

)2

.

Therefore,

D(1)
t (z) =

[
λ − μ

μ
μ

μ−λ

× (μe(μ−λ)z)
μ

μ−λ

(λ − μe(μ−λ)z)

]2

e−(λ+μ)z

=
[

(λ − μ)eμz

λ − μe(μ−λ)z

]2
e−(λ+μ)z . �	

6.5 Deriving and Solving the Differential Equation of Gx,t(z)

Here,we show the derivation of the differential equation of the probability of observing
a reconstructed internal branch with length z on a tree with age t , Gx,t (z), shown in
Eq. 21, using physical interpretations where x is the length of an external branch
descending from that internal branch. Then, we derive the solution to the differential
equation as shown in Eq. 25.

We can write Gx,t (z) by conditioning on the time of the first event on that internal
branch with elapsed time z on a tree with age t (the elapsed time since the beginning
of the tree starting at time 0). That is, (1) the branch has not undergone any observable
event yet at time z ≤ t , which occurs with probability e−(λ+μ)z or (2) the branch has
a child at some time z − u ≤ z, which occurs with probability e−(λ+μ)(z−u)λ, and so
the two branches evolve independently of each other where the child branch becomes
extinct by time t with elapsed time u + x with probability E(u + x) and the initial
branch survives until time u ≤ z with probability Gx,t (u) or vice versa. Thus,

Gx,t (z) = e−(λ+μ)z +
∫ z

u=0
e−(λ+μ)(z−u)λ

(
2Gx,t (u)E(u + x)

)
du.
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Taking the derivative with respect to z on both sides of the equation above, we have

dGx,t (z)

dz
= d

dz

(
e−(λ+μ)z

)
+ d

dz

(∫ z

u=0
e−(λ+μ)(z−u)λ

(
2Gx,t (u)E(u + x)

)
du

)

.

Then, by applying the Leibniz integral rule we have,

dGx,t (z)

dz
= −(λ + μ)e−(λ+μ)z + 2λGx,t (z)E(z + x)

+
∫ z

u=0

d

dz

(
e−(λ+μ)(z−u)λ(2Gx,t (u)E(u + x))

)
du

= −(λ + μ)e−(λ+μ)z + 2λGx,t (z)E(z + x) − (λ + μ)
∫ z

u=0
e−(λ+μ)(z−u)λ2Gx,t (u)E(u + x)du

= −(λ + μ)

(

e−(λ+μ)z +
∫ z

u=0
e−(λ+μ)(z−u)λ2Gx,t (u)E(u + x)du

)

+2λGx,t (z)E(z + x)

= −(λ + μ)Gx,t (z) + 2λGx,t (z)E(z + x), as in Eq. 21.

Lemma 4

Gx,t (z) =
(

λ − μe(μ−λ)x

λ − μe(μ−λ)(z+x)

)2

e(μ−λ)z

is the solution to the differential equation,

dGx,t (z)

dz
= −(λ + μ)Gx,t (z) + 2λGx,t (z)E(z + x),

where Gx,t (0) = 1.

Proof We solve the differential equation for Gx,t (z) as follows

dGx,t (z)

dz
= −(λ + μ)Gx,t (z) + 2λGx,t (z)E(z + x)

∫
dGx,t (z)

Gx,t (z)
=

∫

(−(λ + μ) + 2λE(z + x)) dz + C

ln
(
Gx,t (z)

) = −(λ + μ)z + 2λ
∫

E(z + x)dz + C

ln
(
Gx,t (z)

) = −(λ + μ)z + 2λ
∫

E(v)dv + C, v = z + x, dv = dz

Gx,t (z) = Ke−(λ+μ)z+2λ
∫
E(v)dv. (58)
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Next, we solve
∫
E(v)dv.

∫

E(v)dv =
∫

μ − μe−(λ−μ)v

λ − μe−(λ−μ)v
dv

=
∫

μ − w

−(λ − w)

1

(λ − μ)w
dw, w = μe−(λ−μ)v, dw = −(λ − μ)wddv

= 1

λ − μ

∫
w − μ

(λ − w)w
dw

= 1

λ − μ

(∫
1

λ − w
dw −

∫
μ

(λ − w)w
dw

)

= 1

λ − μ
(A − B).

Note that

A =
∫

1

λ − w
dw

= −
∫

d(λ − w)

λ − w

= − ln (λ − w) + C .

B =
∫

μ

(λ − w)w
dw

= μ

∫
1

(λ − w)w
dw

= μ

(∫
1

λ(λ − w)
dw +

∫
1

λw
dw

)

= μ

(

−1

λ
ln (λ − w) + 1

λ
ln(w)

)

= μ

λ
(ln(w) − ln(λ − w))

= ln

(
w

λ − w

)μ
λ + C .

Thus,

∫

E(v)dv = 1

λ − μ

(

− ln (λ − w) − ln

(
w

λ − w

)μ
λ

)

= 1

μ − λ

(

ln

(

(λ − w)
w

μ
λ

(λ − w)
μ
λ

))

= 1

μ − λ

(

ln

(
w

μ
λ

(λ − w)
μ
λ
−1

))
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= ln

(
w

μ
λ

(λ − w)
μ
λ
−1

) 1
μ−λ

= ln

(
(μe−(λ−μ)v)

μ
λ

(λ − μe−(λ−μ)v)
μ
λ
−1

) 1
μ−λ

.

Substituting this back into Eq. (58), we get,

Gx,t (z) = Ke−(λ+μ)z+2λ
∫
E(v)dv

= K

⎛

⎝e−(λ+μ)z

(
(μe−(λ−μ)v)

μ
λ

(λ − μe−(λ−μ)v)
μ
λ
−1

) 2λ
μ−λ

⎞

⎠

= K

⎛

⎝e−(λ+μ)z

(
μe−(λ−μ)v

) 2μ
μ−λ

(
λ − μe−(λ−μ)v

)2

⎞

⎠

= K

⎛

⎝

(
μe−(λ−μ)v

) μ
μ−λ

λ − μe−(λ−μ)v

⎞

⎠

2

e−(λ+μ)z

= K

(
μ

μ
μ−λ eμv

λ − μe−(λ−μ)v

)2

e−(λ+μ)z

= K

(
μ

μ
μ−λ eμ(z+x)

λ − μe(μ−λ)(z+x)

)2

e−(λ+μ)z .

Given that Gx,t (0) = 1, we have,

K =
(

λ − μe(μ−λ)x

μ
μ

μ−λ eμx

)2

.

Thus,

Gx,t (z) =
(

λ − μe(μ−λ)x

μ
μ

μ−λ eμx

)2 (
μ

μ
μ−λ eμ(z+x)

λ − μe(μ−λ)(z+x)

)2

e−(λ+μ)z

=
(
λ − μe(μ−λ)x

)2
e(μ−λ)z

(
λ − μe(μ−λ)(z+x)

)2

=
(

λ − μe(μ−λ)x

λ − μe(μ−λ)(z+x)

)2

e(μ−λ)z . (59)
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6.6 Showing the Relationship withLNee(T∗ | �, �)

Here, we show the relationship between the likelihood L(T ∗ | λ,μ) shown in Eq. 19
with the likelihood LNee(T ∗ | λ,μ) in Nee et al. (1994b). We show this for the case
of the reconstructed tree T ∗ with three tips as pictured in Fig. 3. On this reconstructed
tree with age t , ignoring the age of the root, the external branch 2 is one of the two
original branches descending from the root, so it has length b̃2 = x2. We assume that
the other two external branches have length b̃3 = b̃4 = x3. Thus, the internal branch
1 has length b1 = x2 − x3.

Lemma 5

LNee(T
∗ | λ,μ) = L(T ∗ | λ,μ)

(1 − E(x2))2
,

whereL(T ∗ | λ,μ) is given in Eq. 19,LNee(T ∗ | λ,μ) is given in Eq. (20) inNee et al.
(1994b), x2 is the elapsed time from the starting time of the two original branches
descending from the root of the tree T ∗ until the end of the tree, and E(x2) is the
extinction probability for one of those branches.

Proof Under the reconstructed tree T ∗ with three tips, the likelihood in Eq. 19 is
simplified to,

L(T ∗ | λ, μ) = 2! × Gx1,t (b1) × λ × D(1)
t (b̃2) × D(1)

t (b̃3) × D(1)
t (b̃4)

= 2λ

(
λ − μe−(λ−μ)x3

λ − μe−(λ−μ)x2

)2

e−(λ−μ)(x2−x3)
(

(λ − μ)eμx2

λ − μe−(λ−μ)x2

)2

e−(λ+μ)x2

(
(λ − μ)eμx3

λ − μe−(λ−μ)x3

)4

e−2(λ+μ)x3

= 2λ

(
1

λ − μe−(λ−μ)x2

)2
(

(λ − μ)e−(λ−μ)x2

λ − μe−(λ−μ)x2

)2

(
(λ − μ)e−(λ−μ)x3

λ − μe−(λ−μ)x3

)2 (
(λ − μ)3

λ − μe−(λ−μ)x3

)

= 2λ

(
λ − μ

λ − μe−(λ−μ)x3

)(
(λ − μ)e−(λ−μ)x2

λ − μe−(λ−μ)x2

)2

(
(λ − μ)e−(λ−μ)x3

λ − μe−(λ−μ)x3

)(
λ − μ

λ − μe−(λ−μ)x2

)2

= LNee(T
∗ | λ, μ)(1 − E(x2))

2

LNee(T
∗ | λ, μ) = L(T ∗ | λ, μ)

(1 − E(x2))2
.
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