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Abstract
Consider a Markovian SIR epidemic model in a homogeneous community. To this
model we add a rate at which individuals are tested, and once an infectious individual
tests positive it is isolated and each of their contacts are traced and tested independently
with some fixed probability. If such a traced individual tests positive it is isolated, and
the contact tracing is iterated. This model is analysed using large population approxi-
mations, both for the early stage of the epidemic when the “to-be-traced components”
of the epidemic behaves like a branching process, and for the main stage of the epi-
demic where the process of to-be-traced components converges to a deterministic
process defined by a system of differential equations. These approximations are used
to quantify the effect of testing and of contact tracing on the effective reproduction
numbers (for the components as well as for the individuals), the probability of a major
outbreak, and the final fraction getting infected. Using numerical illustrations when
rates of infection and natural recovery are fixed, it is shown that Test-and-Trace strat-
egy is effective in reducing the reproduction number. Surprisingly, the reproduction
number for the branching process of components is not monotonically decreasing in
the tracing probability, but the individual reproduction number is conjectured to be
monotonic as expected. Further, in the situation where individuals also self-report for
testing, the tracing probability is more influential than the screening rate (measured
by the fraction infected being screened).
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1 Introduction

An important reason for modelling the spread of infectious diseases lies in better
understanding the effect of various preventive measures, such as lockdown, social
distancing, contact tracing, testing, self-isolating and quarantining.During the ongoing
pandemic of Covid-19 the Test-and-Trace (TT) strategy has received a lot of attention
(Kendall et al. 2020; Lucas et al. 2020; Bradshaw et al. 2021). The test-part of the
strategy means that testing (of suspected cases and/or randomly chosen individuals) is
increased, with the hope that finding infected individuals quickly and isolating them
will reduce the transmission. The trace-part of the strategy is that individuals who are
tested positive are quickly questioned about their recent contacts, and such contacts
are then localized, tested and isolated if testing positive.

Contact tracing and its effect has been studied both from a theoretical perspective,
and during the ongoing Covid-19 pandemic also from an applied point of view, includ-
ing procedures for estimation of model parameters. For Covid-19 it has been observed
in several countries that contact tracing is a highly powerful intervention measure.
For instance, in the UK study (Kendall et al. 2020) of the TT-program first carried
out on the Isle of Wight, they concluded that the number of new confirmed Covid-19
cases decreased more sharply after the TT-intervention. In (Lucas et al. 2020), they
found that it is unlikely for strict self-isolation policies to improve the effectiveness
by means of contact tracing. In particular, the effect of contact tracing on controlling
the Covid-19 epidemic has been studied based on simulation models in several papers
(e.g. Di Domenico et al. 2020; Firth et al. 2020; Keeling et al. 2020; Kretzschmar
et al. 2020). One benefit of simulation models is that the results are easier to inter-
pret, whereas one shortcoming is that they are difficult to be analysed analytically.
Our paper is concerned with rigorous large population approximations for a stochastic
epidemic model using theory for branching processes.

More theoretical studies oftenmake simplifying assumptions in order tomakemore
analytical progress. For example, under the assumption of a homogeneous mixing
population, Ball et al. (2011, 2015) consider the traditional SIR model with forward
tracing (where either a fraction of the infectees of a parent case is tested or none of the
contacts is reported) but without tracing backwards to infectors of tested individuals.
The model in Bradshaw et al. 2021 suggests that both backward and forward tracing
would remarkably increase the effectiveness of Covid-19 epidemic control. Müller
et al. (2000) deals with a stochastic SIRS model among a homogeneous mixing pop-
ulation. Once infectious individuals are discovered, each of their possible infectious
contacts will be traced and treated (equivalent to isolated) with some probability. It
is analysed (with focus on the age since infection) gradually in three cases, namely
backward tracing, forward tracing and tracing both ways. They derive the critical
tracing probability for reducing the effective reproduction number to below 1 so that
a major outbreaks no longer may occur. Ball et al. (2011) is concerned with a SIR
epidemic model in a homogeneous mixing population. Diagnosed individuals in Ball
et al. (2011) are asked to name a fraction of their infectees, who will be isolated (i.e.
removed) immediately if they have not been diagnosed earlier. Further, those traced
individuals are asked to name their infectious contacts in the sameway, otherwise none
of their contacts will be named. The model studied in Ball et al. (2015) extends the
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one in Ball et al. (2011) by introducing the exposed period and tracing delays, where
the infectious individuals who share the same infector are traced after independent
delay times. It is also assumed that untraced individuals may not be asked to name
their infectees, for instance when they are asymptomatic. Numerical results in Ball
et al. (2015) indicate that independent delay times have bigger effect on the spreading
compared to the situation where the delay times from one infected individual being
contact traced are all the same. Recently, Müller and Hösel (2021) adds super-spreader
events, where several individuals may get infected by one infector at the same time,
to a model having contact tracing similar to Müller et al. (2000).

Beside forward andbackward tracing,Mancastroppa et al. (2021) suggests that there
is a “sideward” tracing when tracing large gatherings (where infected asymptomatic
individuals could be traced even if they are neither the infectees nor the infector
of the index case). Additionally, Barlow (2020) analyse the epidemic model as a
branching process with contact tracing on top of its genealogical tree. According to
their assumption, each infective will be detected with some probability after a certain
number of generations and then each of its contacts will be successfully traced with
some probability. As in our paper, they focus on the evolution of “traceable clusters”
(in our paper called “to-be-reported components”), but from a different point of view:
they extend the percolation-based analysis to contact tracing and give the approximated
expression of the probability of extinction.

In the present paper we consider an SIR model with TT strategy in which not all
individuals necessarily are traced, tracing is both backward and forward, but on the
other hand assuming no latent periods and no delay before contact tracing happens.
To conclude, we study a stochastic SIR epidemic model including Test-and-Trace
prevention for a large finite population. The Test-feature is modelled by assuming that
infectious individuals are tested (screened) at a constant rate, and for tracingwe assume
that an individual who tests positive reports each contact independently and reported
contacts are traced and tested without delay. In the tracing procedure we assume that
currently infectious as well as those who by now have recovered are identified, and
that the tracing procedure is iterated for both categories.

More precisely,we analyse a homogeneous SIR epidemicmodel having four param-
eters: the rate of infectious contacts β, the recovery rate γ , the testing rate δ for
infectious individuals, and the fraction p of contacts that are reached in the contact
tracing procedure. Using large population approximations, we analyse both the initial
phase of the epidemic (where it behaves like a certain branching process) and the main
phase of the epidemic when it can be approximated by a deterministic process. The
main focus of the paper is to shed light on howmuch is gained from theTT-strategy. For
example, how should resources optimally be distributed between testing and contact
tracing, how much would the reproduction number be reduced for achievable levels
in the TT-strategy, and so on.

In Sect. 2 we present the model details and our main results and some intuitions for
how the results are obtained. In Sects. 3 and 4 we give more details and proofs to the
analyses of the initial stage of the epidemic and its main phase in Sect. 5. In Sect. 6
we report simulations and numerical studies of the model and study how effective
the TT-strategy is. The paper ends with a conclusion where extensions and possible
improvements are discussed.
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2 Model andMain Results

2.1 The Standard SIR Model

We start with a Markovian SIR (Susceptible → Infectious → Recovered) epidemic
spreading in a closed and homogeneous mixing population. By closed, we mean that
there is no influx of new susceptibles or death. At any time point, each individual is
either susceptible, infectious or recovered. We assume that the size of population is
n, and that initially one individual is infectious individual and the rest are suscepti-
ble. Each susceptible becomes infectious once he/she makes contact with an infective.
Times at which such contacts between two given individuals occurs are constructed by
a homogeneous Poisson process with rate β/n. Equivalently, an infectious individual
has contacts at rate β, each time with a uniformly selected individual each thus hav-
ing probability 1/n. Only contacts with susceptibles result in infection, whereas other
contacts have no effect. Once an individual gets infected, he/she remains infectious
for a random time TI . We assume that the period TI is independent, exponentially
distributed with mean E[TI ] = 1/γ , and the parameter γ denotes the rate of natural
recovery. So the underlying model is Markovian. Once naturally recovered, the indi-
vidual plays no role in the spreading of epidemic. The epidemic stops when there are
no infectives.

2.2 TheMarkovian SIR-TT Model

Now we incorporate our Test-and-Trace scheme into this SIR model. It is additionally
assumed that infectious individual are tested at rate δ (possibly also non-infectious
individuals are tested at this rate but this has no effect and is hence not assumed).
Individuals that test positive are called diagnosed and diagnosed individuals are
immediately isolated thus not taking further part in disease spreading. So, infectious
individuals can stop spreading disease either from natural recovery (rate γ ) or from
being tested and diagnosed (rate δ). Individuals that are diagnosed are also contact
traced. This is modelled by assuming that a diagnosed individual reports each of its
infectious contacts (both the infector and infectees) independently with probability p.
The individuals that are traced in this way are tested, and individuals that test positive
(either still being infectious or by then having recovered) are then contact traced in
the same way (so contact tracing is iterated among those that have been infected). To
simplify modelling we assume no delay in this contact tracing and instead assume that
it all happens instantaneously.

The SIR-TTmodel makes two simplifying assumptions, that contact tracing occurs
without delay, and that also traced individuals who have by now recovered are contact
traced. In reality tracing certainly takes some time, and individualswho have recovered
several days or even weeks earlier would typically not be contact traced. The results
from the present model can hence serve as an upper bound on how effective “real”
contact tracingmaybe.All contact and reporting processes aswell as infectious periods
are defined mutually independent. In Table 1 we list all the model parameters.
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Table 1 Table with all model
parameters

Parameter Notation

Infection rate β

Rate of natural recovery γ

Rate of diagnosis δ

Tracing probability p

Size of population n

It is possible to consider different models for how different individuals would
report in relation to each other. For instance, would an infector A report an infectee
B independent of whether the infectee B would report the infector A? A ”yes” to the
answer could for example happen if what defines a ”contact” is not clarified enough so
what A considers as a contactmay not coincidewhat B thinks, and a ”no” could happen
if some of the contacts are with friends/acquaintances and other contacts are between
unknown people, e.g. on the bus. However, it is clear from the model description that
once A or B are diagnosed and asked to report their contacts the reporting event in
the opposite direction is useless. This is true also if the first reporting event resulted in
not naming the other individual: a later contact tracing of that individual has no effect
on the first individual since he/she has already been diagnosed. As a consequence,
all models for how contacts report each other (independently, symmetrically or some
partial dependence) will result in exactly the same stochastic model. In our description
below we have chosen to use the symmetric description thus assuming that A reports
B if and only if B reports A, but this is only for practical purposes.

Our model assumes that infectious individuals either recover naturally (at rate γ ) or
are tested and diagnosed at rate δ. There is an alternative model interpretation, which
is more detailed in the sense that testing could take place also prior to screening. In
addition to those who are found by screening, some infectious individuals may test
themselves, e.g. due to symptoms. This scenario also fits into the present model by
simply adding one more parameter. The parameters γ and δ are unchanged: γ is the
rate of natural recovery and δ denotes the testing rate (screening). But nowwe add a rate
ν at which infectious individuals self-report and test themselves. Both self-reporting
and screening trigger contact tracing, so all that matters for the epidemic spreading
is the sum ν + δ of these two rates. As a consequence, this new model interpretation
with 5 parameters (β, γ, δ, ν, p) is identical to the original model with the following
4 parameter values (β, γ, δ + ν, p). Since the alternative model interpretation fits into
the original model all mathematical results from the original model apply. In Sect. 6
we give some numerical results also for the alternative model.

2.3 Main Results

We start by considering the beginning of the epidemic where we prove that the epi-
demic, asymptotically as the population size grows to infinity, converges to a certain
limit process.
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We assume that there is one alive ancestor at time zero. Each alive individual gives
birth at rate β, dies naturally with rate γ and is removed from the population with rate
δ (corresponding to being tested and diagnosed in the epidemic). Further, an individ-
ual who is removed also leads to that each of its offspring as well as its parent will
be removed independently with probability p. All those that are removed in this step
will in turn lead to that its parent and offspring will be removed independently with
probability p and so on. This limit process is identical to the SIR-TT epidemic process
defined in Sect. 2.2 (denoted by En(β, γ, δ, p)) with one single exception. In the epi-
demic model an infectious individual infects new individuals at rate β(Sn(t)/n)where
Sn(t) denotes the number of susceptibles at t , since only contacts with susceptibles
result in infection and this has probability Sn(t)/n. On the other hand, in the limit
process alive individuals give birth at constant rate β. Nevertheless, in the beginning
and assuming a large population then these two rates will be close to each other since
then Sn(t) ≈ n.

The contact tracing mechanism induces a dependence between individuals both
in the epidemic as well as the limiting process. Rather than studying individuals we
therefore analyse the process of to-be-reported components (of individuals).More pre-
cisely, a new infection/birth is immediately decided if the involved individuals would
report the other (with probability p) or not. If it will, then the new individual belongs
to the same component but if it will not, the newly infected/born will create a new
to-be-reported component. The reason for studying this more complicated description
of the same process is that the to-be-reported components of the limit process behave
completely independent thus making it a branching process. It is hence possible to use
theory for branching process to determine if the process is sub- or super-critical and
derive the probability for extinction/minor outbreak. We are now ready for our first
main result.

Theorem 1 For any finite time interval [0, t0], the SIR-TT epidemic process
En(β, γ, δ, p) converges in distribution to the limit process E(β, γ, δ, p) as n → ∞.

WhenprovingTheorem1 (Sect. 3)weuse couplingmethods (Andersson andBritton
2000; Ball andDonnelly 1995) to show that during any finite time period, the epidemic
described in terms of to-be-reported components converges to the branching process of
to-be-reported components. Having done this it remains to derive properties of such a
limiting to-be-reported component. It turns out that such a to-be-reported component
can be described by a jump Markov chain having births (increased by 1), deaths
(decreased by one) and killing (the whole component being removed), all occurring
with linear rates. Suppose that there are currently k alive individuals in the component,
then each such individual gives birth to a new to-be-reported individual at rate β p and
thus the total birth rate is kβ p. Each individual dies naturally at rate γ so the overall
death rate equals kγ . Finally, the whole component is removed as soon as one of
the k alive individuals is removed, so this happens at rate kδ. Until the component
is removed, it generates index cases to new independent to-be-reported components
at rate kβ(1 − p). This describes the evolution of the to-be-reported components.
Viewed as a branching process, the most interesting quantity is the distribution of the
number of offspring Z (= roots of new to-be-reported components) that one to-be-
reported component produces before being removed. The mean offspring distribution,
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corresponding to the reproduction number of the components in the epidemic setting,
is then given by

R(c)∗ = E[Z ]. (1)

By considering the jump Markov chain we can write the total offspring Z as a sum

Z =
NC∑

i=1

Xi , (2)

where NC denotes the number of jumps theMarkov process makes until it is removed,
and Xi denotes the number of newly generated roots of components between the
(i − 1)-th and i-th jump. Because all three jumps the process can make (birth, death
and removal) happen at linear rates, the current number of alive individuals only
affects the speed of the process but not which jump it makes. As a direct consequence,
the components X1, X2, . . . are not only independent but also identically distributed:
Xi ∼ X . It hence follows that

R(c)∗ = E[NC ]E[X ]. (3)

In Sect. 4 we show that

E[X ] = β(1 − p)

β p + γ + δ
, (4)

and

E[NC ] = 1 +
∞∑

k=1

P(Nc > k), (5)

where

P(NC > k) =
(
1 −

�k/2�∑

j=1

1

2 j − 1

(
2 j − 1

j

)(
β p

γ + β p

) j−1(
γ

γ + β p

) j)

·
(

β p + γ

β p + γ + δ

)k

.

(6)

The reproduction number defined abovewas for the to-be-reported components (the
average number of new components it produces before being removed, i.e. completely
diagnosed or die out undetected). Even though the original limit process is not a
branching process, it is possible to determine the effective reproduction number R(ind)∗
for it. Its interpretation is easier: it equals the average number of individuals a typical
infected infects during the early stage of the epidemic.

In Sect. 4 we derive the following relation between the two reproduction numbers.

R(ind)∗ = μc − 1 + R(c)∗
μc

= 1 − 1

μc
+ R(c)∗

μc
, (7)
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with

μc = 1 + β p

β p + γ
E[Nc] (8)

the expected number of born individuals before the component is removed.

Remark 1 It is easily observed that R(ind)∗ < 1 if and only if R(c)∗ < 1, and similarly for
”=” and ”>”. The limit process is hence sub-critical (i.e. will die out with probability
1), when R(c)∗ < 1 and super-critical if R(c)∗ > 1 (so will grow beyond all limits with
positive probability). The same holds true if R(c)∗ is replaced by R(ind)∗ . This indicates
the following corollary.

Remark 2 In Sect. 6 the two reproduction numbers are computed numerically for
different parameter values. Surprisingly, the component reproduction number R(c)∗
turns out not to be monotonically decreasing in the tracing probability p. However,
the individual reproduction number seems to be decaying in p as expected. We have
failed in producing a formal proof of this result.

Corollary 1 Let Zn denote the final number, and Z̄n = Zn/n the final fraction, that get

infected during the entire epidemic. If R(ind)∗ ≤ 1 it then follows that Z̄n
p→ 0 namely

there will be a minor outbreak for sure. If R(ind)∗ > 1, then Zn → ∞ with probability
1 − π where π is the smallest solution on [0, 1] of the equation

s = ρZ (s) = ρNc (ρX (s)), (9)

where ρZ , ρNc and ρX are the probability generating functions of Z , NC and X,
respectively.

In the last part of Sect. 4, we give special attention to the case where there is no
natural recovery (γ = 0) which accordingly can be called the SI-TT model. In this
situation, the expressions become simpler and are given in the following corollary.

Corollary 2 In the SI-TT model having γ = 0, the component reproduction number is
given by

R(c)
∗,SI−T T = β(1 − p)

δ
, (10)

the individual reproduction number equals

R(ind)
∗,SI−T T = β

β p + δ
, (11)

and the minor outbreak probability becomes

π = 1

R(c)
∗,SI−T T

= δ

β(1 − p)
. (12)
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Remark 3 Again in this case, we see from Eqs. (10) and (11) that R(c)
∗,SI−T T is smaller

than or equal to or larger than 1, if and only if R(ind)
∗,SI−T T is smaller than or equal to or

larger than 1, respectively.

We now switch attention to the main phase of the epidemic rather than its beginning
(the corresponding proofs are given in Sect. 5). In order to surpass the initial phase of
the epidemicwe therefore assume a small initial fraction ε > 0 of infectives (instead of
only one initial infective). Further, we assume that contact tracing only takes place for
the contacts resulting in infection, not for the contacts between infectious individuals
and individuals who have been infected.

We start by introducing notations for the epidemic and its limiting process, where
we keep track of the fraction of susceptibles as well as the fractions of infectives
belonging to to-be-reported components with each given number of infectives.

For t ≥ 0 and ε > 0, let S(n)(t) denote the number of susceptible individuals with
initial value S(n)(0) = (1 − ε)n. For j = 1, 2, . . . , n, let I (n)

j (t) be the number of
infectious individuals that belong to a to-be-reported component containing j infec-
tives, and I (n)(t) = ∑n

j=1 I
(n)
j (t) denotes the total number of infectious individuals at

time t , with initial values I (n)(0) = I (n)
1 (0) = εn, and I (n)

2 (0) = I (n)
3 (0) = · · · = 0.

Let R(n)(t) denote the number of individuals who stop being infectious including both
naturally recovered and diagnosed, with initial value R(n)(0) = 0. Since it always hold
that S(n)(t) + I (n)(t) + R(n)(t) = n, we eliminate R(n) from our analysis. Further,
let E (n) = {E (n)(t); t ≥ 0} = {(S(n)(t)/n, I (n)

1 (t)/n, I (n)
2 (t)/n, . . . , I (n)

n (t)/n} be
the stochastic epidemic density process which becomes infinite-dimensional, as the
population size n goes to infinity.

The limiting deterministic process denoted by E∞ = {E∞(t); t ≥ 0} =
{s(t), i1(t), i2(t), · · · } is obtained by considering the jumps that the componentsmake.
An infection in a j-component moves the component to a ( j+1)-component implying
that S is reduced by 1, I j reduced by j and I j+1 increased by j+1. A natural recovery
in such a component increases R by 1, decreases I j by j and increases I j−1 by j − 1.
Finally, a test-detection in such a component reduces I j by j and increases R by j .

In Sect. 5, we prove the following theorem.

Theorem 2 For t ≥ 0, let s(t) be the community fraction of susceptibles, i j (t) be the
fraction of infectious individuals belonging to a to-be-reported component containing
j infectives, and i(t) = ∑∞

i=1 i j (t), be the community fraction of infectives.
Further, we set

s′(t) = −βs(t)i(t), (13)

i1
′(t) = β(1 − p)i(t)s(t) + γ i2(t) − β pi1(t)s(t) − (γ + δ)i1(t), (14)

for j ≥ 2,

i j
′(t) = β pji j−1(t)s(t) + γ j i j+1(t) − β pji j (t)s(t) − (γ + δ) j i j (t), (15)
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with the corresponding initial configuration

s(0) = 1 − ε, (16)

i(0) = i1(0) = ε, (17)

for j ≥ 2,
i j (0) = 0. (18)

Then the infinite-dimensional stochastic epidemic process E (n) converges to the
deterministic process E∞ defined by Eqs. (13)–(18) as n → ∞, on any finite time
interval [0, tend ].

When proving the theorem above, we first truncate both systems such that there is a
maximal component size K making the processes finite dimensional, for which theory
of population processes gives convergence. Then we argue that the component sizes
for the original processes will be exponentially small in maximal component size, thus
making the truncated models good approximations of the original processes.

If the SIR-TT model was started with one initial infective the time it takes until a
fraction ε, i.e. a number nε, have been infected, tends to infinity. For this reason this
initial condition does not converge to the deterministic process above. Similarly, the
end of the epidemic where the final small fraction ε gets infected also takes longer
and longer time the larger n is. However, like in many similar but simpler epidemic
models we expect that, when it comes to the final number getting infected, the start of
the epidemic determines if there is a major outbreak or not, and end of the epidemic
has negligible effect. We formulate this more precisely in the following conjecture.

Conjecture 1 Consider the SIR-TT epidemic starting with one initially infective. The
final fraction infected Z̄n converges to a two point distribution ζ, where ζ = 0
(minor outbreak) happens with probability π , and with probability 1 − π , ζ =
r∞ = limε→0 limt→∞ r(t) (major outbreak), where π is defined in Corollary 1 and
r(t) = 1 − s(t) − i(t) in Theorem 2.

Remark 4 In Sect. 6, we show several simulations in support of Conjecture 1 and
also indicating that the distribution of Z̄n appears to satisfy a central limit theorem
concentrated around the deterministic limit r∞.

Finally, in Sect. 6 we perform simulations and numerical illustrations confirming
our results and investigating the effect of Test-and-Trace strategy for parameter values
inspired from the Covid-19 pandemic.

3 Proof of Theorem 1

In this section, we aim to approximate the early stages of the epidemic using large
population approximations. We first denote the sequence of our epidemic processes
with one initial infective by {En(β, γ, δ, p), n ≥ 1}, where we recall that β is rate of
infection, the rate of natural recovery is γ , δ denotes the testing (diagnosis) rate and
the probability of a contact being reported equals p.
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Thenwedescribe the limitingprocess denotedby E(β, γ, δ, p).At time t = 0, there
is only one initial ancestor. Each individual gives birth at rate β during their lifetimes,
dies naturally (naturally recovered) with rate γ and is removed (diagnosed) with rate
δ. Once removed, each of its descendants and its parent is said to be reported and
immediately removed independently with probability p.Meanwhile, every parent and
offspring of those who are removed, will be removed independently with probability
p as well and so on. In particular, if a to-be-reported individual has been already
died naturally, its alive to-be-reported offspring (or parent) will also be removed.
Moreover, we notice that each not to-be-reported offspring becomes a new ancestor
which independently produces a process in the same pattern. Finally, we show the
proof of Theorem 1.

Proof of Theorem 1 First of all, it is worth noting that the two processes En(β, γ, δ, p)
and E(β, γ, δ, p) behave the same way besides one slight difference. An infection
occurs in the epidemic whenever a birth occurs in the branching process, whereas an
infection is “effective” only if an susceptible gets infected. And in the n-th epidemic,
the probability that an infective gives new infections to susceptibles is Sn(t)/(n − 1)
(≈ Sn(t)/n when n large), where Sn(t) is the number of susceptibles at time t . So, an
infective infects new individuals at rateβSn(t)/n. In contrast to that, an alive individual
in the limiting process give birth at rate β.However, if the size of population n is large
and in the beginning of epidemic we have Sn(t) ≈ n, then we have βSn(t)/n ≈ β,

i.e. the rate of new infection to susceptibles in En(β, γ, δ, p) is close to the birth rate
in E(β, γ, δ, p).

As compared to the early stage approximation of standard SIR epidemic (Andersson
and Britton 2000; Ball and Donnelly 1995), the number of alive individuals in this
limiting process E(β, γ, δ, p) behaves not like a branching process, since it is possible
that several death occur at the same time and thus the jumps of this limiting process
can not only be up or down by one.

On the other hand, if the limiting process is described in terms of to-be-reported
components, then it behaves like a branching process. A component starts with one
newly born (infected) individual which would not report its infector and we call this
individual the root of this component. During its life duration (infectious period)
this individual gives birth to new individuals, some of which will be reported and
others will not. Each of those not-to-be-reported individuals becomes a root of new
components, whereas thosewhowill be reported belong to the same component. Given
that there are currently k to-be-reported individuals in one component, then each such
individual gives birth at rate β, where each newborn belongs to the same component
with probability p and generates a new component with probability 1 − p. Thus,
each of individual in this component gives birth to new to-be-reported individuals at
rate β p and thus the total birth rate is kβ p. Each alive (infectious) individual dies
naturally(naturally recovered) at rate γ . The whole component is diagnosed if and
only if one of those k to-be-reported individuals is diagnosed, implying that the death
rate of this process of components is kδ. Until all these k individuals are removed, it
generates roots of new components at rate kβ(1 − p). This describes the birth and
death of the to-be-reported components.
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By applying the coupling method (see Andersson and Britton 2000; Ball and Don-
nelly 1995), we show that the epidemic process En(β, γ, δ, p) described in terms of
components converges in to the branching process of to-be-reported components. A
contact (infection) in the epidemic corresponds to a birth in the branching process.
Obviously, the branching process and the epidemic process of components are per-
fectly coupled with each other up until the time Tn when the first “ghost” appears,
where by “ghost” we mean the newly contacted individual which has been infected
in the epidemic. If we label each i−th contact as ci , then for any time t0 ≥ 0, the
event Tn ≥ t0 that there has been no “ghost” occur before time t0, is equivalent to the
case that all the contacts c1, ..., c[t0] are distinct. Using the classic birthday-problem
method, we see that

P(Tn ≥ t0) ≈ e−n2/2[t0] → 1,

as n → ∞. This completes the proof of Theorem 1. �

4 Properties of the Limiting Branching Process

Now we explore the properties of the limiting branching process E(β, γ, δ, p) of to-
be-reported components which can be used to approximate the epidemic during the
early phase.

4.1 Process of the To-be-Reported Components in the Full Model

First, we note that our reporting process can be decided in advance, and recall that we
use the same reporting or not decision in both ways between each pair of individuals
since at most one direction will be used. We then focus on this Markov jump process
of the components having births, deaths and sudden killing of the whole component.

We define the size k of an to-be-reported component by the number of alive (infec-
tious) individuals in the component and hence ignore the dead (recovered) individuals.
A component currently having size k produces new roots of new components at rate
kβ(1− p). The component itself remains with size k for an exponentially distributed
time with rate k(β p+γ + δ), next event would be one of the three following indepen-
dent cases. The first case is that a new infection occurs at rate kβ p, which corresponds
to increasing the size of component by one. Secondly, we note that each of the indi-
viduals in the component becomes naturally recovered at rate γ . If this happens, then
the size of component would decrease by one. The remaining case is that one of the
to-be-reported individuals is diagnosed and so the whole component is eliminated by
diagnosis at rate kδ, which means that upon this event, the size of component goes
down to zero.

In Fig. 1, we show an example illustrating how a “reporting branching tree” of
to-be-reported components grows: at first, we have a newly infected case, namely the
node 1. An edge goes from one node to another node, meaning that the latter one
is infected by the previous one. The dashed edge between two nodes means for the
not-to-be-reported case, whereas the full edge stands for the to-be-reported case. After
a certain period, there is a to-be-reported component, denoted by C1, produced by its
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Fig. 1 Example of a “reporting tree”: The white nodes stands for “infectious”, the grey ones for “naturally
recovered”, whereas the black ones for “diagnosed”. A directed edge from one node to another means that
the latter one is infected by the previous one. Full edges reflect to-be-reported contacts (probability p) and
the dashed ones for those not to be reported

root 1, and three newly generated roots 2, 3 and 4, each of which produces their own
to-be-reported components, denoted by C2, C3 and C4, respectively. Furthermore, the
white nodes stands for “infectious”, the grey ones for “naturally recovered” and the
black ones for “diagnosed”. We can see that at this stage when the roots 2 and 4 are
diagnosed, the whole componentsC2 andC4 are reported and immediately diagnosed.

Our interest is to derive the important quantity for our epidemic model, namely
the effective component reproduction number R(c)∗ , which is defined as the expected
number R(c)∗ = E[Z ] of roots of new components generated by one root before its
component is removed (completely diagnosed or dies out undetected). Since we aim
at examining the effect of testing and tracing, so given fixed rates β and γ,we consider
R(c)∗ = R(c)∗ (δ, p) as a function of testing rate δ and tracing probability p. Later in
Sect. 6, we will show how the R(c)∗ varies with the testing fraction δ/(δ + γ ) and
tracing probability p.

To find the distribution of Z , we first discuss the number of events before the whole
component is removed by computing the probability that the whole component is not
removed before k events. We recall that at each time of event, there would be only one
of three following events occurs. A birth occurs with rate kβ p, whereas the death of
whole component happens with rate kδ and the size of component decreases by one
with rate kγ . As a consequence the probability of giving a birth, which corresponds
to increasing the component size by one, is given by
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kβ p

kβ p + kγ + kδ
= β p

β p + γ + δ
,

the probability of death of the whole component equals

kδ

kβ p + kγ + kδ
= δ

β p + γ + δ
,

and the probability that the component size decreases by one, is given by

kγ

kβ p + kγ + kδ
= γ

β p + γ + δ
.

Adifferentway of describing the evolution of the component is to consider increases
and decreases by one (a simple random walk!) until some time when the whole com-
ponent dies simultaneously. It is worth pointing out that the random walk may reach
zero by itself and hence stop before a simultaneous death. The non-symmetric simple
random walk {Sm,m ≥ 0} on Z starts at 1 (S0 = 1) and for m = 1, 2, 3, · · · , each
jump of the random walk is independent and identically distributed with the jump
probabilities

πrw = P(Sm − Sm−1 = 1) = β p

γ + β p
,

and
P(Sm − Sm−1 = −1) = 1 − πrw = γ

γ + β p
.

On top of this, each jump may result in diagnosis of the whole component (simultane-
ous death), and each time at which this happens with probability δ/(β p+γ + δ). The
number ND of events until the whole component is eliminated by diagnosis is hence
geometrically distributed with parameter δ/(β p + γ + δ).

Next we derive the probability that the random walk does not hit zero before k
jumps. Let

Nrw = inf
m≥0

{Sm = 0}
denote the first hitting zero time of random walk and it is clear that only odd steps can
be taken in order to hit the origin. So, for m even, the probability we have P(Nrw =
m) = 0. Otherwisem = 2 j−1 for j = 1, 2, · · · ,we apply the Hitting Time Theorem
in Hofstad and Keane (2008), which yields that the probability of first hitting zero at
m−th step is given by

P(Nrw = m) = P(Nrw = 2 j − 1) = 1

2 j − 1
P(S2 j−1 = 0),

where the probability of the (unrestricted) random walk equals 0 at m−th step is

P(S2 j−1 = 0) =
(
2 j − 1

j

)
πrw

j−1(1 − πrw) j ,
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since in this case, the random walk must have taken ( j − 1) up-jumps and j down-
steps. We conclude that the probability of the random walk not hitting zero before k
steps equals

P(Nrw > k) = 1 −
k∑

m=1

P1(Nrw = m)

= 1 −
�k/2�∑

j=1

P1(Nrw = 2 j − 1)

= 1 −
�k/2�∑

j=1

1

2 j − 1

(
2 j − 1

j

)
πrw

j−1(1 − πrw) j .

Moreover, let NC denote the number of jumps up until the whole to-be-reported
component is extinct (either from simultaneous diagnosis or all individuals having
recovered naturally), i.e.

NC = min{Nrw, ND}.

Recalling that ND is geometric distributed, the probability that the whole component
has not gone extinct before k = 1, 2, · · · , events is given by

P(NC > k)=P(Nrw > k) · P(ND > k)

=
(
1 −

�k/2�∑

j=1

1

2 j − 1

(
2 j − 1

j

)(
β p

γ + β p

) j−1( γ

γ + β p

) j)(
β p + γ

β p + γ + δ

)k
.

Now, it is sufficient to analyse the number Xi of newly generated roots of compo-
nents between each (i − 1)−th and i−th jump. Given a to-be-reported component of
size k at that time, the roots of new components are generated at rate kβ(1 − p) for
an exponential time of parameter k(β p + γ + δ). This implies that the distribution of
Xi is geometrically distributed with parameter

1 − kβ(1 − p)

k(β p + γ + δ) + kβ(1 − p)
= β p + γ + δ

β + γ + δ
.

This parameter is independent of k implying that the variables X1, X2, . . . , are iden-
tically and independently geometrically distributed as X . So, between any two jumps,
the probability of k newly generated roots is given by

P(X = k) =
(

β(1 − p)

β + γ + δ

)k
β p + γ + δ

β + γ + δ
.
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Based on the former discussion, we conclude that the total number of roots of new
components produced by a to-be-reported component can be written as

Z =
NC∑

i=1

Xi .

As stated in Eq. (3), due to independence, it follows that

R(c)∗ = E[Z ] = E[NC ] · E[X ],

where the expectation of X is given by

E[X ] = β(1 − p)

β p + γ + δ
,

and for E[NC ] we have
E[NC ] = 1 +

∞∑

k=1

P(Nc > k).

4.2 Proof of Corollary 1

In the following text we give the proof of Corollary 1.

Proof of Corollary 1 Intuitively, we note that the limiting process of components will
become extinct when E[Z ] ≤ 1. This implies that a minor outbreak will occur, if the
component reproduction number R(c)∗ = E[Z ] is smaller than or equal to one. Next,
regarding to the situation when R(c)∗ > 1, the branching process is possible to explode,
and so there will be a major outbreak in the epidemic. Now we put our focus on the
probability π of minor outbreak and the probability of major outbreak, namely 1−π .

We assume that there is one initial infective. As discussed in previous section, the
probability of minor outbreak in the epidemic can be approximated by the probability
of extinction in the limiting process at the early stage of outbreak. Given k newly
generated roots, the conditional probability of extinction is then clearly πk . Thus, the
probability π is the solution on [0, 1] of the following equation:

π =
∞∑

k=1

πkP(Z = k), (19)

where we note that the right-side of Equation (19) is exactly the probability generating
function ρZ (π) of Z . For the computation of ρZ , we have

ρZ (s) = E[sZ ] = E[s
∑NC

i=1 Xi ] = ρNC (ρX (s)),

123



Analysing the Effect of Test-and-Trace Strategy in an... Page 17 of 32 105

where the probability generating function ρX of X is given by

ρX (s) = E[sX ] = θ

1 − (1 − θ)s

with θ = (β p + γ + δ)/(β + γ + δ), and the probability generating function ρNC of
NC is given by

ρNC (t) =
∞∑

k=1

tkP(NC = k)

with
P(NC = k) = P(Nrw = k)P(ND ≥ k) + P(Nrw > k)P(ND = k).

Finally, we obtain the probability generating function ρZ of Z :

ρZ (s) =
∞∑

k=1

(
θ

1 − (1 − θ)s

)k

P(NC = k)

= θ

1 − (1 − θ)s
· (1 − P(NC > 1))

+
∞∑

k=2

(
θ

1 − (1 − θ)s

)k

(P(NC > k − 1) − P(NC > k)).

(20)

Solving the equation
s = ρZ (s)

with Eq. (20) on [0, 1] gives us the smallest solution π, which equals the probability
of minor outbreak in the epidemic with one initial infective. In addition to that, if there
are initially m infectives, small outbreak occurs with probability πm . �

We then aim to derive the effective individual reproduction number R(ind)∗ =
R(ind)∗ (δ, p), which equals the expected number of infected cases generated by a
random infectious individual (before being tested or recovering).

We start with a new expression for our effective component reproduction number.
Let Ic be the overall number of individuals who have been infected in a to-be-reported
component before it goes extinct, starting with one single infectious individual. For
k ≥ 1, let

pk = P(Ic = k)

be the probability that there have been in total k individuals infected in a component,
and let rk be the expected number of new roots generated by such a component, given
that Ic = k. It then follows that

R(c)∗ =
∞∑

k=1

rk pk .
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Further, during the early stageof epidemic, the probability p̃k that an individual belongs
to a component with Ic = k, is given by

p̃k = kpk
μc

(the size-biased distribution) with

μc := E[Ic] =
∞∑

j=1

j p j .

Given that Ic = k, there would be (k − 1) infections occurred in the component and
rk average infections out of the component before it dies. In total such a component
hence on average generate k − 1 + rk infections and randomly chosen individual
hence infects ((k − 1) + rk)/k on average. This implies that our effective individual
reproduction number is given by

R(ind)∗ =
∞∑

k=1

(k − 1) + rk
k

p̃k =
∞∑

k=1

((k − 1) + rk)
pk
μc

. (21)

Simplifying the expression for R(ind)∗ in Equation (21) gives us

R(ind)∗ = 1 − 1

μc
+ R(c)∗

μc
.

The equation above shows us that R(ind)∗ is smaller than, equal to, or larger than 1,
if and only if R(c)∗ is smaller than, equal to, or larger than 1.

Intuitively, we can explain this relation between R(ind)∗ and R(c)∗ as follows. On
one hand, the R(c)∗ can be considered as the average infections produced outside the
component. On other hand, μc is the average number of individuals who have been
infectious in the component. We notice that one of μc would be the root of this
component, while the other μc − 1 are internal infections in this component. Then
there are in total (R(c)∗ +μc − 1) infections on average by this component. Hence, the
average number of infections per individual becomes (R(c)∗ + μc − 1)/μc.

It remains to compute the expected number μc of the individuals who have been
infectious in a component, since we have already derived R(c)∗ . We start by letting
J+ = ∑∞

k=1 Ik denote the number of up-jumps of the randomwalk {Sn, n ≥ 0} before
it dies out, where Ik is the indicator variable with Ik = 1 if the k-th jump of the random
walk is an up-jump, i.e. for any k ≥ 1,

P(Ik = 1|Nc > k − 1) = πrw

and
P(Ik = 1|Nc ≤ k − 1) = 0.
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Then we conclude that

μc = 1+E[J+] = 1+
∞∑

k=1

P(Ik = 1) = 1+πrw

∑

k=1

P(Nc > k−1) = 1+ β p

β p + γ
E[Nc].

Together with Eq. (7), we prove the final expression for R(ind)∗ given by

R(ind)∗ = R(c)∗ + β p
β p+γ

E[Nc]
1 + β p

β p+γ
E[Nc]

. (22)

Remark 5 This individual reproduction number has the correct threshold property,
since it equals 1 exactly when R(c)∗ does. However, R(ind)∗ cannot be interpreted as
the average number of infections caused by infected people in the beginning of the
outbreak. This is because of delicate timing of events issues, closely related to those
explained in Ball et al. (2016).

4.3 The Limiting Process in the SI-TT Model

In the SI-TT model there is no natural recovery: γ = 0. This special case turns out to
give simpler explicit expressions. The reason for the simplification is that a component
can then only go extinct due to an infectious individuals being diagnosed (resulting
in the whole to-be-reported component being contact traced) whereas for the general
model extinction may also happen because all individuals has recovered before a new
to-be-reported infection took place.

We are interested in the number ZSI−T T of roots of new components produced by
a to-be-reported component before it dies (i.e. is diagnosed). As before, the current
number of infectious individuals does not affect the probability of the next jump being
a new root or a diagnosis event. We can hence neglect the infections and conclude
that there will be a geometrically distributed number of roots produced before the
component is diagnosed. The parameter of the geometric distribution is simply the
probability of a diagnosis rather than a new root: δ/(δ + β(1− p)). In conclusion, we
have for any k = 0, 1, 2, · · · that the unconditional density of ZSI−T T is given by

P(ZSI−T T = k) = (
1 − δ

δ + β(1 − p)

)k δ

δ + β(1 − p)
.

Then in the SI-TTmodel,we are able to derive the effective component reproduction
number R(c)

∗,SI−T T as

R(c)
∗,SI−T T = E[ZSI−T T ] = β(1 − p)

δ
.

Again following the idea proving Corollary 1, we show Corollary 2 as follows.
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Proof of Corollary 2 By finding the smallest solution s on [0, 1] of equation s = ρ(s)
with ρ(·) the probability generating function of ZSI−T T ,we obtain that if R(c)

∗,SI−T T >

1, the probability of minor epidemic outbreak equals

π = δ

β(1 − p)
= 1

R(c)
∗,SI−T T

. (23)

In the case when R(c)
∗,SI−T T ≤ 1, the branching process will be extinct with probability

π = 1, implying that a major outbreak occurs with probability 0. �
Moreover, using the same idea of computing the effective individual reproduction

number in general case, here we first have the expected number of infected cases
generated by the root of a component before diagnosed given by

μc,SI−T T = 1 + E[N (SI−T T )
c ] = 1 + β p

δ
= β p + δ

δ
.

Then as stated in Sect. 2, the effective individual reproduction number for this case
without natural recovery has the form

R(ind)
∗,SI−T T = μc,SI−T T + R(c)

∗,SI−T T − 1

μc,SI−T T
= β

β p + δ
. (24)

Remark 6 Similar to Remark 5, this individual reproduction number possesses the
correct threshold property but not the traditional interpretation as the average number
of infections per individual in the beginning of the epidemic. It is also easily observed
from Eq. (24) that the effective individual reproduction number in this SI-TT model
is monotone decreasing with tracing probability p.

5 Proof of Theorem 2

In previous section, we applied coupling methods to approximate the epidemic at
its early stage. In this section, we give an approximation of the main phase, where
the epidemic is initiated with positive fraction ε of infectives. Here, we describe our
original full model in the way of evolution of the clumps. By “clumps”, we mean the
to-be-reported components, and we only need to keep track of number of infectious
individuals in each clump. In a population of size n, we assume that the number of
initial infectives equals εn and the number of initial susceptibles equals (1 − ε)n. At
time t ≥ 0, let S(n)(t) be the number of susceptible individuals with initial value

S(n)(0) = (1 − ε)n. (25)

For j = 1, 2, . . . , n, let I (n)
j (t) be the number of individuals that are infectious and

belong to a to-be-reported component currently containing j infectives. So, we have
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the total number of infectious individuals at time t ,

I (n)(t) =
n∑

j=1

I (n)
j (t), (26)

with initial values

I (n)(0) = I (n)
1 (0) = εn, I (n)

2 (0) = · · · = I (n)
n (0) = 0. (27)

Let R(n)(t) denote the number of individuals which are recovered (counting both
naturally recovered and diagnosed) with initial value

R(n)(0) = 0. (28)

It is then clear that for any time t ≥ 0,

S(n)(t) + I (n)(t) + R(n)(t) = n. (29)

Next we prove Theorem 2, stating that the stochastic epidemic process denoted by

E (n)(t) = (S(n)(t)/n, I (n)
1 (t)/n, I (n)

2 (t)/n, . . . , I (n)
n (t)/n),

converges to a deterministic process.

Proof of Theorem 2 Below, we study the corresponding truncated processes by maxi-
mizing the clump sizes to some large positive integer K . The corresponding processes
are finite dimensional for which we apply theory for density dependent population
processes. These results can then be extended to the original infinite dimensional sys-
tems (with arbitrary clump size) by observing that that the maximal clump sizes are
exponentially small in K . As a consequence, the truncated processes can be made
arbitrarily close to the original infinite dimensional processes by choosing K large
enough. The fact that the processes are exponentially small is a direct consequence of
that the epidemic processes SIR-TT may be dominated by the SI-TT (without natural
recovery), and this process will have a geometrically distributed maximal clump size
with parameter δ/(β p+δ). We omit the details of this argument and now should show
that the truncated stochastic epidemic process converges to the truncated deterministic
system.

More precisely, using Kurtz’s theory of Markovian Population processes (Anders-
son andBritton 2000),we show that the truncated stochastic “density” process, denoted
by

E (n)
K (t) = (S(n)(t)/n, I (n)

1 (t)/n, I (n)
2 (t)/n, ..., I (n)

K (t)/n)

converges to a K−dimensional deterministic process

E∞
K (t) = (s(t), i1(t), i2(t), . . . , iK (t)),
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which is defined by the finite system of differential equations as below.

s′(t) = −βs(t)i(t), (30)

i1
′(t) = β(1 − p)i(t)s(t) + γ i2(t) − β pi1(t)s(t) − (γ + δ)i1(t), (31)

and for j = 2, 3, ..., (K − 1) we have

i j
′(t) = jβ pi j−1(t)s(t) + jγ i j+1(t) − jβ pi j (t)s(t) − j(γ + δ)i j (t), (32)

whereas in the case of j = K ,

iK
′(t) = Kβ piK−1(t)s(t) − Kβ piK (t)s(t) − K (γ + δ)iK (t). (33)

And the corresponding initial conditions are

s(0) = 1 − ε, (34)

i(0) = i1(0) = ε, (35)

and
i2(0) = .... = iK (0) = 0. (36)

Essentially, we check if we are allowed to use the Theorem 5.2 stated in Andersson
and Britton (2000) to show the convergence of truncated density process E (n)

K (t). First
of all, we notice that there are several jumps which can affect the process. In the case
of a new non-to-be-reported infection, the process changes by (−1, 1, 0, . . . , 0) with
the corresponding jump intensity function

f(−1,1,0,...,0)(s, i1, i2, . . . , iK ) = β(1 − p)s
K∑

j=1

i j .

If there is a new to-be-reported infection comes to the component of size 1, then
the process changes by (−1,−1, 2, 0, ..., 0) with the corresponding jump intensity
function

f(−1,−1,2,0,...,0)(s, i1, i2, i3..., iK ) = β psi1.

When there is a natural recovery comes to the component of size 1 the process changes
by (0,−1, 0, ..., 0) with the corresponding jump intensity function

f(0,−1,0,...,0)(s, i1, i2, ..., iK ) = γ i1,

whereas if the whole component of size 1 is diagnosed, the process would change by
(0,−1, 0, . . . , 0) with the corresponding jump intensity function

f(0,−1,0,...,0)(s, i1, i2, . . . , iK ) = δi1.
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In the case when there is a new to-be-reported infection comes to the component of
size j = 2, .., (K − 1), the process changes by (−1, 0, . . . , 0,− j, j + 1, 0, . . . , 0)
with the corresponding jump intensity function

f(−1,0,...,0,− j, j+1,0,...,0)(s, i1, . . . , i j−1, i j , i j+1, i j+2, . . . , iK ) = β psi j .

Moreover, for the component of size K , if there is a new to-be-reported infection
occurs, then the process changes by (−1, 0, . . . , 0,−K )with the corresponding jump
intensity function

f(−1,0,...,0,−K )(s, i1, . . . , iK−1, iK ) = β psiK .

For j = 2, .., K , if there is a natural recovery comes to the component of size j,
then the process changes by (0, 0, . . . , 0, j −1,− j, 0, . . . , 0)with the corresponding
jump intensity function

f(0,0,...,0, j−1,− j,0,...,0)(s, i1, . . . , i j−2, i j−1, i j , i j+1, . . . , iK ) = γ i j ,

Further, the process changes by (0, 0, . . . , 0, 0,− j, 0, . . . , 0) if a component of size
j is diagnosed, the corresponding jump intensity function is given by

f(0,0,...,0,0,− j,0,...,0)(s, i1, . . . , i j−2, i j−1, i j , i j+1, . . . , iK ) = δi j .

Then we obtain the drift function F defined in the Sect. 5.3 of (Andersson and Britton
2000), which is here given by

F(s, i1, i2, . . . , iK ) =

⎛

⎜⎜⎜⎜⎜⎝

−βsi
β(1 − p)si + γ i2 − β psi1 − (γ + δ)i1
2β psi1 + 2γ i3 − 2β psi2 − 2(γ + δ)i2

...

Kβ psiK−1 − Kβ psiK − K (γ + δ)iK

⎞

⎟⎟⎟⎟⎟⎠
.

It can be shown that for any x = (s, i1, i2, . . . , iK ) and y = (s′, i ′1, i ′2, . . . , i ′K ) in
domain

C = {x = (xk)k ∈ R
K+1 : 0 ≤ xk ≤ 1, k = 1, .., K + 1},

there exists a bound M > 0 such that

|F(x) − F(y)| ≤ M |x − y|,

with the absolute norm | · | in RK+1. This bound M can be roughly given by

M = max{2β + 2β pK 2, 2β + (2β p + 2γ + δ)K 2 − β p}.
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Finally, we are now allowed to apply the Theorem 5.2 in (Andersson and Britton
2000), which showing that on any bounded intervals [0, tend ], the truncated “density”
process

E (n)
K (t) = (S(n)(t)/n, I (n)

1 (t)/n, I (n)
2 (t)/n, . . . , I (n)

K (t)/n)

converges almost surely to the deterministic process

E∞
K (t) = (s(t), i1(t), i2(t), . . . , iK (t)),

which is defined by Equations (30)–(36).
This convergence of the truncated processes combined with the earlier sketch of

why the truncated processes approximate the infinite systems well by choosing K
large completes the proof of Theorem 2. �

6 Numerical Illustrations

6.1 Original Model

In this sectionwe perform simulations supporting our large population results, and also
investigate the effect of the TT-strategy.We do this mainly for the following parameter
values (inspired from the Covid-19 pandemic). Before the TT-strategy is applied we
have the Markovian SIR epidemic model with β = 0.75 and γ = 0.25, implying an
average infectious period of 1/γ = 4 days and a basic reproduction number R0 =
β/γ = 3. When the TT-strategy is considered fix, we assume that δ = 0.125 and
p = 0.5 implying that 1/3 of the infected individuals are tested and isolated while
still infectious and that half of their contacts are reported for contact tracing (Lucas
et al. 2020) believed that the fraction p of contacts that were successfully traced
varies between 40 and 80%. Moreover in the following text, whenever computing the
reproduction numbers R(c)∗ and R(ind)∗ numerically, we approximate the infinite sum
in Eq. (5) by a finite sum with truncation size of 100.

First we performed 10 000 simulations of the epidemic and stored the final number
infected in each simulation. We did this for three different population sizes, n = 1000,
5000 and 10 000, each simulation startingwith one initial infectious individual.We say
(quite arbitrarily) that there is a minor outbreak when at most 10% get infected during
the outbreak, otherwise a major outbreak occurs. We summarize the fraction of minor
outbreaks and the empirical mean fraction of infected individuals among the major
outbreak cases in Table 2. To these simulations we add a line for the limiting results
(denoted by n = ∞). In this line we have derived the minor outbreak probability using
Eq. (9) with truncated sum up to 100 and the mean fraction of the major outbreaks is
computed numerically using Eqs. (30)–(36) with truncation size K = 100 where r∞
is approximated by r(t) for t = 100 Days and ε = 0.01which shows evidence that our
limiting approximations work quite well already for these moderate population sizes.
In particular, we observe from the second column of Table 2 that the mean fraction
of the major outbreaks becomes closer to the deterministic limit r∞ for larger n (see
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Table 2 Simulation results about final fraction infected

Size of population Mean fraction of
infected among
major outbreaks

Standard deviation Fraction of minor
outbreaks

1000 0.5698 0.0873 0.6803

5000 0.5786 0.0323 0.6707

10000 0.5793 0.0224 0.6622

∞ 0.5790 (=r∞) 0 0.6667

Conjecture 1). As shown in Fig. 2b,d, f the distribution for the major outbreaks is more
peaked when the population is larger. We also note from those zoomed histograms for
the major outbreaks (Fig. 2b, d and f), that they seem to follow a normal distribution
with the deterministic limit as centre, especially for larger n (see Remark 4).

Next, we illustrate the threshold results saying that when R(c)∗ ≤ 1 we expect only
minor outbreaks to take place whereas when R(c)∗ > 1 also large outbreaks may occur.
We first fix the parameters (γ, δ, p) = (0.25, 0.125, 0.5), and choose the β to be
0.40, 0.50, 0.59 and 0.67, so that the corresponding effective component reproduction
number takes values of 0.75, 1.00, 1.25 and 1.50 using Eq. (3). Then for each case of
R(c)∗ , we did 10,000 simulations of the epidemic with fixed size of population 5000.
In Table 3, we show the fraction of minor outbreaks and the mean fraction of infected
individuals among the major outbreaks. We see that in the case of R(c)∗ < 1 there are
nearly no major outbreaks, whereas more major outbreaks occur for R(c)∗ > 1. As R(c)∗
grows bigger, there are larger outbreaks.

We now study the time evolution of the epidemics showing that it becomes less
random as population size n increases, as stated in Theorem 2. We do this by
plotting random epidemic processes {In(t)/n} and comparing it with the limiting
deterministic process {i(t)}. As before, we use the parameter values (β, γ, δ, p) =
(0.75, 0.25, 0.125, 0.5). More specifically we plot the deterministic (in red) curves of
the fraction of infectives when the population size is 1000, 5000 and 10 000, respec-
tively. For each population size, we plot the fraction of infected for one simulation (in
black), then we did 10 simulations given each size of population and plot the empirical
mean of the fraction of infected (in blue).We can see fromFig. 3 that the larger the pop-
ulation size, the better the truncated deterministic process approximates the epidemic
process. All simulations were started with 1% being infectious (In(0)/n = 0.01) and
the rest susceptible. The deterministic fraction of infectives are derived by solving
Eqs. (30)–(36) with ε = 0.01 and truncation size K = 100.

Moreover, we investigate the effect of TT strategy. We recall that δ denotes the rate
of testing (either broad screening or more targeted testing) and isolate those who test
positive immediately, and p denotes the fraction of all contacts of infectious individ-
uals that are successfully contact traced. In Fig. 4, we plot the effective reproduction
numbers R(c)∗ and R(ind)∗ derived by Eqs. (3) and (7), respectively, as a function of
the fraction of infectives being tested (before natural recovery) δ/(δ + γ ) in [0, 0.5]
and of p in [0, 1], keeping the other two parameters fixed at β = 0.75 and γ = 0.25.
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Fig. 2 (Color Figure Online) Histogram of the final size in 10,000 simulations of epidemic with population
size in a–b n = 1000, in c–d n = 5000 and in e–f n = 10,000, starting with one initial infective with full
histogram to the left and zoomed in on the major outbreaks to the right with normally fitted curve in red
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Table 3 Simulation results of epidemics with fixed n = 5000

Reproduction

number R(c)∗
Mean fraction of
infected among
major outbreaks

Standard deviation Fraction of minor
outbreaks

0.75 0.1315 0.0275 0.9945

1.00 0.1867 0.0666 0.9452

1.25 0.3037 0.1100 0.8442

1.50 0.4437 0.1150 0.7561

Fig. 3 (Color Figure Online) Fraction of infectives with population size of a 1000, b 5000 and c 10,000
with 1% initial infectives. The fraction of infectious individuals for one stochastic simulation is in black,
the one for deterministic is in red, whereas the empirical mean of ten simulations is in blue

Figure 4a shows that, surprisingly, R(c)∗ is not monotone in p, whereas Fig. 4b shows
that the individual reproduction number R(ind)∗ seems to be, as expected. As seen from
the contour lines where R(ind)∗ = 2.5, 2, 1.5, 1, the lines are steeper with lower R(ind)∗ .
When it comes to comparing the effects of p and δ/(δ + γ ) on R(ind)∗ , it seems as if
δ/(δ + γ ) is more influential for high values (larger than 2.5 in this case) on R(ind)∗ ,
whereas for lower values (smaller than 2) on R(ind)∗ , tracing is more influential in
preventing a major outbreak (i.e. reducing R(ind)∗ below 1).

6.2 Alternative Model Interpretation

Finally, we turn to focus to the alternativemodel interpretation, where instead of (γ, δ),
we have (γ, ν+δ)with γ being the rate of natural recovery, ν the rate of self-reporting
and δ the rate of screening. To start we fix β = 0.75 and γ = 1/12, ν = 2γ = 1/6
implying that before screening (δ = 0), there would be ν/(γ + ν) = 2/3 of the
infectious individuals get tested and self-isolated by own initiative. In Fig. 5, we plot
two reproduction numbers R(c)∗ and R(ind)∗ as a function of p in [0, 1] and of the
screening fraction δ/(δ + ν + γ ) in [0, 0.5].

In the lower panels we show the corresponding heat maps, but now for the case
γ = 0.2 and ν = 0.05 implying that only 1/5 of infectives self-report, thus being
closer to the original model where no individuals get tested prior to the introduction
of screening. It is seen that whether the component reproduction number is monotone
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Fig. 4 (Color Figure Online) Heat map of the effective reproduction number, a for component R(c)∗ and b
for individual R(ind)∗ , in a fine grid of p = 0, 0.05, . . . , 0.95, 1 and δ/(δ + γ ) = 0, 0.005, . . . , 0.495, 0.5.

with β = 0.75, γ = 0.25 fixed. The white lines indicate where R(c)∗ = 1 and R(ind)∗ = 2.5, 2, 1.5, 1,,
respectively

in p or not depends on what fraction that self-report when having symptoms. Another
difference as compared to the original model is that the tracing probability p clearly
has a bigger impact on reducing R(ind)∗ . An explanation to this would be that both
self-tested individuals and those being screened will be contact traced.

Furthermore, if we assume that infectives who develop symptoms recover only due
to diagnosis/self-reporting, then the fraction of asymptomatic individuals is exactly
the fraction γ /(γ + ν) of infectives who do not self-report and are naturally recovered
(without screening). By observing the steeper contour lines in Fig. 5b with smaller
fraction of asymptomatic infectives compared with that in Fig. 5d, it implies that the
tracing plays an even bigger role on reducing the individual reproduction numberwhen
there are larger fraction of individuals who are symptomatic.

7 Conclusions and Discussion

In the paper we have analysed a Markovian epidemic model also incorporating the
effect of testing and contact tracing (the Markovian SIR-TT-model). By analysing
the process of to-be-reported components, rather than individuals themselves, it was
shown that the early stage of the epidemic could be approximated by a suitable branch-
ing process, and that if an epidemic takes off, its behaviour becomes less random as
the population size n increases. The reproduction numbers, both for the components as
well as for the individuals, were derived. Their dependence on the amount of testing
and effectiveness of contact tracing were evaluated analytically as well as numeri-
cally. It was observed that the tracing probability p had a bigger impact on reducing
the individual reproduction number as compared to the fraction being tested through
screening, and this difference was even more pronounced in the situation when some
infectives self-test also without being screened (the alternative model interpretation).
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Fig. 5 (Color Figure Online) Heat map of the effective reproduction numbers in the alternative model

interpretation. Left panels are for R(c)∗ and right panels for R(ind)∗ , varying p in [0, 1] and δ/(δ + ν + γ )

in [0, 0.5] with β = 0.75 being fixed. In (a) and (b) assuming that γ = 1/12 and ν = 1/6 whereas in c

and d γ = 0.2 and ν = 0.05. The white lines show where R(c)∗ = 1 in (a), (c) and R(ind)∗ = 2.5, 2, 1.5, 1
in (b), (d), respectively

Surprisingly, the reproduction number for the components was not monotonically
decreasing in p, but the individual reproduction numbers seem to be (as expected).

There are several possible extensions to the model making it more realistic. For
instance, the model assumes that there are no delays in either contact tracing or test-
ing. The results in the present paper can hence be seen as a best possible scenario, but
allowing for a delay would of course give information on how important such delays
are and how much would be gained if contact tracing would be quicker. Further, we
make the simplifying assumption that traced individuals who have by then recovered
are also contact traced (cf. Müller et al. 2000 does not make this assumption). Further,
the model assumes no latent period and that the infectious period follows an expo-
nential distribution. Introducing a latent period most likely makes testing and contact
tracing more effective in that individuals may get screened as well traced before even
becoming infectious, but how to quantify this effect remains to be analysed. A differ-
ent step towards realism would be to consider a structured community as opposed to
the current assumption of a uniformly mixing community. Such structure could for
example include households, spatial aspects, or some other network structures.
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One the other hand, as the model was defined, only contacts that resulted in infec-
tion are considered for contact tracing. In reality it may of course also happen that
contacts that did not result in infection are reported and traced. During the early phase
of an epidemic such tracing events will rarely find new infected cases, but later in
the epidemic when transmission is extensive it could (the individuals may have been
infected by other individuals). Similarly, we do not consider contact tracing if an infec-
tious individual has close contact with an individual who has already been infected,
since such contact does not result in infection. To allow also for these type of contact
tracing events is much harder to analyse and remains an open problem.

On the mathematical side two conjectures deserve to be proven (or disproved). The
first is the statement for the final size of the epidemic in case of a major outbreak
starting with one infective (see Conjecture 1). As in many similar epidemic models it
seems highly plausible that this limiting final size agrees with that of the deterministic
process taking t to infinity and looking at ever smaller initial starting fractions ε,
but a proof of this is missing. In addition, Fig. 2 shows that the final size seems to
follow a normal distribution around the deterministic limit for the case where there
is a major outbreak. Then we suggest that a related central limit theorem could be an
open problem to be shown. Further and perhaps a lower hanging fruit, is to compute
the proper effective individual reproduction number (see Remark 5) or prove that
the individual reproduction number R(ind)∗ in this paper is the correct one and it is
monotonically decreasing both in p and testing fraction δ/(δ + γ ).

From an applied point of view it is of course important to have parameter esti-
mates in order to say something quantitatively useful. The model has four parameters:
(β, γ, δ, p). The average infectious period 1/γ is quite often known from earlier stud-
ies, and when the basic reproduction number R0 = β/γ is known, estimates of β

would also be available. Nevertheless, the test-and-trace parameters δ and p may be
harder to estimate. In the case that testing comes from general broad screening it could
be very well available: if for instance 1% of the community is tested each day would
lead to δ = 0.01 with day as time unit. If testing is targeted towards suspected cases
it might be harder to know the rate δ at which infectious people are tested. Finally,
estimates of the fraction p of all infectious contacts that were detected by contact trac-
ing is often hard to obtain. Perhaps a rough estimate could be obtained from studies
investigating different type of contacts and how many infections they are responsible
for. There are some statistical methods developed to estimate the tracing probability,
e.g. a maximum-likelihood estimator in Müller and Hösel (2007) and an approximate
Bayesian computation in Blum and Tran (2010).When it comes to digital contact trac-
ing (by means of mobile tracing apps), the tracing probability p would approximately
correspond to the square of the app-using fraction. With higher app adoption, app
contact tracing is expected to be more effective as compared with the traditional con-
tact tracing, potentially due to the quicker identification and notification of infectious
contacts (see e.g. Jenniskens et al. 2021; Ferretti et al. 2020).

Analyses of epidemic models incorporating various preventive measures, and sta-
tistical studies relating to them, remains a research area deserving more attention in
the future.
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