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Abstract
Empirical essays of fitness landscapes suggest that they may be rugged, that is having
multiple fitness peaks. Such fitness landscapes, those that have multiple peaks, neces-
sarily have special local structures, called reciprocal sign epistasis (Poelwijk et al. in
J Theor Biol 272:141–144, 2011). Here, we investigate the quantitative relationship
between the number of fitness peaks and the number of reciprocal sign epistatic inter-
actions. Previously, it has been shown (Poelwijk et al. in J Theor Biol 272:141–144,
2011) that pairwise reciprocal sign epistasis is a necessary but not sufficient condition
for the existence of multiple peaks. Applying discrete Morse theory, which to our
knowledge has never been used in this context, we extend this result by giving the
minimal number of reciprocal sign epistatic interactions required to create a given
number of peaks

Keywords Fitness landscapes · Multiple peaks · Morse theory · Reciprocal sign
epistasis

1 Introduction

The fitness landscape is the relationship between genotypes and their fitness.
Availability of high throughput methods and next-generation sequencing started to
experimentally characterize aspects of different fitness landscapes. Due to the enor-
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(a) Sign epistasis (b) Reciprocal sign epistasis

Fig. 1 Types of sign epistasis. Vertices represent genotypes (the sequence is outside the vertex and the
fitness inside); edges are present between sequences at mutation distance one; and filled faces represent
sign epistatic interactions

mity of the underlying genotype space (Maynard Smith 1970; Wright 1932), the
experimental approaches are limited to assaying the fitness of: (a) closely related
genotypes (Melamed et al. 2013; Romero and Arnold 2009; Sarkisyan et al. 2016; de
Visser and Krug 2014); or (b), very restricted genotype spaces such as the interaction
of a small number of protein sites (Kuo et al. 2020; Pokusaeva et al. 2019; Wittmann
et al. 2021). Nevertheless, the number of assayed genotypes in a single landscape is
becoming larger in recent studies (Bryant et al. 2021; Russ et al. 2020) and it appears
that the experimental characterization of a sufficiently large fitness landscape with
multiple fitness peaks may be attainable within the next decade. The possibility of
characterizing multiple fitness peaks will always be restricted by the boundaries of
the studied genotype space, thus what appears to be two unconnected fitness peaks
may be found along the same fitness ridge when a larger section of the genotype space
is analyzed (Whitlock et al. 1995). Therefore, there is a need for the development of
computational methods (Alley et al. 2019; Bryant et al. 2021; Russ et al. 2020; Biswas
et al. 2021; Wittmann et al. 2021) and theory (Zhou and McCandlish 2020) that can
improve the description of experimental fitness landscape datasets, such as obtaining
an estimate of the number of isolated peaks. Here, we use Morse theory to calculate
the minimal number of reciprocal epistatic interactions for a given number of peaks
on a landscape.

Epistasis is the interaction of allele states of the genotype, which shapes the fitness
landscape. When the impact of allele states on fitness is independent of each other,
there is no epistasis and the resulting fitness landscape is smooth and has a single
peak. Epistasis can lead to a more rugged fitness landscape and decrease the number
of paths of high fitness between genotypes. Epistasis that makes the impact of an allele
state on fitness stronger or weaker is called magnitude epistasis. On the other hand,
epistasis that causes the contribution of an allele state on fitness to change its sign (e.g.,
a beneficial mutation becomes deleterious) is called sign epistasis (Weinreich et al.
2005). When the two allele states at different loci change the sign of their respective
contribution to fitness, then this interaction is called reciprocal sign epistasis.

In a simple example of this principle, in a two-loci two-allele model, there are four
genotypes, 00, 01, 01 and 11. The following landscape is shaped by sign epistasis when
genotypes 00, 01, 10 and 11 have fitnesses of 1,−1,1 and 1, respectively. Reciprocal
sign epistasis (RSE) is present when the fitnesses of 00, 01, 10 and 11 genotypes are
1,−1,−1 and 1, respectively. See Fig. 1 for an illustration.

Of course, the effect of an allele state can depend on more than just one other locus,
or site, in the genome. When allele states in different loci impact each other, then the
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epistasis is higher-order. Higher-order epistasis is found frequently in the character-
ized fitness landscapes (Weinreich et al. 2013), and it is clear that it has important
evolutionary consequences (Canale et al. 2018; Crona et al. 2019; Kondrashov and
Kondrashov 2001; de Visser and Krug 2014). However, models that allow studying
such epistasis are at an early stage of their development (Crona et al. 2013; Crona
2020), see also Crona et al. (2021).

The evolutionary consequences of epistasis may be especially important when it
leads to multiple local peaks. In that case, a population can get stuck on a suboptimal
peak, decreasing the ability of evolution to find an optimal solution.

Using a combinatorial argument, Poelwijk et al. (2011) showed the following qual-
itative property: reciprocal sign epistasis is necessary for the existence of multiple
peaks. In contrast, using Morse theory, we derive a more quantitative description of
this relationship. This work might be the first formal use of Morse theory to study
fitness landscapes.

2 Outline of theMethod

Morse theory studies the properties of some discrete structures (such as graphs) and
special functions defined on them. In particular, the strong Morse inequality relates
topological characteristics of a structure with the number of critical points of any
function defined on it. Therefore, to use Morse Theory, we define a discrete structure
that highlights reciprocal sign epistatic interactions and a function based on the given
fitness landscape.

The discrete structure is a graph: vertices are binary sequences (genotypes) and
edges connect those genotypes within one-mutation distances. Moreover, we include
edges between those vertices that are separated by a reciprocal sign epistatic interac-
tion.

In the case of graphs, the only requirement for (Morse) functions is to assign a
number to both nodes and edges. Naturally, the value on the vertices corresponds
to the genotype’s fitness. On the other hand, the value on the edges is tailored for
Theorem 1.

Theorem 1 (Quantification of epistatic interactions) Let genotypes be encoded as
binary sequences. Consider a fitness landscape, i.e., a function that assigns a number
to each genotype, with no strictly neutral mutations. Then,

# RSE instances ≥ # peaks − 1 .

Because we model genotypes as binary sequences, the sequence space is a hyper-
cube. Also, we only consider fitness landscapes with no strictly neutral mutation, i.e.,
all direct neighbors of a vertex must have a different value than this vertex. These two
assumptions allow us to unambiguously define RSE instances.
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action
(a) Two peaks and one RSE inter- (b) Three peaks and two RSE

interactions

Fig. 2 Introducing a peak introduces a RSE interaction. Vertices represent genotypes; arrows represent
fitness increments; filled vertices represent peaks; and filled faces represent reciprocal sign epistatic inter-
actions

3 Informal Proof

Let us first briefly explain the combinatorial argument used in Poelwijk et al. (2011)
to show the following qualitative property: reciprocal sign epistasis is a necessary
condition for the existence of multiple peaks. The main idea is that between any two
peaks (i.e., genotypes with locally maximal fitness), there must be a path consisting of
singlemutations connecting them. In particular, if the path is chosenwell, theminimum
fitness along this path is part of a RSE instance. Theorem 1 is the corresponding
quantitative version of this statement. In particular, if there are three peaks,we conclude
that there is not only one instance of RSE in the fitness landscape, but there must exist
at least two of them.

Intuitively, our result is explained by induction over the number of peaks as follows.
In the base case, already explored in Poelwijk et al. (2011), there are only two peaks.
For the inductive case, consider a fitness landscape and introduce a new peak to it.
This new peak must be connected to all previous peaks through some reciprocal sign
epistatic interaction. The question is if any of these interactions was not there before.
We show that a new peak must introduce at least one more such interaction. To make
this last step in the proof formal, we use discrete Morse theory.

If we allow to introduce a peak together with a new dimension, it is easy to illustrate
the induction. For the case of two dimensions, we would introduce a third dimension
together with a new peak. See Fig. 2b for a representation.

4 Formal Proof

The strong Morse inequality is a general tool that relates characteristics of a space
with properties of special functions defined on it. To motivate subsequent definitions,
let us present the original statement (Forman 1998, Corollary 3.6, page 107) applied
to graphs (instead of more general discrete structures).

Theorem 2 (Strong Morse inequality) Consider a graph G = (V , E) and a function
f : V ∪ E → R. Let b0 and b1 denote the first two Betti numbers of the graph G and
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let m0 and m1 denote the number of critical nodes and edges of f . Then, we have that

m1 − m0 ≥ b1 − b0 .

To use this result, we must define the following terms: Betti numbers and critical
nodes and edges. But before we do that, note that if the number of RSE instances can
be represented as a structural property of a graph (inside b1 − b0), and the number of
peaks can be encoded in a function (inside m1 − m0), then this inequality allows us
to quantify the necessary condition for the existence of multiple peaks.

We introduce all the necessary concepts before explaining the proof step by step.

4.1 Necessary Definitions

In this section, we introduce the terms used in Theorem2 (Betti numbers, critical nodes
and critical edges), as well as RSE instances. All definitions coincide with those given
in the general literature.

Definition 1 (Betti numbers) Let G = (V , E) be a graph. The zeroth Betti number
(b0) is the number of connected components in G. The first Betti number (b1) equals
|E | + b0 − |V |, usually called cyclomatic number.

Remark 1 (Betti numbers in connected graphs) LetG = (V , E) be a connected graph.
Then, b0 = 1 and b1 = |E |+ 1−|V |. Since G is connected, |E | ≥ |V |− 1, therefore
b1 ≥ 0.

Definition 2 (Critical nodes and edges) Let G = (V , E) be a graph and f : V ∪ E →
R a function. We say that a vertex v ∈ V is critical if, for all edges e containing
v, we have that f (e) > f (v). We say that an edge e = {u, v} ∈ E is critical if
f (e) > max{ f (u), f (v)}. We denote m0 the number of critical vertices and m1 the
number of critical edges.

Definition 3 (RSE instance) Consider a fitness landscape represented by W :
{0, 1}n → R, where n is the length of the genotype. An instance of RSE is a col-
lection of four different sequences s1, s2, s3, s4 ∈ {0, 1}n such that both sequences s1
and s4 are one single mutation away from s2 and s3 and it holds that

max(W (s2),W (s3)) < min(W (s1),W (s4)) .

4.2 Proof

Proof of Theorem 1 Let a fitness landscape be represented by a functionW : {0, 1}n →
R, where n is the length of the genotype. Our proof consists of the following steps:

1. Define a graph.
2. Show that this graph is connected.
3. Define a function on the graph.
4. Apply the strong Morse inequality.
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Fig. 3 Fitness landscape in a
cube. Vertices represent
genotypes; edges connect
genotypes at one-mutation
distance; filled vertices represent
peaks; and fitness is indicated in
each vertex 0
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During the proof, we will instantiate our constructions in the following example.

Example 1 (Fitness landscape in a cube) Consider n = 3 and the fitness function
w : {0, 1}n → R given as follows.

000 �→ 0

100 �→ 3

010 �→ 1

001 �→ 3

110 �→ 2

101 �→ 2

111 �→ 3

101 �→ 2

011 �→ 2

A representation is given in Fig. 3.

Definition of the graph
Consider a graphG = (V , E). Let V := {0, 1}d . Let the set of edges E := E1∪E2

be defined in two steps: E1 and E2 have edges involving only sequences at Ham-
ming distance one and two, respectively. The set E1 contains only edges connecting
a sequence with one of its fittest beneficial mutations, if one exists (peaks have no
beneficial mutation). Formally,

E1 ⊆ {{u, v} : d(u, v) = 1,W (u) < W (v) = max{W (v′) : d(u, v′) = 1}} ,

where d denotes the Hamming distance.
On the other hand, E2 contains edges that connect the two highest points separated

by instance of RSE. Formally,

E2 := {{u, v} : d(u, v) = 2,∀y ∈ V d(u, y) = 1 ∧ d(v, y) = 1 ⇒ W (y)

< W (u) ∧ W (y) < W (v)} .

Following Example 1, we represent the corresponding graph in Fig. 4. Note that if
a vertex has multiple neighbors with maximal fitness, one may choose one arbitrarily.
Edges in E1 (resp. E2) are represented by solid (resp. dashed) lines.
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Fig. 4 Graph in a cube. Vertices
represent genotypes; filled edges
connect sequences at one
mutation distance; dashed edges
connect sequences of high
fitness in a RSE instance; and
filled vertices represent peaks 0
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Connectedness of the graph
We now prove that G is connected, and therefore its first Betti number (b0, the

number of connected components) is one. First, note that any vertex is connected to a
peak. Indeed, from any vertex, by following the path of fittest mutations, we can go to
a peak by edges in E1. Therefore, we only need to prove that all peaks are connected.

By contradiction, assume that there are K1, . . . , Kr connected components of G.
Note that in each component there might be multiple peaks. We will define a special
path of singlemutations. Consider the “usual” sequence graph, formally the hypercube
GS = ({0, 1}d , Ed1), where Ed1 containing all edges connecting sequences at Ham-
ming distance one. Take the path P∗ that connects two peaks in different components
and has the highest minimum value, i.e.,

P∗ ∈ argmax
P path in GS

{min{W (v) : v ∈ P} : ∃i �= j, ∃v1 ∈ Ki , v2∈K j peaks st v1
P←→ v2} .

Without loss of generality, assume that P∗ connects v1 ∈ K1 and v2 ∈ K2. We will
show that the two connected components K1 and K2 are in fact connected, which is a
contradiction.

Denote vm the vertex in P∗ that achieves the minimum fitness. Divide P∗ into
the path before and after vm , formally: P∗ = P1∗ vm P2∗ . Our first observation is the
following: all vertices in P1∗ are in K1, i.e., V (P1∗ ) ⊆ K1, and similarly all vertices in
P2∗ are in K2. Indeed, if it was not the case, consider v′ ∈ P1∗ ∩ Kc

1 . Since v
′ /∈ K1, by

following the fittest mutation, it is connected to a peak v′
2 which is not in K1. Consider

a new path P ′∗ that goes from v1 to v′ and then to v′
2. Note that the minimum fitness

value in P ′∗ is higher than the one in P∗ and P ′∗ also connects two different connected
components, which is a contradiction. Therefore, V (P1∗ ) ⊆ K1. Similarly, we get that
V (P2∗ ) ⊆ K2. Having identified this property of P∗ and vm , we can construct a path
in our graph of interest G, instead of GS .

Denote u1m ∈ K1 the vertex in K1∩ P1∗ closest to vm , similarly denote u2m the vertex
in K2 ∩ P2∗ closest to vm . First notice that {u1m, u2m} ∈ E2, i.e., there is a reciprocal
sign epistatic interaction between vertices with high fitness. Indeed, if this were not
the case, we could connect them through another mutation that does not involve vm
and create a path P ′∗ with a higher minimum value, which is a contradiction. Since
{u1m, u2m} ∈ E2, i.e., are connected inG, all we need to do to construct our desired path
connecting K1 and K2 is showing that u1m is connected to a peak in K1 and similarly
u2m is connected to a peak in K2.
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Fig. 5 Function in the graph.
Vertices represent genotypes;
filled edges connect sequences at
one mutation distance; dashed
edges connect sequences of high
fitness in a RSE instance; edges
and vertices are labelled with the
value of the defined function;
and filled vertices represent
peaks
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Since u1m ∈ K1, we can follow the fittest mutation path until a peak u1 ∈ K1

(similarly for u2m to a peak u2 ∈ K2). Consider the paths Q1∗ and Q2∗, where u1
Q1∗←→ u1m

and u2
Q2∗←→ u2m . By definition of E1, we have that Q1∗, Q2∗ ⊆ E1. Finally, the path

connecting two different peaks (assumed to be disconnected) is Q∗ = Q1∗Q2∗.
Indeed, note that Q∗ is a path in E = E1 ∪ E2 since Q1∗ ⊂ E1, {u1m, u2m} ∈ E2

and Q2∗ ⊂ E2. Therefore, the peaks u1 ∈ K1 and u2 ∈ K2 are connected. But this is
a contradiction because K1 and K2 were two different connected components. This
concludes the proof that G is connected.

Definition of a function
Consider the function f : K → R given by the following.

• For all v ∈ V ,

f (v) = −W (v) .

• For all e = u, v ∈ E1,

f (e) = f (u) + f (v)

2
.

• For all e = u, v ∈ E2,

f (e) = C ,

where C > max{|W (v)| : v ∈ V }.
Following Example 1, we represent the corresponding function in Fig. 5. Note that

edges have values and we have chosen C = 4.

Application of Morse inequality
By Theorem 2, we have that

m1 − m0 ≥ b1 − b0 .
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Since M is connected, we have that b0 = 1. By definition of Betti numbers, and
since M is connected, b1 ≥ 0 (see Remark 1). The number of critical vertices is m0
and the number of critical edges is m1. By construction, the only critical vertices are
peaks. Indeed, a vertex is critical if all edges containing it have greater value. Since
all single mutations and edges in E2 have greater values than the peak value, all peaks
are critical. Moreover, non-peak values have a beneficial mutation and therefore an
edge in E1 with a greater value. Therefore, non-peak vertices are not critical. On the
other hand, the only critical edges are those in E2, i.e., edges that represent reciprocal
sign epistatic interaction, since these edges are the only ones whose endpoints have
both smaller values. Therefore,

# RSE instances ≥ # peaks − 1 .

��

5 Discussion

We have shown that the multipeaked fitness landscape necessarily has no fewer pair-
wise reciprocal sign epistatic interactions than the number of fitness peaks minus one.
This extends the result of Poelwijk et al. (2011) stating that the reciprocal sign epis-
tasis is a necessary condition for multiple peaks. Additionally, our study showcases
the application of discrete Morse theory to fitness landscapes. As our paper was in
review, a different way to prove the same result was posted by Chenette et al. (preprint)
providing extra confidence in this result. The main difference in our approaches is that
we based our proof on Morse theory, while the proof by Chenette et al., relies on
explicit constructions of fitness landscapes. In this work, the authors also prove that
multipeaked fitness landscapes must have at least as many reciprocal sign epistatic
interactions as the number of fitness peaks minus one. They also studied how many
instances of RSE can exist when there is only one fitness peak. Moreover, having
upper and lower bounds on the number of instances of RSE given a certain number
of fitness peaks, they studied if all numbers in between the bounds can be realized by
some fitness landscape.

More empirically characterized fitness landscapes are becoming available, driven
by high throughput mutational scan studies. One straightforward way to analyze them
is to determine the number of fitness peaks in the landscape. Our results may allow
biologists to deduce the minimum number of reciprocal sign epistatic interactions in
their data based on the number of observed fitness peaks.

As discussed in Poelwijk et al. (2011), in the general case, reciprocal sign epistasis is
not a sufficient condition formultiple peaks. Similarly, we do not show how to estimate
the number of peaks from the number of RSE instances. The task of deducing global
properties of the landscape from its local properties was accomplished in Crona et
al. (2013): they showed that reciprocal sign epistasis is a sufficient condition for the
existence of multiple peaks if there is no sign epistasis in any other pair of loci.

In our proof, we considered bi-allelic genotypes, which may not reflect the biology
of DNA or protein sequences. The application of our theory to genotypes with more
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Fig. 6 Reciprocal sign epistasis
with more than two alleles.
Vertices represent genotypes;
their label is their genotype
sequence; filled vertices
represent peaks; and arrows
represent fitness increments
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(a)Allelic RSE (b)Locus RSE

than two alleles depends on how epistasis is defined for such genotypes. Epistatic inter-
actions may be found between alleles at different loci, which may lead to instances
where some allele states between two sites are in an epistatic interaction, while two
different allele states at the same sites may not show any epistasis. Alternatively, epis-
tasis may be defined when there is an epistatic interaction between any alleles at two
different sites. Such epistasis may be called allelic and locus epistasis, respectively.
See Fig. 6 for an illustration. Our proof is immediately generalizable without modi-
fications for fitness landscapes determined by allelic epistasis but not necessarily to
landscapes determined by the locus epistasis. We believe that allelic epistasis is bio-
logically more realistic than locus epistasis and, therefore, our proof is relevant for
fitness landscapes determined by DNA or protein sequences.

For our proof we assumed that the fitnesses of all genotypes are different, while
empirically some fitness landscapes may be “neutral” in that many genotypes may
have the same fitness, as has been observed in some empirical landscapes (Aguilar-
Rodríguez et al. 2017; Schaper et al. 2012). However, the difference between fitnesses
in our model can be arbitrarily small, many orders of magnitude smaller than the
experimental error. Therefore, the difference in fitnesses we introduce in our proof
does not impact the application of our results to empirically characterized fitness
landscapes. Generally speaking, reciprocal sign epistasis is value-agnostic, in that any
magnitude of the effect is taken into account as long as the sign of the effect changes.
Therefore, the small variance in the values of fitnesses that we introduced does not
influence the detection of sign epistasis in real data.

The complication of deducing the global properties of fitness landscapes from the
local properties of epistasis between specific sites arises due to themultidimensionality
of the fitness landscape: local peaks formed by a pairwise epistatic interaction can be
bypassed through a different dimension. Therefore, the condition formulated in terms
of the pairwise epistatic interaction cannot be sufficient. One needs to know the full
fitness landscape: to deduce that the fitness landscape has multiple peaks, one has
to know that there is no sign epistasis in any other pairwise interaction (Crona et al.
2013).

For a quantitative result converse to ours, we anticipate that higher-order epistatic
interactions have to be considered, which leads to the requirement of full information
about the fitness landscape. We expect that this result can be obtained with a suitable
definition of the higher-order epistasis. Such a result could be useful, for example, to
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study the empirical fitness landscapes if the number of mutations under consideration
is small enough to make an almost complete description of the landscape feasible.
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