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Abstract
Malaria is caused byPlasmodium parasiteswhich are transmitted to humans by the bite
of an infected Anopheles mosquito. Plasmodium vivax is distinct from other malaria
species in its ability to remain dormant in the liver (as hypnozoites) and activate later
to cause further infections (referred to as relapses). Mathematical models to describe
the transmission dynamics of P. vivax have been developed, but most of them fail to
capture realistic dynamics of hypnozoites. Models that do capture the complexity tend
to involve many governing equations, making them difficult to extend to incorporate
other important factors for P. vivax, such as treatment status, age and pregnancy. In
this paper, we have developed a multiscale model (a system of integro-differential
equations) that involves a minimal set of equations at the population scale, with an
embeddedwithin-hostmodel that can capture the dynamics of the hypnozoite reservoir.
In this way, we can gain key insights into dynamics of P. vivax transmission with a
minimum number of equations at the population scale, making this framework readily
scalable to incorporate more complexity. We performed a sensitivity analysis of our
multiscalemodel over key parameters and found that prevalence ofP. vivax blood-stage
infection increases with both bite rate and number of mosquitoes but decreases with
hypnozoite death rate. Since our mathematical model captures the complex dynamics
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of P. vivax and the hypnozoite reservoir, it has the potential to become a key tool to
inform elimination strategies for P. vivax.

Keywords Vivax transmission model · Hypnozoite dynamics · Multiscale model ·
Hypnozoite activation

1 Introduction

Malaria is an infectious disease that poses a significant health threat to humans. Of
the malaria parasites, Plasmodium vivax is the most geographically widespread and
can cause severe infections, resulting in significant associated global morbidity and
mortality (Antinori et al. 2012; Battle 2019). In the past, P. vivax has been overlooked
and mistakenly considered as “benign” (Price et al. 2007), but recent studies have
produced evidence that it can cause severe disease (Breman et al. 2007; Kochar et al.
2009; Naing et al. 2014; Tjitra et al. 2008). Of an estimated 241 million malaria
cases reported in 2020, P. vivax is responsible for 4.5million cases(World Health
Organization 2021). P. vivax parasites are transmitted to humans following a bite
from an infected mosquito, leading to a (primary) blood-stage infection (Fig. 1). One
important characteristic of P. vivax transmission is that parasites can remain dormant
in the liver for weeks or months (Imwong et al. 2007); these parasites are known
as hypnozoites and cause further blood-stage infection, or relapse, upon activation
(Fig. 1). It is still not clearly understood what causes hypnozoites to activate (Hulden
and Hulden 2011). Hypnozoites might die before activation as a result of the death
of the host liver cell (Malato et al. 2011). Both death and activation of hypnozoites
reduce the size of the hypnozoite reservoir, see Fig. 1.

The hypnozoite reservoir poses significant complications for P. vivax control and
elimination (Ferreira and de Oliveira 2015). P. vivax is treatable; chloroquine or
artemisinin combination therapy (ACT) is currently recommended to treat a blood-
stage infection and an anti-hypnozoital drug (e.g. primaquine and tafenoquine) is
administered to kill hypnozoites (Asih et al. 2018; Chu andWhite 2021; Yeung 2012).
However, a barrier to the widespread use of anti-hypnozoital drugs is that they can-
not be prescribed to all individuals. In particular, primaquine and tafenoquine are not
recommended for pregnant and/or lactating people, young children, and those with
the genetic condition glucose 6 phosphate dehydrogenase deficiency (G6PDd) that
disrupts red blood cell function (Howes et al. 2012; Watson et al. 2018).

The first mathematical model accounting for the effect of hypnozoite relapse on
P. vivax transmission was introduced by de Zoysa et al. (1988) in a Ross-Macdonald
style framework. Later De Zoysa et al. (1991) explicitly modelled up to two hypno-
zoite broods within a transmission model. Several other mathematical models were
later developed for P. vivax transmission (Águas et al. 2012; Chamchod and Beier
2013; Ishikawa et al. 2003; Kammanee et al. 2001; Roy et al. 2013; Silal et al. 2019;
White et al. 2018, 2014); most consider the hypnozoite reservoir as a single compart-
ment (Águas et al. 2012; Chamchod and Beier 2013; Ishikawa et al. 2003; Kammanee
et al. 2001; Roy et al. 2013; White et al. 2014), rather than explicitly accounting for
a variable number of hypnozoites in the reservoir. If the size of the hypnozoite reser-
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Fig. 1 Overview of P. vivax disease states and complexity of the hypnozoite reservoir (adapted fromWhite
et al. (2014)). Both susceptible and infected individuals may carry hypnozoites within their liver. Activation
of a hypnozoite causes a blood-stage infection, while recovery will end the blood-stage infection. The size
of the hypnozoite reservoir reduces both with activation and death of a hypnozoite. Not shown explicitly in
this schematic is that any individual can be bitten by an infectious mosquito, causing a blood-stage infection
and possibly an increase in the size of the hypnozoite reservoir (by one or more hypnozoites). Note that
blood-stage infected individuals may or may not carry hypnozoites

voir is modelled explicitly, the number of compartments in the model is substantially
increased (either truncated artificially or infinite, for example, see Fig. 1) as in White
et al. (2014).

Since most P. vivax infections are thought to be due to hypnozoite activation rather
than new primary infections (Baird 2008; Betuela 2012; Commons et al. 2019, 2018;
Luxemburger et al. 1999), incorporating the size of the hypnozoite reservoir in mathe-
matical models is crucial. White et al. (2014) modelled the within-host dynamics of P.
vivax hypnozoites, considering variability in the size of hypnozoite inoculum across
bites, and used the within-host model to parameterise a separate transmission model
that captures the full structure of the hypnozoite reservoir (as shown in Fig. 1). That
transmission model consists of a set of 2(Lmax + 1) ordinary differential equations
(ODEs), where Lmax is the maximum number of hypnozoites considered (typically
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set at 50, giving 102 ODEs). In other work, White et al. have modelled the within-host
hypnozoite dynamics with an agent-based model (White et al. 2018), including het-
erogeneity in exposure to mosquito bites but assuming that hypnozoites established
by the same mosquito bite act as a batch and give rise to relapses at the same constant
rate. This model does not account for the variability in hypnozoites across bites (White
et al. 2018).

Mehra et al. have recently characterised the long-latency hypnozoite dynamicsmod-
elled in White et al. (2014) in analytical form (Mehra et al. 2020) with the relaxation
of the collective dormancy (hypnozoites established by each mosquito bite progress
through the dormancy states as a batch) assumption in White et al. (2014) as the col-
lective dormancy is biologically questionable. Later work by Mehra and colleagues
embedded the activation-clearancemodel governing a single hypnozoite in an epidemi-
ological framework. This framework accounts for continual mosquito bites, where
each bite can simultaneously establish multiple hypnozoites (Mehra et al. 2021), and
the effect of antimalarial treatment (under a mass drug administration regime) (Mehra
et al. 2022). The analytical results from the within-host level can be readily embedded
in a population-level model. Embedding a within-host model for hypnozoite dynamics
within a simple population-level model allows us to capture, in a single mathemat-
ical framework, the complicated P. vivax dynamics associated with the hypnozoite
reservoir.

In this paper, we embed the within-host model of Mehra et al. (2022) in a simple
population-level model for P. vivax. By keeping the population-level model simple
while capturing the complicated hypnozoite within-host dynamics, an extension of
the model to include other important factors will be feasible. The paper is structured
as follows. Section 2 describes the development of the multiscale model. In Sect. 3,
we provide numerical results of the multiscale model before presenting our discussion
in Sect. 4.

2 Multiscale Model Development

In this section, we develop a multiscale mathematical model for P. vivax transmission.
In order to enable later extensions to the model, we aim to keep the population-
level model as simple as possible. To capture the complex hypnozoite dynamics (as
depicted in Fig. 1) at the population level, we embed a within-host model into our
population-level model. This is achieved by deriving time-dependent model parame-
ters that are functions of the history of the force of reinfection, which are then fed into
the population-level model (for the human species). See Fig. 2 for an overview of the
multiscale model.

2.1 Population-Level Model

The human population model consists of three compartments; S, I and L represent the
fraction of the human population that are susceptible with no hypnozoites, blood-stage
infected and liver-stage infected, respectively. Here we use “liver-stage” infection to
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Fig. 2 Schematic illustration of the multiscale model. S, I and L represent the fraction of the human popu-
lation that are susceptible with no hypnozoites, blood-stage infected and liver-stage infected, respectively.
Individuals in the I compartment may or may not carry hypnozoites. The time-dependent parameters p(t),
k1(t), and kT (t) (the probability that blood-stage infected individuals have no hypnozoites, the probability
that liver-stage infected individuals have 1 hypnozoite and the expected size of the hypnozoite reservoir in
liver-stage infected individuals, respectively) are derived from the within-host model and take into account
the history of the force of reinfection, λ(τ),where τ is the mosquito bite time and τ ∈ (0, t]. These together
make the multiscale model a system of integro-differential equations. Sm , Em , and Im are the fraction of
susceptible, exposed, and infectious mosquitoes, respectively. Other parameters are defined in Table 1

refer to individuals with hypnozoites in their liver but without a blood-stage infection.
Individuals in the I compartment may or may not carry hypnozoites while having a
blood-stage infection (see Fig. 1). For the mosquito population, we define Sm, Em and
Im to be the fraction of susceptible, exposed and infectious mosquitoes, respectively;
we note that more complicated mosquito dynamics could readily be included in the
model. However, for simplicity we adopt only three subpopulations.

Figure 2 is a schematic diagram of the model for the human and mosquito popu-
lations and all model parameters are defined in Table 1. Individuals in both S and L
compartments develop new primary blood-stage infections at rate λ(t) = mabIm(t),
where λ is force of reinfection, defined to be the per-capita infective bite rate from
the perspective of each human, m is the number of mosquitoes per human, a is the
mosquito biting rate, and b is the transmission probability from mosquito to human.
Blood-stage infections are cleared at rate γ .We define p(t) as the probability of blood-
stage infected individuals having no hypnozoites in their liver. Therefore, individuals
that clear their infection return to S with probability p(t) and with probability 1− p(t)
move to L .

From the L compartment, individuals move to the susceptible compartment if they
have only one hypnozoite remaining (with probability k1(t)) and that hypnozoite dies
(each hypnozoite dies independently at a constant rate μ). Hence we define ki (t) as
the probability that a liver-stage infected individual has i hypnozoites within their
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liver. Individuals in the L compartment will have a new blood-stage infection when
a hypnozoite activates (each hypnozoite activates independently at a constant rate α).
We define the average number of hypnozoites for liver-stage infected individuals as
kT (t) = ∑∞

i=1 iki (t) so that αkT (t) is the total relapse rate.
Susceptible mosquitoes become exposed at rate acI if they take a blood meal from

an infected individual, where a is themosquito bite rate, c is the transmission probabil-
ity from human tomosquitoes, and I is the fraction of blood-stage infected individuals.
After the incubation period, which has expected duration of 1/n, mosquitoes become
infectious and can transmit parasites to humans. We assume equal mosquito birth and
death rate of g.

Using the above assumptions, we write the population-level model equations as:

dS

dt
= − λS + μk1(t)L + p(t)γ I , (1)

dI

dt
=λ(S + L) + αkT (t)L − γ I , (2)

dL

dt
= − λL − μk1(t)L − αkT (t)L + (1 − p(t))γ I , (3)

dSm
dt

=g − acI Sm − gSm, (4)

dEm

dt
=acI Sm − (g + n) Em, (5)

dIm
dt

=nEm − gIm, (6)

where λ = mabIm, and kT (t) = ∑∞
i=1 iki (t). The time-dependent parameters p(t),

k1(t), and kT (t) are derived from the within-host model and take into account the his-
tory of the force of reinfection, λ(τ), where τ is the mosquito bite time and τ ∈ (0, t],
making the multiscale model a system of integro-differential equations. Expressions
for these parameters will be presented in Sect. 2.2 and are based on the work of Mehra
et al. (2022).

2.2 Within-Host Model

Here we consider a special case of the within-host framework of Mehra et al. (2022)
which is for short-latency (hypnozoites can immediately activate after establishment
without going through a latency phase) strains and in the absence of treatment. The
within-host model of Mehra et al. (2022) first considers the dynamics of a single hyp-
nozoite and then allows the establishment of multiple hypnozoites via each infectious
bite, with mosquito bites modelled to follow a Poisson process. Each hypnozoite can
undergo activation at a constant rate α (which immediately triggers a blood-stage
infection that is cleared at a constant rate γ ) or death at a constant rate μ, due to the
death of the host liver cell. Let H , A, C , and D represent the state of establishment,
activation, clearance and death for a single hypnozoite, respectively. Therefore, each
hypnozoite that is established (H) has two possible final states: death before activation
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Fig. 3 Schematic illustration of within-host model for a single hypnozoite where H , A, C , and D represent
states of establishment, activation, clearance and death of the hypnozoite, respectively. Parameters α, μ

and γ have the same meaning as in population-level model (Table 1). Figure adapted from Mehra et al.
(2022) to depict the short-latency phase

(D); or clearance (C) that follows activation (A) that gives a blood-stage infection
(see Fig. 3). Similar within-host dynamics were first introduced byWhite et al. (2014)
without the clearance of relapses resulting from hypnozoite activation. From Equa-
tions (13)–(16) in Mehra et al. (2022), the probability mass function (PMF) of the
states, (pH (t), pA(t), pC (t), pD(t)), for a hypnozoite established at time t = 0 is
given by

pH (t) =e−(α+μ)t , (7)

pA(t) = α

(α + μ) − γ

(
e−γ t − e−(α+μ)t

)
, (8)

pC (t) = α

α + μ

(
1 − e−(α+μ)t

)
− α

(α + μ) − γ

(
e−γ t − e−(α+μ)t

)
, (9)

pD(t) = μ

α + μ

(
1 − e−(α+μ)t

)
, (10)

where p f (t) represents the probability of the hypnozoite being in state f ∈
{H , A,C, D} at time t .

The framework to account for continuous mosquito inoculation was introduced by
Mehra et al. (2022), and assumes

• dynamics of hypnozoites are independent and identically distributed, with PMF
given by Equations (7)–(10);

• infective mosquito bites follow a non-homogeneous Poisson process with time-
dependent rate, or force of reinfection, λ(τ). The mean number of infective bites
in the interval (0, t], q(t), is given by

q(t) =
∫ t

0
λ(τ)dτ ; (11)

• the number of hypnozoites established by each mosquito bite is geometrically
distributed (as in White et al. (2014)) with mean ν;

• each infectious bite causes a primary infection which is cleared at rate γ ;
• hypnozoites die only due to the death of the host liver cell at rate μ (e.g. there is
no administration of anti-hypnozoital drugs); and
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• individuals are first exposed to infective mosquito bites at time t = 0.

Let N f (t) denote the number of hypnozoites in states f ∈ {H , A,C, D} := F at time
t and NP (t), NPC(t) denote the number of ongoing and cleared primary infections,
respectively, at time t . Defining the state space F ′ := {H , A,C, D, P, PC}, the
probability generating function (PGF) for

N(t) = (NH (t), NA(t), NC (t), ND(t), NP (t), NPC )

with N(0) = 0 can be written following from Equation (30) in Mehra et al. (2022)
(short-latency case (k = 0) with probability of getting blood-stage infection after an
infectious bite, pprim = 1):

G(zH , zA, zC , zD, zP , zPC ) := E

⎡

⎣
∏

f ∈F ′
z
N f (t)
f

⎤

⎦

= exp

⎧
⎨

⎩
−q(t) +

∫ t

0

λ(τ)
(
zPe−γ (t−τ) + (1 − e−γ (t−τ))zPC

)

1 + ν
(
1 − ∑

f ∈F z f .p f (t − τ)
) dτ

⎫
⎬

⎭
. (12)

We now use the PGF in Eq. (12) to derive expressions for the population-level
parameters p(t), k1(t), and kT (t).

2.2.1 Probability Blood-Stage Infected Individual has No Hypnozoites: p(t)

In the population-level model (Eqs. (1)–(6)), p(t) is defined as the probability that an
individual has an empty hypnozoite reservoir conditional on an ongoing blood-stage
infection (i.e. primary infection or relapse). That is,

p(t) = P
(
NH (t) = 0|NA(t) > 0 ∪ NP (t) > 0

)

= P(NH (t) = 0) − P(NH (t) = NA(t) = NP (t) = 0)

1 − P(NA(t) = NP (t) = 0)
. (13)

We can use Eq. (12) to determine

P(NH (t) = 0)

= Probability that individual has an empty hypnozoite reservoir at time t

= G(zH = 0, zA = 1, zC = 1, zD = 1, zP = 1, zPC = 1)

= exp

{

−q(t) +
∫ t

0

λ(τ)

1 + ν pH (t − τ)
dτ

}

, (14)

P
(
NA(t) = NP (t) = 0

)

= Probability that individual is neither experiencing a relapse nor a

primary infection at time t (i.e. no blood-stage infection)

= G(zH = 1, zA = 0, zC = 1, zD = 1, zP = 0, zPC = 1)
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= exp

{

−q(t) +
∫ t

0

λ(τ)(1 − e−γ (t−τ))

1 + ν pA(t − τ)
dτ

}

, (15)

and

P
(
NH (t) = NA(t) = NP (t) = 0

)

= Probability that individual is neither experiencing an infection

nor has any hypnozoites in their liver at time t

= G(zH = 0, zA = 0, zC = 1, zD = 1, zP = 0, zPC = 1)

= exp

{

−q(t) +
∫ t

0

λ(τ)(1 − e−γ (t−τ))

1 + ν(pH (t − τ) + pA(t − τ))
dτ

}

. (16)

Note that Eqs. (14)–(16) involve integration over the entire history of the force of
reinfection, λ(τ) for τ ∈ (0, t], and hence in general p(t) needs to be estimated using
numerical integration.

2.2.2 Probability Liver-Stage Infected Individual has 1 Hypnozoite in Liver: k1(t)

The probability that a liver-stage infected individual has 1 hypnozoite in the liver at
time t (that is, the conditional probability for NH (t) given an individual does not have
an ongoing blood-stage infection at time t) is

k1(t) =P(NH (t) = 1|NA(t) = NP (t) = 0, NH (t) > 0)

= P(NH (t) = 1|NA(t) = NP (t) = 0)

1 − P(NH (t) = 0|NA(t) = NP (t) = 0)
.

= exp {g(0, t) − g(1, t)}
1 − P(NH (t) = 0|NA(t) = NP (t) = 0)

×
∫ t

0

λ(τ)(1 − e−r(t−τ))ν pH (t − τ)

[1 + ν
(
pH (t − τ) + pA(t − τ)

)]2 dτ, (17)

where the expression for P(NH (t) = 1|NA(t) = Np(t) = 0) follows from Equation
(78) in Mehra et al. (2022) (without treatment) and

exp {g(0, t) − g(1, t)} = P
(
NH (t) = NA(t) = NP (t) = 0

)

P
(
NA(t) = NP (t) = 0

) .

Also, P(NH (t) = 0|NA(t) = Np(t) = 0) is obtained by dividing Eq. (16) by Eq.
(15).
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2.2.3 Average Number Hypnozoites Within Liver-Stage Infected Individuals: kT (t)

The average number of hypnozoites within liver-stage infected individuals, kT (t), is
defined by:

kT (t) =
∞∑

i=1

iki (t) =
(

E [NH (t)|NA(t) = NP (t) = 0]

1 − P(NH (t) = 0|NA(t) = NP (t) = 0)

)
,

where E [NH (t)|NA(t) = NP (t) = 0] is the expected size of the hypnozoite reservoir
in an uninfected (no blood-stage infection) individual and given by Equation (77)
(without treatment and with pprim = 1) in Mehra et al. (2022). Therefore,

kT (t) = 1

1 − P(NH (t) = 0|NA(t) = NP (t) = 0)

×
∫ t

0

(
νλ(τ)

(
1 − e−r(t−τ)

)
pH (t − τ)

[1 + ν pA(t − τ)]2
)

dτ. (18)

We remark that Eq. (18) allows us to consider a hypnozoite reservoir of infinite size;
we do not need to impose a maximum number of hypnozoites, Lmax (see Sect. 1). In
this way, our model has an advantage over other approaches that need to truncate the
size of the reservoir for practical/numerical purposes.

2.3 Numerical Solution of Multiscale Model

To obtain the numerical solution of the model (Eqs. (1)–(6)) over time t , we need to
evaluate p(t), k1(t) and kT (t) defined in Eqs. (13), (17) and (18), respectively, from the
within-host model that depends on the history of the force of reinfection λ(τ), where
τ ∈ (0, t]. Since evaluating p(t), k1(t), and kT (t) involves numerical integration,
we implement our own integro-differential equation (IDE) solver, see Algorithm 1.
We used a 4th-order Runge–Kutta method to numerically solve the ODEs and the
trapezoidal method to evaluate the numerical integration for the parameters in the
within-host model (Eqs. (13), (17) and (18)). The within-host model is coupled to
the population-level model at each time, t , when we evaluate p(t), k1(t), and kT (t)
from the within-host model based on the history of reinfection λ(τ), τ ∈ (0, t], to
obtain the numerical solution for the population-level model at time t + �t with
time increment �t . Unless otherwise stated, we have imposed initial conditions of
S(0) = 1, I (0) = 0, L(0) = 0, Sm(0) = 0.95, Em(0) = 0, and Im(0) = 0.05.
Note that, these initial conditions were chosen for illustrative purposes; the transient
dynamics of the model will be different for another choice of initial conditions.
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Algorithm 1 Algorithm for obtaining numerical solution for multiscale model.
1: Define parameters, initial conditions, tend and �t . Set t = 0.
2: while t < tend do
3: Obtain p(t), k1(t) and kT (t) by trapezoidal rule applied to Equations (13), (17), and (18) and using

the history of force of reinfection λ(τ), τ ∈ (0, t].
4: Use p(t), k1(t) and kT (t) to update S(t + �t), I (t + �t), L(t + �t), Sm (t + �t), Em (t + �t),

and Im (t + �t) using 4th -order Runge–Kutta method.
5: t = t + �t

3 Results

Using our multiscale model derived in Section 2, we can explore some important
features of P. vivax transmission dynamics. For example, we can gain insight into
disease burden and the hypnozoite reservoir size at time t . We can also experiment
with different parameters to see their effect on disease transmission. Figure 4 shows
results from thewithin-hostmodel for a constant force of reinfection. Figure 4Adepicts
the PMF for a single hypnozoite over time (Eqs. (7)–(10)) being in the establishment,
activation, death and clearance states over time, t . The probability of hypnozoite
establishment (blue line) decreases fromunity (at t = 0) over timewhile theprobability
of death (yellow line) and clearance (purple line) both increase to nonzero steady
states since these are the absorbing states of the system. The probability of hypnozoite
activation (red line) rises after establishment and peaks around t ≈ 100 days. Figure
4B depicts p(t), k1(t), and kT (t) over time. For our choice of parameter values, the
probability of having no hypnozoites in the liver given a blood-stage infection, p(t),

Fig. 4 (A) PMF for a single hypnozoite with
(
pH (0), pA(0), pD(0), pC (0)

) = (1, 0, 0, 0) using Eqs. (7)–
(10) where pH (t), pA(t), pD(t), pC (t) represents probability of hypnozoite establishment, activation,
death, and clearance at time t , respectively. (B) Probability of no hypnozoites given blood-stage infection,
p(t) using Eq. (13), probability of 1 hypnozoite given no infection, k1(t) using Eq. (17), and kT (t) using
Eq. (18). Note the different scale for kT . Here we have used a constant force of reinfection of λ = 0.005
and other parameters are as per Table 1 (Color figure online)
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Fig. 5 Comparison of results from ourmultiscale model with those from the 2
(
Lmax+1

)
ODEmodel under

constant force of reinfection, λ. Subplots (A) and (C) illustrate the dynamics based on low transmission
and high transmission, respectively. Subplots (B) and (D) compare the distribution of hypnozoites between
our multiscale model (blue) and model containing 2

(
Lmax + 1

)
ODEs (red). In (A) and (B), transmission

is low with parameters λ = 0.005, γ = 1/10 day−1, α = 1/1000 day−1, μ = 1/10 day−1 while in (C)
and (D), transmission is high with λ = 0.03 (Color figure online)

decreases over time while the probability of having 1 hypnozoite given a liver-stage
infection, k1(t), increases with time. Meanwhile, the average number of hypnozoites
in the liver given a liver-stage infection, kT (t) decreases over time.

In Appendix B.1, we show analytically that our multiscale model, that consists of 3
population-level equations and an embedded within-host submodel, exhibits the same
steady state hypnozoite distribution for constant force of reinfection, λ, as the (count-
ably infinite) ODE model structure in Fig. 1 and adopted in White et al. (2014). We
compare the transient dynamics of our multiscale model to the truncated 2

(
Lmax + 1

)

ODE model under two scenarios of constant force of reinfection: (i) low transmission
with λ = 0.005 in Fig. 5A and B and (ii) high transmission with λ = 0.03 in Fig.
5C and D. Consistent with the analysis presented in Appendix B.1 (see Eqs. (B-20)
and (B-25), the steady-state hypnozoite distribution of the two models (regardless of
the constant value used for the force of reinfection) is identical (Fig. 5B and D). Fig-
ure 5A and C show the fraction blood-stage and liver-stage infected from both models
when the force of reinfection is low and high, respectively. Blood-stage and liver-stage
infected individuals under the 2

(
Lmax + 1

)
ODE model is obtained by

∑Lmax
i=0 Ii and

∑Lmax
i=1 Si , respectively. For low force of reinfection, the transmission dynamics for the

two models agree very closely (Fig. 5A) while for high force of reinfection, the tran-
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Fig. 6 Results from multiscale model for time varying force of reinfection, λ(t). Parameters are as per
Table 1. Subplot A illustrates the fraction of blood-stage (I ) and liver-stage (L) infected individuals over
time. Subplot B illustrates the hypnozoite distribution in population at steady state (that is, after 3500 days)
obtained as per Equations (74)–(75) (without treatment) in Mehra et al. (2022). Subplot C illustrates the
hypnozoite distribution within liver-stage infected (L) individuals at steady state (after 3500 days) obtained
as per Equations (78)–(79) (without treatment) in Mehra et al. (2022). Finally, Subplot D illustrates the
hypnozoite distribution in blood-stage infected (I ) individuals at steady state (after 3500 days) obtained as
per Equation (80) in Mehra et al. (2022)

sient dynamics agree closely, but the steady states differ (Fig. 5C). The discrepancy
between themodels is due to a difference in how super-infection is accounted for at the
population level while the underlying within-host model allows for super-infection;
for simplicity we have not allowed for individuals to have overlapping infections (see
AppendixA). Evenwhen the force of reinfection is time-dependent,λ(t) = mabIm(t),
the hypnozoite distribution at steady state from both models is still very similar (see
Fig. 9 in Appendix B.3).

Figure 6 shows the numerical solution of ourmultiscalemodel, for parameter values
given in Table 1. The fraction of individuals that are blood-stage infected (I ) and liver-
stage infected (L) both increase over time before reaching a steady state (Fig. 6A).
Given the choice of parameters, the mode of the hypnozoite distribution is 0 in the
long run (Fig. 6B). Figure 6C and D shows the hypnozoite distribution at steady state
within liver-stage and blood-stage infected individuals, respectively. At steady state
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Fig. 7 Sensitivity analysis showing the steady state fraction (after running numerical solution for sufficiently
long) of blood-stage (I ) and liver-stage (L) infected individuals when model parameters are varied for A
mosquito per human,m;B average hypnozoite per bite, ν;C hypnozoite activation rate, α; andD hypnozoite
death rate, μ. Vertical lines indicate the parameter value used to generate the results presented in Fig. 6

the mode of the hypnozoite distribution for liver-stage infected individuals is 0 while
blood-stage infected individuals have a mode of 3 hypnozoites in their liver. The peak
number of hypnozoites overall and conditional on infection status (blood-stage or
liver-stage) varies with the choice of parameters.

We performed a sensitivity analysis for the model parameters m: number of
mosquitoes per human, ν: average number of hypnozoites per bite, α: hypnozoite
activation rate, and μ: hypnozoite death rate (Fig. 7) since these parameters are strong
drivers of disease transmission in the multiscale model. Figure 7A shows the frac-
tion of blood-stage (I ) and liver-stage infected (L) individuals at steady state as the
number of mosquitoes per human (m) varies. When the number of mosquitoes per
human is low, there are not enough mosquitoes to sustain disease transmission (e.g.
I = L = 0). As the number of mosquitoes increases past some threshold (depends on
choice of other model parameters), a nonzero and increasing proportion of individuals
are blood-stage and liver-stage infected at steady state; the blood-stage infected frac-
tion increases monotonically (saturates to unity with increasingm) with the number of
mosquitoes since the force of reinfection (that is, the probability of infection per unit
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time) increases with m (λ = mabIm). However, the fraction of the population that are
liver-stage diminishes for extreme values ofm as individuals are increasingly likely to
have a blood-stage infection. Note that blood-stage individuals may or may not have
hypnozoites in the liver. Figure 7B shows the fraction of blood-stage and liver-stage
infected individuals at steady state as the average number of hypnozoites conferred
from a single mosquito bite (ν) varies. When ν = 0, no hypnozoites establish in the
liver and, as a result, there are no liver-stage infections. For our choice of baseline
parameter values (with ν = 0) there are insufficient infections to sustain transmission
and the blood-stage fraction also approaches zero (disease free equilibrium). The same
behaviour is observed for ν less than some critical threshold. As the average number of
hypnozoites per bite passes the critical threshold, the infected fractions (blood-stage
and liver-stage) at steady state increase with increasing number of hypnozoites per bite
as disease transmission is sustained. As ν increases further, the blood-stage fraction
continues to increase as relapses are increasingly common. However, the liver-stage
fraction at steady state decreases with increasing ν as individuals are more likely to
have a blood-stage infection.

Figure 7C depicts the fraction of blood-stage and liver-stage infected individuals at
steady state as the hypnozoite activation rate (α) varies. When α = 0, the liver-stage
infected fraction is zero since there are no relapses, only primary infections. The blood-
stage infected fraction is also zero for our choice of baseline parameters with α = 0
(the system goes to the disease free equilibrium). As the activation rate increases,
the fraction of liver-stage infected individuals rises sharply but this trend cannot be
sustained as increasing the hypnozoite activation rate further leads to increased blood-
stage infections (converted from liver-stage infections due to hypnozoite activation).
For large values of the hypnozoite activation rate, both blood-stage and liver-stage
infected fractions will decrease with higher activation rate α since higher activation
rates yield overlapping relapses. The batch of hypnozoites established by a bite will
activate shortly after inoculation, giving rise to relapses that overlap with the primary
infection with super-infection not being taken into account in our population-level
model. As α → ∞, for our choice of baseline parameters, both blood-stage and
liver-stage fractions tend to zero; hypnozoites activate immediately after establish-
ment and hence coincide with the primary infection which is the same as if only
considering primary infections. Figure 7D shows the fraction of blood-stage and liver-
stage infected individuals at steady state as the hypnozoite death rate (μ) varies. When
μ = 0, hypnozoites can only activate and hence the fraction of blood-stage infected
individuals is maximal. As μ increases, the fraction of blood-stage infected indi-
viduals decreases; there are fewer blood-stage relapses since hypnozoites are more
likely to die prior to activation. For our choice of baseline parameters (see Table 1),
the fraction of liver-stage infected individuals increases when μ is increased from
small values. As the hypnozoite death rate is increased further, the liver-stage infected
fraction decreases with increasing μ because the hypnozoite reservoir diminishes;
hypnozoites die quickly and individuals will become susceptible.

We can use the results presented in Fig. 7 to provide epidemiological insights into
the benefit of P. vivax control measures that effect the four parameters varied in the
sensitivity analysis. For example, the use of insecticide-treated nets (ITNs), indoor
residual spraying (IRS), and long-lasting insecticide-treated nets (LLINs) can reduce
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the number ofmosquitoes (Bowen 2013;Hawley et al. 2003;Gari and Lindtjørn 2018).
Our sensitivity analysis predicts that, under our multiscale model, if we can reduce the
force of reinfection (λ(t) = mabIm(t)) enough, such as by reducing the number of
mosquitoes per human (m; Fig. 7A), we can eliminate P. vivax disease transmission.

4 Discussion

P. vivax transmission is known to be largely driven by the hypnozoite reservoir (Wells
et al. 2010). Hence, it is important to account for the complexity of the size and
variation in the hypnozoite distribution in population-level mathematical models of the
disease.Despite this,most existing transmissionmodels forP. vivax (Águas et al. 2008;
Ishikawa et al. 2003; Roy et al. 2013; Silal et al. 2019) over-simplify the hypnozoite
reservoir into a single additional compartment. Exceptions to this is the work byWhite
et al. (2018, 2014) which either uses a large number of compartments to capture the
complexity of the size and variation in the hypnozoite distribution or adopts an agent-
based approach.While these are both validmodelling approaches, the resultingmodels
are already considerably detailed (e.g. 2

(
Lmax + 1

)
ODEs), meaning that extension

to include other important factors may be difficult.
In this paper, we have embedded a within-host model (Mehra et al. 2022) in a

population-level model for P. vivax. By keeping the population-level model simple,
while capturing the complicated hypnozoite within-host dynamics, extension of the
model to include other important factors will be feasible. For example,P. vivax dynam-
ics are complicated by disease transmission as it can be dependent on age in some
cases; studies in PNG have shown higher prevalence of P. vivax in children aged
between 2 and 5 years (Genton et al. 2008). Furthermore, anti-hypnozoital drugs (e.g.
primaquine and tafenoquine) are not recommended for pregnant and/or lactating peo-
ple, and those with G6PD deficiency (Howes et al. 2012;Watson et al. 2018), meaning
that each of them are further potential factors to consider.

We use differential equations at the population level that govern the proportion
of the population with different infection status (susceptible, blood-stage infection,
liver-stage infection). These differential equations depend on three time-dependent
parameters, namely, the probability that a blood-stage infected individual has no hyp-
nozoites within their liver, p(t); the probability that a liver-stage infected individual
has 1 hypnozoite within their liver, k1(t); and the average number of hypnozoites for
liver-stage infected individuals, kT (t). Each of these parameters was derived as a func-
tion of the history of the force of reinfection, based on work of Mehra et al. (2022), in
the form of a definite integral. The resulting multiscale model was therefore a system
of IDEs that was solved numerically (Sect. 2.3).

Our multiscale model was used to gain insights into important features such as
disease dynamics and hypnozoite distribution(s) within blood-stage and liver-stage
infected individuals (Fig. 6). Furthermore, our sensitivity analysis revealed that if we
can reduce the force of reinfection by using ITNs, IRS and/or LLINs to reduce the
number of mosquitoes per human, we can eliminate P. vivax disease transmission
(Fig. 7).
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Importantly, we have been able to show analytically that our multiscale model
exhibits an identical steady-state hypnozoite distribution for constant force of rein-
fection, λ, as the ODE model structure shown in Fig. 1 and presented in White et al.
(2014); infection dynamics at the population level are indistinguishable for a low
transmission setting but appreciably different for a high transmission context (Fig. 5)
due to differences in how super-infection is accounted for at the population level.
Interestingly, even under time-dependent force of reinfection, the hypnozoite distri-
bution at steady state from both models is still similar and the prevalence of infection
is comparable under certain parameter regimes (Fig. 9). Our model has the advantage
that the population-level component is considerably simpler than the 2

(
Lmax + 1

)

ODEs of White et al. (2014) and we also avoid the need to artificially truncate at Lmax
hypnozoites.

The framework that we have introduced here can be extended in several ways.
Firstly, it is well-positioned for extension to include factors such as age, pregnancy and
G6PD deficiency status. Furthermore, our multiscale model does not consider impor-
tant features such as immunity, heterogeneity in bite exposure, and seasonality; which
are all avenues for future work. It is still not clear exactly what causes hypnozoites
to activate (Mueller et al. 2009) although there are hypotheses around recognition
of a mosquito protein (Hulden and Hulden 2011) and febrile illness (Imwong et al.
2007; White et al. 2014), both of which our model does not consider. We also ignored
disease-induced death in our model as a significant amount of malaria-related death
is due to P. falciparum (WHO 2020) but this will be included in future iterations of
the model.

In order to progress towards elimination of P. vivax, it will be vitally important to
target the hypnozoite reservoir, as around 80% of infections are attributed to relapses
from activating hypnozoites (Robinson et al. 2015). Since our multiscale model can
capture the effect of the hypnozoite reservoir in disease transmission, it provides a
platform to study P. vivax disease elimination. The model provides a baseline epi-
demiological framework to examine disease transmission and elimination strategies
including mosquito control (e.g. ITNs, IRS and LLINs). With appropriate extensions,
for example to incorporate G6PD structure, our model can help in evaluating P. vivax
anti-hypnozoital drugs administered, for example, under radical cure regimens.
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Fig. 8 Schematic diagram of
White et al. (2014) model,
reproduced with permission.
Here Si represents the fraction
of the human population that are
susceptible with i hypnozoites
and Ii represents the fraction of
the human population that have
a blood-stage infection with i
hypnozoites. Parameters are as
in Table 1

material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A Super-Infection

Super-infection in malaria occurs when an individual has more than one blood-stage
infection at a given time (Smith et al. 2010). In reference to P. vivax, individuals can
have hypnozoites in the liver even after recovery of their blood-stage infection. So,
another pathway to super-infection for P. vivax is when individuals with a blood-
stage infection undergo another infection due to relapsing hypnozoites (Portugal et al.
2011; Smith et al. 2010). The modelling assumption of super-infection, which was
made by Macdonald (Macdonald 1950), considers that individuals can start further
infections while having an existing infection and that one infection does not change
the infectious period of another. For example, in White et al. (2014) (Fig. 8), super-
infection is modelled through a recovery rate given by

ρi = λ + iα

exp( λ+iα
γ

) − 1
, (A-19)

where i is the number of hypnozoites, λ is the force of reinfection, α is the hypnozoite
activation rate, and γ is the recovery rate. Without super-infection, the recovery rate
is just ρi = γ .
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Appendix B Comparison withWhite et al. (2014) Model

To the best of our knowledge, the only population-level P. vivax transmission models
that have considered hypnozoite variation are developed by White et al. through a
compartment modelling approach (White et al. 2014) (see Figure 8) or an agent-based
approach (White et al. 2018). The compartment-based approach (White et al. 2014)
allows super-infection that delays the time to recovery from infection (Eq. (A-19))
and considers an infinite number of hypnozoites (truncated at a maximum of Lmax

hypnozoites for numerical purposes). Note that as described in Sect. 2.2.3, our model
does not require this artificial truncation.

Appendix B.1 PGF for Steady-State Hypnozoite Distribution Under Constant �

Appendix B.1.1 Our Multiscale Model

From Equation (37) in Mehra et al. (2022), it follows that the PGF for the size of the
hypnozoite reservoir at steady state (N∗

H ) under constant force of reinfection, λ, for
our multiscale model is the PGF of the negative binomial distribution

N∗
B ∼ NegativeBinomial

(
ν

1 + ν
,

λ

α + μ

)

with PMF

P(N∗
H = i) =

	
(

λ
α+μ

+ i
)

i ! · 	
(

λ
α+μ

)
νi

(1 + ν)
i+ λ

α+μ

, (B-20)

where 	 is the Gamma function.

Appendix B.1.2 White et al. (2014) Model

The system of ODEs for the White et al. (2014) model is given by

dSi
dt

= − λSi − i(α + μ)Si + (i + 1)μSi+1 + ρi Ii i ∈ Z≥0, (B-21)

d Ii
dt

= − λIi +
i∑

j=0

λ j→i
(
S j + I j

) − i(α + μ)Ii + (i + 1)(α + μ)Ii+1

+ (i + 1)αSi+1 − ρi Ii i ∈ Z≥0, (B-22)

where Si and Ii represents the fraction of susceptible and infected individuals with i
number of hypnozoites, respectively, and ρi is given in Eq. (A-19) and

λ j→i =λ

(
ν

ν + 1

)i− j 1

ν + 1
.
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Assuming steady-state transmission, that is λ is constant over time, let GS and GI

be the PGFs for state S and I , respectively; namely:

GS(Z , t) =
∞∑

i=0

Si Z
i , Z ∈ [0, 1],

GI (Z , t) =
∞∑

i=0

Ii Z
i , Z ∈ [0, 1].

Now multiplying Eq. (B-21) by Zi and taking the summation from 0 to ∞, we get

∂GS

∂t
=

∞∑

i=0

d

dt
(Si Z

i ) = −λGS − (α + μ)Z
∂GS

∂Z
+ μ

∂GS

∂Z
+

∞∑

i=0

ρi Ii Z
i .

Similarly,

∂GI

∂t
=

∞∑

i=0

d

dt
(Ii Z

i ) = −λGI + λ

1 + ν(1 − Z)

(
GS + GI

)
− (α + μ)Z

∂GI

∂Z

+ (α + μ)
∂GI

∂Z
+ α

∂GS

∂Z
−

∞∑

i=0

ρi Ii Z
i .

At steady state (
∂GS
∂t = ∂GI

∂t = 0) we have

((α + μ)Z − μ)
dGS

dZ
= −λGS +

∞∑

i=0

ρi Ii Z
i , (B-23)

(α + μ)(Z − 1)
dGI

dZ
− α

dGS

dZ
= −λGI −

∞∑

i=0

ρi Ii Z
i + λ

1 + ν(1 − Z)

(
GS + GI

)
.

(B-24)

Let Mi = Si + Ii and GM = GS + GI . Now adding Eqs. (B-23) and (B-24) gives

(α + μ)Z
dGM

dZ
− (α + μ)

dGM

dZ
= −λGM + λ

1 + ν(1 − Z)
GM .

Now solve the ODE with GM (1, 0) = 1 to give

GM = (1 + ν(1 − Z))−λ/(α+μ) .

Hence, the hypnozoite distribution at steady state from the White et al. model is

P(M = i) = Gi
M (0)

i ! =
(

ν

1 + ν

)i+ λ
α+μ

(
ν

−λ
α+μ

i !

)
	

(
λ

α+μ
+ i

)

	
(

λ
α+μ

) . (B-25)
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From Eqs. (B-20) and (B-25) we can see that the distribution of hypnozoites at steady
state from both models is the same under constant λ .

Appendix B.2 Comparison Under Time-Dependent Force of Reinfection, �

Figure 9 shows a comparison of results from ourmultiscalemodel and the 2
(
Lmax+

1
)
ODE model of White et al. (2014). Figure 9A shows the fraction of blood-stage

and liver-stage infected individuals from both models. Blood-stage and liver-stage
infected individuals from the 2

(
Lmax + 1

)
ODE model is obtained by

∑Lmax
i=0 Ii and

∑Lmax
i=1 Si , respectively. Both models suggest that individuals are most likely to have 0

(mode is 0) hypnozoites within their liver (Fig. 9B). In addition, both models suggest
that blood-stage infected individuals are most likely to have 3 (mode is 3) hypnozoites

Fig. 9 Comparison of results from our multiscale model and the 2
(
Lmax + 1

)
ODE model under time

varying force of reinfection, λ(t). Subplot A shows the fractions of blood-stage and liver-stage infected
individuals over time. Blood-stage and liver-stage infected individuals for the 2

(
Lmax + 1

)
ODE model

is obtained by
∑Lmax

i=0 Ii and
∑Lmax

i=1 Si , respectively. Subplot B depicts the hypnozoite distribution in
population at steady state (that is, after 3500 days) obtained as per Equations (74)–(75) (without treatment)
in Mehra et al. (2022). Subplot C shows the Hypnozoite distribution within liver-stage infected individuals
at steady state (after 3500 days) obtained as per Equations (78)–(79) (without treatment) in Mehra et al.
(2022). Subplot D shows the Hypnozoite distribution in blood-stage infected (I ) individuals at steady state
(after 3500 days) obtained as per Equation (80) in Mehra et al. (2022). In Subplot B, C, and D, the bars are
for consecutive intervals of 3 hypnozoites and the dashed lines show the whole distribution. All parameters
are as per Table 1
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within their liver (Fig. 9D) although our multiscale model suggests a slightly higher
probability.
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