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Abstract
A compartmental epidemiological model with distributed recovery and death rates is
proposed. In some particular cases, the model can be reduced to the conventional SIR
model. However, in general, the dynamics of epidemic progression in this model is
different. Distributed recovery and death rates are evaluated from COVID-19 data.
The model is validated by the epidemiological data for different countries, and it
shows better agreement with the data than the SIRmodel. The time-dependent disease
transmission rate is estimated.

Keywords Epidemic model · Variable recovery rate · SIR model · Effective infection
rate

1 Introduction

The world population undergoes successive epidemics of viral infections with impor-
tant health, social and economical consequences. During the last decades these were
SARS epidemic in 2002 − 2003 (Anderson et al. 2004; Lam et al. 2003), H5N1
influenza in 2005 (Chen et al. 2006; Kilpatrick et al. 2006), H1N1 influenza in 2009
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(Girard et al. 2010; Jain et al. 2009), Ebola in 2014 (Frieden et al. 2014; WHO Ebola
Response Team 2014), and currently, COVID-19 pandemic which continues already
two years and further evolution of which remains unpredictable.

Nowadays, importance of mathematical modeling in epidemiology is generally
accepted, but the outcome of this modeling is controversial. On one hand, classical
compartmental models allow the evaluation of the main tendencies of epidemic pro-
gression. There are various developments of the epidemicmodels tomulticompartment
models (see, e.g., Brauer 2008; Giordano et al. 2020; Sharma et al. 2020), models with
time varying or nonlinear disease transmission rate (d’Onofrio et al. 2020; Sun et al.
2008).Multipatchmodels (Bichara and Iggidr 2018; Lahodny andAllen 2013;McCor-
mack and Allen 2007), multigroup models (Elbasha and Gumel 2021), spatiotemporal
models (Ahmed et al. 2019; Filipe and Maule 2004) have been formulated and stud-
ied to understand various aspects of epidemic growth (see the monographs (Brauer
et al. 2019; Martcheva 2015) and review articles (Hethcote 2000; Hurd and Kaneene
1993) for further details). However, the main questions about the prediction of epi-
demic outbreaks and their efficient managing remain unsolved. This can be partially
explained by the unpredictable emergence of new viruses or virus variants, but the
lack of understanding of epidemic progression and its economical consequences in a
complex multiconnected modern society leads to an empirical try and error method
clearly illustrated during COVID-19 pandemic (Supino et al. 2020).

Ongoing pandemic stimulated important modeling efforts directed to the appli-
cation of the existing models and to their critical rethinking. Compartmental
epidemiological models, like the classical SIR model, are based on the assumptions
that newly infected individuals at time t appearwith the rate proportional to the product
of the numbers of susceptible individuals S(t) and infected individuals I (t) and that
the recovery and death rates are proportional to the number of infected individuals. The
first assumption is justified for homogeneous populations, but the second assumption
has a limited applicability. Indeed, assuming that an average disease duration is τ , we
conclude that the recovery and death rates at time t are determined by the number of
infected individuals at time I (t − τ) (disease onset), which can be very different from
I (t), unless the epidemic progression is slow (basic reproduction number is close to
1). In a more detailed description, we do not consider a fixed disease duration but take
into account that the recovery and death rates depend on the disease status of infected
individuals, that is, on time passed after the disease onset.

The recovery and death rates can significantly vary depending on the individual
disease progression (Github 2022). These factors are rarely taken into account in
mathematical models (Feng et al. 2007; Hethcote and Tudor 1980), and further stud-
ies are needed to enlighten the significance of immunological factors to capture the
incubation period (Culshaw et al. 2003; Leclerc et al. 2014; Vargas-De-León 2012),
time-dependent immunity (Kyrychko and Blyuss 2005; Taylor and Carr 2009; Yuan
andBélair 2014) and other factors. Continuous dependence of the disease transmission
rate on immunological parameters (e.g., instantaneous viral load) is also incorporated
and studied using continuous time delay models (Gilchrist and Sasaki 2002).

In thiswork, we continue to study the influence of the disease time course on the epi-
demic progression. We propose a compartmental model based on integro-differential
equations where we take into account that recovery and death rates at time t depend
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on the time interval t − η from the disease onset for the individuals infected at time η.
We determine the main features of epidemic progression and show that they are dif-
ferent in comparison with conventional compartmental models. Further, we illustrate
the application of this modeling approach to the COVID-19 data.

The contents of the paper are as follows. In Sect. 2,we introduce themodel and study
the positiveness of solutions. Next, we show how it can be reduced to the conventional
SIRmodel in some particular cases. In order to apply this model to the investigation of
COVID-19 epidemic, we determine time-dependent recovery and death rates from the
available data (Sect. 3). We compare the characteristics of epidemic progression in the
data and in different models in Sects. 4 and 5. Time-dependent disease transmission
rate is estimated in Sect. 6.

2 Model with Distributed Recovery and Death Rates

Recovery and death rates of infected individuals depend on time after the disease
onset. In this section, we will derive a model based on the number of newly infected
individuals and their recovery and death rates depending on time after infection. We
will study some properties of this model and will show that conventional SIR model
can be obtained from it under some particular assumptions.

2.1 Model Formulation

We propose an integro-differential equation model where the recovery and death rates
depend on the time-since-infection of the infected individuals. Let J (t) be the number
of newly infected individuals at time t , while S(t), I (t), R(t) and D(t) denote the
total numbers of susceptible, infected, recovered and dead individuals at time t . The
total number of infected at time t is given by the following expression:

I (t) =
∫ t

0
J (η)dη − R(t) − D(t). (1)

We assume that the total population size remains constant, S(t)+ I (t)+R(t)+D(t) =
N , that is, natural natality and mortality rates are assumed to be equal to each other.
Using the equality I (t) + R(t) + D(t) = N − S(t) and differentiating equality (1),
we obtain: dS

dt = −J (t). On the other hand, the rate of change of the susceptible
population is given by the equation

dS

dt
= −β

S

N
I (= −J (t)),

where β is the disease transmission rate.
Let r(t − η) and d(t − η) be the recovery and death rates depending on the time-

since-infection t − η. Then the number of infected individuals who will recover at
time t is given by the expression:
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∫ t

0
r(t − η)J (η)dη.

Similarly, we determine the number of infected individuals who will die at time t :

∫ t

0
d(t − η)J (η)dη.

Thus, the rate of change of the infected compartment I (t) is given by the following
equation:

d I

dt
= β

S

N
I −

∫ t

0
r(t − η)J (η)dη −

∫ t

0
d(t − η)J (η)dη.

The rates of change of the recovered R(t) and the death compartment D(t) are given,
respectively, by the equations:

dR

dt
=

∫ t

0
r(t − η)J (η)dη,

dD

dt
=

∫ t

0
d(t − η)J (η)dη.

Hence, we obtain the following model:

dS

dt
= −β

S

N
I , (2a)

d I

dt
= β

S

N
I −

∫ t

0
r(t − η)J (η)dη −

∫ t

0
d(t − η)J (η)dη, (2b)

dR

dt
=

∫ t

0
r(t − η)J (η)dη, (2c)

dD

dt
=

∫ t

0
d(t − η)J (η)dη, (2d)

where J (t) = βS(t)I (t)/N . This system of equations should be completed by the
initial condition S(0) = N , I (0) = I0 > 0, R(0) = 0, D(0) = 0 and J (t) = 0 for
t ≤ 0. We will study below some properties of this model and will apply it to assess
the epidemic progression.

The proposed model is capable of capturing the features of multicompartment
models consisting of symptomatic and asymptomatic compartments implicitly. Their
explicit consideration assumes that the individuals belonging to two compartments
have different strength of infectivity and difference in time required to recovery. We
explain below that r(t) and d(t) follow gamma distribution. Without any loss of gen-
erality, we can assume that asymptomatic individuals can recover much earlier than
symptomatic individuals. The distributed recovery rate takes care of the time differ-
ence between the recovery of individuals belonging to two different compartments.
Multicompartment epidemic models for COVID-19 also include exposed compart-
ments and they are less infectious than the infected individuals. This aspect is taken
into account by calculating the rate of infectivity from the time series of daily infected.
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Available data for COVID-19 infection do not differentiate between exposed, symp-
tomatic and asymptomatic infected individuals; hence, we can consider them as a
single compartment (Ghosh et al. 2022).

2.2 Positiveness of Solutions

Since Eq. (2b) contains negative integral terms, we should verify that the solution of
system (2a)–(2d) remains positive. From (2a), we observe that, if S(t∗) = 0 at some
time t∗ then dS

dt

∣∣
t=t∗ = 0. This shows that S(t) ≥ 0 for all t > 0. From (2c), (2d)

we get that R(t), D(t) are increasing functions. Hence, R(t) and D(t) also remain
positive for all t . Next, we prove that I (t) > 0. Take some t0 > 0. Then from (1) we
have

I (t0) =
∫ t0

0
J (η)dη − R(t0) − D(t0). (3)

Integrating (2c), (2d) from 0 to t0 with R(0) = D(0) = 0 and taking their sum, we
get the equality

R(t0) + D(t0) =
∫ t0

0

(∫ t

0

(
r(t − η) + d(t − η)

)
J (η)dη

)
dt .

Changing the order of integration, we obtain

R(t0) + D(t0) =
∫ t0

0

( ∫ t0

η

(
r(t − η) + d(t − η)

)
dt

)
J (η)dη. (4)

Since the integral
∫ t0
η

(r(t − η) + d(t − η))dt gives the proportion of recovered and
dead individuals from time η to t0 among those infected at time η, it follows that it is
less than 1. Consequently,

R(t0) + D(t0) <

∫ t0

0
J (η)dη.

Together with (3), this inequality gives that I (t0) > 0. Therefore, I (t) remains positive
for all t . This conclusion completes the proof of positiveness of solution of system
(2a)–(2d).

2.3 Reduction to the SIR Model

In this section, we show that model (2a)–(2d) can be reduced to conventional SIR
model under some assumptions. Consider the recovery and death rates in the form

r(t − η) =
{
r0 , t − τ < η ≤ t
0 , η < t − τ

, d(t − η) =
{
d0 , t − τ < η ≤ t
0 , η < t − τ

, (5)
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where τ > 0 is disease duration and r0 and d0 are some constants. Substituting these
functions in (2c) and (2d), we get

dR

dt
= r0

∫ t

t−τ

J (η)dη,
dD

dt
= d0

∫ t

t−τ

J (η)dη. (6)

Integrating these equalities from t − τ to t , we obtain

R(t) − R(t − τ) = r0

∫ t

t−τ

( ∫ s

s−τ

J (η)dη

)
ds,

D(t) − D(t − τ) = d0

∫ t

t−τ

( ∫ s

s−τ

J (η)dη

)
ds.

Since we assume that the disease duration is τ , then (1) can be written as follows:

I (t) =
∫ t

t−τ

J (η)dη − (R(t) − R(t − τ)) − (D(t) − D(t − τ)), (7)

where (R(t) − R(t − τ)) and (D(t) − D(t − τ)) represent the number of recovered
and dead during the time interval (t − τ, t), respectively. Hence, from (7), we have

I (t) =
∫ t

t−τ

J (η)dη − (r0 + d0)
∫ t

t−τ

(∫ s

s−τ

J (η)dη

)
ds. (8)

Now, from (2b) and (8),

d I

dt
= β

S

N
I − (r0 + d0)

∫ t

t−τ

J (η)dη

= β
S

N
I − (r0 + d0)

[
I (t) + (r0 + d0)

∫ t

t−τ

(∫ s

s−τ

J (η)dη

)
ds

]
.

Assuming that (r0 + d0) is small enough, we neglect the term involving (r0 + d0)2.
Hence, we obtain

d I

dt
≈ β

S

N
I − (r0 + d0)I . (9)

In this case, system (2a)–(2d) is reduced to conventional SIR model

dS

dt
= −β

S

N
I , (10a)

d I

dt
= β

S

N
I − (r0 + d0)I , (10b)

dR

dt
= r0 I ,

dD

dt
= d0 I . (10c)
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Thus, assuming uniform distribution of recovery and death rates (5) and that they are
small enough, we can reduce model (2a)–(2d) to the classical SIR model. However, in
general, these assumptions do not hold, and we need to take into account more realistic
recovery and death rate distributions.

3 Estimation of Recovery and Death Rate Functions

3.1 Gamma Distribution

In this section, we estimate the recovery r(t) and death d(t) rate functions in the case
of COVID-19 epidemic. The data for 120 recovered patients and 31 dead individuals
from Ref. (Github 2022; Verity et al. 2019) were used to fit a gamma distribution.
Note that there are no recovery or death during the first two days after infection. The
maximums of these distributions are reached between 13 and 18 days for recovery and
10-15 days for death (Fig. 2). For some individuals, the recovery time is quite long.
These distribution functions for recovery and death take into account asymptomatic,
symptomatic and hospitalized compartments. Individuals recovered within 7 to 10
days from infection can be considered as asymptomatic either due to less viral load or
due to strong immune response. On the other hand, death after significant time period
from the day of infection can be assumed to be contribution from the hospitalized
compartments. Further, in the literature on epidemic modeling, the choice of gamma
function to model distributed recovery period is well known (Bailey 1954; Chowell
et al. 2009; Lloyd 2001).

We estimate the mean time from the disease onset to recovery as 17.85 days and the
mean time to death as 13.19 days. The best-fitted gamma distribution corresponding
to recovery, which is shown by the red curve in Fig. 1a is given by the expression

f1(t) = 1

ba11 �(a1)
ta1−1e

− t
b1

with the estimated parameter values a1 = 8.06275 and b1 = 2.21407. Similarly,
the best-fitted gamma distribution corresponding to death shown by the red curve in
Fig. 1b is given by:

f2(t) = 1

ba22 �(a2)
ta2−1e

− t
b2 ,

where a2 = 6.00014 and b2 = 2.19887.
These functions are normalized in such a way that the total probability of recovery

and death equals 1. We set r(t) = p0 f1(t), d(t) = (1 − p0) f2(t), where p0 is the
survival probability. Its value is estimated from the data as p0 = 0.97 (Paul and Lorin
2021).
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Fig. 1 Probability distribution of recovery a and death b as a function of time (in days) after the onset of
infection. The red curves show the best fit gamma distributions (the values of parameters are given in the
text) (Color figure online)

3.2 Bimodal Gamma Distribution

Instead of the gamma distribution, some other distribution functions can be used to
describe the recovery and death rates. It is observed that in some cases there are two
groups of recovered (dead) individuals, where one group has a shorter time interval
to recovery (death) and another group a longer time period. In such cases, to obtain
a better parametrization of the recovery and death rate functions, we can consider
a bimodal gamma distribution, that is, a linear combination of two different gamma
distributions. In (Paul and Lorin 2021), the distribution of recovery and death as
functions of onset-to-recovery and onset-to-death are estimated using the COVID-19
data in Canada. The corresponding data are shown in Fig. 2 by the blue bars. We have
fitted these data by bimodal gamma distributions F1 and F2 (red curves in Fig. 2)

Fig. 2 Probability distribution of recovery a and death b as a function of time (in days) after the onset of
infection. The red curves show the best fit (the values of parameters are given in the text) (Color figure
online)
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Fig. 3 The left panel shows the first-order sensitivity indices corresponding to the model outcome Im and
the right panel to tm in the case of gamma distribution (Color figure online)

corresponding to recovery and death rate functions, respectively:

F1(t) = 0.91

ba11 �(a1)
ta1−1e

− t
b1 + 0.09

dc11 �(c1)
tc1−1e

− t
d1 ,

F2(t) = 0.94

ba22 �(a2)
ta2−1e

− t
b2 + 0.06

dc22 �(c2)
tc2−1e

− t
d2 ,

where the best-fitted parameter values are as follows: a1 = 32.52447, b1 = 0.65547,
c1 = 150.40545, d1 = 0.26171 and a2 = 36.02855, b2 = 0.57511, c2 = 140.11379,
d2 = 0.27636.

3.3 Sensitivity Analysis

Parameters in the recovery and death distributions presented above are estimated from
the individual data which can vary depending on country, time period, and on the virus
variant. We will estimate the sensitivity of the model outcomes (maximal number of
infected Im and time to the maximal number of infected tm) to the shape and scale
parameters a1, a2, b1, b2. For this purpose, we use variance-based sensitivity analysis
with the Monte Carlo numerical procedure described in (Saltelli et al. 2008) for com-
puting the full set of first-order sensitivity indices S j for j = 1, 2, 3, 4 corresponding
to the parameters a1, a2, b1 and b2, respectively. We have estimated the parameters a1,
a2, b1 and b2 from the individual level data given in (Github 2022). Then we use a set
of sample points obtained by using Latin hyper-cube sampling in the neighborhood
of these estimated parameter values and perform numerical simulation as described
in (Saltelli et al. 2008).

The first-order sensitivity indices are shown in Fig. 3 and summarized in Table 1.
This sensitivity analysis shows that the model outcomes Im (maximal number of
infected) and tm (time to the maximal number of infected) are most sensitive to the
scale parameter b1 in the gamma distribution for the recovery rate.
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Table 1 First-order sensitivity
indices Si (gamma distribution)

Parameters a1 a2 b1 b2

Sensitivity of Im 0.1940 0.0068 0.7905 0.0059

Sensitivity of tm 0.0922 0.1312 0.4971 0.2208

Fig. 4 The left panel shows the first-order sensitivity indices corresponding to the model outcome Im and
the right panel to tm in the case of bimodal gamma distribution (Color figure online)

Table 2 First-order sensitivity indices Si (bimodal gamma distribution)

Parameters a1 a2 c1 c2 b1 b2 d1 d2

Sensitivity of Im 0.0807 0.0188 0.0195 0.0191 0.8051 0.0244 0.0193 0.0194

Sensitivity of tm 0.0480 0.0646 0.0304 0.0413 0.6291 0.0816 0.0435 0.0625

A similar method is used to perform the sensitivity analysis for the parameters
a1, a2, c1, c2, b1, b2, d1 and d2 involved in the bimodal gamma distribution. The
corresponding first-order sensitivity indices are shown in Fig. 4 and summarized in
Table 2. We can observe that b1 is the most sensitive parameter to Im and tm as
compared to other parameters.

4 Comparison with the SIR Model

We showed in Sect. 2 that classical SIR model can be obtained as a particular case of
distributed model (2a)–(2d). We will compare dynamics of epidemic progression in
the two models using the estimated recovery and death rates.

Since the estimated average time to recovery is 17.85 days and to death 13.19 days,
we take average disease duration as 16 days. The corresponding value in SIR model is
r0 +d0 ≈ 1/16. We set p0 = 0.97, that is, out of 100 infected individuals, 97 infected
will recover. This estimate matches with most of the COVID-19 epidemic data from
various countries (Worldometer 2022; Paul and Lorin 2021).

Though the parameters of the two models correspond to each other, system (2a)–
(2d) and SIRmodel (10a)–(10c) give different dynamics of epidemic progression (Fig.
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Fig. 5 Comparison between the solutions of the system (2a)–(2d) (blue curves) and SIRmodel (red curves):
a the number of susceptible individuals S(t), b the number of infected individuals I (t). In both models
N = 107. The values of other parameters for the SIR model: β = 0.3, r0 + d0 = 1/16, I (0) = 1; and
for model (2a)–(2d): β = 0.3, a1 = 8.06275, b1 = 2.21407, a2 = 6.00014, b2 = 2.19887, p0 = 0.97,
S(0) = N − 1, I (0) = 1 (Color figure online)

5). We notice that the maximal number of infected individuals I (t) is much higher
for system (2a)–(2d) as compared to the SIR model (10a)–(10c), while time to the
maximal number of infected tm is less.

Comparison of the final size of epidemic S f , maximal number of infected Im and
the time to the maximal number of infected tm between system (2a)–(2d) with gamma
distribution and the SIR model are shown in Fig. 6 for different values of parameters.
As before, the maximal number of infected individuals Im in model (2a)–(2d) is much
higher than for the SIRmodel (10a)–(10c), time tm and the final size S f are less for the
distributed model. This difference can be explained by the fact that the recovery and
death rates are uniformly distributed during the disease duration for the SIR model
(Sect. 2), contrary to the gamma distribution in (2a)–(2d). Therefore, there is a shift
to earlier recovery and death for the SIR model.

Similarly, we compare system (2a)–(2d) with bimodal gamma distribution with
the conventional SIR model. In this case, the estimated mean time from onset-to-
recovery is 22.63 and the mean time from onset-to-death is 21.80. Hence, the average
disease duration is taken approximately 22.2 days, and r0 + d0 ≈ 1/22.2. All other
parameters are kept the same as above. The properties of the final size of epidemic,
maximal number of infected individuals, time to maximum are similar to the previous
case and not shown here.

5 Model Validation with Epidemiological Data

In order to validate the model with distributed recovery and death rates, we compare
the results of modeling with the epidemiological data. Distributed recovery r(t − η)

and death d(t − η) rates are estimated in Sect. 3.1 from the data in China in February
2020 (Github 2022; Verity et al. 2019). Once these functions are determined, we take
the number J (t) of daily infected individuals from the epidemiological data and find
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Fig. 6 Comparison of the maximal number of infected individuals Im a, time to reach the maximal number
tm b and the final size of epidemic S f c between the system (2a)–(2d) (blue curves) and the SIR model

(red curves) for different values of β. The values of parameters: N = 107, I0 = 1, for the SIR model
r0+d0 = 1/16; and for the system (2a)–(2d): a1 = 8.06275, b1 = 2.21407, a2 = 6.00014, b2 = 2.19887,
p0 = 0.97 (Color figure online)

the sum of daily recoveries and deaths from the expression

�(t) =
∫ t

0
r(t − η)J (η)dη +

∫ t

0
d(t − η)J (η)dη. (11)

These results are compared with the sum of recoveries and deaths in the data. Figure 7
shows the result of such comparison for China from January 23, 2020, to April 15,
2020, with the data from (Worldometer 2022) (7-day moving average).

Recoveries and deaths can also be determined as a proportion of active cases σ(t) =
(r0 + d0)I (t) as it is done in the SIR model. Here I (t) is taken from the data and
r0 + d0 = 1/16. In agreement with the results of the previous section, SIR model
overestimates the sum of recovered and dead.

A similar comparison is done for other countries (Fig. 8). It is important to mention
here that we used the same gamma distribution as determined before from the data for
China (Sect. 3.1).
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Fig. 7 In the left panel, the blue curve shows the number �(t) of recovered and dead in the distributed
model, the magenta curve corresponds to σ(t) in the SIRmodel, and the black dots correspond to the 7-days
moving average of daily recoveries and death in China. The right panel shows the corresponding cumulative
recovery and death (Color figure online)

Next, we consider the bimodal gamma distribution determined above (Sect. 3.2)
and calculate �(t) for a longer period of time from March 10, 2020, to June 16, 2020
(Fig. 9), than used for the determination of the distribution parameters. As before, we
compare the results with the SIR model and observe that it overestimates the total
recovery and death.

Thus, the model with gamma distribution gives a good description of the recovery
and death in different countries compared with the epidemiological data, while the
SIR model overestimates it.

6 Estimation of the Time-Dependent Disease Transmission Rateˇ(t)

In this section, we will consider time-dependent transmission rate, β(t) and will esti-
mate it from the COVID-19 epidemiological data. Dynamics of the transmission rate
can help in the understanding of epidemic progression (Mummert 2013).

Theorem 1 For the model (2a)–(2d), the time-dependent transmission function β(t)
is given by the following expression:

β(t) = N J (t)

I (t)

(
N − ∫ t

0 J (η)dη

) . (12)

Proof We have

β(t)
S(t)

N
I (t) = J (t) ⇒ β(t) = N J (t)

I (t)S(t)
. (13)
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Fig. 8 �(t), σ(t) are plotted for different countries, using the gamma distributions for recovery and death
rates as estimated in Sect. 3.1. In the left panel, the blue curves correspond to �(t), the magenta curves
correspond to σ(t) and the black dots correspond to the 7-day moving average of daily recovery and death
in different countries. The right panel shows the corresponding cumulative recovery and death. a, b: France;
c, d: Italy; e, f : Sweden (Color figure online)
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Fig. 9 In the left panel, the blue curve corresponds to �(t), the magenta curve corresponds to σ(t) and the
black dots correspond to the 7-day moving average of daily recovery and death in Canada. The right panel
shows the corresponding cumulative recovery and death (Color figure online)

Now, we also know that

I (t) =
∫ t

0
J (η)dη − (R(t) + D(t)).

Using S(t) = N − (I (t) + R(t) + D(t)) in the previous equation, we get

S(t) = N −
∫ t

0
J (η)dη.

Substituting this expression into (13), we obtain (12). ��
As an illustration of this theorem, we consider the COVID-19 data taken from

(Worldometer 2022) for new daily cases and total active cases. In order to decrease
the irregularity of data, we take the 7-day moving average of J (t) and I (t). Note
that

∫ t
0 J (η)dη represents the cumulative number of infected. Consequently, we can

determine the function β(t) using formula (12).
We consider the COVID-19 infection data for a span of approximately 450 days.

We use the data for India from March 7, 2020, for France from March 2, 2020, for
Italy from February 21, 2020, and for Sweden from March 23, 2020, and up to May
20, 2021, for all the four countries (Worldometer 2022). Then we plot β(t) for four
countrieswith the help of (12) andplot inFig. 10.The initial date corresponds to thefirst
reported case in a given country (marked with vertical dashed lines). Initial transient
observed in case of India may be related to the inaccuracy of the reporting strategy.
Growth and decline in β(t) at different time correspond to various social restrictions
as well as onset of a new outbreak. It is interesting to note that the declining pattern for
two neighboring European countries, France and Italy, are similar in the beginning.
However, an increasing peak for β(t) may indicate that the relaxation of lockdown
restriction in France was more rapid compared to other countries.

We can note from the presented results that β(t) oscillates according to increasing
or decreasing epidemic waves. Furthermore, average value of this function is different
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Fig. 10 Time varying β for
COVID-19 in France, India,
Italy, Sweden calculated by
formula (12) for the model with
gamma distribution and the
parameter values: a1 = 8.06275,
b1 = 2.21407, a2 = 6.00014,
b2 = 2.19887, p0 = 0.97 (Color
figure online)

in different countries. As such, it is about 0.1 in India and about 0.05 in France. In
order to interpret dynamics of time-dependent transmission rate β(t), we simplify
expression (12) assuming that

∫ t
0 J (η)dη 	 N . This assumption is justified since the

total number of infected remains in most countries much less than the total population.
Then β(t) ≈ J (t)/I (t). The same expression for β(t) can be obtained from the SIR
model if S ≈ N .

In order to give further estimates of β(t), suppose that disease duration is τ . Then
I (t) = ∫ t

t−τ
J (η)dη, that is, the individuals infected at time t − τ recover or die at

time t but not before. Hence, we obtain approximate formula

β(t) = J (t)∫ t
t−τ

J (η)dη
.

Set J (t) = J (τ )eλ(t−τ) and then substituting in above equation, we find β(t) =
λ/(1− exp(−λτ)). If λ = 0, then β(t) = 1/τ , that is, the disease transmission rate is
inversely proportional to the disease duration. This estimate is in agreement with an
average disease duration 16 days determined in Sect. 2. For λ > 0, β characterizes
the rate of growth of newly infected individuals, and for negative λ, the rate of decay.

7 Discussion

Ongoing COVID-19 pandemic has stimulated scientific research in various disciplines
ranging from economy to education (Volpert et al. 2020). A wide variety of modeling
approaches are considered in the recent literature (see, e.g., Rahimi et al. 2021; Sharma
et al. 2020 for more detail). However, validation of these models is complicated by
the uncertainty of the data, especially for asymptomatic cases.

Another shortcoming of conventional epidemiological model is that they consider
recovery and death rate as a given proportion of active infected cases at the same
moment of time. Clearly, this is a strong assumption which can lead to a large error in
the evaluation of epidemic progression. In order to overcome this issue, we propose
in this work a new type of immunoepidemiological models based on the daily number
of infected individuals and their time-distributed recovery and death rates. Distributed
recovery and death rates are evaluated from the data fromChina andCanada. They give
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a reliable description of data for different countries and time periods. We note that the
parameters of gamma distribution can depend on the virus variant. This question can
be addressed in the future studies when the time-dependent recovery rate is available
in particular for the Omicron variant.

We compare this approach with the SIR model with appropriate recovery and death
rates. It is clearly seen that the SIR model overestimates the daily recoveries and
deaths which, in turn, underestimates the daily number of infected, maximal and total
numbers of infected individuals. The recovery and death rate functions are estimated
with the limited real data from China and Canada on the number of days spent since
infection before recovery and death (Github 2022; Paul and Lorin 2021). These data
sets are used to estimate the parameters involved with two different parametrization of
the recovery and death rate functions. Time-since-infection-based recovery and death
rates implicitly take into account mild and severe infection which can be considered as
symptomatic and asymptomatic compartments. Numerical validation of the proposed
modelwith theCOVID-19 epidemic data fromfivedifferent countries indicates that the
parametrization of recovery and death rates with gamma function effectively captures
the daily and cumulative recoveries and deaths, although the real data show large
irregularity.

It is important to mention here that the proposed modeling approach can be used
to predict the disease progression accurately if we have specific data for the first days
in order to estimate the parameters involved in the recovery and death rate functions.
Availability of such kind of data is a challenging issue in the beginning of epidemic.
However, we should highlight that the estimates of r(t) and d(t) with the data from
China during the onset ofCOVID-19 epidemicworkswell to study the disease progres-
sion in France, Italy and Sweden. Having these information, the proposed modeling
approach can be used to predict the maximal number of infected and the time to
maximal number of infected. This predictions can be used to estimate the required
number of hospital beds and readiness of medical facilities based upon the appropriate
information about the rate of hospitalization and severity of the viral strain.

We have also described a method to calculate time-dependent infectivity rate based
upon the daily incidence data. It clearly indicates that the rate of transmission of
infection from one individual to another not only depends upon the fixed transmission
rate, but rather it is solely related with the time period over which one individual
remain infected. The next challenging issue will be to estimate the rate of infection
transmission depending on time-dependent viral load for different virus variants.
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