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Abstract
Testing individuals for pathogens can affect the spread of epidemics. Understand-
ing how individual-level processes of sampling and reporting test results can affect
community- or population-level spread is a dynamical modeling question. The effect
of testing processes on epidemic dynamics depends on factors underlying implemen-
tation, particularly testing intensity and on whom testing is focused. Here, we use
a simple model to explore how the individual-level effects of testing might directly
impact population-level spread.Ourmodel developmentwasmotivatedby theCOVID-
19 epidemic, but has generic epidemiological and testing structures. To the classic SIR
frameworkwehave added a per capita testing intensity, and compartment-specific test-
ing weights, which can be adjusted to reflect different testing emphases—surveillance,
diagnosis, or control. We derive an analytic expression for the relative reduction

B Ali Gharouni
agharoun@uottawa.ca

Fred M. Abdelmalek
abdelf1@mcmaster.ca

David J. D. Earn
earn@math.mcmaster.ca

Jonathan Dushoff
dushoff@mcmaster.ca

Benjamin M. Bolker
bolker@mcmaster.ca

1 Department of Mathematics and Statistics, McMaster University, Hamilton, Canada

2 Present Address: Department of Mathematics and Statistics, University of Ottawa, Ottawa,
Canada

3 Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton,
Canada

4 Department of Biology, McMaster University, Hamilton, Canada

5 South African Centre for Epidemiological Modelling and Analysis, University of Stellenbosch,
Stellenbosch, South Africa

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-022-01018-2&domain=pdf
http://orcid.org/0000-0003-4427-7688
http://orcid.org/0000-0001-6183-0305
http://orcid.org/0000-0002-7562-1341
http://orcid.org/0000-0003-0506-4794
http://orcid.org/0000-0002-2127-0443


66 Page 2 of 21 A. Gharouni et al.

in the basic reproductive number due to testing, test-reporting and related isolation
behaviours. Intensive testing and fast test reporting are expected to be beneficial at the
community level because they can provide a rapid assessment of the situation, identify
hot spots, andmay enable rapid contact-tracing. Direct effects of fast testing at the indi-
vidual level are less clear, and may depend on how individuals’ behaviour is affected
by testing information. Our simple model shows that under some circumstances both
increased testing intensity and faster test reporting can reduce the effectiveness of con-
trol, and allows us to explore the conditions under which this occurs. Conversely, we
find that focusing testing on infected individuals always acts to increase effectiveness
of control.

Keywords Epidemiology · Infectious disease · SARS-CoV-2 · COVID-19 ·
Reproduction number · Testing and isolation

Mathematics Subject Classification 92D30 · 93A30

1 Introduction

The observed dynamics of the COVID-19 epidemic have been driven both by epidemi-
ological processes (infection and recovery) and by testing processes (testing and test
reporting). In addition to shaping epidemic observations (via case reports), testing pro-
cesses also alter epidemiological dynamics (Peto 2020; Taipale et al. 2020). Because
individuals with confirmed infections (positive tests) are likely to self-isolate, and
individuals who are awaiting the results of a test may also do so, testing will generally
increase the number of people who are isolating and hence reduce epidemic growth
rates. We developed a mechanistic model that incorporates epidemic processes and
testing in order to explore the effects of testing and isolation on epidemic dynamics.

If testing influences behaviour, then epidemic dynamics will depend on who gets
tested. The impacts of testingwill depend both on testing intensity (tests performed per
day) and on how strongly testing is focused on people who are infectious. This level
of focus depends in turn on the purpose and design of testing programs. When testing
is done for the purposes of disease surveillance (Foddai et al. 2020) tests are typically
conducted randomly (or using a stratified random design) across the population in
order to make an unbiased assessment of population prevalence.

Over the course of the COVID-19 pandemic, however, the vast majority of testing
has been done with other goals—primarily diagnostic (determining infection status
for clinical purposes) (Phua et al. 2020; WHO 2020), or for control (determining
infection status in order to isolate cases that have been found by contact tracing)
(Aleta et al. 2020; Kucharski et al. 2020; Grassly et al. 2020; Smith et al. 2021), which
we characterize as targeted testing strategies. In these situations, testing probabilities
can differ sharply across epidemiological compartments; in our dynamical model, we
will characterize these probabilities by assigning a testingweight to each compartment
that determines the relative probability that an individual in that compartment will be
selected for testing (see Sect. 2).
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Diagnostic testing focuses on peoplewith infection-like symptoms; thus the relative
testing weights for infected people will depend on the relative probability of infected
people having symptoms. For COVID-19 infection, the testing weights will depend
on the proportion of asymptomatic infections, the time spent pre-symptomatic versus
symptomatic during the course of an infection, and on the incidence of COVID-19-
like symptoms among people in the population not infected with COVID-19. Testing
for epidemic control focuses on known contacts of infected people; in this case the
testing weights for infected versus uninfected people will depend on the probability
of infection given contact, as well as the effectiveness of the system for identifying
suspicious contacts.

When a new infectious disease emerges, it is important to determine whether it
will grow exponentially in a susceptible population, and if so at what rate r (Ma
et al. 2014). The condition for positive exponential growth (r > 0) is commonly
expressed asR0 > 1, where the basic reproduction numberR0 is the expected number
of secondary infections arising from a typical infective individual in a completely
susceptible population (Dietz 1993). Although the value of R0 cannot completely
characterize the dynamics of our model (Shaw and Kennedy 2021), it does give a
simple and widely accepted index for the difficulty of control, as well as an indication
of the likely final size of an epidemic (Ma and Earn 2006; Miller 2012).

In order to understand the effect of testing processes on epidemic dynamics, we
expanded one of the simplest mechanistic epidemic models—the standard determinis-
tic SIRmodel(Kermack andMcKendrick 1927; Anderson andMay 1991)—to include
testing components. This model provides a sensible platform to link the modeling of
epidemic and testing components and study their interaction. We studied the effects of
testing intensity, rate of test return, and isolation efficacy, on transmission probability
and epidemic dynamics when different levels of testing focus (from random to highly
targeted) are in place.

2 Methods

Our model groups individuals based on disease status (Susceptible, Infectious or
Recovered) and testing status (untested, waiting-for-positive, waiting-for-negative,
or confirmed positive) (Fig. 1). The testing status of an individual in a given dis-
ease compartment X (where X ∈ {S, I , R}) is denoted by a subscript, namely Xu,
Xp, Xn and Xc, for untested, waiting-for-positive, waiting-for-negative, or confirmed
positive, respectively. Two ‘accumulator’ compartments, N and P , are included in
order to collect cumulative reported negative or positive tests. The model equations
(A1) and details of calculation of the basic reproduction number R0 are presented in
Appendix A.1.

Table 1 defines themodel parameters, which are generally per capita flows between
compartments, or modifiers to these flow rates. The novel component of the model
lies in the compartment-specific relative testing weights wS , wI and wR ; these give
the relative rates at which people in the S, I , and R compartments are tested, respec-
tively. Thus, we can specify different levels of testing focus from random (all weights
equal) to highly targeted (higher weights in more intensively tested compartments).
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Fig. 1 Flowchart of the SIR (Susceptible-Infectious-Recovered) model, A1. The disease-based status of
a compartment X (X ∈ {S, I , R}) is combined with the testing status including Xu, Xp, Xn and Xc ,
for untested, waiting-for-positive, waiting-for-negative, or confirmed positive, respectively. The force of
infection is denoted by � (Eq. 3); γ is the recovery rate; ω is the rate of test return; and TX (Eq. 2) and pX
represent the per capita testing rate and the sensitivity (probability that an infected individual tests positive),
respectively, for compartment X . For further description of the parameters see Table 1. Note that there
is a slight mismatch in the top-to-bottom order of the testing-based compartments of each disease-based
compartment X between this flowchart and the model equations (A1); here we have switched Xu and Xn
for visual clarity

For example, wI /wS = 3 means that infected individuals are tested at three times the
per capita rate of susceptible individuals.

In order to allow parameterization of the model by the total (overall) per capita test-
ing rate, we define the weighted size of the testing pool W = wS Su + wI Iu + wR Ru,
and calculate a scaling parameter for testing as:

σ = ρN

W
, (1)

where ρ is the per capita testing intensity for the population, defined as the number
of daily tests administered in a population of size N . Thus, the per capita testing rate
for compartment X ∈ {S, I , R} is

TX = σwX . (2)

For a highly sensitive test, infected people typically flow through to the “confirmed
positive” (Ic, Rc) compartments and are thus not considered for further testing. Over
the course of the epidemic, a sufficiently large fixed testing rate as specified in (1) can
exhaust the pool of people available for testing, leading to a singularity when too few
people are left untested to support the specified rate. Although this phenomenon does
not affect our analysis ofR0, it can affect model dynamics (we present an adjustment
to the model that solves this problem in Appendix A.5).

The classical SIR model assumes a well-mixed population; homogeneity of the
population (i.e., all individuals are equally susceptible and equally infectious with the
same recovery rate when infected); exponentially distributed duration of infection;
and large population size (Keeling and Rohani 2011). In addition to these standard
assumptions, our model assumes:
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Table 1 Parameters of the model specified by the flowchart in Fig. 1 and equations (A1)

Symbol Description Unit Default Value

N Total population size People 106

ω Rate of test return, i.e., rate of
onward flow from “waiting” to
“confirmed” or “untested” com-
partments

1/day –

ρ per capita testing intensity 1/day –

θw Isolation efficacy (reduction of
the transmission probability) for
“waiting” individuals

– –

θc Isolation efficacy for “confirmed
positive” individuals

– –

β Transmission rate 1/day 0.5

� Force of infection 1/day –

pS Probability of positive tests for S
(= 1 − specificity)

– 0

pI Probability of positive tests for I
(= sensitivity)

– 1

pR Probability of positive tests for R
(= 1 − specificity)

– 0.5

wS , wI , wR Relative testing weights – Random: {1, 1, 1}
Targeted: {0.3, 1, 1}

(i) There is a single force of infection (new infections per unit time per susceptible),
�, defined as

� = β

N

(
Iu + (1 − θw)(In + Ip) + (1 − θc)Ic

)
, (3)

with transmission rate β; θw is the isolation efficacy (reduction of the probability
of transmission) for individuals waiting for test results, while θc is the isolation
efficacy for individuals who have received a “confirmed” positive test (Table 1).
Susceptible individuals who are “waiting” for test results experience an additional
transmission reduction factor of 1 − θw (Fig. 1).

(ii) Confirmed-positive individuals isolate at least as effectively as those awaiting test
results, i.e.,

0 ≤ θw ≤ θc ≤ 1.

For simplicitywe assume that tests are perfectly specific—uninfected individuals never
test positive (ps = 0). Thus, there are no waiting-for-positive or confirmed-positive
susceptible individuals, which reduces the number of model states from 12 to 10.

TheDisease-Free Equilibrium (DFE) for the expanded SIRmodel (Eq. A1) is found
by setting the infected compartments to 0 and solving for the unknowns. The DFE
depends on per capita testing intensity ρ, the rate of test return ω, and the population
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size N . The DFE is

S∗
n = ρ

ω
N , S∗

u = N − S∗
n , and I j = R j = 0 for all j . (4)

The corresponding per capita testing rate (Eq. 2) for the infected compartment I at
DFE is one of the key analysis parameters and can be simplified as

T̂I = (ωρ/(ω − ρ))wI /wS . (5)

The basic reproduction number, R0, was calculated by using the next-generation
matrix method (van den Driessche and Watmough 2002). We writeR0 as

R0 = β

γ
(1 − 	) , (6)

where β/γ is the classical value for a simple model (Keeling and Rohani 2011), and
1−	 is the proportional reduction due to testing and isolation processes. 	 therefore
measures the “effectiveness of control”: howmuch these processes reduce spread, and
is in turn given by:

	 = 1

CN

(
C1S

∗
u + (C2(1 − θw) + Cθw)S∗

n

)
, (7)

where

C = (ω + γ )
(
γ (ω + γ ) + (γ + ωpI )T̂I

)
, (8)

C1 = (ω + γ )(θwγ + θcωpI )T̂I , (9)

C2 =
(
ωγ (1 + pI )T̂I + γ 2(ω + γ + T̂I )

)
θw + ω2 pI T̂I θc. (10)

(Appendix A.1 gives a detailed derivation of these expressions.) This explicit for-
mula enables us to study the effects of testing and isolation parameters on R0 both
analytically and via numerical solutions. We are specifically interested in parameters
that could be manipulated by public health policy: isolation efficacy, θc and θw; per
capita testing intensity, ρ; and the rate of test return, ω. In particular, we look at the
partial derivatives of 	 with respect to these parameters (Appendices A.2 and A.3).
We derived general expressions for these derivatives. However, we analyzed the effect
of ω on 	 for the special case of low testing intensity. Specifically, by making the
restriction ρ � 1, we are able to Taylor-expand 	 at ρ = 0, use the linear approxi-
mation with respect to ρ and analyze the resulting simplified derivatives to illustrate
a surprising non-monotonic relationship between 	 and ω.

Analytic calculation of the next-generation matrix and simplification of the R0
expression, were performed inMaple™ (Maple 2010); numerical calculation and con-
tour plots were done in R (R Core Team 2020). We computed the values and contours
of 	 at both low (Fig. 2) and high (Fig. 3) testing intensities, and for both random
testing (wS = wI = wR = 1) and targeted testing (wS = 0.3; wI = wR = 1).
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Because it is expressed as a proportion of R0, the effectiveness of control 	 is (at
least in the ρ � 1 case, Eq. A22) independent of the transmission rate β, and hence
of R0 in the case where we vary R0 by changing the transmission rate for a fixed
generation interval.

The low-testing case (Fig. 2) reflects the case where testing intensity ρ is small
relative to the population size. Specifically, ρ ∈ [0, 0.013], and test return rate ω ∈
[1/12, 2]. This testing intensity is of the correct order ofmagnitude (although typically
larger than) testing rates during the COVID-19 pandemic, i.e., a maximum of 1.3%
of the population per day (approximately four times the maximum testing rate in
Ontario, Canada in mid-2021). The less realistic high-testing case (Fig. 3) is included
to highlight the occurrence of non-monotonic changes inR0 with respect to ρ. In Fig. 3
the maximum testing intensity ρ is larger relative to the population size, ρ ∈ [0, 1/5)
and the test return rate ω ∈ [1/5, 2]; these values are clearly unrealistic for a large
population but might be relevant for small populations undergoing focused testing,
such as a sports league or university. In these figures, the implied baseline reproduction
number (for the SIRmodelwithout testing) isR0 = β

γ
= 3. The different ranges of test

return rates ω for the cases of low and high testing intensities is due to the restriction
ρ < ω, which is a requirement for a feasible DFE (4).

3 Results

We presented R0 as the product of the classical reproduction number, β/γ , and the
proportional reduction due to testing and isolation, 1−	, (6). We can use the formula
for 	 (7) to make a number of straightforward inferences about parameters that affect
R0 monotonically, i.e., for which the associated partial derivative of 	 always has the
same sign (see Appendices).

1. Increasing isolation efficacy for waiting (θw) and confirmed-positive (θc) individ-
uals always increases 	 (Eqs. A12, A15, A17);

2. Higher testing intensity ρ increases	 if testing is random (allwX equal) or testing
intensity (ρ) is small (Eq. A19).

3. Increasing the rate of test return (ω) always increases 	 if waiting individuals do
not isolate (θw = 0) (Eq. A23).

4. Increasing testing focus, i.e., changing the testing weights from random (wS =
wI ) toward targeted (wS < wI ), always increases 	 (Eq. A27).

However, there are also two specific cases where 	 changes non-monotonically, in
counterintuitive directions, as a function of testing and isolation parameters.

– We would generally expect increasing testing delays to increaseR0, thus decreas-
ing effectiveness of control 	. This is in fact what happens when waiting
individuals do not isolate (θw = 0, top row of Fig. 2)—as we move to the right
within each plot in this row, 	 decreases. However, when waiting individuals iso-
late (θw > 0), we more often see the opposite effect: longer testing delays lead
to a greater control effect 	 (reduced R0). The reason is that people waiting for
negative tests are assumed to continue to isolate; this applies both to susceptibles
and to people who became infected while waiting for negative test results. This
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Fig. 2 Effectiveness of testing and isolation in reducingR0 at low per capita testing intensity (ρ). Numer-
ical evaluation of the effectiveness of control (	: Eq. 7), over a range of testing and isolation parameters.
Parameter values (Table 1):β = 0.5/day, 1/γ = 6.0days (baselineR0 = 3.0, r = 0.3);ω ∈ [1/12, 2]/day;
ρ ∈ [0, 0.013]/day per capita; θw and θc vary between 0 (no effect of isolation) and 1 (complete elimination
of transmission); pS = 0, pI = 1 and pR = 0.5. Only parameter sets where θc ≥ θw (confirmed-positive
individuals isolate more effectively than waiting individuals) are shown; the alternative case, θw > θc, is
unrealistic. Contours of 	 are plotted for a random testing (wS = wI = wR = 1) and b targeted testing
(wS = 0.3; wI = wR = 1)
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Fig. 3 Effectiveness of testing and isolation in reducingR0 at high per capita testing intensity.Numerical
evaluation of the effectiveness of control (	: Eq. 7), over a range of testing and isolation parameters.
Parameters as in Fig. 2 except: ω ∈ [1/5, 2]/day, ρ ∈ [0, 1/5)/day. As in Fig. 2, subplots show a random
testing where wS = wI = wR = 1 and b targeted testing where wS = 0.3 and wI = wR = 1

effect outweighs the effect of confirmed individuals isolating, except when this
isolation parameter (θc) is substantially greater than θw. This result depends on the
idea that, all else equal, people who have to wait longer for test results isolate at
the same level (but for a longer time) as they would if the wait were shorter.
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– Figure 2 also shows that greater testing intensity (increasing ρ) generally increases
the effectiveness of control (moving up in each panel). However, this relationship
can be reversed at very high testing intensities (provided testing is targeted, and
θw is relatively small; Fig. 3b, right three panels of top row). It is theoretically
possible for increasing testing intensity to increaseR0 because more rapid testing
leavesmore susceptibles in the “waiting-for-negative-results” category at theDFE;
if these people become infected while waiting, they will need to wait for their
negative test result before they can be tested again, receive a positive test, and then
begin self-isolating. This effect is usually weak compared to the beneficial effects
of testing.

4 Discussion

In this paper, we have developed and analyzed a simple compartmental model that
combines epidemiological dynamics—as defined by a simple SIR model—with the
dynamics of testing and isolation. Our model is a caricature: It models the most basic
feedbacks between epidemic and testing processes, but does not attempt to incor-
porate the many known complications of COVID-19 epidemiology (e.g., exposed,
pre-symptomatic, and asymptomatic compartments (Kain et al. 2021); time-varying
testing rates; and behavioural dynamics (Weitz et al. 2020)). Further, ourmodel ignores
the fact that the testing and isolation parameters can change over time due to public
health responses. In other words, we assume dynamical influences only work in one
direction: We recognize that testing and isolation affect epidemic dynamics, but we
do not account for the fact that epidemic dynamics are also likely to affect testing and
isolation strategies. Thus, it is most appropriate for assessing the qualitative phenom-
ena that arise from the interactions between transmission dynamics and testing, rather
than for making quantitative predictions or guiding pandemic responses.

Many of the qualitative results we have derived confirm simple, common-sense
intuitions. In particular, it is not surprising that we can generally decrease R0 by
increasing isolation efficacy or testing intensity; returning tests faster, if individuals
do not isolate while they are waiting for results; or increasing testing focus to target
individuals who are likely to be infectious (e.g., symptomatic people or close contacts
of known infections).

However, we did find two surprising phenomena: under some conditions longer
delays in returning tests can reduce epidemic spread, and increasing testing rates can
increase spread.

Over broad regions of parameter space, decreasingω—i.e., slowing the rate atwhich
test results are returned—decreases R0 (for random testing, the parameter region is
θw � 0.25; for targeted testing, θw ≥ 0.25 and either θc ≥ 0.5 or 1/ω > 5; see
Table 1 for parameter definitions). This result is counterintuitive and would not be
expected by public health authorities who have invested a great deal of effort in reduc-
ing delays from testing to results. Dynamically, this effect occurs because speeding up
test returns shortens the isolation period of uninfected individuals (for infected people
it only shortens the time to progression to the isolation level of the confirmed-positive
compartment). Slowing test returns increases R0 only if the proportion of infectives
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in the tested population is high and isolation is relatively strong among people waiting
for test results.

While slowing test returns does decreaseR0 over broad regions of parameter space
in our model, there are several real-world processes missing from our model that make
it unlikely that slowing test returns would actually be an effective public health mea-
sure. First, we do not model the primary benefit of rapid testing, i.e., detecting and
containing outbreaks while they are still in progress. This process could be modeled
phenomenologically by making the testing focus more targeted as an increasing pro-
portion of cases is detected, because finding infections allows tests to be concentrated
on their connections. Second, individuals may become less likely to maintain isolation
if they are required to do so for longer; phenomenologically, we could allow effective-
ness of isolation in the waiting population to be an increasing function of test-return
speed, or we could introduce a separate “waiting, but no longer isolating” compart-
ment that individuals entered from the “waiting, isolated” compartment at a specified
rate. Finally, if one wants to decrease the overall transmission rate of the population
there are more effective methods than keeping tested people in limbo; these include
masking, ventilation, distancing measures, retail and event closures, and stay-at-home
orders.

This finding does, however, suggest that cautious behaviour by people waiting for
test results might have appreciable effects on epidemic spread. This reinforces the idea
that people waiting for test results should be urged to isolate and take other measures to
prevent infecting others, or being infected. It also provides general support for the idea
of institutional “gateway” testing which restricts individuals’ contacts or access until
one or more negative tests have been received (Muller and Muller 2021). Modeling
and analyzing the effect of “gateway” testing on the reduction of an epidemic spread
are in the scope of future work of our modeling exercise.

The other counterintuitive result from our analysis is that, for sufficiently high
testing intensity ρ, further increasing testing intensity can actually increaseR0 (e.g.,
Fig. 3b, upper right panel [θc = 1, θw = 0]). This phenomenon can occur because
we are considering the DFE in the presence of testing; thus there is an equilibrium
distribution of susceptibles between the Sn (waiting) and Su (untested) compartments
even as the disease approaches extinction. A higher rate of testing leads to a greater
proportion of individuals waiting for negative tests at the DFE. If infected, individuals
in this group will take longer to be tested again and to subsequently isolate (because
theymust wait for their negative tests to be returned before being tested again). If isola-
tion in this group (θw) is low, this effect can under some (relatively rare) circumstances
(high θc, low ω, high ρ) allowR0 to increase with testing intensity. We can show that
this phenomenon occurs only under targeted testing (wI > wS), but we have not yet
found a simple explanation of why it cannot occur under random (unfocused) testing.
This phenomenon is also unlikely to occur in the real world. In particular, it depends
on levels of testing that are unrealistically high (at least in large, general-population
settings).

This theoretical phenomenon also highlights a practical point: keeping people wait-
ing for tests that will come back negative can increase spread. The best solution is
to increase test-processing speed, but it would also be worth exploring the option of
encouraging people to test more than once, in case an early test was taken before
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an individual had enough virus to register as positive. Future work could profitably
explore the question of when it is beneficial to encourage people to test more than
once.

Although we model the testing process in more detail than is typical epidemio-
logical models, one place where more detail could be informative is in the processes
determining the testing weights {wS, wI , wR}. While random testing, as done for
surveillance purposes, unambiguously leads to equal testing weights, making pre-
cise quantitative connections between public-health practices and testing weights is
difficult in other contexts. The testing weights reflect the correlation between an indi-
vidual’s risk of infection and their likelihood of being tested due to age, occupation,
geographic location, etc.. This correlation is influenced, among many other factors,
by the proportion of the uninfected population with COVID-like symptoms (e.g., due
to seasonal upper respiratory tract infections); the concentration of transmission and
testing in hot spots such as long-term care facilities and high-density workplaces; the
overall testing intensity (and hence, e.g., restriction to symptomatic individuals); and
the proportion of COVID-infected people who are symptomatic.

Future research should explore mathematically tractable ways to model some of
these factors more precisely. For example, separating the infected class into exposed,
symptomatic, and a- or pre-symptomatic compartments and allowing the testing
weights to vary across non-symptomatic (exposed/asymptomatic/presymptomatic)
versus symptomatic compartments could reflect the allocation of tests for diagnos-
tic purposes (targeting symptomatic individuals) versus contact-tracing (targeting
infected but non-symptomatic individuals) versus screening (relatively equal weights,
depending on the venue). This development would also allow exploration of different
assumptions about individuals’ likelihood of testing positive in different compart-
ments, with implications for the questions about repeat testing discussed above.
Alternatively, one could make the testing weights depend on the testing intensity
or test-return rate as suggested above. Furthermore, one could allow for differential
isolation, and different transmission probabilities, in different compartments. What-
ever complexity is added would probably put the model beyond reach of the analytical
methods we have used in this paper, but one could still use semi-numerical methods
such as constructing the next-generation matrix and using it to compute the deriva-
tives ofR0 with respect to the parameters for particular choices or ranges of parameter
values.

Although testing and tracing is a key part of infection control strategies, mathe-
matical epidemiologists have typically analyzed it with detailed models designed to
inform particular public health efforts (Endo et al. 2020; Hellewell et al. 2020; Jenness
et al. 2021), rather than analyzing simple but general models of the feedback between
testing and transmission dynamics. There have been several modeling studies of test-
ing and tracing dynamics and their interaction with epidemiological dynamics. In the
context of repeated screening and random testing of isolated populations (such as the
members of a university), Bergstrom et al. (2020) provided analytical results quanti-
fying the effects that proactive screening of asymptomatic individuals and isolation of
confirmed-positive cases could have in reducing the spread of disease. Rogers et al.
(2021) simulated a SEIR model with testing and isolation; they similarly suggest a
strategy of rapid testing with antigen tests and the subsequent isolation of confirmed-
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positive individuals. Friston et al. (2021) model the effects of self-isolation on testing
and tracing with a focus on projections under different testing and tracing scenarios.
They conclude that the emergence of a second wave depends primarily on the rate
at which immunity is lost and that it is necessary to track asymptomatic individuals
in order to control the outbreak. Our modeling approach differs from these previous
efforts in that it examines the effects of test-return rates and of different levels of
testing focus, from random to highly targeted. We hope this paper will inspire fur-
ther explorations of the fundamental properties of epidemic models that incorporate
explicit testing processes.

Funding This work was funded by the Natural Sciences and Engineering Research Council of Canada,
the Michael G. DeGroote Institute for Infectious Disease Research at McMaster University, and the Public
Health Agency of Canada.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Availability of data andmaterial Not applicable.

Code availability Source code required to reproduce all analyses presented in this study are available at
https://github.com/mac-theobio/SIR_testing_model.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A. Appendix

A.1 Model and Calculation ofR0

The model in the form of a system of ordinary differential equations is

dSu/dt = −�Su − TS Su + ωSn, (A1a)

dSn/dt = −(1 − θw)�Sn + (1 − pS)TS Su − ωSn, (A1b)

dSp/dt = −(1 − θw)�Sp + pSTS Su − ωSp, (A1c)

dSc/dt = −(1 − θc)�Sc + ωSp, (A1d)

dIu/dt = �Su − TI Iu + ωIn − γ Iu, (A1e)

dIn/dt = (1 − θw)�Sn + (1 − pI)TI Iu − ωIn − γ In, (A1f)

dIp/dt = (1 − θw)�Sp + pITI Iu − ωIp − γ Ip, (A1g)

dIc/dt = (1 − θc)�Sc + ωIp − γ Ic, (A1h)
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dRu/dt = γ Iu − TR Ru + ωRn, (A1i)

dRn/dt = γ In + (1 − pR)TR Ru − ωRn, (A1j)

dRp/dt = γ Ip + pRTR Ru − ωRp, (A1k)

dRc/dt = γ Ic + ωRp, (A1l)

dN/dt = ω(Sn + In + Rn), (A1m)

dP/dt = ω(Ip + Rp), (A1n)

(see Table 1 for parameter definitions). The next generation matrix for this model is
G = FV−1, where matrix F represents the inflow of new infection to the infected
compartments and matrix V represents the flow in the infected compartments when
the population is totally susceptible. Matrices F and V are

F =β/N

⎡

⎢⎢
⎣

S∗
u (1 − θw)S∗

u (1 − θw)S∗
u (1 − θc)S∗

u
(1 − θw)S∗

n (1 − θw)2S∗
n (1 − θw)2S∗

n (1 − θw)(1 − θc)S∗
n

0 0 0 0
0 0 0 0

⎤

⎥⎥
⎦

=β/N

⎡

⎢
⎢
⎣

S∗
u

(1 − θw)S∗
n

0
0

⎤

⎥
⎥
⎦

[
1, 1 − θw, 1 − θw, 1 − θc

]
, (A2)

and

V =

⎡

⎢⎢
⎣

T̂I + γ −ω 0 0
−(1 − pI )T̂I ω + γ 0 0

−pI T̂I 0 ω + γ 0
0 0 −ω γ

⎤

⎥⎥
⎦ . (A3)

The matrix inverse of V is

V−1 = 1

γC

⎡

⎢⎢
⎢⎢⎢
⎣

γ (ω + γ )2 γω(ω + γ ) 0 0

γ (ω + γ )(1 − pI )T̂I γ (ω + γ )(T̂I + γ ) 0 0

γ (ω + γ )pI T̂I γωpI T̂I Cγ /(ω + γ ) 0

ω(ω + γ )pI T̂I ω2 pI T̂I Cω/(ω + γ ) C

⎤

⎥⎥
⎥⎥⎥
⎦

, (A4)

where C = (
γ (ω + γ ) + (γ + ωpI )T̂I

)
(ω + γ ) and T̂I is the per capita testing rate

for the infected people and represented in Eq. (5). Note that all the columns of matrix
V−1 sum up to 1/γ .

The particular formof F with two rows of zeros at the bottom results in the following
blocked form of matrix G:

G =
[
G11 G12
0 0

]
, (A5)
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where both blocked matrices G11 and G12 are 2 by 2. Given the upper triangular
form of matrix G, the basic reproduction number R0 (defined as the spectral radius
of matrix G) is determined only by the blocked matrix G11,

G11 = β

γC

[
(ω − ρ)/ω

(1 − θw)ρ/ω

]
[
1, 1 − θw, 1 − θw, 1 − θc

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ (ω + γ )2 γω(ω + γ )

γ (ω + γ )(1 − pI )T̂I γ (ω + γ )(T̂I + γ )

γ (ω + γ )pI T̂I γωpI T̂I

ω(ω + γ )pI T̂I ω2 pI T̂I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A6)

It is notable that matrix F (A2) has rank one and consequently so does G11. That is
G11 has only one nonzero eigenvalue, which is R0.

The expression of R0 has a complicated form with all of the model parameters
involved. This expression can be simplified and represented given the specific form
of matrix G11 (A6). For the purpose of simplicity we presentR0 in the manuscript in
terms of expressions C , C1 and C2, specified in (8).

It remains difficult to show that the reproduction number R0 is decreasing with
respect to per capita testing intensity, ρ, and the speed of the test return, ω, for the
feasible ranges of the parameters, that is

ω > 0, (A7)

0 ≤ ρ < ω, (A8)

0 ≤ θw ≤ θc ≤ 1, (A9)
wI

wS
≥ 1. (A10)

In realistic cases the testing rate ρ is very small (i.e., only a small fraction of the
population can be tested every day); it is thus reasonable to use a linear approximation
of R0 for ρ � 1 to analyze the behaviour of R0 with respect to ω (see section
Appendix A.3). In the next section we provide an equivalent representation of R0 in
order to show that increasing testing intensity typically decreases R0.

A.2 More Testing Intensity May DecreaseR0

This section shows that ∂	
∂ρ

can be positive or negative, with 	 defined in Eq. (8), and

thus ∂R0
∂ρ

< 0 or ∂R0
∂ρ

> 0, where R0 is given in Eq. (6). We rewrite matrix G11 in
(A6) in the following form to simplify the calculations:

G11 = β

γC

[
S∗
u/N

(1 − θw)S∗
n/N

]
[
C − C1,C − C2

]
, (A11)

where C is the same as in Eq. (8), i.e.,

C = (ω + γ )(γ (ω + γ ) + (ωpI + γ )T̂I ),
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and C1 and C2 are

C1 =(ω + γ )(θwγ + θcωpI )T̂I ,
C2 =(

ωγ (1 + pI )T̂I + γ 2(ω + γ + T̂I )
)
θw + ω2 pI T̂I θc,

where T̂I is given in Eq. (5). Note that for analysis brevity, we let N = 1, thus S∗
u and

S∗
n are in the scale of 0 to 1. R0 is in the same form as in Eq. (6)

R0 = β

γ
(1 − 	),

where

	 = 1

C

(
C1S

∗
u + (C2(1 − θw) + Cθw)S∗

n

)
.

The first goal is to explore how changes in isolation, θw and θc, affectsR0. Mathe-
matically we would like to verify the sign of ∂R0

∂θw
and ∂R0

∂θc
. We start with simplifying

	 (A.2) by factoring θw and θc in Eq. (A.2). Thus, 	 can be rewritten as

	 = 1

C

(
− D1S

∗
nθ

2
w + ( − ω2 pI T̂I S∗

nθc + D2S
∗
n + γ T̂I (ω + γ )

)
θw

+(ω + γ S∗
u )ωpI T̂I θc

)
, (A12)

where

D1 = (ω + γ )γ 2 + (ω + γ + ωpI )γ T̂I , (A13)

D2 = (3ω + 2γ )γ 2 + (ω + γ + 2ωpI )γ T̂I + (γ + pI T̂I )ω2. (A14)

	, Eq. (A12), is linear in θc with a positive coefficient. thus

∂	

∂θc
= 1/C(γ S∗

u + ω(1 − θwS
∗
n ))ωpI T̂I . (A15)

This results in increasing 	, thus decreasing R0 with respect to θc, that is
∂R0
∂θc

≤ 0.
Note that C is independent of θc and θw.

With a similar logic, 	 (A12) is a concave-down quadratic equation in θw, given
by

1/C
(

− D1S
∗
nθ

2
w + ( − ω2 pI T̂I S∗

nθc + D2S
∗
n + γ T̂I (ω + γ )

)
θw

)
. (A16)

We show that the feasible range of θw lies between 0 and the vertex of this parabola
where the parabola is increasing in θw, and so does 	 which results in inferring
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∂R0
∂θw

≤ 0. It is enough to show that partial derivative of the expression (A16) with
respect to θw at θw = 1 is non-negative. It follows that

∂	

∂θw

∣
∣∣
∣
θw=1

=1/C
(
(D2 − 2D1 − ω2 pI T̂I θc)S

∗
n + γ T̂I (ω + γ )

)

=1/C
(
(γ (ω + γ ) + γω2 + (1 − θc)ω

2 pIT̂I )S
∗
n + γ (ω + γ )T̂I (1 − S∗

n )
)
, (A17)

which is a positive quantity, given that θc and S∗
n vary between 0 and 1.

The second goal is to explore how changes in per capita testing intensity ρ affects
R0. Mathematically we would like to verify the sign of ∂R0

∂ρ
, which specifically

depends on ∂	
∂ρ

. We use the derived expressions for S∗
u and S∗

n , given by Eq. (4),

in 	 (A.2). Also, we define φ = T̂S = ρω
ω−ρ

, to reparameterize ρ. This is mainly to

avoid singularity in T̂I (5), when testing intensity ρ is very close to the rate of test
return ω. Thus, ρ is reparameterized as

ρ = ωφ

ω + φ
. (A18)

This one-to-onemonotonic reparameterization enables us to simplify themathematical
expressions and explore the simpler ∂	

∂φ
instead of the complicated ∂	

∂ρ
. Defining

wI S ≡ wI
wS

, the derivative is

∂	/∂φ = 1

d3
(a3φ

2 + b3φ + c3), (A19)

where

a3 = wI S

(
(1 − θw)(1 + wI S)θwγ 3 + (1 − θc)p

2
I θwwI Sω3

+
((

(1 − θw − wI S)θc + (3 − 2θw)θwwI S
)
pI + (1 − θw)(1 + wI S)θw

)
ωγ 2

+
((

(1 − θw − θwwI S)θc + (2 − θw)θwwI S
)
pI + (2θw − θ2w − θc)wI S p

2
I

)
ω2γ

)
,

b3 = 2wI S(ω + γ )γ
(
(ω + γ + ωpI )(2 − θw)γ θw + (1 − θw)ω2 pI θc + ω2 pI θw

)
,

c3 = (ω + γ )2γ
(
(2 − θw)γ 2θw + (1 + wI S)ωγ θw + wI Sω2 pI θc

)
,

d3 = (ω + γ )

ω

(
(ωpI + γ )wI Sφ + (ω + γ )γ

)2
(ω + φ)2. (A20)

Note that φ ≥ 0, also b3, c3 and d3 are all positive. However a3 can be positive or
negative. If a3 ≥ 0, ∂	/∂φ ≥ 0 for all feasible range of parameters, thus ∂R0

∂ρ
≤ 0. It

is straightforward to show that a3 ≥ 0 when testing is random, i.e., wS = wI = 1. If
a3 < 0, then the quadratic expression in the numerator of (A19) has a positive root,
φ∗, such that for φ > φ∗, ∂	/∂φ < 0.
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An example of this countervailing effect of φ, and consequently ρ, on R0 occurs
when θw = 0 and θc = 1. This is illustrated in the top-right panel of Fig. 3 panel (b),
where the strength of isolation for awaiting people is the least, but the most for the
confirmed cases. In this case, simplifying a3 in Eq. (A20) gives

a3 = wI Sωγ pI ((ω + γ ) − wI S(ωpI + γ ))

∝ ω (1 − wI S pI ) + γ (1 − wI S) .
(A21)

If pI > 0, then a3 < 0 for sufficiently targeted testing (i.e. when wI S pI > 1; because
pI ≤ 1, wI S is always ≥ wI S pI ). When the test is perfectly sensitive (pI = 1),
a3 < 0 as long as wI S > 1. Under either of these conditions, there exists a range for
ρ over which ∂R0

∂ρ
≤ 0. Because increasing values of ρ and ω both delay the rate at

which individuals flow to the Ic compartment, it is reasonable that increasing either
value could (under appropriate circumstances) increase R0.

A.3 Rate of Returning Tests

The third goal is to explore how changes in the rate of test return ω affect R0. Math-
ematically we would like to verify the sign of ∂R0

∂ω
, which specifically depends on

∂	
∂ω

. We use the linearization of 	 when ρ � 1 to show that there a non-monotonic
relationship between R0 and ω. The linear term in the Taylor expansion of 	 when
ρ � 1 is

	 = ρ

ωγ (ω + γ )

(
wI Sω

2 pI θc + (wI S + 1)γωθw + γ 2θw(2 − θw)
)
.

(A22)

This results in

∂	

∂ω
= ρ

ω2(ω + γ )2

(
(pIwI Sθc − (1 + wI S)θw)ω2 − 2θwγ (2 − θw)ω

+ θwγ 2(θw − 2)
)
. (A23)

The latter expression has two roots

ω∗+ =
γ
(

− c4 +
√
c24 + (a4 − b4)c4

)

b4 − a4
(A24)

ω∗− =
γ
(

− c4 −
√
c24 + (a4 − b4)c4

)

b4 − a4
, (A25)

where a4 = pIwI Sθc, b4 = (1+wI S)θw, c4 = θw(2−θw). This enables us to describe
the behaviour ofR0 with respect to ω in the following two cases.
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– Case I If b4 ≥ a4, ∂	
∂ω

< 0, soR0 is always increasing with respect to ω (i.e., it is
always harmful to return tests more rapidly).

– Case II If b4 < a4, R0 will be decreasing with respect to ω (i.e., returning tests
more rapidly is beneficial) only when ω > ω∗−.

Note that b4 ≥ a4 is characterized by

(
wI S + 1

)
θw ≥ wI S pI θc ⇐⇒

(wS

wI
+ 1

) 1

pI
≥ θc

θw
(A26)

We begin with a proof of Case I. Suppose that b4 ≥ a4. If the roots of ∂	
∂ω

are not
complex, then we must have c4 ≥ b4 − a4. Note that ω∗− must be negative since the
numerator is clearly negative but the denominator is positive. Next, note that since
c4 ≥ b4 − a4, the numerator of ω∗+ must also be negative, so ω∗+ is negative. Thus, in

this case, ∂R0
∂ω

does not change sign on (0,∞). Checking the sign of A23 for arbitrarily
largeω shows that it is negative (since the (a4−b4)ω2 term dominates and is negative).
SoR0 is increasing with respect to ω on all of (0,∞).

We now turn our attention to a proof of Case II. Suppose that b4 < a4. It follows
that ω∗+ and ω∗− are real since c4 > 0 > b4 − a4. Next, note that ω∗− is positive since
both the numerator and denominator are negative. On the other hand, ω∗+ is negative
since the denominator is negative but the numerator is positive (because c4 > b4−a4).
Thus, our task is to understand the sign of ∂	

∂ω
around the root ω∗−. Checking the sign

of A23 for arbitrarily large ω shows that it is positive (since the (a4 − b4)ω2 term
dominates and is positive). Likewise, checking the sign for values of ω close to 0
shows that it is negative. Thus,R0 is increasing with respect to ω when ω < ω∗−, and
is decreasing ω > ω∗−.

Having presented the formal analysis, we now concern ourselves with its biological
interpretations.Webegin by interpretingA26, underwhich returning testsmore rapidly
is always harmful. Notice that the ratio θc

θw
is simply a measure of how much more

strongly individuals self-isolate when they test positive compared to when waiting for
tests. Since the rate of test return directly influences the rate atwhich individuals change
from a waiting state to a confirmed-positive state, it is intuitive that θc

θw
would appear

in A26. Next, note that the left-hand side increases when test sensitivity decreases and
when targeting of positive individuals is poor. This is consistent with our intuition:
a false negative that is returned more rapidly will allow an infectious individual to
relax their self-isolation, thus increasing transmission. Likewise, if individuals tested
are mainly susceptible (rather than infectious), then returning tests more slowly would
encourage them to self-isolate for longerwhile awaiting test results.Havingunderstood
the role of each of the parameters in A26, a holistic interpretation of this inequality is
that returning testsmore slowly is helpfulwhen the benefit of extended self-isolation by
infected individuals awaiting test results outweighs the benefit of identifying positive
cases.

Nowwe interpretCase II. In this case,R0 will have a global maximumwith respect
to ω at ω∗−. Note that our model assumption that ρ < ω plays an important role here:
if ω∗− < ρ, then R0 will be always decreasing with respect to ω. On the other hand,
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if ρ < ω∗−, then R0 will be increasing with respect to ω on (ρ, ω∗−) and decreasing
beyond that.

A.4 The Effect of Testing Focus ParameterwIS onR0

Using the expression for the effectiveness of control parameter 	 in Eq. 7, gives

∂	

∂wI S
= (ω − ρ)(ω(ω − ρθw) + γ (ω − ρ))(θwγ + θcωpI )

(−ω2γ + ωγρ − γρωwI S − ωγ 2 + γ 2ρ − ω2 pIρwI S)2
, (A27)

which is a positive quantity. Thus, ∂R0
∂wI S

≤ 0. Therefore, increasing the focus of testing
on the infectious people will result in less transmission.

A.5 On Testing Rate and Numerical Singularity

As mentioned in Sect. 2 of the main text, the simple implementation of testing rate in
our model can cause model trajectories to become unstable near the DFE. This occurs
because once the only untested people are susceptibles, the FOI approaches � = 0,
and the testing rate TS → ρN/Su. Thus, the first equation of the model (A1) will
become dSu/dt = −ρN + ωSn. Thus changes in Su will be independent of Su, and
the decay of the Su population becomes linear rather than exponential — allowing
Su to become negative. To avoid this problem the testing rate, σ (Eq. 1), should be
formulated such that people from the untested compartments will not be tested if they
are not there. One way to fix this issue, is to consider a maximum testing rate, τ

(1/day). In general, we want to test at a rate of ρ across the whole population. This
won’t always be possible, so we impose a maximum rate of τ per testable person and
redefine σ = τρN

τW+ρN , with the assumption that τ  ρ. This modification of σ does
not affect any of the results we have derived about the invasion of the epidemic from
the DFE (i.e., results on R0 and 	).
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